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ABSTRACT

The Private Aggregation of Teacher Ensembles (PATE) framework is a versatile
approach to privacy-preserving machine learning. In PATE, responses made based
on different parts of sensitive data are aggregated into a single response in a
privacy-preserving way. Recently, multiple works applied PATE for tasks such
as sequential text generation that are inherently diverse (or "hot"), with multiple
valid responses. These designs, however, suffer from tension between diversity
and privacy – since diversity in the responses reduces agreement which forces the
aggregation to use smaller noise scales and thus incur higher privacy loss. But
limiting diversity of the aggregate response is undesirable since in modern large
language models, the very knowledge we want to transfer is encapsulated in the
response distribution. We propose hot PATE that is tailored for the diverse setting
where responses are distributions. We formally define preserving diversity and
design an efficient aggregation method that provably transfers the diversity to the
(randomized) aggregate response while incurring no privacy penalty. The method
can be implemented using an API access to proprietary models and used as a plug-
in replacement for the baseline “cold” PATE in existing tools. We demonstrate
empirically the potential of hot PATE for an order of magnitude improvement in a
task of in-context learning via prompts.

1 INTRODUCTION

Generative AI models, such as large language models (LLMs), are incredibly powerful tools that can
be fine-tuned for specific contexts, even without explicit supervision (Radford et al., 2019; Brown
et al., 2020). Generative models diverge from conventional machine learning models in that they
support open ended, diverse tasks, where there are multiple appropriate responses, and this very
flexibility is essential for much of their functionality. Diversity is typically tuned via a temperature
parameter in the softmax, with higher temperature yielding higher entropy (more diverse responses).
Furthermore, when evaluating the coverage or extracting knowledge from a trained model, such as
for distillation tasks, the conventional approach involves querying the model on a prepared (sampled
or curated) test set of examples. However, with generative AI models, the knowledge coverage on a
specific domain is often encapsulated by the output distribution itself to a general instruction as part
of a prompt to the model, and can be evaluated or retrieved by sampling this distribution.

Frequently there is a need to train models or fine-tune publicly-available foundation models using
sensitive data such as medical records, incident reports, or email messages. In this case, privacy
must be preserved in the process. Specifically, we consider the strong mathematical guarantees of
differential privacy (DP) (Dwork et al., 2006). An approach that achieves privacy by modifying the
training process is DPSGD (Abadi et al., 2016), where noise is added to clipped gradient updates.
DPSGD can also be applied with fine tuning (Yu et al., 2022; Duan et al., 2023; Kurakin et al.,
2024). An alternative approach, that only relies on black box training and use of models that are not
privacy-preserving, is the Private Aggregation of Teacher Ensembles (PATE) paradigm (Papernot
et al., 2017; Bassily et al., 2018; Papernot et al., 2018). PATE follows the “sample and aggregate”
method of Nissim et al. (2007). We describe the basic workflow which we refer to here as cold PATE
on how the ensemble is used to label a set of new examples X while protecting the privacy of the
training data:
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Cold PATE
1. Partition the sensitive dataset D into n parts D = D1 ⊔ · · · ⊔ Dn. For i ∈ [n], train a teacher

model Mi on data Di.

2. Repeat the following:

• Input an example x ∈ X .
• For each teacher i ∈ [n], apply Mi to x and obtain a label yi := Mi(x) ∈ V .
• Compute the frequency histogram c:

for j ∈ V , cj =
∑
i∈[n]

1{yi = j} . (1)

• DP aggregate the histogram c 7→ y to obtain a single label y ∈ V (or abort if there is
insufficient agreement). Output y.

Differential privacy requires that the output distribution is stable to a change of a single data record.
In the PATE framework, the votes histogram of each example is stable to a change of one record
in D: At most one teacher, the one trained on this record, is affected and thus may change its vote.
Therefore, at most two frequency counts cj may change in the histogram, and each by at most 1.
A noisy selection of a label from the histogram, that hides this small difference in the counts, is
therefore privacy preserving.

The labels may be the end goal or the set of privacy-preserving labeled examples {(x, y)} can be
used to train a student model. The limitations of cold PATE are that it was originally designed for
classification-like tasks, where each example x has a single ground-truth label y ∈ V . Moreover, there
is a need for a source of unlabeled non-private training examples to facilitate the knowledge transfer
to the student. This is unsatisfactory because generative AI models support tasks with responses that
are diverse and open ended. Moreover, knowledge is encapsulated in the diversity of the response
distribution and there is a promise of transferring knowledge to the student in a more fluid way. We
thus ask the following question:

Can we design a version of PATE that is effective for diverse and open-ended tasks
and unleashes more of the capabilities of generative models?

Application for in-context learning One motivation for our study is the effectiveness of in-context
learning via prompts. A prompt is an engineered prefix with a task that is given to the base model.
Prompts can include specific instructions and/or a set of shots (scenario exemplars). Prompts are
appealing for multiple reasons: A small number of shots (Liu et al., 2021) often outperform tailored
trained models (Zhou et al., 2022; Garg et al., 2023). Prompting is efficient, as it is simply inference –
there is no need for parameter updates. Finally, prompts only requires API access to the model, which
is important given the trend towards proprietary models.

When our data is sensitive, we would like the end product to be privacy-preserving. Concretely,
consider the task of generating a representative set of synthetic privacy-preserving data records from
a set of sensitive data records. The sensitive records may include components that are identifying and
components that are shared with many other records. A privacy-preserving aggregation ensures that
the synthetic records do not include identifying information. Additionally, it is essential to preserve
diversity in order to ensure coverage, that is, that our set of synthetic records is indeed representative
of the sensitive records. The synthetic records that are generated can then be used to train a student
model that is not necessarily generative, fine-tune a generative model (OpenAI, 2023), or construct a
privacy-preserving student prompt for downstream tasks. The latter allows for harnessing the ability
of generative models to generalize from few shots.

We seek a PATE mechanism that supports the following. Each teacher is assigned a disjoint subset
of sensitive data records. These data records are used to construct a prompt that also includes an
instruction of the form “generate a representative data record given this example set of data records.”
Each teacher then has its own distribution on responses. By repeating multiple times we can obtain
different samples that are a representative set of shots. We then hope to aggregate responses of
different teachers in a way that preserves both diversity and privacy. This design is appealing as there
is little cost to scaling up the number of teachers: Each teacher is simply a prompted base model and
there is no need for training or significant storage. Prompts are inexpensive, the current OpenAI API
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supports 105 context/output tokens for US$5-$10 (OpenAI, 2023a). The bottleneck to scaling up
the number of teachers is thus the amount of available sensitive data. Scaling up is highly beneficial
because generally with DP aggregation, the number of queries we can support for a given privacy
budget is quadratic in the number of teachers.

Diversity-privacy tradeoff: An issue that arises when applying cold PATE with high diversity is
that utility rapidly deteriorates with diversity. To see this, assume there are r good responses with
equal probabilities. Note that higher r means more diversity. The n teachers votes would then be split
with ≈ n/r teacher votes per option. This lower agreement means that in order to return any of the
answers we must use privacy noise of scale σ < n/r. This inverse dependence of noise with r means
the privacy loss must increase with r. We can attempt to remedy this via some tie-breaking (e.g., each
teacher selects a response in the top-k with the largest index). This does result in high agreement but
we lose the diversity in the output that is needed to facilitate a fluid knowledge transfer. All prior
and concurrent works we are aware of for privacy-preserving sequential text generation or in-context
learning via prompts (Tian et al., 2022; Duan et al., 2023; Wu et al., 2023) either ignored this issue or
addressed it by reducing or limiting diversity (see discussion in Section A). We ask the following:

Is the diversity-privacy tradeoff indeed inherent?

OVERVIEW OF CONTRIBUTIONS AND ROADMAP

We propose hot PATE, described in Section 2. The method is suitable for auto-regressive models and
diverse and open ended tasks, where the appropriate response is a sample from a distribution. With
hot PATE, each teacher i ∈ [n] at each step computes a “next token” distribution p(i) over tokens
V . These distributions are aggregated so that the response token from the ensemble is sampled from
that aggregate distribution. The heart of our design is an aggregation method that preserves privacy
and critically also the diversity of the teachers distributions. Our primary technical contributions are
mathematically formalizing this requirement and proposing aggregation methods where there is no
penalty with increased diversity. Hot Pate can be added in a black-box manner to existing designs for
in-context learning via prompts to improve the utility privacy tradeoff.

Figure 1: Illustration of two sets of probability
distributions, each shown as a rectangle with the
red portion representing the probability of token j.
The left set corresponds to high teachers’ support
for low probability q. The right set to low teachers’
support for high q. The probability of token j in
the average distribution is the same in both cases.

In Section 3 we motivate and formalize a definition of robustly preserving diversity, which allows
for knowledge transfer that is compatible with limitations imposed by privacy. A natural diversity-
preserving approach is for each teacher i ∈ [n] to contribute a token yi sampled independently from
p(i). We refer to this as independent ensemble. The resulting vote histogram is what is produced by
cold PATE (Papernot et al., 2017; 2018; Duan et al., 2023) when applied in a diverse setting. The
histogram can then be DP aggregated to produce a response token. The privacy loss depends on
the frequency (count) of the response token. With independent samples, this count is concentrated
around the average probability of the token across teachers. This probability is smaller when there
is high diversity. Therefore, independent ensembles as an intermediate step inherently result in
privacy guarantees that sharply deteriorate with the diversity of teacher distributions. We argue
that this higher privacy noise may or may not be necessary, and this depends on properties of the
teacher distributions that are lost by independent ensembles. The frequency histograms produced
by independent ensembles are concentrated around the average of the teachers’ distributions. The
issue, as depicted in Figure 1, is that averaging loses a critical distinction between high teachers’
support with low probability q (which we can hope to transfer in a privacy-preserving manner) and
low support with high q (which can not be transferred in a privacy-preserving manner). Our definition
of robust diversity transfer makes this important refinement: A token is required to be transferred to
the aggregate only when there is sufficient teachers’ support. Informally, for a robustness parameter
τ ∈ [n], there are two requirements:
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• (transfer requirement) Any token that has probability at least q > 0 (no matter how small)
across c teachers where c ≥ τ , is “transferred” in that it has probability Ω(qc/n) in the
aggregate distribution.

• (relevance requirement) We do not transfer irrelevant tokens, that is, for any token j, its
probability in the aggregate distribution is not much higher than its average probability in
the teacher distributions.

As argued, independent ensembles lose the robustness signal. In Section 4 we propose the method of
ensemble coordination. A coordinated ensemble samples a shared randomness and based on that, each
teacher i contributes a token yi. The marginal distribution of each yi is p(i), same as with independent
ensemble. But the difference is that teachers votes are maximally positively correlated. The frequency
cj of token j has high spread and in particular can (roughly) be Ω(τ) with probability Ω(q). This
property facilitates DP aggregation with no penalty for diversity. With coordinated ensembles, two
teachers with very diverse distributions that have a small total variation distance produce the same
token with probability that depends on the distance. In particular, when the distributions are equal
(the distance is 0), the same token would be produced.

In Section 5 we empirically demonstrate the properties and benefits of ensemble coordination for
a simple task of in-context learning via prompts on the Llama 3 language model (lla, 2024). We
evaluate the coverage and diversity of aggregate distributions formed by only transferring frequency
counts that exceed a threshold T . We observe an order of magnitude improvement over the baseline
of independent ensembles in terms of the value of T needed to achieve a certain coverage and in
terms of diversity of the aggregate. Recall that larger T means that we can use more noise (noise
scale is proportional to T ) and thus incur lower privacy loss.

DP aggregation methods for histograms that apply with independent ensembles, such as Papernot et al.
(2017; 2018), can be applied in an off-the-shelf manner with histograms generated by coordinated
ensembles. The primary gain of hot PATE is in the utility privacy tradeoff. In Section D we present
DP aggregation schemes that are applied to frequency histograms generated by coordinated ensembles
and return a token. We establish that the end-to-end process preserves diversity in the sense that it
satisfies our formal requirements (Section 3). We distinguish between two application scenarios of
applications with homogeneous or heterogeneous ensembles (see Figure 2). Homogeneous ensembles
are formed by randomly partitioning a sufficient number of data records among teachers. The
assumption then is the same as with cold PATE – most teachers possess the core knowledge we
wish to transfer (see Figure 3 (A)). In this case it suffices to require diversity preservation with
large support τ = Ω(n) and the aggregate we need is simply a (noisy) maximizer of the histogram.
Heterogeneous ensembles may arise when each teacher is an agent of one or few users. In this case,
we want to preserve diversity both within and across teachers and for the latter it is necessary to allow
smaller groups of teachers to support each transfer, that is, set a smaller τ (see Figure 3 (B)). In this
case, a diversity-preserving aggregate is a weighted sample from the histogram.

In Sections E and F we further explore privacy analysis methods that are data dependent and can
increase the number of queries processed for a given privacy budget by orders of magnitude. In
particular, for token-by-token sequential text generation there are many steps and the cost of naive
DP composition is prohibitive. What makes the approach feasible is that many of the steps have
high agreement (similar teacher distributions where coordinated ensembles generate high agreement
histograms). With data dependent analysis, steps with high agreement (or no agreement) can be
essentially free. Moreover, with heterogeneous ensembles we can charge teachers individually
(instead of the whole ensemble) and only for steps in which the teacher contributed to the final
token (Hassidim et al., 2020; Cohen and Lyu, 2023).

Figure 2: Ensemble types for Hot Pate. In ho-
mogeneous ensembles each teacher gets a rep-
resentative part of the data. In heterogeneous
ensembles each teacher has the data of one or
few users (aka “privacy units”).
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Figure 3: Illustrating diversity within teachers, that stems
from semantic similarity or knowledge encapsulated in the
base model or few exemplars. In this case, coordinated
ensembles form high agreement and a higher τ suffices.
Diversity across teachers, stems from data that is available
only to few teachers. Coordinated ensembles reflect it and
require lower τ .

2 PATE FOR SEQUENTIAL TEXT GENERATION

We use the term tokens for elements of the input and response strings. We denote the vocabulary of
tokens by V . For an input context (prompt) T ∈ V ∗, a response sequence R is generated sequentially
token by token. Specifically, the next token at each step, is sampled from a probability distribution
over V that depends on the current context (concatenation of the prompt and response prefix) T ·R.
The probabilities are computed from weights (logits) (wj)j∈V produced at inference by the model
and a temperature parameter t > 0, using a softmax function:

pj :=
ewj/t∑
i∈V ewi/t

.

In low temperatures, the highest weight token argmaxj wj has probability close to 1. As we increase
the temperature, the probability distribution flattens with similarly-weighted tokens having similar
probabilities. Cold temperature is appropriate for classification-like tasks with one correct response
and hot temperature is appropriate for diverse tasks. We therefore refer to the basic PATE as cold
PATE and to our proposed method that is tailored for diversity as hot PATE.

Figure 4: Sequential text generation with diversity

PATE for sequential text generation is illustrated in Figure 4. The data D is partitioned to disjoint
parts Di (i ∈ [n]). A prompt Ti is constructed from data part Di. We then generate a sanitized
response sequence R of tokens. We initialize R ← {} and proceed sequentially in lockstep, by
repeating the following:

1. For i ∈ [n]: Let p(i) be the output distribution over V when querying the model with the prompt
Ti<instruction to complete prefix>R.

2. Apply a privacy-and-diversity preserving randomized aggregationM((p(i))i∈[n]) 7→ y, where y ∈ V .

3. Concatenate R← R · y.

This open-ended design can be used with an instruction to generate a student prompt or representative
synthetic shots. This aligns with the demonstrated and evolving capabilities of contemporary large
language models and prompt engineering. Such instructions may generate diverse responses and the
objective is that what is transferred, which is captured by the aggregate distributionM((p(i))i∈[n]),
preserves the diversity present in the teacher distributions (p(i))i∈[n]. The main difference between
the baseline cold PATE and our proposed hot PATE is in the aggregationM in step (2). We first
describe the aggregation with cold PATE (Duan et al., 2023) and present our aggregation mechanism
for hot PATE in subsequent sections.
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2.1 COLD PATE: INDEPENDENT ENSEMBLE

Each teacher i ∈ [n] samples independently yi ∼ p(i). The frequency histogram (cj)j∈V is computed
as in (1).1 The DP aggregation mechanism adds noise to each cj to obtain a privacy-preserving
sanitized histogram (c̃j)j∈V . We then select a token. A baseline meta-method, NoisyArgMax
select the maximizer argmaxj c̃j (Duan et al., 2023). The privacy cost of this aggregation inversely
depends on the noise scale σ,2 which for utility, must satisfy σ ≪ maxj cj .

When the distributions are more diverse, maxj cj is smaller so for utility we must use a smaller σ.
Moreover, argmaxj c̃j is not diversity preserving: If the most frequent token is j and we have a
token h with frequency ch = cj/2, we still want to select h with probability that is 1/2 of that of
token j, that is, select a weighted sample from the histogram. To do this in a privacy-preserving way
we must use an even smaller noise scale that depends on the smallest counts that we aim to transfer.

3 DIVERSITY-PRESERVING AGGREGATION

Diversity and privacy appear to be conflicting in that DP in its essence requires that the output token
is supported by sufficiently many teachers. But to preserve diversity we need to also transfer tokens
that have low probability in the teacher distributions to the aggregate distribution. The most natural
candidate for an aggregate distribution that preserves diversity is the average teacher distribution
1
n

∑
i∈[n] p

(i), which is essentially what independent ensembles use. The caveat is the issue pointed
out in the introduction (see Figure 1): It does not distinguish between tokens that are in the support
of the distributions of very few teachers with high probability and those that are in the support of
many teachers, with low probability. The privacy loss with independent ensembles (cold PATE)
depends, in both cases, on the lowest average values we wish transferred. We propose a more
nuanced requirement of preserving diversity that makes this distinction and is parametrized by a
robustness parameter τ , that corresponds to the number of supporting teachers. We then propose
privacy preserving mechanisms that preserve diversity with privacy loss that depends only on τ ,
regardless of how diverse the teacher distributions are.

Definition 1 (Diversity-preserving aggregation of distributions). Let f(p(i))i∈[n]) 7→ P map from
n probability distributions over V to a probability distribution over V ∪ {⊥}. We say that f is
diversity-preserving with τ ∈ N, β ∈ (0, 1], γ ≥ 1 if for any input and j ∈ V

1. For all q ∈ [0, 1],

(cj,q :=
∑
i∈n

1{p(i)j ≥ q}) ≥ τ =⇒ Pj ≥ β · cj,q
n

q .

2. Pj ≤ γ 1
n

∑
i∈[n] p

(i)
j .

The first property is that probability q across enough (τ ) teachers, no matter how small is q, is
transferred to the aggregate distribution. The second ensures that we do not output irrelevant tokens.

Requirements are stricter (and can be harder to satisfy) when β and γ are closer to 1 and when τ
is smaller. A setting of τ = 1 and β = γ = 1 allows only for the average distribution to be the
aggregate. A larger τ increases robustness in that more teachers must support the transfer.

Remark 1 (failures). It is necessary to allow for⊥ (failure) in the support of the aggregate distribution
when τ > 1. For example, when the prompt instruction ask for a patient ID, and assuming no
generalization, the teacher distributions have disjoint supports and no token can be returned. Failures
in the generation can be addressed by: (i) Repeating the step with different shared randomness (ii)
sample a token from a non-private default prompt or model, or (iii) redesign the prompt instruction.

1Alternatively, instead of sampling, we can use the expected values cj :=
∑

i p
(i)
j . The values cj are a scaled

by n average of teacher distributions. The histogram ((cj) has the same privacy properties as an independent
sampled histogram (cj), since the impact of a data point on the ℓ1 norm is bounded by 1. Additionally, with
independent ensemble, cj is anyhow concentrated around cj so the respective noisy counts are close c̃j ≈ c̃j .

2Our discussion applies to all mechanisms of this form, see review in Section D of particular noise distribu-
tions.
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Algorithm 1: CoordinatedSamples
Input: Teacher distributions (p(i))i∈[n]

foreach token j ∈ V do sample i.i.d. uj ∼ Exp[1] // Sample shared randomness ρ = (uj)j∈V

foreach teacher i do // Compute coordinated samples (yi)i∈[n]

yi ← argmaxj
p
(i)
j

uj
// bottom-k sampling transform

foreach token j ∈ V do // Compute frequencies

cj ←
∑

i∈[n] 1{yi = j}
return (cj)j∈V , ρ = (uj)j // Histogram of frequencies

Remark 2 (Setting of τ ). Homogeneous ensembles occur when data is randomly partitioned so that
most teachers receive a representative part and possess the knowledge we wish to transfer. The goal
is to transfer the parts of the distributions that are common to most teachers and τ > n/2 suffices. In
heterogeneous ensembles, each teacher might have data from one or very few “users.” This arises
when each teacher has small capacity (prompts currently have limited size of 8k-64k tokens (OpenAI,
2023b)) or when by design each teacher is an agent of a single user. The goal here is to transfer parts
of the distribution that are common to smaller subgroups of teachers and set τ ≪ n.

4 ENSEMBLE COORDINATION

We propose ensemble coordination and establish that it facilitates privacy and diversity preserving
aggregation. As with independent ensembles, for n probability distributions over V the ensemble
produces a histogram (cj)j∈V over V with total count

∑
j∈V cj = n. The sampling of c by a

coordinated ensemble is described in Algorithm 1. The algorithm samples shared randomness
ρ := (uj)j∈V . Each teacher i ∈ [n] then contributes a single token yi ∈ V that is a function of its
distribution p(i) and ρ. The frequencies cj are computed as in (1).

The sampling method in ensemble coordination is a classic technique called coordinated sampling. It
was first introduced in statistics works in order to obtain samples that are stable under distribution
shifts (Kish and Scott, 1971; Brewer et al., 1972; Saavedra, 1995; Rosén, 1997; Ohlsson, 2000) and
in computer science works for computational efficiency via sampling-based sketches and a form of
Locality Sensitive Hashing (LSH) (Cohen, 1994; 1997; Broder, 2000; Indyk and Motwani, 1998;
Haas, 2011). Its recent applications include private learning (Ghazi et al., 2021) and speculative
decoding (Leviathan et al., 2023).

4.1 PROPERTIES OF COORDINATED HISTOGRAMS

Let (p(i))i∈[n] be probability distributions over V and let Ycoo and Yind be the respective distributions
of votes (yi)i∈[n] generated by a coordinated or independent ensemble with teacher distributions
(p(i))i∈[n]. Let H(Ycoo) and H(Yind) be the respective distributions of histograms.

For each token j, its expected frequency, over the sampling of histograms, is the same for coordinated
and independent ensembles:

Claim 1 (Expected token frequency).

∀j ∈ V, Ec∼H(Ycoo)[cj ] = Ec∼H(Yind)[cj ] =
∑
i

p
(i)
j . (2)

Proof. The marginal distribution of yi for teacher i is p(i) with both independent and coordinated
ensembles and thus the claim follows from linearity of expectation.

In a coordinated ensemble, votes of different teachers are much more likely to agree than in an
independent ensemble (see Section B for a proof):
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Claim 2 (Agreement probability). For different teachers i, k ∈ [n] and token j ∈ V , the probability
that both samples agree on token j is

Pr
y∼Ycoo

[yi = yk = j] =
min{p(i)j , p

(k)
j }∑

j max{p(i)j , p
(k)
j }

∈
[
1

2
, 1

]
·min{p(i)j , p

(k)
j }

Pr
y∼Ycoo

[yi = yk = j] ≥ Pr
y∼Yind

[yi = yk = j] = p
(i)
j · p

(k)
j ,

with equality possible only when max{p(i)j , p
(k)
j } = 1.

The key feature of coordinated histograms is that we can generate a sample from a diversity-preserving
aggregate distribution as in Definition 1 by exclusively considering tokens that appear with frequency
at least τ/2 in the histogram (see Section B for a proof):
Theorem 1 (Utility of Coordinated Ensembles). We can sample from an aggregate distribution that
satisfies Definition 1 with parameters τ , β = 0.34 and γ = 2 by sampling a coordinated histogram
c ∼ H(Ycoo) and only considering tokens j with cj ≥ τ/2.

4.2 PRIVACY PROPERTIES

With both independent and coordinated ensembles, we aggregate the histogram in a privacy-preserving
way to obtain one token. The distribution of the histograms produced by these ensemble types is very
different. But the privacy properties in terms of the divergence between neighboring datasets are
identical and immediate:
Observation 1. For every fixture of the shared randomness ρ, changing one of the distributions p(i)

given as input to Algorithm 1 changes at most one item of the resulting histogram. That is, letting H
and H ′ denote the resulting histograms before and after the modification, we have that H,H ′ are at
Hamming distance 2 (viewed as vectors in N|V |).

The following corollary is immediate from Observation 1.

Corollary 1. Let A be an algorithm whose input is a histogram H ∈ N|V |, such that for any two
neighboring histograms H,H ′ (differing by at most one item) it holds that A(H) ≈(ε,δ) A(H ′).
Then the composed algorithm A (CoordinatedSamples(·)) is (ε, δ)-differentially private.3

Therefore, we can apply off-the-shelf the same DP aggregation schemes we would use with indepen-
dent ensembles (see Section 2.1) to coordinated ensembles. The benefit of coordinated ensembles,
per Theorem 1, is a much more favorable utility privacy trade-off: It suffices to set the privacy noise
scale to ∝ τ regardless of diversity, whereas with independent ensembles we must scale the noise
down with diversity to obtain utility. This benefit broadly holds with any DP histogram sanitizing
method4 that selects from tokens with count τ/2 whereas tokens with low or zero counts are filtered
out, including the NoisyArgMax methods used with cold PATE (Papernot et al., 2017; 2018). As
mentioned in Section 2.1, the selection of a token from a sanitized histogram can be NoisyArgMax
for homogeneous ensembles or a weighted sample for heterogeneous ensembles (Remark 2) – see
details in Section D. Simulation results with a particular (ε, δ)-DP analysis method are reported in
Section E.

4.3 IMPLEMENTATION IN LANGUAGE MODELS

Coordination can be implemented preferably with, but also without, an enhanced API access to a
proprietary base model: (i) Model-side: the shared randomness ρ is provided as input along with each
query prompt and the response token is sampled using ρ. (ii) Application-side: API returns the full
distribution and sampling done in the application (iii) No API enhancements: we can approximate
the distribution by repeated sampling with the same prompt. This impacts computation since the
number of samples required increases with diversity but does not impact privacy. Our demonstration
in Section 5 with a public model (AI@Meta, 2024) uses the full distribution.

3This corollary holds for all variants of differential privacy, and is written here with (ε, δ)-DP for concreteness.
4The noise scale is ∝ τ but DP methods require an additional factor of log(|V |) (due to a union bound over

the support V ) or log(1/δ) (with approximate DP). This applies also with independent ensembles.
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5 EMPIRICAL DEMONSTRATION

We demonstrate the benefits of coordinated ensembles (hot PATE) compared with the baseline of
independent ensembles (cold PATE). For clarity and simplicity, we designed our demo so that it
generates a single token. Sequential text generation performs multiple such steps. We use the Meta
Llama 3 8B parameter open source language model (lla, 2024; AI@Meta, 2024).

Generating Prompts: We generated for each experiment n = 104 text prompts (teachers) of the
following form

On planet Z, some numbers are edible. <name> from planet
Z eats the following numbers for breakfast: <random permu-
tation of C ∪ {<private number>} > Give me an example breakfast
number in planet Z. Respond with just the number.

The set C is a fixed subset of size |C| = k of the set N999
100 = {100, . . . , 999} of the 900 3-digit

numbers. We selected the set C uniformly at random. The strings <name> and <private number>
∼ U [N999

100 \ C] were generated separately for each prompt i ∈ [n]. For our purposes, the set C is the
information we want transferred whereas the prompt-specific <name> and <private number> and the
ordering of C in the prompt are considered sensitive. Each prompt is designed to have k + 1 correct
answers. We report results with k ∈ {20, 100}. For each prompt i ∈ [n] we retrieved the probability
distribution p(i) over tokens V of the next-token response. Llama 3 uses a vocabulary V of 128k
tokens and 3-digit numbers are encoded as single tokens. The generation took a few minutes on a
single A100 GPU. The distributions the model generated exhibited biases towards certain numbers
and high variation. The probability of returning a 3-digit number was 0.995 but the model generalized
and returned with 25% probability numbers outside the input set. Note that our aim is to transfer
what the model does (including the biases and generalizing), also when it differs from the original
intent of the prompt author. See Section C.1 for further details.

Sampling vote histograms We sampled r = 103 vote histograms (ch)rh=1 from each of coordinated
and independent ensembles. Each histogram has total count of n = 104, since each teacher contributes
one token. We use the notation chj for the frequency (count) of token j in the hth histogram (h ∈ [r]).

Figures 8 and 9 visualize the average probability 1
n

∑
i∈[n] p

(i)
j of each token j ∈ N999

100 across
teacher distributions. The figure also shows the average frequency 1

r

∑r
h=1 c

h
j over the r = 103

samples from each of independent and coordinated ensembles. This demonstrates the property (see
Claim 1) that the expected number of votes for each token is the same for the two ensemble types
and corresponds to the average distribution. The qualitative difference between coordinated and
independent ensembles (see Claim 2) is visualized in Figure 10 by zooming on individual sampled
histograms. The figure shows one sampled histogram with independent sampling and two sampled
histograms with coordinated sampling. With independent sampling, frequency counts of each token
j are concentrated close to the expectation

∑
i p

(i)
j and are similar across different samples and to

the averages shown in Figures 8 and 9. With coordinated samples there is high variability between
samples and it is possible for the frequency of a token to far exceed

∑
i p

i
j .

Utility Evaluation A token j in sample h can be reported in a privacy-preserving way only when
its frequency exceeds the scale of the privacy noise chj > T . We evaluate utility of coordinated and
independent ensemble types by considering (i) coverage for threshold T : fraction of the votes that
appear with token frequency at least T and (ii) diversity for coverage: The number of distinct tokens
that are appear with high frequency.

Figure 5 (left) shows Eh[|{j ∈ V | chj ≥ T}|], the average number of tokens per sample (histogram)
that have frequency above T , for varying T . Observe that with independent samples, the maximum
frequency maxh,j∈V chj (over histograms and tokens) corresponds to the maximum token average
probability: for k = 20 it is 0.14n and for k = 100 it is 0.03n. With coordinated ensembles, the
majority of samples contained a token with frequency above 0.25n (that is much higher than the
maximum token average probability). Figure 5 (middle) reports the fraction of the votes (over
samples and tokens) that are in frequencies that exceed T , for varying T . We observe that coordinated
ensembles cover many more votes for a given T than independent ensembles. Additionally, we

9
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Figure 5: Left: Average number of tokens per sample with frequency filter ≥ T . Middle: fraction of
votes in frequency ≥ T . Right: Total Variation Distance between filtered and average distribution
with filter ≥ T . Top k = 20 bottom k = 100.

observe that the coverage corresponds to the T/n-robust part of the distribution shown in Figure 7,
that is, it corresponds to what we can hope to transfer (see Theorem 1 and Section C.2). For k = 100,
20% of the votes are covered with T = 2000 with coordinated sampling but require T ≤ 250
with independent sampling (factor ×8). For k = 20, 40% of votes are covered with T = 4000
with coordinated sampling but this coverage requires T ≤ 1000 with independent sampling (factor
×4). Independent samples have 0% coverage with T ≥ 1500 for k = 20 and with T ≥ 400 for
k = 100. To summarize, we observe that independent ensembles have 0% coverage when T exceeds
the maximum average frequency whereas coordinated ensembles are effective with high T .

We next consider diversity per coverage. Figure 5 (right) reports the total variation distance from
the average distribution. Figure 11 is a parametric plot by T (not shown) that shows the relation
of coverage (average number of of teacher votes over samples that occurred in counts ≥ T ) vs
sparsity (number of distinct tokens that in at least one sample had count ≥ T ) with coordinated and
independent ensembles. We can see that coordinated ensembles are more diverse than independent
ensembles for the same coverage of votes, with an order of magnitude gap.

Figures 12 and 13 visualize the histograms of the covered votes (averaged over the r samples) per
token, for varying thresholds T . For each displayed histogram we list coverage and sparsity. Recall
that the threshold T corresponds to the noise scale σ that allows for the transfer. Coverage is indicative
of yield distribution and sparsity reflects lower diversity of the yield. The visualization demonstrates
again the benefits of coordinated ensembles: Independent ensembles become ineffective with very
low T , quickly losing coverage and diversity compared with coordinated ensembles. The maximum
average frequency of a token was 0.14 with k = 20 and 0.04 with k = 100 and indeed independent
ensembles transfer nothing beyond these proportions of teachers. Moreover, no generalization (shown
in blue) is transferred. Coordinated ensembles on the other hand are effective also when T is a
fraction of teachers (20%+) that is much higher than the maximum average frequency of a token.

Conclusion We proposed hot PATE that enhances the PATE framework in diverse settings. Hot
PATE only requires API access to proprietary models and can boost performance as a plug-in
replacement to cold PATE. An important use case is in-context learning via prompts, such as
generating privacy-preserving synthetic data records from sensitive records. We formally define a
robust diversity-preserving aggregate of distributions and design an aggregation method that satisfies
it with no privacy penalty for higher diversity. Beyond private learning, our design, with lower values
of the tuneable robustness parameter, is suitable for applications such as data distillation that require
robustness to few outliers or a lightweight protection against memorization but not necessarily strong
privacy guarantees.
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A RELATED WORK

We place our contribution in the context of prior and independent concurrent works on PATE
adaptations for text generation. These works either (i) did not consider diversity or (ii) recognized
it and the importance of transferring it but proposed aggregation schemes where utility decreases
with diversity together with methods to limit diversity as to mitigate this perceived privacy-diversity
trade-off. Our technique of ensemble coordination is an independent contribution that can enhance or
replace components in some of these designs.

Tian et al. (2022) proposed a PATE extension for sequential text generation tasks in diverse settings.
Their approach limited diversity: Average the teachers distributions and then truncate the tail by
keeping only the top-k frequencies. The work of Tang et al. (2024) (independent concurrent) took a
similar approach. The distribution of each teacher is reduced to a uniform distribution over its top-k
token probabilities. An independent ensemble is then applied to this set of reduced distributions. This
approach limits diversity to k and suffers from loss of diversity while still incurring a utility trade-off
with k. In our work, we demonstrate that averaging teacher distributions (independent ensemble) is
inferior to coordinating the ensemble.

Recent prior work explored adaptations of PATE for in-context learning via prompting.

Duan et al. (2023) proposed to use each part Di of the data to create a text prompt Ti. The ensemble
is then used to label curated queries. But while some design elements were tailored to LLMs, the
workflow and privacy analysis were identical to cold PATE (Papernot et al., 2018), and in particular,
did not consider diverse responses.

Wu et al. (2023) (independent concurrent work) proposed approaches to private aggregation for
in-context learning with diversity. They proposed to reduce the perceived diversity in sequentially-
generated text outputs by different teachers by clustering together outputs that are semantically
equivalent and aggregating each cluster in a semantic space. This essentially reduces the dimension-
ality of the output space. The aim then is to extract and transfer this common semantics in a privacy
preserving way: Map responses into a common low dimensional embedding space and privately
aggregate embedding vectors or identify frequent keywords in diverse teachers’ responses. The
limitations are that the approach only addresses same-semantics diversity and offers no solution for
semantically-distinct diverse responses and are subjected to a privacy diversity trade-off. Additionally
and importantly, they require hand crafted tools to map and curate responses back and forth from
a semantic space. The added value of such a mapping approach, if combined with coordinated
ensembles, depends on whether the reduction of diversity that is achieved is within or across teachers.
The across variety (see Figure 3 (B)), where the knowledge of each teacher only contains one or
limited variations of the same semantic, is not eliminated by ensemble coordination and thus there
is added value by addressing it via other means. The within variety (see Figure 3 (A)) is handled
effectively by ensemble coordination and can be transferred fluidly with no privacy loss and without
the need for mitigation of diversity via additional engineering. We suspect that for the in-context
learning use case, and for semantic similarity that can be captured by tools external to the model
(such as an embedding), the diversity eliminated is anyhow encapsulated in the base model and thus
present in most teacher distributions. That is, we expect the diversity to overwhelmingly be the
“within” variety.

Lin et al. (2024); Xie et al. (2024) (independent concurrent work) proposed an approach called private
evolution for generating synthetic examples from private examples. The design used heterogeneous
teachers, where each is a single private example. Initially, the base model is sampled to generate a
collection of candidate (full) responses. The teachers then vote on candidates by nearest neighbor to
their sensitive example in an embedding space. The next iteration then consist of a weighted sample
from a privacy-preserving vote histogram. The resulting candidates are then used to generate a new set
of candidates by the base model that are closer to the private distribution. This is repeated for multiple
iterations. The inherent drawbacks of this approach, compared with sequential text generation,
are that it is not suitable for transferring specific patterns (such as extension numbers for specific
departments within an org) that are common in the private data but do not exist in the pre-training
data and are not memorized by the model and can not be generalized by it. Additionally, it requires
a number of candidates that is exponential in the intrinsic dimensionality of the candidate space.
Therefore the realm of applications is different than Hot Pate and they are not directly comparable.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Papernot et al. (2017) (Appendix B.1) discussed using additional outputs (beyond just the noisy the
maximizer) in the teachers’ votes histogram for distillation tasks. They concluded that it is beneficial
for utility but does not justify the privacy loss. Despite the superficial resemblance, this is very
different from what we do as we capture diversity in the generation of the histogram where we “force”
the teachers to agree but there is a distribution on the agreement token.

Finally, there are multiple innovative adaptations of PATE to non-categorical settings (aggregate
vectors rather than labels) applied with generative models. The works we are aware of address
different problems and use different techniques than hot PATE. For example, image generation using
generative adversarial networks (GAN): Jordon et al. (2018) proposed to train student discriminator
using a cold-PATE like labeling approach. Long et al. (2021) proposed to train a student generator
by aggregating the gradients produced by teachers discriminators. Notably, as with hot PATE, this
design does not require external generation of examples in order to facilitate transfer. Instead, it uses
the built-in property of generators to produce examples from random strings.

B PROPERTIES OF COORDINATED ENSEMBLES

Proof of Claim 2. The first statement in the claim follows from the denominator satisfying

1 ≤
∑
j

max{p(i)j , p
(k)
j } ≤ 2−max{p(i)j , p

(k)
j } ≤ 2 . (3)

The inequality follows using the more refined upper bound (3) on the denominator.

The overall agreement probability of the two teachers (over all tokens) is the (weighted) Jaccard
index (Jaccard, 1901) of the distributions:

Pr
y∼Ycoo

[yi = yk] =

∑
j min{p(i)j , p

(k)
j }∑

j max{p(i)j , p
(k)
j }

.

In particular, when two teacher distributions are identical, the samples are the same

p(i) = p(k) =⇒ Pr
y∼Ycoo

[yi = yk] = 1.

We establish the claim in Theorem 1. We show that a token j for which m teachers i have p
(i)
j > q

has frequency at least m/2 with probability at least 0.34q. This follows by substituting p = 1/2 in
the following more general claim:5

Lemma 1 (diversity transfer). For any token j and p, q ∈ [0, 1],

Pr
c∼H(Ycoo)

[
cj ≥

⌊
p ·

∑
i∈n

1{p(i)j ≥ q}

⌋]
≥ 1

2
ln(1/p)q .

Proof. Let i be such that p(i)j ≥ q. Fix the sampled min value x ∼ Exp[q] for q part of the probability

of j. The distribution of the remaining part is y ∼ Exp[1− p
(i)
j ] which is stochastically smaller than

Exp[1− q]. We get that

Pr[yi = j] ≥ Pr
y∼Exp[1−q]

[y > x] = e−x(1−q) .

Fix p ∈ [0, 1). It follows that the probability that Pr[yi = j], conditioned on x < − ln p
1−q is at

least e−x(1−q) ≥ p. The respective random variables yi on different teachers that may share part
of the distribution can only be nonnegatively correlated. Therefore, if there are cj,q teachers with
p
(i)
j ≥ q then the distribution of the number of teachers with yi = j is stochastically larger than

Bin[e−x(1−q), cj,q], which for any x ≤ − ln p
1−q is stochastically larger than Bin[p, cj,q]. The median of

5The general statement allows for different tradeoffs between β and the threshold in Theorem 1
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the Binomial distribution Bin[p, cj,q] with probability at least 1/2 is larger than ⌊pcj,q⌋. Therefore,
with this conditioning on x, there are at least ⌊pcj,q⌋ teachers with yi = j.

Pr
(yi)i∈[n]|x<− ln p

1−q

[cj ≥ ⌊pcj,q⌋] ≥ 1/2 . (4)

The event x < − ln p
1−q occurs with probability at least

Pr
x∼Exp[q]

[x <
− ln p

1− q
] = 1− e(ln p)q/(1−q) ≥ −(ln p)q .

Combining with (4), we obtain the claim in the statement of the Lemma.

To establish relevance we show that high frequency must have a “backing.” The following is
immediate from (2) and Markov’s inequality (and is tight in the sense that for any T there are
distributions where equality holds):
Lemma 2 (relevance). For any token j and T ,

Pr
c∼H(Ycoo)

[cj ≥ T ] ≤ 1

T

∑
i∈[n]

p
(i)
j .

C FURTHER DETAILS ON EMPIRICAL DEMONSTRATION

C.1 PROPERTIES OF THE GENERATED DISTRIBUTIONS

The distributions deviated from a balanced response over correct answers: The model exhibited bias
towards certain numbers and spurious dependencies on private components. Our evaluation is of
the effectiveness of transferring the knowledge of the model as reflected in the generated response
distributions. We observed the following:

• The probability assigned by the model to tokens that are not 3-digit numbers is neg-
ligible: The average probability (over teachers) of a response token in N

999
100 was

Ei∈[n]

∑
j∈N999

100
pij ≈ 0.997 for k = 20 and ≈ 0.994 for k = 100.

• Tokens in C dominate but other 3-digit numbers are likely: The average probability of a
token in C was Ei∈[n]

∑
j∈C pij ≈ 0.716 (k = 20 tokens) and ≈ 0.75 (k = 100). Recall

that only one in k numbers in the prompt was in N999
100 \ C, therefore the probability of

25%+ assigned to these tokens is explained by the model generalizing that additional 3-digit
numbers are edible on Planet Z.

• Despite symmetric prompt construction, there is significant variability in the average proba-
bility of different tokens in C and in the probability across teachers of the same token. This
is an artifact of the model. Figure 6 reports the average (over prompts) of the probability of
each token and demonstrates variability between tokens. The error bars indicate variability
in the token probability across teachers.

C.2 QUANTIFYING HOW MUCH IS TRANSFERABLE

Remark 3 (Robust Average). We use the τ -robust part of the average of the teachers distributions as
an indicative upper bound on what can be potentially privately transferred:

Pj(τ) :=
1

n

∑
i∈[n]

min
{
p
(i)
j , ({p(h)j }h∈[n])(τ)

}
for j ∈ V (5)

where ({p(h)j }h∈[n])(τ) is the τ th largest probability of token j in a teacher distribution. Note that
(Pj(1))j∈V is the average distribution and the values are non-increasing with τ . We also consider
the τ -robust probability mass defined as P (τ) :=

∑
j∈V Pj(τ) ≤ 1. The complement 1− P (τ) is

indicative lower bound on the probability of ⊥ in the robust aggregate.

Figure 7 reports the τ -robust fraction of the average distribution for varying τ (see Remark 3). This
is the part of the average distribution that we can hope to transfer via coordinated ensembles with
support τ . Recall that variability in the same token among teachers decreases transferability whereas
variability among tokens does not.
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Figure 6: Average probability, over teachers, of the k tokens in C (left is k = 20, right is k = 100).
The error bars indicate the contribution of the token to the average total variation distance over pairs
of teacher distributions.

Figure 7: The τ -robust part of the distribution for varying τ (see Remark 3). Left is k = 20 right is
k = 100.

C.3 INDEPENDENT VERSUS COORDINATED HISTOGRAMS

The marginal distribution is the same (Figures 8 and 9) but coordinated histograms are not concen-
trated around their expectation (Figure 10)
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Figure 8: k = 20: For all tokens (tokens in C shown in read): Average probability over teachers
(left). Average frequency of r = 1000 samples using independent (middle) and coordinated (right)
ensembles.

D AGGREGATION METHODS OF FREQUENCY HISTOGRAMS

Our aggregation methods are applied to frequency histograms generated by a coordinated ensemble
and return a token or ⊥. We propose two meta schemes that preserves diversity in the sense of
Definition 1: One for homogeneous ensembles, where we use τ > n/2, in Section D.1 and one
for heterogeneous ensembles, where τ ≪ n/2 (but large enough to allow for DP aggregation), in
Section D.2. To establish diversity preservation, we consider the end-to-end process from the teacher
distributions to the aggregate distribution. To establish privacy, it suffices to consider the histogram
in isolation, as it has the same sensitivity as vote histograms with cold PATE: When one teacher
distribution changes, one token can gain a vote and one token can lose a vote. Noting that the shared
randomness ρ is considered “public” data. We then explore (Sections E and F) DP implementations
that admit data-dependent privacy analysis so effectively many more queries can be performed for the
same privacy budget. We can avoid privacy loss on responses that agree with the prior distribution of
the public model with a public prompt. We can benefit from the particular structure of histograms
generated by coordinated ensembles. The privacy loss does not depend on queries with no yield, with
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Figure 9: k = 100: For all tokens (tokens in C shown in read): For all tokens (tokens in C shown
in read): Average probability over teachers (left). Average frequency of r = 1000 samples using
independent (middle) and coordinated (right) ensembles.
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Figure 10: Frequency counts per token in individual sampled histograms. Left: Independent ensemble.
Middle and Right: Coordinated ensemble. Top k = 20 bottom k = 100.

high agreement, or with agreement with a public prior. With heterogeneous ensembles we can also
gain from individualized per-teacher privacy charging.

D.1 HOMOGENEOUS ENSEMBLES

Algorithm 2: DistAgg homogeneous

c, ρ← CoordinatedSamples((p(i))i∈[n]) // Algorithm 1

(j, ĉj)← NoisyArgMaxL(c) // DP noisy maximizer with error L

if ĉj > (n/2 + L) then return j else return ⊥

When τ > n/2, there can be at most one token j with frequency cj ≥ τ . If there is such a token, we
aim to report it. Otherwise, we return ⊥. Our scheme is described in Algorithm 2 in terms of a noisy
maximizer (NoisyArgMaxL) procedure. The latter is a well studied construct in differential privacy
(McSherry and Talwar, 2007; Durfee and Rogers, 2019; Qiao et al., 2021). Generally, methods vary
with the choice of noise distribution and there is a (high probability) additive error bound L that
depends on the privacy parameters and in some cases also on the support size and confidence. For our
purposes, we abstract this as NoisyArgMaxL that is applied to a frequency histogram c and returns
(j, ĉj) such that |cj − ĉj | < L and maxh∈V ch − cj ≤ 2L. We show that the method is diversity
preserving:

Lemma 3 (Diversity-preservation of Algorithm 2). For µ > 1, Algorithm 2, instantiated with
NoisyArgMaxL as described, is diversity preserving in the sense of Definition 1 with τ = µ(n/2 +
2L), β = ln(µ)/2 and γ = 2.

Proof. We apply Lemma 1 with p = 1/µ. We obtain that the token j has frequency at least
cj ≥ n/2+2L with probability at least 0.5 ln(µ)q. Therefore we have ĉj ≥ n/2+L with probability
at least 0.5 ln(µ)q. Note that a token can only be reported if its frequency is cj > n/2. Using
T = n/2 in Lemma 2 we obtain that the relevance requirement is satisfied with γ = 2.

The two most common noise distributions for DP are Gaussian and Laplace noise. (Cold) PATE
was studied with both. The Gaussian-noise based Confident-GNMax aggregator (Papernot et al.,
2018; Duan et al., 2023) empirically outperformed the Laplace-based LNMAX (Papernot et al.,
2017) on cold PATE. The advantages of Gaussian noise are concentration (less noise to separate a
maximizer from low frequency tokens), efficient composition, and more effective data dependent
privacy analysis. Laplace-based noise on the other hand can preserve sparsity (a consideration as the
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Figure 11: Coverage (average across samples of the number of n teacher votes that passed count
filter T ) versus sparsity (number of distinct tokens that at least in one sample had count ≥ T ) with
coordinated and independent ensembles, when sweeping the parameter T (not shown). k = 20 (left)
and k = 100 (right).
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Figure 12: Coverage histograms averaged over r = 103 samples. Filter T ∈
[100, 200, 500, 1000, 2000, 5000]. k = 20. Left: Coordinated. Right: Independent.

key space of tokens or strings of token can be quite large), there is an optimized mechanism with
weighted sampling, and there are recent improvement on data-dependent privacy analysis across
many queries (the situation with hot PATE) (Cohen and Lyu, 2023). Our privacy analysis in Section E
uses a data-dependent Laplace-based approach.

D.2 HETEROGENEOUS ENSEMBLES

For lower values of τ , we propose the meta-scheme described in Algorithm 3: We perform weighted
sampling of a token from c and return it if its count exceeds 2L. If it is below 2L we may return
either j or ⊥. We propose DP implementations in Section F. We establish that Algorithm 3 is
diversity-preserving:
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Figure 13: Coverage histograms averaged over r = 103 samples. Filter T ∈
[50, 100, 200, 300, 400, 1000, 2000, 5000]. k = 100 Left: coordinated Right: Independent

Algorithm 3: DistAgg Heterogeneous

c, ρ← CoordinatedSamples((p(i))i∈[n]) // Algorithm 1

Sample j ∈ V with probability cj
n // Weighted sampling of a token from c

if cj ≥ 2L then return j else return j or ⊥

Lemma 4 (Diversity-preservation of Algorithm 3). For µ > 1, Algorithm 3 is diversity preserving in
the sense of Definition 1 with τ = µ2L, β = 1

2µ ln(µ) and γ = 1.

Proof. Consider the first requirement of Definition 1. Consider a token j with cj,q ≥ τ . From
Lemma 1 using p = 1/µ we obtain that the token j has frequency at least cj ≥ cj,q/µ ≥ 2L with prob-
ability at least 0.5 ln(µ)q. The token is sampled with probability min{1, kcj/n} and if so appears also
in c∗ (since cj ≥ 2L). The expected size (number of entries) of c∗ is at most k and thus it is returned
if sampled with probability at least 1/k. Overall it is sampled and reported with probability at least
min{1/k, cj/n}. In total, the probability is Pj ≥ min{1/k, cj,q/(µn)}0.5 ln(µ)q ≥ 1

2kµ ln(µ)
cj,q
n q.

The second requirement of Definition 1 is immediate. The expected frequency of token j is
∑

i∈[n] p
(i)
j

and it is sampled with probability at most k
n

∑
i∈[n] p

(i)
j . It can only be the output if sampled.
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E PRIVACY ANALYSIS CONSIDERATIONS

The effectiveness of Hot PATE depends on the number of queries with yield (token returned) that
can be returned for a given privacy budget. In this section we explore the benefits of data-dependent
privacy analysis when the aggregation follows Algorithm 2 (homogeneous ensembles). We use
synthetically generated teacher distributions with varying size common component (that can be
arbitrarily diverse) and distinct (private) components.

Broadly speaking, with data-dependent analysis, we incur privacy loss on “borderline” queries where
the output of the DP aggregation has two or more likely outputs. Queries that return a particular
token with high probability or return ⊥ with high probability incur little privacy loss.

We demonstrate that with Algorithm 2, we can expect that only a small fraction of frequency
histograms generated by coordinated ensembles are “borderline.” (i) For queries with high yield
(high probability of returning a token over the sampling of the shared randomness), the generated
histograms tend to have a dominant token (and thus lower privacy loss). This because coordinated
ensembles tend to “break ties” between tokens. (ii) For queries with low yield (high probability of
⊥ response and low probability of returning a token), the total privacy loss only depends on yield
responses. This means that high ⊥ probability does not cause performance to deteriorate.

This is important because both these regimes are likely in sequential text generation and with
coordinated ensembles. We expect many of the tokens to follow the base model distribution and
therefore have high agreement and not incur privacy loss. Or alternatively, instructions that require
private data have no agreement and return ⊥. The dependent privacy analysis means that generally
we can process many more queries for the privacy budget than if we had just used a DP composition
bound.

Figure 14: Left: Number of ⊤ responses for ε0-DP queries for total ε = 1 loss. Right: Cummulative
maximum frequency for varying common part α.

Our evaluation here uses (ε, δ) differential privacy (Dwork et al., 2006):
Definition 2 ((ε, δ)-Differential Privacy). A randomized mechanismM provides (ε, δ)-differential
privacy if, for any two datasets D and D′ differing in at most one element, and for any subset of
outputs S ⊆ Range(M), the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Concretely we consider NoisyArgMax using (Cohen et al., 2021) 6 with the maximum sanitized
frequency, with privacy parameters (ε0, δ0). For privacy analysis across queries we applied the
Target Charging Technique (TCT) of Cohen and Lyu (2023) with the boundary-wrapper method.
The wrapper modifies slightly the output distribution of the query algorithm (after conditioning on
ρ!) to include an additional outcome ⊤ (target). The wrapper returns ⊤ with this probability (that
depends on the response distribution) and otherwise returns a sample from the output distribution of
the wrapped algorithm. The probability of ⊤ is at most 1/3 and decreases with agreement (vanishes

6We mention the related (non optimized) sparsity-preserving methods (Bun et al., 2019; Korolova et al.,
2009; Vadhan, 2017) and optimized but not sparsity-preserving (Ghosh et al., 2012).
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when there is response with probability closer to 1). The technique allows us to analyse the privacy
loss by only counting target hits, that is, queries with ⊤ response. Since the probability of ⊤ is at
most 1/3, we get in expectation at least two useful responses per target hit. But in case of agreements,
we can get many more. Figure 14 (left) reports the number of ⊤ (target) responses we can have
with the boundary wrapper method as a function of ε0 with overall privacy budget is ε = 1. When
ε0 ≤ 0.01, it is about (10ε0)−2.

With hot PATE, we are interested in yield responses, those that return a token (not ⊥, and when we
apply the boundary wrapper, also not ⊤). We study how the yield probability behaves for histograms
generated by coordinated ensembles.

Synthetic Teacher distributions: We parametrize the set of teacher distributions by α ∈ (0, 1],
which is the probability of a common part to all distribution. This component is what we aim to
transfer to the student. The teacher distributions have probability vectors of the form

p(i) = α · s+ (1− α) · r(i) ,
where s and r(i) are probability vectors. That is, with probability α there is a sample from the
common distribution s, and with probability (1− α), there is a sample from an arbitrary distribution
that is specific to each teacher. Note that the common component s can be arbitrarily diverse, that is,
∥s∥1 is permitted to be arbitrarily small.

When the histogram is generated by a coordinated ensemble, then the distribution of the maximum
frequency c of a token is dominated by sampling y ∼ Exp[α] and then c ∼ Bin[e−y·(1−α), n]. It is
visualized in Figure 14 (right) for varying values of α. Note that across all weights α > 0 of the
shared component, no matter how small α is, there is probability ≈ α of being above a high threshold
(and returning a token). The probability of ⊥ (no agreement) in this case can be ≈ 1− α. Therefore
α parametrizes the probability of yield over the sampling of the shared randomness.

Figure 15: Sweep of α, showing probabilities of outcomes: token, ⊥, ⊤ (target hit).

Figure 15 shows the distribution of responses as we sweep α, broken down by ⊤ (target hit), ⊥
(abort), and token (yield). The number of queries we process per target hit, which is the inverse of the
probability of ⊤, is ⪆ ε0n. It is lowest at α ≈ T/n and is very high for small and large α, meaning
that the privacy cost per query is very small.

The yield (probability of returning a token) per query is ≈ α. Note that as α decreases, both yield and
target probabilities decrease but their ratio remains the same: In the regime α ≤ T/n, the yield per
target hit is ≈ ε0n/2. Queries with α≫ T/n are essentially free in that the yield (token) probability
is very high and the ⊤ (target hit) probability is very low.

When using n = Cδ/ε0 (Cδ ≈ 2 log(1/δ0) teachers and plugging this in, we obtain that we get
⪆ 0.005 1

Cδ
n2 yields for overall privacy budget ε = 1. This means that we pay only for yield and not

for queries. Note that this holds in the “worst case” across all α values, but the number of yields can
be much higher when queries have large α (and “yields” do not incur privacy loss).

F DP METHODS FOR HETEROGENEOUS ENSEMBLES

We propose two DP methods to implement Algorithm 3 (Section D.2) with different trade offs. In
both cases we can apply data-dependent privacy analysis so that queries that do not yield a token
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(that is, return ⊥) are essentially “free” in terms of the privacy loss. The parameter L depends on the
privacy parameters (and logarithmically on |V |).
Importantly, with the second method we can apply privacy analysis with individual charging, where
instead of charging the whole ensemble as a unit we only charge teachers that contributed to a
response. With heterogeneous ensembles we expect the diversity to arise both from individual
distributions and from differences between teachers and therefore with individual charging allows for
much more efficient privacy analysis when different groups of teachers support each prediction.

Private Weighted Sampling This method gains from sparsity (histogram support being much
smaller than |V |) but the calculation of privacy loss is for the whole ensemble. We can do the analysis
in the TCT framework (Cohen and Lyu, 2023) so that privacy loss only depends on yield queries
(those that return a token). We perform weighted sampling by frequency of each token to obtain
the sampled histogram c′ and then sanitize the frequencies of sampled tokens using the end-to-end
sparsity-preserving method of Cohen et al. (2021) to obtain c∗. The sanitizing prunes out some
tokens from c′ with probability that depends on the frequency cj , privacy parameters, and sampling
rate. All tokens in c′ with frequency above 2L, where L only depends on the privacy parameters,
remain in c∗.7 The final step is to return a token from c∗ selected uniformly at random or to return ⊥
if c∗ is empty.

Individual Privacy Charging This method does not exploit sparsity, but benefits from individual
privacy charging (Kaplan et al., 2021; Cohen and Lyu, 2023). It is appropriate when 2L ≪ n.
The queries are formulated as counting queries over the set of teachers. The algorithm maintain
a per-teacher count of the number of counting queries it “impacted.” A teacher is removed from
the ensemble when this limit is reached. Our queries are formed such that at most O(2L) teachers
(instead of the whole ensemble) can get “charged” for each query that yields a token.

To express Algorithm 3 via counting queries we do as follows: We sample a sampling rate ν ∼
U [1/n, 1] of teachers and sample a token v ∈ V uniformly. We sample the teachers so that each one
is included with probability ν and count the number c′v of sampled teachers with yi = v. We then do
a BetweenThresholds test on c′j (using (Cohen and Lyu, 2023) which improves over Bun et al.
(2017)) to check if c′v ≥ 2L. For “above” or “between” outcomes we report v. If it is a “between”
outcome we increment the loss counter of all sampled teachers with yi = v (about 2L of them). We
note that this process can be implemented efficiently and does not require explicitly performing this
“blind” search.

Teachers that reach their charge limit get removed from the ensemble. The uniform sampling of
the sampling rate and token emulates weighted sampling, where the probability that a token gets
selected is proportional to its frequency. The sub-sampling of teachers ensures that we only charge
the sampled teachers. Teachers are charged only when the query is at the “between” regime so (with
high probability) at most ≈ 2L teachers are charged. Because we don’t benefit from sparsity, there
is overhead factor of log(|V |(n/L)) in the privacy parameter (to bound the error of this number
of queries) but we gain a factor of n/L by not charging the full ensemble for each query in the
heterogeneous case where most teachers have different “solutions” to contribute.

7We note that the method also produces sanitized (noised) frequency values c∗j for tokens in c∗ such that
|c∗j − cj | ≤ L. And hence can also be used for NoisyArgMax
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