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Figure 1: We introduce LOKI 1. a compute-efficient co-design framework that discovers diverse, high-
performing robot morphologies (divergent forms) using shared control policies (convergent functions) and
dynamic local search instead of mutation. (A) The design space is clustered in a learned latent space so that
morphologies within each cluster share structural similarities and exhibit similar behaviors. (B) A shared control
policy is trained within each cluster on a dynamic pool of elite morphologies. (C) Morphologies co-evolve with
the shared policy as elites are iteratively refined through dynamic local search.

Abstract

We introduce LOKI, a compute-efficient framework for co-designing morphologies
and control policies that generalize across unseen tasks. Inspired by biological
adaptation—where animals quickly adjust to morphological changes—our method
overcomes the inefficiencies of traditional evolutionary and quality-diversity algo-
rithms. We propose learning convergent functions: shared control policies trained
across clusters of morphologically similar designs in a learned latent space, drasti-
cally reducing the training cost per design. Simultaneously, we promote divergent
forms by replacing mutation with dynamic local search, enabling broader explo-
ration and preventing premature convergence. The policy reuse allows us to explore
~ 780x more designs using 78% fewer simulation steps and 40% less compute per
design. Local competition paired with a broader search results in a diverse set of
high-performing final morphologies. Using the UNIMAL design space and a flat-
terrain locomotion task, LOKI discovers a rich variety of designs—ranging from
quadrupeds to crabs, bipedals, and spinners—far more diverse than those produced
by prior work. These morphologies also transfer better to unseen downstream tasks
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Figure 2: Lok1 "1 discovers hi gh-performing morphologies with diverse locomotion behaviors that effectively
generalize across various unseen tasks.

in agility, stability, and manipulation domains (e.g. 2x higher reward on bump
and push box incline tasks). Overall, our approach produces designs that are both
diverse and adaptable, with substantially greater sample efficiency than existing
co-design methods.

1 Introduction

Embodied cognition asserts that intelligence emerges not just from the brain but is shaped by the
physical embodiment [1]]. This perspective acknowledges that “how a creature behaves is influenced
heavily by their body,” which acts as an interface between the controller and the environment [2].
A four legged embodiment gallops while a two legged one simply runs. This adaptation occurs
across both evolutionary timescales—as in Darwin’s finches, whose beak shapes evolved to exploit
different food sources—and individual lifetimes, through mechanisms like Wolff’s Law, where bones
strengthen in response to load [3]]. Animals can seamlessly readapt their controllers to accommodate
even subtle changes in morphology [4].

Designing—or discovering—optimal embodiments for robots is a difficult combinatorial challenge [5}
6l [7, 18, O 110} (11} 12} 14} [13]]. Co-design, the joint optimization of morphology and control, is
typically framed as a bi-level optimization: an outer loop searches for morphologies (often using
evolutionary strategies), while an inner loop trains a control policy for each design to evaluate
its fitness (performance on a task). Due to the vastness of the design space, exhaustive search is
infeasible [14}4]]. Worse, the fitness landscape is often deceptive [[15], causing evolutionary strategies
to converge prematurely to local optima. Escaping such traps requires maintaining diversity across
the population [16} (17, [18]. Quality-diversity algorithms address this by promoting exploration of
high-performing yet diverse designs [[19} 20} [21} 22]]. However, evaluating each candidate is costly,
and diversity comes at the expense of the number of designs evaluated in the inner loop [23]]. Unlike
animals—who quickly adapt controllers to new bodies—robots still require retraining from scratch
for each morphology, as policies transfer poorly across embodiments [4} 24].

‘We introduce LOKI 'J@L' (Locally Optimized Kinematic Instantiations), an efficient framework for
discovering diverse high-performing morphologies that effectively generalize across unseen tasks.
Our framework is designed with the following principle: convergent functions and divergent forms.
First, we mirror Wolff’s Law of adapting policies to new morphologies. We train convergent functions,
i.e. a single policy function is trained across similarly structured morphologies. We learn a latent
space of possible morphologies, cluster this space and learn a shared policy that can adapt to any
morphology within that cluster. These cluster-specific policies exploit shared structural features,
generalizing across similar designs and behaviors, and enabling the reuse of learned behaviors.
With it, we can evaluate significantly more designs without incurring additional expensive training.
Competition occurs locally within each cluster-instead of a global selection pressure-resulting in
diverse high-performing final designs (similar to quality-diversity algorithms but much more efficient).



Second, we break away from how most algorithms sample new designs using mutation. Mutating
high-performing designs leads to limited exploration. Instead, we sample divergent forms by adopting
dynamic local search (DLS) [25} 26} [27]. We maintain a dynamic elite pool per cluster to train a
shared policy for the cluster. During training, random designs are sampled from a cluster, evaluated
by the current policy, and top ones replace the worst-performing elites in the pool (see Alg. [I)).
Compared to mutation, which typically yields small, incremental changes, DLS enables broader and
more adaptive exploration, reducing the risk of getting stuck in local minima. Since evaluations are
made inexpensive with shared policies, we can afford to use random search instead of local mutation,
efficiently filtering out low-quality candidates.

We use UNIMAL [4], an expressive design space encompassing approximately 10'® unique mor-
phologies with fewer than 10 limbs. We evolve morphologies on a simple flat-terrain locomotion task.
In nature, locomotion acts as a universal selection pressure across species. It is task-agnostic—helping
to prevent overfitting to narrow objectives—and is efficient to simulate and easy to reward.

Beyond being substantially more efficient, LOKI discovers both genetically and behaviorally diverse
high-performing morphologies, outperforming previous state-of-the-art algorithms. Using signif-
icantly less computational budget—approximately 78% fewer simulation steps (20B — 4.6B) and
40% fewer training FLOPs per design—LOKI explores ~ 780x more designs than prior evolution-
based approaches (4,000 — 3M)(Table[T)). LOKI discovers varied locomotion strategies including
quadrupedal, bipedal, ant-like, crab-like, cheetah, spinner, crawler, and rolling behaviors (Fig.[2). In
contrast, prior global competition-based evolutionary methods often converge to a single behavior
type—for example, consistently producing only cheetah-like morphologies [4].

LoKI results in morphologies that transfer better to new unseen tasks. The final set of evolved designs
are trained on a suite of downstream tasks across three domains: agility (bump, patrol, obstacle,
exploration), stability (incline), and manipulation (push box incline, manipulation ball). Compared
to baseline methods, such as DERL [4] and Map-Elites [24], LOKTI’s cluster-based co-evolution
results in superior adaptability to these challenging unseen tasks (e.g., bump: 981 — 1908; push box
incline: 1519 — 3148; see Fig.[6). Our convergent functions, shared across morphologies, results in
high-performing divergent forms that generalize better to new tasks with significantly less compute.

2 Background and Related Work

Brain-body co-design. The automation of robot behavior is one of the early goals of artificial
intelligence [28} [29]. In settings where the robot design is fixed, reinforcement learning (RL) [30, 31}
32,133]] has emerged as a dominant method for optimizing control policies. However, the problem
is more complicated when we wish to optimize not only the robot’s policy m € II, but also the
its physical morphology within some design space M € M. This design space can be simple
real-valued limb length parameters [13]], more complex combinatorial structures consisting of link
and joint primitives [34]], or even the voxelized parameters of soft robots [35]]. In these settings,
the physical design of a robot and its policy are inherently coupled, as both the transition function

T (St+1 | ¢, a4, M) and the total expected reward J (7, M) = E p Zf:o ~tr; are now a function
of both action and morphology. This means we must find ways to optimize morphology and behavior
jointly: M* = arg max,,J (7}, M) subject to 7}, = arg max_arg max.J (m, M).

Early foundational work optimized morphology and behavior jointly using genetic algorithms [[14}[36].
A popular approach is to use bi-level optimization in which an inner RL loop finds the best policies for
a given design, and an outer evolutionary loop selects morphologies that produce higher performing
behaviors [4]. While the bi-level optimization can be computationally expensive, some authors
have proposed solutions such as policy sharing with network structures that can support a variety of
morphologies [, 9]. Others discard the outer evolution loop entirely by incorporating morphology
refinement [13]] or compositional construction [[L1, 37] into the RL policy. Between these extremes
are approaches that use two reinforcement learning loops that update at different schedules [6].
Recently, researchers have also attempted to produce a diverse set of morphologies rather than a
single high-performing design in order to accommodate multiple downstream tasks [38} i4]. Our
approach is also in this category and demonstrates substantial improvements over these prior methods.

Optimization and Diversity. Algorithms designed to find multiple diverse solutions to an optimiza-
tion problem have a long and rich history. Island models [39, 40, 41], fitness sharing [42], tournament
selection [43] and niching [44] in genetic algorithms were proposed as different ways to maintain the



diversity of a population and prevent premature collapse to a single solution mode. Similar techniques
were developed for coevolutionary/multi-agent settings [45) 46].

More recently, Quality Diversity (QD) algorithms [19, 47, 21]], attempt to illuminate the search
space by discovering a broad repertoire of high-performing yet behaviorally distinct solutions. An
important component of algorithm design in this space is deciding how to measure diversity and how
to accumulate the resulting collection of solutions. Novelty Search [48],20] measures diversity as the
average distance to nearest neighbors, and adds solutions to an archive if their diversity score is higher
than a threshold. MAP-Elites [23],22] forms a discretized grid of solutions according to a user-defined
feature space, and updates this map with the best solution found for each grid cell so far. This grid of
solutions has been extended to Voronoi tessellations for high-dimensional feature spaces [49} 50] and
combined with evolution strategies [S1]] and reinforcement learning [S2]. QD algorithms can generate
a repertoire of diverse solutions, enabling adaptive selection based on changing task demands or
environmental conditions [53}154]. In morphology optimization, evolving a diverse population on a
single environment has been shown to yield better generalization and transfer to new tasks [53].

3 Lok1'{’

We introduce LOKI, a compute-efficient co-design framework that discovers diverse, high-performing
morphologies (divergent forms) using shared control policies (convergent functions). Leveraging
structural commonalities in the design space, we train multi-design policies on clusters of similarly
structured morphologies. These shared policies exploit common features, enabling behavior reuse
and allowing us to evaluate many more designs without retraining. Morphologies are co-evolved
alongside the policies using Dynamic Local Search (DLS) [25, 26, 27], which facilitates broader
exploration within each cluster. By localizing the competition [20] within each cluster and having a
broader exploration, LOKI evolves diverse high-performing solutions that effectively generalize across
different unseen tasks. We describe our clustering approach in Sec[3.T} the training of cluster-specific
multi-design policies in Sec[3.2] and our co-design framework in Sec.[3.3]

LOKI offers three key benefits: Efficient Search. We explore a design space ~780x larger while
requiring significantly fewer simulation steps (20B — 4.6B) and less compute per evaluated design
(160B — 100B) (Tab. [I). Robust Evaluation. Single-design policies are narrowly specialized,
whereas our multi-design policies are exposed to a broader range of morphologies and behav-
iors—Ileading to more robust fitness evaluations grounded in the behavioral landscape of previously
encountered agents. Diverse Solutions. LOKI independently discovers a range of high-performing
designs across clusters, without relying on explicit diversity objectives like novelty search [20].

3.1 Clustering the Space of Designs

2
« 1
Multi-design policies often struggle to generalize across mor- 2 ’\1\.‘ sy 1 2
phologies with diverse behaviors. To address this, we cluster 5"}] 4
morphologies that are both structurally and behaviorally similar, 4 5 5

and train separate policies for each cluster. Effective general-
ization within a cluster requires a feature space where distance
meaningfully reflects similarity. Each morphology is represented
as a sequence of limbs, with a mix of continuous and categor-
ical parameters. Due to the complexity of this representation,
clustering in the raw feature space is suboptimal. As shown in
Fig.|3] K-means clustering [56] with Euclidean distance over raw
parameters groups topologically distinct designs—differing overall structure—into the same cluster,
despite similarities in simpler attributes like limb length or radius.

Figure 3: Clustering using raw
morphology parameters fails to
capture the topological similarity.
The 3 designs are from the same clus-
ter. Indices show the DFS traversal.

Instead, we train a Transformer-based VAE [57, 58] to encode morphologies into a structured latent
space. Each morphology is represented as an L x D matrix, where L is the maximum number of
limbs and D = 47 is the number of parameters per limb, with both continuous (e.g., limb orientation,
length, joint gear) and categorical (e.g., joint type, joint angle, depth) attributes. Limb vectors are
ordered using a depth-first search (DFS) traversal [39], starting from the head, which encodes forso
type (horizontal/vertical), head density, and radius. If a morphology has fewer than L limbs, the
sequence is zero-padded. The transformer encoder [57] maps each morphology to a (L x H) latent



Table 1: Efficiency and Coverage Comparison. LOKI explores a much larger design space while requiring
significantly fewer simulation steps and less training FLOPs per evaluated design See Appendix [F for details.

# Interactions (B) | # Searched Morphologies 1 FLOPs per Morphology (B) |

DERL 20 4000 160
LOKI 4.62 3,120,000 100

space, where H < D. To support decoding, we append an EOS (end-of-sequence) token to mark the
final limb and use depth tokens to indicate each limb’s position in the depth-first traversal.

. ; chn Ai jYij ‘Mio»m

The loss over a batch is defined as L°" = Zle L where L7" = 2 lz(y J/V?][) =
J 1]
i lea(Gijyij M‘;m . . . .
% is the reconstruction loss for the i-th limb. /.,y and £, are the L2 loss and
J K

cross-entropy loss for continuous or categorical attributes. MS$™ and Mf;‘ are binary masks showing
existence of the j-th attribute in the ¢-th limb, and y;; is the ground-truth value. Instead of the standard
ELBO objective, we adopt an adaptive scheduling strategy for the KL divergence scaling factor
B [60]. Our goal is to learn a compact latent representation suitable for clustering. Therefore, we
prioritize minimizing the reconstruction loss over enforcing strong regularization towards a standard
normal prior. Following [61]], we exponentially decay  within a predefined range [SBmin, Smax)-

_|_

We generate 500k unique random morphologies within the UNIMAL space [4] (see Appendix [C]
for details). We train a transformer-based VAE (4 layers, 4 heads, latent dimension H = 32) on
these designs using a batch size of 4096, an initial learning rate of 10~%, and a single A40 GPU
for 200 epochs. We then cluster the 500k morphologies into N, = 40 groups using the K-means
algorithm [56]] based on Euclidean distance of their corresponding VAE latent codes. A t-SNE [62]
visualization of the clusters is shown in Fig.[T}A.

3.2 Convergent Functions: Multi-Design Control Policies

Most prior evolution-based co-design approaches train
each morphology from scratch using reinforcement
learning, without sharing experience across the popu-
lation. In contrast, we leverage structural commonal-
ities within the design space by training multi-design W
policies for clusters of morphologies that share struc- 200 aomsou som oo 200 aon s foom
tural and behavioral similarities. These cluster-specific o o

policies serve as surrogate scoring functions, enabling Figure 4: Coevolution of morphologies with
efficient evaluation of a large number of designs within ~multi-design policies. Lefi: Training rewards

each cluster without retraining, thereby significantly ~for each policy. Right: Mean pairwise distance
improving search efficiency. of morphologies in the elite pool of each cluster.

Pairwise Latent Distance

As shown in Fig. B, for each cluster, we initialize a training pool 7700 ¥ for C with N,, = 20
randomly sampled agents. We train a multi-design policy wgc * from scratch using the dynamic agent
pool within that cluster for Vi, = 1220 training iterations. Every fgr = 2 iterations, the pool is
updated Pic ko Pi(i’“l, to identify the cluster’s elites via the stochastic search process described in
Sec.[3.3] Each cluster-specific policy is trained on a large number of designs, enabling generalization
across similar morphologies and behaviors.

We adopt the Transformer-based policy architecture (5 layers/2 heads) from [63] for our multi-design
policies. Each policy is trained for 100 million simulation steps using a batch size of 5120 and an
initial learning rate of 3 x 10~ with cosine annealing. Training is distributed across six A40 GPUs,
with each GPU handling 6-7 cluster-specific policies in parallel (more details in the Appendix [H).

3.3 Divergent Forms: Co-evolving Elites using Dynamic Local Search within Clusters

Most evolution-based approaches generate new designs by mutating existing ones. However, such
small incremental changes often restrict exploration to local neighborhoods, increasing the risk of
premature convergence to local optima. Additionally, global selection pressure can cause the search
to favor a single dominant species or behavior—often biasing toward short-term gains like faster



Algorithm 1 : LOKI °{’

1: Input: Morphology clusters C = {Ck}]k\’;v training iterations Njer, initial pool size N,
update frequency faifr, sample size Nsample, replace count Njeer

2: for each cluster Cy, € C do

3 Initialize training pool 73{,3 k with N,, random morphologies from Cj,

4 Initialize policy ﬂgk and value function VQC"‘ from scratch

5:  fori = 1to Nje do

6 if < mod fdiff == 0 then

7 Sample Ngample new morphologies from Cy, and evaluate using 7rg"'

8 Select top Niier sampled morphologies {w; };V:ﬁ'i”

9: Identify Nfier lowest-reward agents {w; };Y:“‘ie’ in Pic *
10: Replace: PE* « Pk \ {w; } U {u;}

11: else

12: Pk Pk

13: end if

14: PPO_step(ns*, Vy'k, PF)

15: end for

16: end for

learning, while overlooking more complex or unconventional strategies (e.g., spinning) that require
longer-term training (Fig. [2).

To overcome these limitations, we sample divergent forms using Dynamic Local Search (DLS) [25, 126}
27|, combined with localized competition within each cluster. This allows clusters to independently
evolve high-performing and behaviorally diverse morphologies (see different locomotion behaviors
in Fig. 2). DLS promotes broader and more adaptive exploration within each cluster, reducing the risk
of getting stuck in local minima. Our multi-design policy 7rgc k acts as a dynamic evaluation function,

continually updated via PPO [32]] on a dynamic pool of elite designs Pic *. This enables efficient
assessment of diverse candidates sampled broadly across the cluster, rather than relying on narrowly
mutated variants. Because evaluations are made efficient through policy sharing, we can use random
search instead of mutation—allowing us to quickly filter out poor designs and retain promising ones.

As shown in Fig. C, every fair = 2 training iterations, Ngampe = 128 new random designs are

sampled from the cluster and evaluated using the current policy wec k. The top Npyer = 2 designs
replace the lowest-performing Ngyeer agents in the pool. Training then continues with the updated pool

Pg_’“l. Fig. shows the training rewards and pairwise distances of the designs within each training
pool Pc, . Over time, each pool converges to a steady state, where the same Npyer = 2 agents are

consistently replaced in each update cycle. The complete algorithm is shown in Alg.[T]

How to choose the number of clusters? Number of clusters plays a key role in balancing intra-cluster
behavioral similarity with the breadth of localized competition. Within each cluster, morphologies
should be behaviorally similar enough for the policy to generalize effectively, while the clustering
should remain fine-grained enough to capture morphological diversity. With N, = 10, clusters
roughly align with limb count, resulting in overly coarse groupings. We select N. = 40 to better
capture finer morphological distinctions while maintaining a feasible computational budget. Each

policy evaluates up to Hf‘

diff
morphology to be evaluated approximately 6 times on average. These repeated evaluations are
valuable, as early policies may be unreliable; re-evaluation with improved policies can uncover
better-performing behaviors (see Appendix for details).

J * Nsample + Ny ~ 78,000 samples during training, allowing each

4 Experiments

In all experiments, morphologies are evolved for locomotion on flat terrain (FT) using UNIMAL space.
Locomotion is a universal and ubiquitous evolutionary pressure across species; it is task-agnostic,
avoids overfitting to narrow objectives, and is easy to simulate and reward.

We evaluate both the performance and diversity of the final evolved morphologies, comparing them
to other evolution-based co-design methods as well as Quality-Diversity approaches (Sec.[d.1). LOKI
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Table 2: LoKI maintains both quality and diversity. It obtains the gzo I I

highest QD-Score, demonstrating its ability to find high-performing % H :
solutions across a wide range of niches. (+ denotes standard error 2"

across 4 training seeds)

10

"B Latent-MAP-Eites NN LOKI

Method Max Fitness QD-score Coverage(%) ) = oeRL = Random
RANDOM 3418.9 +3908  32.1 90 . k nearest neighbor(s)
DERL 5760.8 2452 262 375 Figure 5: LOKI evolves significantly more
MAP-ELITES 5807.3 £19065 43.5 65.0 sparse solutions (measured by the average
LATENT-MAP-ELITES 5257.0 4013  38.1 100 distance to k-nearest neighbors). This is
due to using Dynamic Local Search for
LOKIw/o cLuster) 4825.8 £761 40.0 75 sampling designs, rather than mutations.
LOKI (Ne = 10) 4008.0 3637 21.6 47.5 Higher sparseness indicates more diversity.
LOKI (Ne = 20) 5544.0 £2681  26.6 45.0 (Statistical significance was assessed using
LOKI *f (N. = 40) 56719 +3601  60.9 100 independent samples t-tests; *° < 0.005;

#P <107 #REP < 10719),

promotes both genetic and behavioral diversity, discovering a wide range of locomotion strategies
including quadrupedal, bipedal, crab-like, cheetah, spinner, crawler, and rolling behaviors, as shown
in Fig. [2). We assess the transferability of the evolved morphologies to a suite of downstream
tasks across three domains: agility (patrol, obstacle, bump, exploration), stability (incline), and
manipulation (push box incline, manipulation ball). Compared to baselines, LOKI exhibits superior
adaptability to these unseen challenges—at both the morphology and policy levels—driven by the
quality and diversity of the evolved designs (Sec.[4.2).

Baselines and Experiment Details. We compare our method with DERL [4], a prior evolution-based
co-design approach, and CVT-Map-Elites [22], a representative Quality-Diversity baseline. For a fair
comparison, we evaluate the top N = 100 final evolved morphologies (elites) from each algorithm.
For methods using N. = 40 clusters, we select the top 2-3 agents from the final training pool of each
cluster to form the final population. We include the following baselines and ablations:

1. RANDOM: 100 morphologies are randomly sampled from the design space.

2. DERL [4]l: We use the publicly released set of N = 100 agents evolved on flat terrain. DERL
introduces a scalable framework for evolving morphologies in the UNIMAL design space using
a bi-level optimization strategy: an outer evolutionary loop mutates designs, while an inner
reinforcement learning loop trains a separate MLP policy for each agent for over 5 million steps.
DERL employs distributed, asynchronous evolutionary search to parallelize this process, evolving
and training 4,000 morphologies over an average of 10 generations to select the top 100.

3. MAP-ELITES [23| 49]: A Quality-Diversity (QD) baseline where the morphology space is
discretized into N. = 40 niches using K-means clustering on raw morphology parameters. Each
cluster serves as a cell in the MAP-Elites archive maintaining 3 elites throughout evolution.
The algorithm explores the same number of morphologies as DERL (40 generations x 100
morphologies per generation=4000), training a separate MLP policy for each agent for SM steps.

4. LATENT-MAP-ELITES: Similar to MAP-ELITES, but morphology space is discretized into
N, = 40 niches using K-means clustering in the VAE latent space rather than raw parameters.

5. LOKI (W/0 CLUSTER): An ablation of our method with no clustering. Morphologies are evolved
over 40 independent runs, each initialized with a pool of N,, agents sampled randomly from the
full design space rather than within clusters.

6. LOKI: Our full co-design framework using N. = 40 clusters in the VAE latent space.

4.1 Performance and Diversity of the Evolved Designs

The design space includes both fast and slow learning morphologies, requiring varying amounts
of interaction to master locomotion on flat terrain. Training single-design controllers from scratch
is constrained by limited budgets—e.g. DERL [4] trains each morphology using MLP policies
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Figure 6: Morphology-level task adaptability. We evolve diverse morphologies on flat terrain that generalize
more effectively to unseen tasks requiring varied skills. DERL morphologies are overfitted to flat terrain
and perform best on obstacle (n=50) and incline, which are structurally similar. LOKI shows significantly
better adaptability on bump (981 — 1908), push box incline (1519 — 3148), manipulation ball (142 — 172)
enabled by its morphological diversity (e.g., crawlers, crabs) and the emergence of more complex behaviors
(e.g., spinning, rolling).
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Figure 7: Policy-level task adaptability. Our co-evolution framework not only produces a diverse set of
morphologies but also cluster-specific policies that generalize more effectively to unseen tasks. Each cluster
captures distinct morphologies and behaviors, enabling its policy to better adapt to tasks aligned with those traits.

for 5 million steps, which is often insufficient to learn more complex behaviors, such as spinning
(see Appendix [B). Global competition causes the algorithm to favor faster learners like cheetah-
like morphologies, reducing the diversity of behaviors. In contrast, LOKI promotes both fast and
slow learners by localizing competition within clusters, using powerful cluster-specific policies, and
incorporating Dynamic Local Search (DLS) to encourage broader exploration within each cluster.
This leads to greater behavioral and morphological diversity (Fig. [2)).

In Tab. 2] we compare LOKI for locomotion on flat terrain (FT) against baselines using three core
metrics commonly used to evaluate Quality-Diversity (QD) algorithms (64, [19]: Maximum Fitness
(the highest reward achieved by any agent in the final population), Coverage (the number of clusters
filled by the final population), and QD-Score (sum of the highest fitness values discovered in each
cluster, capturing both quality and diversity). For fair comparison of QD-score and coverage, we
assign top 100 agents from each baseline to N, =40 latent clusters (details in Appendix [E).

While LOKI achieves slightly lower maximum fitness than DERL and MAP-ELITES, it obtains the
highest QD-Score, demonstrating its ability to find high-performing solutions across a wide range of
ecological niches. Although LATENT-MAP-ELITES achieves full coverage by evolving agents within
the same latent clusters, it struggles to discover high-quality solutions in many of them, resulting
in a significantly lower QD-Score. DERL, on the other hand, is optimized solely for fitness, not



diversity. As a result, it overfits to the training task (flat terrain locomotion) and lacks behavioral
variety—reflected in its low coverage score of 37.5%, with only 15 out of 40 clusters filled.

Our ablations further highlight the importance of clustering. When clusters are too large and contain
morphologies with different behavior types, the shared policy struggles to generalize effectively,
which explains the performance drop at N, = 10 and N, = 20.

Fig. 5|compares the sparseness [20] of solutions as a novelty metric. A simple measure of sparseness

p at a point z is p(z) = %Zf:l dist (x, ), where p; is the ith-nearest neighbor of z in the

morphology latent space. LOKI achieves the highest sparseness among the three learning-based
methods, closely approaching RANDOM. This is largely due to LOKI’s use of Dynamic Local Search
(DLS) to sample diverse designs within each cluster, as opposed to the incremental mutations used in
DERL and LATENT-MAP-ELITES, which tend to produce solutions in local neighborhoods.

4.2 Transitioning to New Tasks and Environments

Morphology-Level. LOKI produces a diverse set of solutions that are better suited for adaptation
to various unseen tasks and environments, reducing the need to re-evolve agents for each setting.
We evaluate generalization across eight test tasks, each requiring a distinct set of skills. For each
method, the final set of N = 100 evolved morphologies (elites) is independently trained from scratch
on each test task using MLP-based policies, with 5 random seeds and training durations of 5, 15, or
20 million steps depending on task difficulty. Obstacle (n=150) is more challenging with three times
more obstacles than obstacle (n=50). In the bump task, agents must learn behaviors like jumping or
climbing without explicit information about the bump’s location. All tasks except obstacle (n=150)
and bump were originally introduced in [4] (more details in Appendix [D).

Fig.[6] shows the cumulative mean reward of the top 10 agents from each method on each task. LOKI
outperforms the DERL baseline on 6 out of 8 tasks, indicating that the diverse set of morphologies
evolved for flat terrain transfers more effectively to new environments. In contrast, DERL agents
exhibit limited behavioral diversity and are overfitted to the training task—they perform best on
obstacle (n=50) and incline, likely because these tasks are structurally similar to flat terrain. LOKI
achieves large gains on tasks that differ more significantly from locomotion, such as bump (981 —
1908), push box incline (1519 — 3148), and manipulate ball (142 — 172). These improvements
stem from the emergence of diverse morphologies (e.g., crawlers, crabs) and complex behaviors (e.g.,
spinning, rolling) that DERL and MAP-ELITES fail to discover (see Fig. [2).

Policy-Level. Each multi-design policy is trained on a large number of morphologies within its
cluster using a dynamic pool that is updated with new designs every few iterations. We evaluate the
generalization capabilities of these policies on four new tasks. Since each cluster captures a distinct
subset of morphologies and behaviors, the corresponding policy is expected to adapt more effectively
to tasks aligned with those traits.

We fine-tune the top 10 cluster-specific policies—pretrained on flat-terrain locomotion—on each
new task. As a baseline, we pretrain the Transformer policy architecture on the top N,, = 20
morphologies evolved by DERL on flat terrain and fine-tune it similarly. Fig.[/|shows that for each
task, certain cluster-specific policies adapt significantly better after fine-tuning, as their corresponding
morphologies are inherently aligned with the skills required. This highlights the benefit of co-evolving
diverse morphologies alongside specialized controllers within structurally coherent clusters. The
intra-cluster similarity further aids generalization, enabling policies to learn transferable behaviors.
Overall, our framework not only produces diverse morphologies but also yields cluster-specific
policies that generalize more effectively to unseen tasks.

5 Conclusion

We introduce LOKI, a compute-efficient co-design framework that discovers diverse, high-performing
robot morphologies (divergent forms) using shared control policies (convergent functions). By
clustering structurally similar morphologies, we train multi-design policies that enable behavior reuse
and allow for the evaluation of significantly more designs without retraining. Morphologies are co-
evolved with policies using Dynamic Local Search (DLS) rather than incremental mutations, allowing
broader exploration within each cluster. Localized competition combined with broader exploration



leads LOKI to outperform Quality Diversity (QD) algorithms in evolving diverse locomotion strategies.
Our agents also generalize better to unseen tasks compared to prior evolution-based and QD methods.

6 Limitations

One limitation of our method is that the number of clusters—and consequently, the diversity of
discovered solutions—must be determined at the start of training. While this could be partially
addressed by adding new morphology clusters later to better cover poorly performing regions, doing
so may require costly retraining. Additionally, training costs scale linearly with the number of
clusters. In future work, this limitation could be alleviated by introducing an adaptive mechanism
that dynamically grows or shrinks the number of clusters based on their performance during training.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly state the claims and contributions that
match our experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have explicit limitation section (Sec. [6).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code is available on the project website to reproduce the experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: Code with instructions to reproduce the main results are available on the
project website.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment details and hyperparameters are mostly provided in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Max fitness in Tab. 2]is shown with the standard errors, and the results of Fig.[5]
is evaluated using the independent samples t-test.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources required for the experiments are provided in Sec. [3.]and

Sec.3.21
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Research in this paper conform with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Societal impacts are discussed in Appendix [I|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers that produced any code or data used in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendices for Convergent Functions, Divergent Forms
The following items are provided in the Appendix:

* Benefits of clustering the design space in the learned latent space instead of using raw
morphology parameters (AppJA)

* Analysis of the locomotion learning speed of our evolved agents (fast and slow learners)
(AppiB)

* Procedure for sampling random morphologies within the UNIMAL space (App|C)

* Detailed description of the different test tasks (AppJD))

* Detailed description of the QD-score metric (ApplE)

* Description of how efficiency metrics in Tab[l|are calculated (ApplF)

* Pseudo-code for the Map-Elites baseline (ApplG))

* Full hyperparameter details for the experiments (App. [H))

* Broader Societal Impacts (App.[l)

On our website (loki-codesign.github.i0)), we have

* Videos showing the diverse locomotion behaviors of LOKI’s evolved agents

* Videos of the evolved agents transferred to new test tasks (Obstacle, Bump, Incline, Push
box incline, Manipulation ball, Exploration)

A Benefits of Clustering in the Learned Latent Space

To investigate the role of latent-space clustering versus clustering based on raw morphology pa-
rameters, we conduct an ablation study: LOKI (w/raw-raram-cLuster), @ variant of our method in which
latent-space clusters are replaced with clusters computed from raw morphology parameters, while
keeping the number of clusters fixed at N, = 40.

Fig[§loverlays the cumulative mean reward of the top 10 agents from LOKI (w/ raw-paran-cruster) and
MAP-ELITES (w/ Raw-PARAM-CLUSTER) O top of Flg@ in the main paper. Notably, LoK1 outperforms
LOKI (ws raw-raran-cLuster) across all tasks, indicating that our co-evolution framework benefits from
structuring the morphology space via a learned latent representation. In contrast, clustering in the raw
parameter space fails to capture structural and behavioral similarities, leading to poor generalization of
multi-design policies within each cluster. Tab. [3]also compares LOKI against LOKI (w/ raw-param-cLuster)
across the quality-diversity metrics.

B Learning Speed of the Evolved Morphologies (Fast & Slow Learners)

We examine the correlation between learning speed and the final performance of evolved agents. To
evaluate performance across different training durations, we train single-agent MLP policies [4] for
both 5M and 15M steps on flat terrain. This evaluation excludes agents from clusters with consistently
low training rewards or predominantly simple morphologies. As shown in Fig.[9} the top-performing
agents under short- and long-term training are largely disjoint, revealing the presence of both fast-
and slow-learning morphologies. Notably, high short-term performance does not necessarily indicate
high long-term performance—some slow learners achieve superior results after 15M steps despite
underperforming at SM steps.

Prior approaches such as DERL train single-agent policies for a fixed number of steps (e.g., SM),
which biases evolution toward fast learners—often resulting in morphologies dominated by cheetah-
like forms. In contrast, LOKI does not rely on short-term training. It leverages multi-design
transformer policies trained over significantly longer durations, enabling the discovery of both fast
and slow learners across the morphology clusters.
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Table 3: LOKI benefits both quality and diversity from clustering in a structured morphology latent space. One
new baseline, LOKI (w/ raw-raran-custer), marked with (*), is added to Tab. [2]to assess the impact of clustering in
raw parameter space. (+ denotes standard error across 4 training seeds.)

Method Max Fitness QD-score Coverage(%)
RANDOM 3418.9 + 3908 32.1 90
DERL 5760.8 + 2452 26.2 37.5
MAP-ELITES (W/ RAW-PARAM-CLUSTER) 5807.3 + 1965 43.5 65.0
LATENT-MAP-ELITES 5257.0 + 4913 38.1 100
LOKI (w/o cLUSTER) 4825.8 +£76.1 40.0 75
Lok1 (N. = 10) 4008.0 +363.7 21.6 47.5
LokI1 (N, = 20) 5544.0 + 268.1 26.6 45.0
LOKI (w/ RAW-PARAM—CLUSTER)(*) 4055.0 +£3237 27.5 62.5
Lok1 "’ (N. = 40) 5671.9 + 360, 60.9 100
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Figure 8: Morphology-level task adaptability. Two baselines (MAP-ELITES (w/ Raw-paRAM-CLUSTER), LOKI (w/
raw-pARAM-cLUSTER)) are added to Fig. |§|to assess the impact of clustering in raw parameter space.

C Sampling Random Morphologies within the UNIMAL Space

The process of sampling random morphologies follows the procedure introduced in prior work [4].
During the population initialization phase, a new morphology is created by first sampling the total
number of limbs to grow, followed by a series of mutation operations until the desired number of
limbs is reached. These mutations include: growing or deleting limbs, mutating limb parameters,
density, degrees of freedom (DoF), gear ratios, and joint angles. For each mutation, the parameters
are uniformly sampled from predefined ranges specified in [4]. The key difference is that DERL [4]
samples parameter values from discrete sets, while LOKI samples continuously within each range,
enabling a denser and more comprehensive coverage of the morphology space. Table ] presents the
parameter ranges used to create our morphologies. The notation range(a, b) denotes a continuous
range from a to b.

D Test Task Descriptions

We describe the task specifications and required skills for the eight test tasks used in our morphology-
level evaluation. All tasks, except for Bump and Obstacle (n=150), were introduced in prior work [4].
We adopt the same task configurations and reward structures as outlined therein.
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Figure 9: Training rewards across short- and long-term learning. Final rewards for LOKI’s agents
after 5SM and 15M training steps. The top-performing agents at short and long training horizons are
largely disjoint. High short-term performance does not guarantee long-term success—some slow
learners significantly outperform fast learners after extended training.

Parameters Sampling Range
Max limbs 11

Limb radius range(0.02, 0.06)
Limb height range(0.2, 0.4)
Limb density range(500, 1000)

Limb orientation 8 [0, 45, 90, 135, 180, 225, 270, 315]
Limb orientation ¢  [90, 135, 180]

Head radius 0.10

Head density range(500, 1000)

Joint axis [x, ¥, xy]

Motor gear range range(150, 300)

Joint limits [(-30, 0), (0, 30), (-30, 30), (-45, 45), (-45, 0), (0, 45),

(0, -60), (0, 60), (-60, 60), (-90, 0), (0, 90), (-60, 30), (-30, 60)]

Table 4: Design parameters used for sampling random morphologies in the UNIMAL space.

Patrol. The agent must repeatedly traverse between two target points separated by 10m along the
x-axis. High performance in this task requires rapid acceleration, short bursts of speed, and quick
directional changes. (Training steps: 5 million)

Incline. The agent operates in a 150 x 40m? rectangular arena inclined at a 10-degree angle. The
agent is rewarded for moving forward along the +x axis. (Training steps: 5 million)

Push Box Incline. The agent must push a box with a side length of 0.2m up an inclined plane. The
environment is a 80 x 40m? rectangular arena tilted at a 10-degree angle. The agent starts at one end
of the arena and is tasked with propelling the box forward along the slope. (Training steps: 5 million)

Obstacle (n=50, 150). The agent must navigate through a cluttered environment filled with static
obstacles to reach the end of the arena. Each box-shaped obstacle has a width and length between
0.5m and 3 m, with a fixed height of 2 m. n denotes the number of randomly distributed obstacles
across a flat 150 x 60m? terrain. (Training steps: 5 million)

Bump. The agent must traverse an arena filled with 250 low-profile obstacles randomly placed on a
flat 150 x 60m? terrain. Each obstacle has a width and length between 0.8m and 1.6m, and a height
between 0.1m and 0.25m. As obstacle height is comparable to the agent’s body, this task promotes
behaviors such as jumping or climbing, adding complexity to locomotion and body coordination.
(Training steps: 15 million)
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Manipulate Ball. The agent must move a ball from a random source location to a fixed target. A
ball of radius 0.2 m is placed at a random location in a flat, square 30 x 30m? arena, with the agent
initialized at the center. This task requires a fine interplay of locomotion and object manipulation, as
the agent must influence the ball’s motion through contact while maintaining its own balance and
stability. (Training steps: 20 million)

Exploration. The agent begins at the center of a flat 100 x 100m? arena divided into 1 x 1m? grid
cells. The goal is to maximize the number of unique grid cells visited during an episode. Unlike
previous tasks with dense locomotion rewards, this task provides a sparse reward signal. (Training
steps: 20 million)

E QD-Score (a quality-diversity metric)

QD-score [64, [19, 155] is a more comprehensive metric than maximum fitness, as it captures not
only the performance of the single best agent but also the diversity of high-performing solutions
across the search space. Given the vast combinatorial complexity of the UNIMAL space, QD-score
is particularly well-suited for evaluating the quality and spread of evolved morphologies.

In Tab. [2] we report the percentile QD-score computed over N. = 40 latent morphology clusters,
defined as:

f fmm

1
7fmm ( )

QD-score = Z a0

Here, M, denotes the set of evolved morphologies allocated to the i-th cluster, and f; is the mean
fitness of the best-performing agent in that cluster. fp,x and fu;, represent the maximum and
minimum mean fitness values across all final population clusters, respectively. This normalization
ensures comparability across clusters with different fitness scales.

F Efficiency Metrics in Table[1}

This section defines the efficiency metrics reported in Tab.

Number of interactions. The number of interactions refers to the total number of environment steps
taken by all agents throughout the entire evolutionary process.

In our multi-design evolution framework, two types of interactions are counted: (1) trajectories
collected from agents in the training pool, which are used to train the shared multi-design policy via
PPO, and (2) evaluation episodes conducted during each drop-off round.

The total number of interactions is calculated as:

Total interactions = N,. - (# interactions (per cluster) + # evaluated samples - episode length)
N;
= Nc . (1OOM + { 1terJ . Nsample . leval)
diff
~ 4.62B @)

In contrast, DERL trains 4,000 agents independently using a single-agent MLP policy, with each
agent trained for 5M environment steps—resulting in a total of 20B interactions. Since DERL uses
the training reward directly for agent selection, no separate evaluation phase is required.

Number of searched morphologies. The total number of morphologies explored across the mor-
phology space is calculated as follows:

]\fi ter
Jaite

# of covered morphologies (per cluster) < { J * Ngample + Ny =~ 78,000 3)
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# of searched morphologies = # of covered morphologies (per cluster) - N,
~ 78,000 - 40
=3.12M @)

Note that each morphology is evaluated approximately 6 times on average. These repeated evaluations
are valuable because early-stage policies may be unreliable. Re-evaluating morphologies with
progressively improved policies allows for the discovery of higher-performing behaviors.

FLOPs per searched morphology. Given the MLP and Transformer policy model architectures
used in prior work [4}163]], we compute the training FLOPs per searched morphology as shown in
Eq. [5 with the values in Tab. 3]

FLOPs (per step) = 2 x FLOPs (per forward pass) X Batch size
FLOPs (per model) = FLOPs (per step) X PPO epochs x (# of iterations)
FLOPS (per morphology) = FLOPS (per model)/ (# of searched morphologies) 5)

DERL employs a single-agent MLP policy, resulting in a per-model training compute of 2 x 31.9k x
512 x 4 x 1220 = 159B FLOPs. In contrast, LOKI uses a multi-agent Transformer policy, which
incurs higher compute per forward pass, as well as larger batch sizes and more training epochs.
However, this higher cost is offset by the fact that each trained model serves a large number of
morphologies. As a result, the total training compute per searched morphology is amortized and

given by 2XT9-5Mx5180x8x1220 ~ 102B FLOPs. Despite the higher overall training cost of the

Transformer policy compared to the MLP, its shared usage across a large number of morphologies
leads to more sample-efficient training, resulting in approximately 40% lower compute cost per
morphology.

Table 5: Comparison of total FLOPs required for MLP and Transformer policy architectures.

Model FLOPs (per forward pass)  Batch size PPO Epochs  # of evaluated morphologies (per model)
MLP 31.9K 512 4 1
Transformer 79.5M 5120 8 78,000

G MAP-Elites

We provide the algorithm for the Map-Elites [23]49] baseline in Alg.
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Algorithm 2 MAP-ELITES

1:

RN R RN

11:
12:
13:

14:
15:

Input:
M: MAP-Elites repertoire for agent design
U: UNIMAL morphology space
g: Cluster classifier based on morphology parameters
Nirin: Total number of agents to train
M: Number of offspring per generation
S: Number of interaction steps for training each MLP policy
// Initialization
Randomly sample M initial morphologies {ul}*, c U
Train single-agent MLP policies {79}, on their respective morphologies for S steps
Evaluate fitness { f°}24, via one episode roll-out per trained policy
Insert {u?} M, into M using fitness {f°}}, and cluster assignments {g(u?)},
while |[M| < Ny, do
// Reproduction via mutation
Sample M elite morphologies {u] } M. from M without replacement
Apply random mutation to produce M offspring morphologies { M,
// Train and evaluate new morphologies
Train MLP policies {77}, for S steps
Evaluate fitness {f7 }}£, via one episode per policy
Insert {@] }, into M using fitness { f/ }}£, and clusters {g (@)},
end while
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H Implementation Details

Detailed hyperparameters are provided in Tab. [6]and Tab.

Table 6: Hyperparameters of LOKI.

Name Value

# of samples for K-means 5 x 10°

# of clusters N, 10, 20, 40

Niter 1220

Saite 2

Ny, 20

N filter 2
Stochastic Multi-Design Evolution  Numple 128

# of parallel environments 32

Total interactions 108

Timesteps per PPO rollout 2560

PPO epochs 8

Training episode length lirain 1000

Evaluation episode length leyal 200

# of heads 2

# of layers 5

Batch size 5120

Feedforward dimension 1024
Multi-Design Transformer Policy Dropout 0.0

Initialization range for embedding [-0.1,0.1]

Initialization range for decoder [-0.01, 0.01]

Limb embedding size 128

Joint embedding size 128

Continuous feature embedding size 32

Depth feature embedding size 32

Latent dimension 32

# of heads 4

Feed-forward network hidden dimension 256

# of layers 4

Opitmizer Adam
Morphology VAE Initial learning rate 107

Weight decay 107°

Learning rate scheduler
Learning rate reduction factor

ReducelLROnPlateau [65]]
0.95

Learning rate reduction patience 10

# of epochs 200

Batch size 4096

[ Buin Benax] [107°,1077]

Table 7: Hyperparameters of MAP-ELITES.

Name Value

# of samples for K-means 5 x 10°
# Clusters 40
]Vlrain 4000
M 100

S 5 x 10°

I Societal Impacts

Positive impacts: Our work aims to challenge prevailing assumptions about optimal robot morphol-
ogy, potentially reshaping how robotic design is approached. By promoting diversity and functionality
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beyond conventional forms, LOKI encourages exploration of unconventional yet effective morpholo-
gies. We believe this contributes toward a more inclusive and biologically inspired understanding of
embodiment, potentially serving as a bridge between Al, robotics, and the natural sciences.

Negative impacts: A potential concern is that the ability to autonomously generate a large number of
novel and capable morphologies could be misused in contexts that prioritize performance over safety.
For instance, this approach could enable rapid prototyping of morphologies for autonomous systems
without adequate human oversight, increasing the risk of deploying untested designs in sensitive
environments.
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