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ABSTRACT

Molecular graphs are commonly represented using SMILES (Simplified Molec-
ular Input Line Entry System) strings, enabling the transformation of molecular
graphs into token sequences. While transformers—powerful neural networks orig-
inally developed for natural language processing—have been adapted for learning
molecular representations from SMILES by predicting masked tokens, they have
yet to achieve competitive performance on ADMET benchmark datasets crucial
for assessing drug properties such as absorption, distribution, metabolism, ex-
cretion, and toxicity. This paper identifies the challenge that traditional random
token masking in SMILES overlooks essential molecular substructures, leading
transformers to focus on superficial correlations between individual tokens rather
than their relationships within substructures. We propose a novel approach that
enhances transformers’ capability to recognize molecular substructures by intro-
ducing a substructure-aware masking strategy alongside a new learning objective.
This method embeds substructure information directly into the masking and pre-
diction process, allowing the model to predict specific subgraphs instead of ran-
dom tokens. Our experiments demonstrate that transformers employing this dual
innovation outperform those utilizing conventional random masking, resulting in
improved predictions of drug-related properties on ADMET benchmarks. This
work contributes to the ongoing advancement of transformer architectures in the
field of molecular representation learning.

1 INTRODUCTION

In machine learning, molecular graphs are frequently represented using SMILES strings, which
translate molecular structures into sequences of tokens. Subsequently, transformers, powerful neural
networks originally designed for natural language processing, have been adapted to learn molecular
representations from SMILES by predicting randomly masked tokens within these sequences (Ross
et al., [2022).

However, despite their success in other fields, transformers have under-presented in the leaderboards
on the 22 ADMET benchmark datasetsﬂ which assess predictions of key drug properties—such as
absorption, distribution, metabolism, excretion, and toxicity—that are crucial for determining the
viability of drug candidates. In contrast, simpler fingerprint-based methods, which reduce molecular
graphs into compact vectors summarizing the present of chemical motifs or functional groups, have
achieved better results. For examples, Figure|l|shows a leaderboard of the top methods for toxicity
prediction in the ADMET LD50_Zhu benchmark dataset where fingerprint-based and descriptor-
based methods dominate.

The success of fingerprint-based methods highlights that understanding substructures, chemical mo-
tifs, or functional groups and their associations is crucial for predicting ADMET properties. This
suggests that for transformers to be competitive, they need to enhance their ability to capture and
interpret key molecular substructures and their relationships.

One possible reason for this performance gap is that transformers, when learning from SMILES
strings, mask and predict tokens without considering the molecular substructures those tokens rep-
resent. Additionally, since the molecular graph is serialized into a string, transformers must recon-
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Leaderboard
Rank  Model Contact Link #Params  MAE l Fingerprint + descriptors
1 BaseBoosting KyQVZ6b2 David Huang GitHub, Paper  N/A 0.552 + 0.009
Descriptors
2 MACCS keys + autoML Alexander Scarlat GitHub, Pape! N/A 0.588 + 0.005
3 Chemprop Kyle Swan GitHub, Paper  N/A 0.606 + 0.024 - GNN
4 DeepMol (AutoML) DeepMol Team GitHub, Pape N/A 0.614 + 0.004
4 MapLight Jim Notwell GitHub, Paper N/A 0.621 + 0.003
5 QuGIN Shuai Shi GitHub, Paper 1,797,506 0.622 + 0.015
6 Chemprop-RDKit Kyle Swansor GitHub, Pape N/A 0.625 + 0.022
7 CFA Nan Jiang GitHub, Pape N/A 0.630 + 0.012
7 CMPNN Devansh Amin GitHub, Pape! 30M 0.631 + 0.021
8 MapLight + GNN Jim Notwell GitHub, Paper  N/A 0.633 £+ 0.003
9 Basic ML Nilavo Boral GitHub, Paper N/A 0.636 + 0.001
10 Euclia ML model Euclia GitHub, Paper 50 0.646 + 0.01
n GCN Kexin Huang GitHub, Paper 191,810 0.649 + 0.026
12 Morgan + MLP (DeepPurpose) Kexin Huang GitHub, Paper 1477185  0.649 + 0.019

Figure 1: Leaderboard of top methods for toxicity prediction in the ADMET LD50_Zhu benchmark
dataset. Fingerprint and descriptors based methods dominate.

Regular random mask Substructure aware mask
g o Ve O/K g o
N O\
S S @
e -y
COCCONCCcCSscCcCco COCCONCCCC5CCC
C<mask>CCONG<msk>CCSCCCO C<mask>CCONCCCC<mask>CCC<mask

Figure 2: Random token masking (left) and substructure-aware masking (right).

struct these substructures from the string. Without an inductive bias to guide this string-to-graph
translation, transformers require large amounts of data to learn these complex rules, making the task
particularly challenging.

For instance, as shown in Figure 2] (left), random token masking in a SMILES string prompts trans-
formers to rely on nearby tokens to predict the masked ones. This approach leads to transformers
focusing on correlations between individual tokens—corresponding to atoms or bonds—without
learning the more critical molecular substructures. While one might think that using a more ad-
vanced tokenizer, capable of grouping SMILES tokens into continuous substrings, could solve this
issue, Figure 2] (right) illustrates that subgraphs like g are not always represented by contiguous to-
kens in SMILES strings thus tokenization SMILES based on continuous substrings does not provide
a solution for this issue.

To address this challenge, we introduce a novel method aimed at enhancing transformers’ ability to
recognize molecular substructures. The key idea is to incorporate substructure information directly
into the masking and the prediction process, embedding an inductive bias that guides the model to
more effectively learn molecular substructures. Specifically, our approach introduces a new masking
strategy and a novel learning objective that leverage the molecular graph itself. Rather than masking
random tokens, our model is trained to predict the presence of specific subgraphs. Groups of atoms,
such as two oxygen atoms and one sulfur atom—representing molecular substructure g, as illustrated
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in Figure 2] are masked together. This substructure-aware masking and the modified predicting
objective enables the model to capture relationships within these substructures.

Our experiments demonstrate that transformers trained with the substructure-aware masking strat-
egy outperform traditional random masking on 22 ADMET benchmarks, leading to more accurate
predictions of drug-related properties. The proposed method ranked second in Elo rating among 34
baseline methods and achieved new state-of-the-art results in four tasks, highlighting its competitive
advantage in improving transformer performance for molecular representation learning.

2 RELATED WORK

In recent years, learning molecular representation gained significant traction in molecular science,
offering generalized frameworks for molecular tasks such as property prediction, drug discovery,
and molecular generation. These models leverage large datasets to learn rich, transferable represen-
tations that can be fine-tuned for specific molecular applications. In this section, we discuss existing
methods starting from classical fingerprint based methods to complex foundational molecular rep-
resentation models.

2.1 FINGERPRINT BASED REPRESENTATION

Fingerprint-based and descriptor-based representations are popular techniques used in cheminfor-
matics and computational biology for molecular characterization. A molecular fingerprint is a
bit vector representation that captures the presence or absence of specific structural features in a
molecule. Each bit corresponds to a particular substructure, functional group, or atom environment,
encoding whether that feature exists in the molecule. Descriptors are quantitative properties that
describe various attributes of a molecule. These include topological, geometric, electronic, and
physicochemical properties. Unlike binary fingerprints, descriptors are typically numerical values
that capture diverse molecular characteristics.

For the ADMET benchmarks, fingerprint and descriptor-based methods perform surprisingly well.
Some of the top-performed methods such as MapLight (Notwell & Wood| 2023 which uses com-
bination of MorganFingerprint (Rogers & Hahnl [2010), Avalon (Gedeck et al.| [2006), ErG (Stiefl
et al., 2006) and 200 descriptors from RDKit (Landrum, |2013). DeepMol (Correia et al., [2024)
uses MorganFingerprints, MACCS Keys (Durant et al.| [2002), and AtomPair Fingerprints (Map4
(Orsi & Reymond, 2024))). Among methods using fingerprints and descriptors we can also mention
ChemProp (Yang et al.,[2019), CFA (Quazi et al.,|2023)), ZairaChem (Turon et al., 2023). The pro-
posed methods in the category are the established strong baselines that we will benchmark against
in this work.

2.2  GRAPH NEURAL NETWORK

Graph-based models, particularly Graph Neural Networks (GNNs), are a natural fit for molecular
data, where molecules are represented as graphs with atoms as nodes and bonds as edges. Early
models such as Graph Convolutional Networks (GCNs) and Message Passing Neural Networks
(MPNNs) have been widely applied to predict molecular properties. |Gilmer et al.| (2017)) intro-
duced MPNNs, which utilize message-passing mechanisms to capture the structure-property rela-
tionships within molecules, proving effective in tasks like quantum property prediction . Recent
advancements, such as the integration of attention mechanisms GATs (Velickovic et al.,2017)), have
improved the ability of these models to capture complex molecular interactions. The methods in this
category are also present in the ADMET leaderboards even they are not as competitive as fingerprint
based approaches.

2.3 TRANSFORMER BASED MODELS

Transformers, originally developed for natural language processing, have proven to be highly ef-
fective in molecular modeling, particularly for sequence-based tasks using SMILES strings. Mod-
els like ChemBERTa (Chithrananda et al., |2020) and MolFormer (Ross et al.| [2022) leverage the
transformer architecture to predict chemical properties from SMILES sequences with great success.
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Meanwhile, Graphormer (Shi et al.| [2022) extends transformers to graph-based molecular repre-
sentations, combining self-attention mechanisms with inductive biases that capture both local and
global molecular features, leading to state-of-the-art results in quantum property prediction. To en-
sure a fair and rigorous comparison, we implement and pretrain different transformer architectures
on the same datasets as our proposed approach, controlling for dataset size variations that can oth-
erwise skew performance outcomes. By doing so, we provide a more accurate assessment of each
model’s true capability in molecular property prediction.

2.4 MULTIMODAL MOLECULAR REPRESENTATION

Recent research investigates multimodal models that integrate molecular data with other modalities,
such as 3D structural data, protein-ligand interactions, and experimental results. Foundational mod-
els like Uni-Mol, which rely on 3D information, or ImageMol, which utilizes molecular images, ex-
emplify this approach. These models typically provide complementary information to transformer-
based methods trained on SMILES representations. Since our work primarily focuses on transform-
ers using SMILES data, we consider it orthogonal to methods trained on different modalities.
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Figure 3: Left: an example of substructure masking (green) and individual token masking (orange).
Right: construction of a substructure hash vector from a masked substructure.

3 ALGORITHM

In this section, we present an algorithm called SmilesGraph, developed to train transformers on rec-
ognizing high-order substructure relationships. The algorithm utilizes two forms of token masking,
with the first being substructure masking. This method follows these steps:

* Randomly select an atom from the input molecular graph.

* Conduct a breadth-first traversal starting from the selected atom, continuing until reaching
a maximum distance r from the starting point.

* Record all atoms encountered during the traversal and map them to their positions in the
SMILES string.

* Replace the identified atoms in the SMILES string with masking tokens.

An example of substructure masking is shown in Figure [3] where a substructure g is derived by
performing a breadth-first traversal from a starting node corresponding to an Oxygen atom, with a



Under review as a conference paper at ICLR 2025

Table 1: Hyperparameter settings

Hyperparameters Value
Pretraining

Hash size 256

Substructure breadth-first traversal radius 2

The number of substructure masks 1

The number of regular token masks 3

Pretraining epoch 1

Pretraining learning rate max le-5

Pretraining learning rate min le-6
Downstream

Downstream learning rate search range le-5 to le-4

The number of downstream FC layers search range 1-4

Downstream batch size search range 2to0 256

Downstream number of runs with different seeds 5

The number of folds in cross-validation 5

Early termination tolerance 3

maximum traversal distance » = 2. In this example, three nodes—two corresponding to Oxygen
atoms and one to a Sulfur atom—are masked within the associated SMILES string.

Besides substructure masking we also perform regular individual token masking (orange masks) so
ensure that the model also learn regular token association.

Since a masked substructure must be represented as an entry in the alphabet, the number of possible
masked tokens or substructures increases exponentially with the size of the substructure. To control
the size of the alphabet, we use random hashing vectors to represent the alphabet. Specifically, for a
given substructure, we construct the hash vector as follows:

* Retrieve the atom name of the starting node and compute its hash value within a hash vector
of size h, setting the corresponding hash bit from O to 1.

* Expanding the starting node with its nearest neighbor nodes, concatenating the bonds and
atom names of the neighboring nodes into a string. Compute the hash value of this string
within a hash vector of size h, and set the corresponding hash bit from O to 1.

» Continue expanding the current nodes by including their neighbors, and repeat the process
above.

Figure[3](right) shows an example of how the hash vector of the subgraph g was constructed. Starting
from the oxygen node, it constructs string representation of the neighborhood of the node which
results in O, O-O and O-O-S and the corresponding hash function is used to maps those strings into
a hash vector with the corresponding bit is turns from zero to one. This method is similar to the
Morgan fingerprint construction (Rogers & Hahnl| 2010).

Once all the hash vectors are constructed, transformers are trained to predict the corresponding hash
vectors. Since the hash vectors are fixed-size binary vector, we use a binary classifier head with
BCE Loss (Binary Cross-Entropy Loss) as the training objective.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Training dataset We used a subset of 100 million SMILES from the ZINC database (Irwin &
Shoichet, 2005) to train our models, with 50,000 SMILES reserved for validation. All methods
showed convergence with negligible differences when additional data was included. The dataset is
available on our project websiteﬁ

Zanonymized GitHub repository, code in supplementary materials
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Table 2: ADMET (Huang et al.) benchmark datasets statistics.

Datasets Task Size Split Metrics
LD50_Zhu Regression 7385 Scaffold MAE
Caco2_Wang Regression 906 Scaffold MAE
Lipophilicity _AstraZeneca Regression 4200  Scaffold MAE
Solubility_AqSolDB Regression 9982  Scaffold MAE
PPBR_AZ Regression 1797  Scaffold MAE
Bioavailability_Ma Classification 640 Scaffold AUROC
HIA Hou Classification 578 Scaffold AUROC
Pgp_Broccatelli Classification 1212  Scaffold AUROC
Substrate_CarbonMangels Classification 667 Scaffold AUROC
BBB_Martins Classification 1975 Scaffold AUROC
hERG Classification 648 Scaffold AUROC
AMES Classification 7255  Scaffold AUROC
DILI Classification 475 Scaffold AUROC
VDss_Lombardo Regression 1130  Scaffold Spearman
Half Life_Obach Regression 667 Scaffold Spearman
Clearance_Hepatocyte_AZ Regression 1020  Scaffold Spearman
Clearance_Microsome_AZ Regression 1102 Scaffold Spearman
CYP2C9_Veith Binary 12092  Scaffold AUPRC
CYP2D6_Veith Binary 13130  Scaffold AUPRC
CYP3A4_Veith Binary 12328 Scaffold AUPRC
CYP2C9_Substrate_CarbonMangels  Binary 666 Scaffold AUPRC
CYP2D6_Substrate_CarbonMangels ~ Binary 664 Scaffold AUPRC

Benchmark datasets We utilized 22 ADMET datasets from the Therapeutic Data Commons (Huang
et al.) to benchmark various methods. The ADMET collection serves as a benchmark for evaluating
the properties of chemical compounds in drug discovery and development. ADMET represents Ab-
sorption, Distribution, Metabolism, Excretion, and Toxicity—key pharmacokinetic and toxicologi-
cal factors essential for determining the viability of drug candidates. These datasets help predict how
a compound behaves in the human body, including its absorption, tissue distribution, metabolism by
enzymes, excretion, and potential toxicity risks. The ADMET datasets were selected thanks to their
active leaderboards, which include robust and diverse 32 baselines spanning both fingerprint-based
and graph-based methods carefully tuned using AutoML and robust boosting tree models.

Baseline methods We compared our results with 32 baseline methods from the ADMET dataset
leaderboards. The key methods are summarized below:

* DeepMol (Correia et al., 2024) addresses key challenges in the field, such as selecting
optimal algorithms, automating data preprocessing, and ensuring consistent model perfor-
mance across datasets. It automates critical steps in the ML pipeline, quickly identify-
ing the best data representations, preprocessing techniques, and model configurations for
molecular property or activity prediction.

* MapLight (Notwell & Wood, 2023)) focuses on improving the prediction of small molecule
using random forests and support vector machines paired with fingerprints (ECFP, Avalon,
ErG) and 200 molecular properties.

* MapLight + GNN (Notwell & Wood, 2023) Similar to Maplight with the ensemble of
MapLight with a GNN

* ChemProp (Yang et al.,|2019) The paper evaluates two main classes of models for molecu-
lar property prediction: those using neural networks with computed molecular fingerprints
or expert-crafted descriptors, and graph convolutional neural networks (GCNs) that work
with a molecule’s graph structure.

* CFA (Quazi et al.| |2023) The paper focuses on improving the prediction of ADMET (Ab-
sorption, Distribution, Metabolism, Excretion, and Toxicity) properties, which are critical
in drug discovery and development. Existing computational models often struggle with
generalizability and robustness. The authors propose using Combinatorial Fusion Analysis
(CFA) to enhance the performance of ADMET models.
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Table 3: Performance of SmilesGraph compared to state-of-the-art (SOTA) results on regression
tasks, evaluated using MAE metrics (lower is better). Bold values indicate current or newly achieved
SOTA results.

Datasets/Methods LD50_Zhu Caco2_Wang Lipophilicity Solubility PPBR
Pretraining
Transformers 0.646 0.343 0.489 0.748 8.46
Morgangen 0.668 0.341 0.634 0.98 7.2
SmilesGraph (Our) 0.608 0.294 0.454 7.53 7.0
Fingerprint and Descriptors
DeepMol 0.614 0.297 0.656 0.775 7.99
MapLight 0.621 0.276 0.525 0.792 7.660
CFA 0.630 0.341 0.626 0.939 8.680
ChemProp 0.606 0.330 0.467 0.761 7.788
MACCS Keys + AutoML  0.588 - - - 8.288
Euclidia ML 0.646 0.341 0.621 1.076 9.942
DeepPurpose 0.649 0.908 0.701 1.203 9.994
BaseBoosting KyQVZ6b2  0.552 - 0.479 - 7.91
Innoplexus ADME - - 0.499 0.771 8.582
GNN
QuGIN 0.622 - - - -
MapLight+GNN 0.633 0.287 0.539 0.789 7.526
GCN 0.649 0.599 0.541 0.907 10.194

Table 4: Performance of SmilesGraph compared to state-of-the-art (SOTA) results on regression
tasks, evaluated using Spearman correlation (higher is better). Bold values indicate current or newly
achieved SOTA results.

Datasets/Methods Z(l))lflsbar do gﬁgjﬁlfe Hepatocyte AZ Microsome_AZ
Pretraining
Transformers 0.724 0.440 0.354 0.554
Morgangen 0.710 0.500 0.340 0.560
SmilesGraph (Our) 0.705 0.501 0.398 0.573
Fingerprint and Descriptors
DeepMol 0.497 0.485 0.440 -
MapLight 0.707 0.562 0.466 0.626
CFA 0.628 0.576 0.536 0.625
ChemProp 0.491 0.265 0.431 0.599
Euclidia ML 0.609 0.547 0.424 0.572
DeepPurpose 0.561 0.329 0.382 0.586
Voting Regressor - 0.544 - -
RFStacker - - - 0.625
Innoplexus ADME  0.707 0.511 0.457 -
GNN

MapLight+GNN 0.713 0.557 0.498 0.630
GCN 0.457 0.239 0.366 0.532
SimGCN 0.582 0.392 - 0.597
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e ZairaChem (Turon et al) 2023) an AI- and ML-based tool designed for small-molecule
activity prediction. ZairaChem is fully automated, requiring minimal computational re-
sources, and can handle a wide range of datasets, including assays for cell growth inhibition
and drug metabolism properties.

+ SimGCNPla method based on GCN network.
* CNN (DeepPurpose) (Huang et al.,[2020) a method based on Convolution Neural Network.
* RDKit2D + MLP (DeepPurpose) (Huang et al., 2020) descriptors and MLP

Besides we also compare our approach to the following pretrained methods that are not part of the
leaderboards:

» Transformers: we train a language model with the same backbone as SmilesGraph and
pretrained the model with the same training dataset. This model is used to validate the
proposed learning methods in SmilesGraph.

* MorganGen|Hoang et al.|(2024): is a generative model that is trained on the same training
set that learns to generate SMILES from MorganFingerprint.

Downstream models For each of the methods—SmilesGraph, Transformers, and MorganGen—we
incorporate classification or regression heads with alternative fully connected layers and ReL.U ac-
tivation functions on top of the transformers. Given the small size of the ADMET datasets, we use
5-fold cross-validation on the training sets, repeating the process with 5 different random seeds.
Hyperparameter optimization (HPO) was performed to identify the best hyperparameters that maxi-
mize cross-validation performance on the training data. Table[T|summarizes the HPO search space.
The final predictions are based on the average of the models trained across the folds, and these
predictions are used to report the test set results.

Code and Model Availability We have included the code as supplementary material for this paper.
The source code and pretrained models will be published on GitHub and HuggingFace, with the
links anonymized to maintain double-blind review.

Hyperparameters and Experimental Settings Table |1| outlines the hyperparameter settings em-
ployed in our experiments. A detailed sensitivity analysis of key hyperparameters is presented in
the subsequent ablation study. In terms of computational resources, we utilized two NVIDIA A100
GPUs. Pretraining each model for one epoch took approximately three weeks.

4.2 RESULTS ON ADMET AND DISCUSSION

Tables [316] present a comparative study of SmilesGraph against top-performed baseline approaches
from the current ADMET leaderboards. The following conclusions can be drawn from the results:

* SmilesGraph, incorporating the new masking methods and learning objectives, outper-
formed transformer-based methods using the same pretraining data and downstream exper-
imental settings. Specifically, it either outperformed or was competitive with transformers
in 7 out of 9 regression tasks and in 16 out of 22 tasks overall. The significant perfor-
mance of SmilesGraph on regression tasks suggests that learning substructure associations
is crucial for better results.

* Compared to the SOTA results (the best among baseline algorithms), SmilesGraph achieved
new SOTA performance in 4 tasks. Notably, it significantly reduced the prediction error
from 7.5 to 7.0 in the PPBR prediction task, representing a 6.6% improvement, and reduced
the error from 0.525 to 0.454, equivalent to a 13.5% improvement.

The results in Tables indicate that no single method consistently outperforms the others across
all ADMET datasets. To provide a more holistic comparison, we utilize Elo ratings [*} assigning
each method an initial score of 1500. Pairwise comparisons are conducted to update the Elo scores
based on the relative performance of each method. Figure [f] (left) shows the Elo ratings of SMILES

*https://github.com/KatanaGraph/SimGCN-TDC/blob/main/Report_SimGCN_for
TDC_Benchmarks.pdf
*https://en.wikipedia.org/wiki/Elo_rating_system
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Figure 4: FElo ratings (left) and Wilcoxon Signed rank test (right) in an ablation study. Overall
SmilesGraph ranked 2nd in terms of Elo rating.

Table 5: Performance of SmilesGraph compared to state-of-the-art (SOTA) results on classification
tasks, evaluated using AUROC (higher is better). Bold values indicate current or newly achieved
SOTA results.

. . CYP3A4 BBB
Data/Methods Bioavail. HIA Pgp Substrate Martins hERG AMES DILI
Pretraining

Transformers 0.704 0.984 0917 0.650 0.907 0.831  0.870 0.936
Morgangen 0.65 097 092 0.59 0.84 0.74 0.89 0.86

SmilesGraph 0.718 0.985 0.926 0.660 0.907 0.845 0.866 0.939

Fingerprint and Descriptors
DeepMol 0.753 0.990 0.922 0.655 0.868 0.763  0.847 0.885
MapLight 0.730 0.986 0.930 0.650 0.916 0.871  0.868 0.887
CFA 0.746 0981 0.928 0.667 0.920 0.875  0.852 0.919
ChemProp 0.606 0.981 0.886 0.629 0.869 0.840  0.850 0.899
Euclidia ML 0.613 0.926 0.845 0.629 0.725 0.749  0.755 0.873
DeepPurpose 0.672 0972 0918 0.662 0.889 0.841 0.823 0.875
ZairaChem 0.706 0.948 0.935 0.630 0.910 0.656  0.871 0.925
GNN

MapLight+GNN  0.742 0.989 0938 0.647 0.913 0.880  0.869 0.917
GCN 0.566 0.936  0.895 0.590 0.842 0.738  0.818 0.859
SimGCN 0.748 - 0.929 0.640 0.901 0.874 - 0.904

in comparison to 34 baseline methods. SmilesGraph achieved the second-highest rating, surpassed
only by the MapLight+GNN ensemble. Since MapLight+GNN combines fingerprint, descriptor,
and graph-based techniques, future work could explore whether integrating transformers with these
approaches might further improve predictive performance.

4.3 ABLATION STUDY

In this section, we conduct experiments to evaluate the impact of different components, including
substructure hash size, the number of masked substructures, and the comparison between masking
and non-masking of substructure tokens.

Due to the time-intensive nature of training—each model takes 4 weeks on our available GPU re-
sources—we did not explore all possible combinations of these factors. Instead, we varied the hash
size across {128,256, 512} and the number of masked substructures across {1,4, 8}. Additionally,
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Table 6: Performance of SmilesGraph compared to state-of-the-art (SOTA) results on binary clas-
sification tasks, evaluated using AUPRC (higher is better). Bold values indicate current or newly
achieved SOTA results.

Datasets/Methods

CYP2C9 CYP2D6 CYP3A4 CYP2C9 CYP2Dé6

Veith Veith Veith Substrate Substrate
Pretraining
Transformers 0.804 0.701 0.888 0.422 0.735
Morgangen 0.76 0.650 0.86 0.40 0.70
SmilesGraph (Our) 0.798 0.698 0.887 0.422 0.738
Fingerprint and Descriptors
DeepMol 0.758 0.685 - 0417 0.731
MapLight 0.783 0.723 0.881 0.415 0.713
CFA 0.751 0.664 0.855 0.417 0.704
ChemProp 0.777 0.673 0.876 0.400 0.686
Euclidia ML 0.536 0.348 0.639 0.347 0.498
DeepPurpose 0.742 0.616 0.829 0.380 0.677
ZairaChem 0.786 0.644 0.875 0.441 0.685
GNN

MapLight+GNN 0.859 0.790 0.916 0.437 0.720
GCN 0.735 0.616 0.840 0.344 0.617
SimGCN - - - 0.433 -
ContextPred 0.839 0.739 0.904 0.392 0.736

we examined the effect of masking versus non-masking of substructure tokens while keeping other
factors constant.

Figure [] shows p-values from the Wilcoxon signed-rank test comparing the SmilesGraph model
across different settings: substructure count, masking, and hash vector size (e.g., 8_nomask_256
indicates a model with no masking, a hash size of 256, and 8 substructures). The results demonstrate
that models using substructure masking significantly outperform those without. While the hash size
does not have a statistically significant effect, smaller hash sizes tend to yield slightly better results.
Additionally, the number of masked substructures has minimal impact in the no-mask setting.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced a substructure-aware masking strategy coupled with a novel learning ob-
jective to enhance transformer-based models for molecular representation learning using SMILES.
Our approach addresses the limitations of traditional random token masking, which fails to capture
essential molecular substructures and often leads to suboptimal performance on crucial ADMET
tasks. By embedding molecular substructure information directly into the masking and prediction
process, our method enables transformers to better model the relationships within these substruc-
tures, improving their ability to predict drug-related properties. Empirical evaluations demonstrate
that our approach significantly outperforms conventional random masking techniques on ADMET
benchmarks, highlighting the importance of incorporating domain-specific molecular knowledge
into the design of transformer models.

While our proposed method has shown promising results, several avenues for future research remain.
First, further refinement of the substructure-aware masking strategy could be explored by incorpo-
rating more sophisticated chemical knowledge, such as reaction mechanisms or quantum properties,
to improve model generalization across diverse molecular datasets. Additionally, applying the ap-
proach to other molecular representation formats beyond SMILES, such as molecular graphs or 3D
structures, could broaden its applicability.
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