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Abstract—Autonomous vehicles (AVs) require comprehensive
and reliable pedestrian trajectory data to ensure safe operation.
However, obtaining data of safety-critical scenarios such as
jaywalking and near-collisions, or uncommon agents such as
children, disabled pedestrians, and vulnerable road users poses
logistical and ethical challenges. This paper evaluates a Virtual
Reality (VR) system designed to collect pedestrian trajectory
and body pose data in a controlled, low-risk environment. We
substantiate the usefulness of such a system through semi-
structured interviews with professionals in the AV field, and
validate the effectiveness of the system through two empirical
studies: a first-person user evaluation involving 62 participants,
and a third-person evaluative survey involving 290 respondents.
Our findings demonstrate that the VR-based data collection
system elicits realistic responses for capturing pedestrian data
in safety-critical or uncommon vehicle-pedestrian interaction
scenarios.

Fig. 1: Left: Participant’s avatar within the virtual environment
from a third-person perspective. Right: participant wearing the
VR headset in the data collection environment.

I. INTRODUCTION

Pedestrian trajectory data collection is necessary for training
safe and robust pedestrian forecasting models for autonomous
vehicles (AVs), but many important vehicle-pedestrian inter-
action scenarios are missing in existing popular trajectory and
tracking datasets [11, 22, 26, 12, 70]. Specifically, collecting
data in many scenarios is difficult. For example, it is difficult
to collect data of jaywalkers: pedestrians who cross a street at
a location other than designated crosswalks or intersections,
often in disregard of traffic regulations. Jaywalking is generally
considered unsafe and is illegal in many regions, and thus it
is sparsely observed in real life or real datasets. However,
it is still important that forecasting models understand the
behavior of jaywalkers for pedestrian safety. Furthermore,

it is problematic to willfully direct pedestrians to perform
illegal behavior for the purpose of data collection. As another
example, real-life datasets have a deficiency of data of children
pedestrians [11, 22, 26, 12, 70]. Child street-crossing behavior
differs from that of adults; children often take more risks
and appear more unpredictable [27]. Due to child protection
laws, it is even more problematic to put children in potentially
dangerous situations for the purpose of data collection [52].
As a final example, there exist very specific vehicle-pedestrian
interaction scenarios, such as walking on the road alongside
traffic, crossing a parking lot or garage entrance with vehicles
entering and exiting, or crossing a narrow urban alleyway in
which the building structure obstruct easy view of oncoming
vehicles. These scenarios arise due to specific urban structural
and geographic features that may only be sparsely found
in real-life urban areas. However, these scenarios are still
relevant and important to robust pedestrian safety, and thus
it is important that data is collected for these scenarios. There
is a large body of work on controllable simulators that can
generate large quantities of synthetic data of various scenarios
of choice [20, 14, 72], including the aforementioned scenarios
that are uncommon in real-life but critical to pedestrian
safety. There is also much work done on AV perception,
prediction, and planning models that utilizes simulated data
for training [36, 33]. Relevant to our area of interest, Huang
and Ramanan [32] utilize synthetic pedestrian data to train a
detector to detect unusual or uncommon pedestrian behaviors.
However, all such methods that train largely on synthetic data
suffer from the well-known ”sim2real” gap. This gap exists
because simulators struggle to reproduce certain aspects of
reality: for example, in CARLA [20], vehicles travel along
“rails” located in the center of the lane, never deviating from
the center as real human drivers do. In addition, CARLA’s
pedestrian models move mechanically according to mathemat-
ical gait functions. Due to the complexity of human behavior
and movement characteristics, pedestrians are particularly dif-
ficult to simulate.

These limitations point to the need for other solutions to
obtain such data. Virtual Reality (VR) offers a solution for
collecting pedestrian data in a safe environment free of real
automotive dangers; VR can be used to immerse a pedestrian
in a virtual scenario analogous to one found in real-life, and



the pedestrian can be asked to cross a virtual road, or traverse
the virtual environment, all the while their trajectory data is
collected. In addition, data collected from VR is collected from
real humans, and thus does not suffer from the same human
behavioral sim2real gap as simulated data. However, VR may
exhibit limitations to realistic data collection. For example, the
VR user experience could be unrealistic, whether it’s because
of the graphics of the virtual environment, lag or delay in
the VR view refresh frame rate, or the weight of the VR
headset on their head. These issues may interfere with the
pedestrian’s sense of immersion, and accordingly, may alter
their actions and movements from what they would do on a
real street. Evaluating a VR system [3] that was developed
concurrently with this work through empirical studies, we
show that although users do not experience perfect sense of
presence or immersion within the system, data collected from
the system is mostly indistinguishable from that collected in
real life, providing evidence for our claim that the VR system
is effective at collecting a genuine pedestrian response to
vehicle motion. Our contributions are as follows:

1) Through semi-structured interviews with 4 professionals
in the autonomous vehicle (AV) field, we show that
a virtual-reality-based system for collecting pedestrian
data in traffic scenarios can address deficiencies in
existing vehicle-pedestrian datasets and limitations to
existing real-life data-collection methods.

2) Through an empirical quantitative and qualitative ques-
tionnaire of 62 individuals testing our system, we
demonstrate that such a virtual reality (VR) system
can elicit a genuine human response to vehicle motion,
and result in pedestrian behaviors that mimic those
of pedestrians interacting in real-life vehicle-pedestrian
scenarios.

3) Through an empirical survey of 290 individuals each
answering 3 forced-choice questions comparing the re-
alism of 2D trajectories collected in the VR system vs.
in real-life, we measure the similarity of the VR data to
real-life data.

II. BACKGROUND AND RELATED WORK

A. Human Behavior in Virtual Environments

Many works have studied human behavior within virtual
environments. Some works study the efficacy and quality
of the VR experience via objective measures such as stride
length and gait [34] as well as subjective measures such as
subjects’ ratings on presence questionnaires [21, 6, 63, 64].
Some study specific behaviors of interest like normal walk-
ing [49], evacuating a building [4], collision-avoidance [7],
proxemics and group behavior [56, 50], etc. Some focus on
behaviors in specific professional areas like surgery [44, 41]
or education [5]. Many methods evaluate the efficacy of
VR systems by comparing human behavior in VR vs. real
environments [45]. Finally, other works evaluate how different
conditions of the VR system’s features affect user sense
of presence behavior, such as level of photorealism of the

environment rendering [73], locomotion methods [65, 48, 54],
and avatar appearance [59, 53].

B. Pedestrian Behavior Studies

Extensive study has been done to characterize pedestrian be-
havior in traffic environments and responses to vehicle behav-
iors [35, 15, 39, 24, 69, 13]. Some works study AV behavior
or evaluate improvements to the AV-pedestrian communication
interface such as intent signalling methods [35, 15, 39, 24, 39,
25, 2, 19, 17]. Many of the aforementioned works, as well as
others, use immersive VR environments to simulate scenarios
of interest and study pedestrian’s responses [51, 60, 8, 8, 23,
43, 67, 51]. Some works focus on evaluating the efficacy of
VR systems for use in studying human behavior or evaluating
safety systems or vehicle-pedestrian communication systems
by comparing subject’s responses in virtual environments to
that of real-world environments [47, 18, 60, 31]. Work on
VR-based dataset collection and benchmarking tools similar
to that studied in this work has also been done, such as [16],
but their focus is on testing vehicle-pedestrian communication
interfaces rather than on collecting realistic vehicle-pedestrian
interaction behavior.

C. 2D Pedestrian Trajectory Data Capture: Real-Life,
Human-Informed, and Fully-Synthetic

Previous works have used various methods to capture
vehicle-pedestrian interaction datasets. The most popular
datasets, naturally, are those collected in real-life environments
[55, 40, 58]. PedX [37] and PIE [57] contain pedestrian
trajectories collected at intersections, which is the closest data
to our use case. However, they too are limited in scope;
PedX contains full body pose data but in limited environments
such as crosswalks, and PIE contains only 2D bounding box
annotations. Popular open-source vehicle datasets also contain
pedestrians [12, 70? ]. However, as verified in the first part of
our study in Section III, these datasets lack diverse pedestrian
behavior and diverse vehicle-pedestrian interactions. Most
vehicle-pedestrian interactions in these datasets are at inter-
section crosswalks.

Some datasets are completely synthetic, collected au-
tonomously via simulated environments that operate based on
rules. While some simulators only produce simplistic point
trajectory behavior [9, 38], others are extensively customiz-
able and controllable worlds that can model complex sensor
data [20, 14, 72]. Although simulators simplify the process
of collecting large-scale data in diverse environments, there
is a domain gap between synthetic and real data that is often
difficult to measure, and many simulators do not reproduce
human behavior well. Because AV models ultimately must
work for real pedestrians and vehicles, in this way synthetic
data falls short.

Some methods, such as driving simulators [62, 46], invite
human input to elicit real human behavior. The Garden of
Forking Paths [42] collects annotations of trajectory continua-
tions from human annotators to create a multi-future pedestrian
trajectory dataset in simulated environments reconstructed



from real-world scenes. However, they only annotate trajec-
tories at the 2D point-level, through a very limited keyboard
and mouse interface, a far cry from the controllability of a VR
headset and environment.

III. PART 1: UNDERSTANDING LIMITATIONS OF EXISTING
VEHICLE-PEDESTRIAN DATASETS

In order to better substantiate the use cases for a VR pedes-
trian data-collection system, we sought to confirm the apparent
limitations of existing vehicle-pedestrian interaction datasets
with AV professionals. Thus, in the first part of our study,
we conducted semi-structured interviews with professionals
who had experience working with vehicle-pedestrian trajectory
datasets. Our goal was to answer the research question: What
are the limitations of existing vehicle-pedestrian datasets with
respect to the availability and quality of pedestrian data?

A. Semi-Structured Interview Recruitment and Design

For the interviews, we recruited 3 academic researchers and
1 industry practitioner through direct contacts. Two academic
participants have performed research in the AV perception,
prediction, and planning stack (referred to by I1 and I2).
The other academic participant performs research in social
navigation for mobile robots that interact closely with humans
(I3). The industry participant, meanwhile, is a systems test
engineer at a large AV company (I4). During the study, all
participants self-reported that they had experience working
with vehicle-pedestrian interaction data.

In our interviews, we first asked participants to describe
their area of expertise; Then, we asked them to describe their
understanding of the current state of vehicle and pedestrian
trajectory datasets: Which trajectory datasets you have worked
with? What do you feel are the current limitations of these
datasets? We probed deeper into the state of current vehicle-
pedestrian trajectory datasets with questions such as What
kinds of scenarios are lacking in real datasets? and What
existing methods are there for improving performance in
uncommon or out-of-distribution scenarios? Finally, we asked
directly for their opinion about the potential limitations and
benefits of data collected in a virtual environment via a VR
simulator. We asked questions such as Given a Virtual Reality
system in which a pedestrian walks around while wearing
a VR headset in a virtual traffic environment while sensors
capture their movements: what are the potential benefits and
limitations of such a system?

B. Interview Responses

To analyze the state of the limitations of current trajectory
datasets, we used inductive thematic analysis [10], grouping
the themes that arose during the interviews into four distinct
categories, which we describe below.

1) Lack of Uncommon but Important Scenarios: Vehicle-
pedestrian datasets lack scenarios that are important to AV
safety, but rare in-the-wild or difficult to collect data for. I2
commented that vehicle-pedestrian datasets contain plenty of
data of pedestrians crossing roads at intersections, but little

data of pedestrians walking on the sidewalk alongside the road.
These scenarios are just as important as pedestrians crossing
at crosswalks, because pedestrians walking alongside the road
could become jaywalkers in the near future.

2) Lack of Interesting Vehicle-Pedestrian Interactions:
Both I1 and I2 pointed out that the most popular public
vehicle-pedestrian datasets lack “interesting interactions.” One
of the most popular datasets [12, 70] in particular contains a
subset that was compiled specifically for the “interestingness”
of its scenarios based on internally-defined heuristics, such as
number of other agents present in the scene, speed changes,
and lane changes. However, I1 remarked that these scenarios
were still mostly uninteresting, claiming that it is difficult to
come up with a straightforward heuristic to separate ”inter-
esting” scenes from ”boring” scenes. I2 stated that around
75-80% of the data they worked with is “uneventful”, and
that there was insufficient diversity in scenes. Scenes often
featured empty or minimally populated roads where only the
ego-vehicle, the vehicle performing the data collection, was
present. Vehicles also lacked varied behaviors such as lane
changes. I3 claimed that the pedestrian-only datasets they
worked with also lacked variety in environment layouts and
did not contain many pedestrian interactions.

3) Lack of Fine-grained Trajectory Features: Vehicle-
pedestrian datasets lack richness in representation. I1 com-
mented that existing trajectory datasets are heavily prepro-
cessed from raw lidar data, losing a lot of the richness of
the raw representation. Popular trajectory datasets such as
Argoverse [12, 70] and NuScenes [11] represent pedestrian
trajectories as 2D points rather than full 3D human bodies. I2
notes that while pedestrian body orientation is also recorded,
it still falls far from the detail available in full body pose.
In tracking datasets, agents are often annotated with simple
3D rectangular bounding boxes. I3 explained that pedestrian
bounding boxes often overlap with one another, because hu-
mans occupy their bounding boxes only sparsely. Overlapping
bounding boxes appear to be colliding; this may lead to
model training issues such as failure to understand collision-
avoidance. Thus, bounding boxes also fall short in representing
the richness of pedestrian motion.

Pedestrian body skeleton pose and head direction can in-
form understanding of pedestrian intent high-level pedestrian
motion. For example, pedestrians often look both ways before
they cross the street, and a pedestrian that is looking in the
opposite direction of an oncoming car is less likely to stop
for that car, as they do not see it. In addition, traffic officers
often stand in the middle of the road to direct traffic with their
arm movements. However, as I4 pointed out, their company’s
AV system has limitations in predicting the behavior of traffic
officers, often mis-predicting them as pedestrians crossing the
road rather than static pedestrians who will not intercept the
vehicle’s path in the near-future.

4) Summary: The shortcomings of current datasets point to
the need for additional data solutions to supplement existing
datasets. The VR pedestrian simulator we evaluate in this
paper can be manipulated to recreate diverse and uncommonly
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Fig. 2: Schematic of the VR data collection system.

seen traffic scenarios, addressing the first two themes. It
can also record body pose information, addressing the third
theme. There were some concerns brought up by our interview
participants that data collected from a VR system may have
a domain gap with real-world data, just as other simulators
do. In the next two sections, we provide evidence that in spite
of the domain gap, the VR environment still elicits a genuine
and realistic pedestrian response.

IV. VR PEDESTRIAN TRAJECTORY AND POSE
COLLECTION SYSTEM OVERVIEW

We briefly describe the VR pedestrian data-collection sys-
tem that we evaluated.

The simulator uses the HTC VIVE Pro 2as its VR system.
Steam VRis used to interface the HTC VIVE devices with a
controllable game engine, so they can be used as input devices
within the simulation. The simulator is built on top of the
CARLA simulatorusing Unreal Engine.Since Steam is only
available on Windows machines and the HTC VIVE Wireless
Adapter transmitter must be connected to the computer via an
RP-SMA port, the Alienware Aurora R13 Gaming Desktopis a
suitable machine for use as the underlying server. The system
specifications are as follows: 12th Intel core i9 CPU, NVIDIA
RTX 3080 GPU, 64 GB memory, M.2 SSD 2TB storage,
Windows 11 Home OS.

The data collection environment requires a rectangular col-
lection space free of obstacles measuring approximately 40’x
20’ in dimensions. Four HTC VIVE base stations are set up in
the four corners of this space. Eight GoPro Hero 10cameras are
set up along the two long edges of the space, which record the
subject from different angles so that their skeleton pose can be
extracted out later. A schematic of the VR system components
is shown in Figure 2, and the actual data collection space with
system setup is shown in Figure 3.

Because the engineering and design of the VR pedestrian
simulator is not the primary contribution of this paper but
of [3], we leave further details about the data collection system
to that work.

V. PART 2: VR SENSE OF PRESENCE USER STUDY

To determine the degree to which users felt immersed and
present in the virtual world,

Base Stations x4

GoPros x8VIVE Wireless 
Transmitter

Simulator PC

VIVE Wireless 
Receiver

VIVE Pro 2 Headset

Fig. 3: Left: The VR system set up in the classroom data
collection space. Right: A pedestrian subject wearing the VR
headset.

A. Study Design

We recruited participants by word-of-mouth, university
email lists, and physical flyers posted around the university
campus. Participants with physical disabilities, vulnerable sub-
jects, and minors were excluded from participation. Partici-
pants came to the university campus to participate in the study,
where we set up the data collection environment as described
in the previous section in a large, empty classroom.

After signing an informed consent form, participants were
asked to put on the VR headset and to familiarize themselves
with the VR headset and virtual environment by walking
around in a version of the simulation without moving vehicles.
Then, we asked participants to complete 3 tasks, each of which
featured a different traffic environment in which they had to
walk to reach a goal destination while in close interaction
with moving vehicles: 1) jaywalking across a two-way street,
2) walking alongside moving vehicles on the road, and 3)
crossing a crosswalk at a 4-way intersection with stop signs.
The 3 tasks are depicted in Figure 4. To inform participants of
their goal destinations, we placed colored square markers on
the ground within the virtual environment, and used commands
such as “Do you see the colored square on the ground on
the other side of the road? Please walk to it” to direct the
user. After completing all 3 tasks, participants were asked to
complete a presence questionnaire to evaluate their experience.

B. Self-Reported Measures

To design the questions asked in the post-experience ques-
tionnaire, we used a combination of questions derived from
previous works, questions modified from previous works,
and custom questions designed specifically to evoke defining
attributes of the VR user experience. We designed 12 quanti-
tative questions using a semantic differential scale [66] from 1
to 7, as well as 4 free-response questions with free text entry.
We grouped the questions into 3 categories reflecting different
aspects of trustworthiness of the data collection system: sense
of presence experienced within the virtual environment [6, 71]
(coded by the letter P), sense of agency (A), and behavioral
and experiential similarity to real-life (B). In total, the post-
condition questionnaire was composed of 16 questions aimed
to cover a range of subjective ratings while keeping the
time for participants to complete the questionnaire within
10 minutes. Questions, sources, categorizations, and semantic
differential anchors for the questions are recorded in Table I.
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Fig. 5: Various study participants wearing the VR headset
and walking around in two different classroom-setting data
collection environments.

Participants also reported various demographics: age, gen-
der, VR experience (5-point Likert-type scale), video game
frequency (5-point Likert-type scale), frequency of jaywalking
behavior (5-point Likert-type scale), and level of alertness
(Stanford Sleepiness Scale [61]). Summary of participant
demographics is reported in Table II.

C. Results and Analyses

1) Quantitative Measures: A total of N=62 participants
participated in our study. Aggregating all responses across all
questions in a category, users rated their sense of presence
(P) 5.6, sense of agency (A) 5.5, and similarity of their
behavior and experience to that of the real world (B) 5.3. These
numbers suggest that users experience a relatively moderate-
high sense of presence, agency, and behavior similarity to
the real world. The users’ aggregate response of 5.3 in the
behavioral similarity category is a little lower than that in
the sense of presence category and sense of agency category,
possibly suggesting that high sense of presence is not sufficient

to guarantee that a pedestrian behaves exactly the same in VR
as they do in the real world. One possible explanation for
this is that, for the high proportion of users who rarely used
VR, the novelty factor of the VR environment causes them to
behave differently, even though they are experiencing a high
degree of presence and immersion.

We report the average user ratings for each question in
Table III.

2) Qualitative Measures: The qualitative responses evoke
greater detail from the participants’ experiences. In response
to the free-response question, What aspects of the systems or
environment were realistic?, participant responses fell into the
following major categories:

1) Traffic patterns and flow were very authentic.
2) The visual rendering contributed to a realistic experi-

ence: the relative sizes and dimensions of cars, build-
ings, roads, sidewalks, trees and other aspects of the
environment felt accurate, appropriately sized, and well-
rendered. The environment felt realistically designed.
Some users commented that the curb appeared so re-
alistic that it caused them to stumble when they actually
tried to step onto it, as no physical curb existed in real-
life.

3) Movement of images along the line of vision was smooth
when the user moved their head or body.

4) Cars moved and behaved realistically with respect to
speed, positioning, and timing.

5) The environment elicited emotions and caution similar
to real-world experiences, such as feeling threatened
by cars and being conscious of making mistakes, like
crossing the road at the wrong time.

In response to the question, What parts of the system or
environment were unrealistic?, the main concerns brought up
by participants include:

1) Dizziness and nausea while using the system
2) System stability issues: lag, flicker, and instances in

which the virtual space would re-calibrate and the par-
ticipant would be transported within the virtual environ-
ment to a different location despite not having moved

3) Awareness of the real world and obstacles in the real
world, which took away from sense of presence

4) Lack of peripheral vision due to the construction of
the VR headset goggles, which resulted in participants
turning more to the left and right to check for vehicles
than they do in real life

5) Lack of environmental sound
6) Imperfect visual information: lack of stop signs and walk

signals at intersections, game-asset quality of buildings
and surroundings, not all body parts visible in the
simulation

7) Imperfect tactile information: sidewalk curb observed in
virtual environment, but real-world environment lacked
a tactile height change

8) Mechanical and unnatural movement of vehicles, which
did not deviate from fixed paths nor yielded to pedestri-



ID Source Category Question Semantic Differential Anchors (1→ 7)
P1 SUS [68]presence Please rate your sense of “being there” in the environment. did not have a sense of ”being there” → normal

experience of “being there”
P2 SUS [68]presence When you think back on your experience, do you think of the environment more as images that

you saw, or more as somewhere that you visited?
Images that I saw → somewhere that I visited

P3 WS [71] presence How real did the objects in the environment seem? very fake, clearly images → very real, like I
could touch them

P4 custom presence During the VR experience, were you more concerned with the real world (this classroom) or the
virtual world?

real world → virtual world

P5 SUS [68]presence When you think back on your experience, do you think of the vehicles more as images that you
saw, or as things you interacted with?

Images that I saw → things that I interacted
with

P6 custom presence During the experience, did you often think to yourself that the vehicles were physical objects that
could have actually hit you and caused you injury?

very much so → not at all

A1 custom agency How comfortable did you feel moving around in the environment? very uncomfortable → very comfortable
A2 AE [28] agency How much did you feel like you could control the virtual body? did not feel much agency → could control it

like own body
A3 SPES [30]agency How freely did you feel you could move in the environment? movements were restricted → movements were

free
B3 NASA-

TLX [29]
behavior How mentally demanding were the tasks compared to doing them in the real world (e.g. on a real

street)?
less demanding → more demanding

B1 custom behavior Did you feel your head, arm, and body movements were the same as they would have been in
the real world?

completely different → exactly identical

BF1 custom behavior What parts of your movements were different than how they would have been in the real world? free response
B2 custom behavior Did you feel your decisions about when to act were the same as they would have been in the real

world?
completely different → exactly identical

BF2 custom behavior What parts of your decisions were different than how they would have been in the real world? free response
PF1 custom presence What aspects of the systems or environment were realistic? free response
PF2 custom presence What aspects of the system or environment were unrealistic? free response

TABLE I: Post-condition questionnaire used in the study.

Variable N=64

Age {18-37} (years) 24.71 (4.17)
% Male 63% (n=39)
% Female 37% (n=23)
Video gaming frequency {1-7} 3 {1-5}
VR experience {1-7} 2 {1-4}
Jaywalking frequency {1-7} 3 {1-5}
Level of alertness {0-7} [61] 6 {3-7}

TABLE II: Summary of participant demographics. Continuous
variables are summarized as mean (standard deviation) and
ordinal variables are summarized as median {range}.

Question
Category

Presence Agency Behav. Sim.

ID (as in
Table I)

P1 P2 P3 P4 P5 P6 A1 A2 A3 B1 B2 B3

Rating 5.9 5.3 5.0 6.2 5.9 5.3 5.1 5.6 5.9 5.0 5.3 4.8

Average 5.6 5.5 5.3

TABLE III: VR Presense Questionnaire Evaluation Results.

ans
9) Lack of drivers in vehicles, which rendered users unable

to make eye contact with drivers to determine when to
cross

10) Lack of other pedestrians in the environment
11) Being told where and when to start and stop, unlike in

real life where this is self-determined
In response to the question, What parts of your movements

were different than how they would have been in the real
world? participant responses group into the following major
concerns:

1) Did not turn head as much due to weight of the VR
headset and limited peripheral vision

2) step movements differed due to difference between vi-

sual perception and tactile perception (such as the curb)
3) Walking style: keeping hands in front of body as a

defensive body posture to avoid bumping into walls in
the real world, or to fend off aggressive vehicles in the
virtual world

4) Navigation around static objects in the virtual world
such as parked cars differed due to the unexpected
dynamics of those objects, such as moving aside when
users collided with them

In response to the question, What parts of your decisions
were different than how they would have been in the real
world? subjects reported the following major themes:

1) Some subjects were more hesitant to move in the virtual
environment than in real life, due to the realism limita-
tions discussed in the responses to the question above.

2) Other subjects had an added sense of urgency to act,
because of unexpected or erratic vehicle behavior, or
because lack of peripheral vision limited the subjects’
awareness of cars

3) Some subjects exhibited more risky behavior due to less
fear about being hit by a virtual car.

The qualitative responses from our user study affirm that,
while the system does have areas for improvement, there are
noteworthy strengths. Participants largely found the visual
aspects and their own emotional responses to be authentic
to their real-world experience. Some users did report aspects
of the virtual environment that seemed unrealistic; yet sense
of presence, agency, and behavioral similarity to real-life still
seems high (Table III). This seems to suggest that complete
realism of the virtual environment may not be necessary to
have high sense of presence,

Furthermore, for users that found their behavior or move-
ments differing from that in real life, the different behaviors are



not necessarily less genuine than those of real life. Uncommon,
edge-case scenarios sometimes do not feel real because they
are unexpected, but they are no less important for ensuring
the safety of AVs. The VR system is exactly designed to
evoke pedestrian response in those edge-case scenarios, thus
improving the collection of data in those scenarios.

VI. PART 3: THIRD-PERSON REALISM EVALUATION OF
VR VS. REAL-LIFE VS. SYNTHETIC 2D TRAJECTORY DATA

First-person subjective evaluation provides valuable insights
into how well the VR system evokes realistic behavior. How-
ever, to further substantiate the comparability of real-life and
VR data, we perform an additional third-person evaluation
evaluative study. In this study, we asked external evaluators
to try to distinguish between trajectory data collected in real-
life vs. VR. This study evokes a different facet of trajectory
realism, one that comes not from first-hand experience, but
from third-person evaluation.

A. Study Design

To collect real-life jaywalking trajectories, we visited a
two-way single-lane street near the university that is well-
trafficked by jaywalkers as well as vehicles. We chose this
setting for its potential to provide real-life trajectories in a
similar geographic layout to that we used in the VR jaywalking
scenario. In contrast to the VR scenario, there were fewer
vehicles as well as more irregular gaps between vehicles,
making it easier for jaywalkers to find a gap in which to cross.
A DJI Mavic Mini drone [1] was used for data collection,
flown at a height of approximately 25 meters. In a 1-hour
time interval, we secured footage for 7 jaywalkers.

The trajectories of these jaywalkers were manually anno-
tated via a trajectory annotation tool and interpolated to 20
frames per second to match the frame rate of the trajectory data
collected from the VR system. The resulting trajectories were
smoothed via Gaussian smoothing with a standard deviation of
0.35 seconds, as the VR system also performs some smoothing
to eliminate noise from the collected trajectories.

Fig. 6: A frame from an exam-
ple schematic shown to survey
respondents.

The trajectories were
rendered as animated gif
images, in which the pedes-
trian was depicted as a small
red circle, and vehicles as
blue rectangles. A random
rotation was added to each
image to eliminate visual
bias due to the layout of the
scene. The spatial limits of
the animation were set such
that the users had an ample
field of view to see oncom-
ing vehicles from both sides

(which is important for judging pedestrian behavior). All
animations were set to have a similar field of view. For the
real-life trajectories, only the single jaywalking pedestrian was
annotated. Scenes were chosen such that the pedestrians kept

an ample distance from other pedestrians such that they did
not visibly interact or influence each other’s motion; textiti.e.,
the vehicle-pedestrian interaction would be the sole interaction
evaluated. An example schematic in the style of the animations
is shown in Figure 6.

The survey consisted of 3 forced-choice questions featur-
ing a comparison between either a real-life trajectory and a
VR-collected trajectory, a real-life trajectory and a synthetic
piecewise-linear trajectory, or a VR-collected trajectory and
a synthetic piecewise-linear trajectory. Next to each pair, we
prompted respondets with the question, Which one looks more
real? The synthetic piecewise-linear trajectory was included as
a control; expectation is that users would more easily perceive
that trajectory as “fake.” Pairings was selected at random,
choosing one animation from 7 real-life trajectories, one from
8 VR trajectories, and one from 2 synthetic trajectories. With
10% probability, the VR trajectory was swapped out for
the synthetic trajectory, and with 10% probability, the real-
life trajectory was swapped out for the synthetic trajectory;
thus, ∼ 20% of pairings featured a synthetic trajectory in
the comparison. The other ∼ 80% of pairings featured a
comparison between real-life and VR trajectory. Display order
was randomized. Finally, there was an optional free-response
question at the end: What characteristics did you use to
distinguish between real and fake? The full set of animations
for each of the three categories will be provided in the
supplementary material.

The survey was distributed via word-of-mouth as well as
by university mailing list. Response time for the survey was
around 3 minutes per person. Due to the low time-commitment
nature of the survey, no compensation was offered for com-
pletion of the survey.

B. Results and Analyses

A total of 302 respondents answered the survey for a total
of 302× 3 = 906 forced-choice comparisons made by survey
respondents.

Consistent with expectations about the “control” variable,
evaluators could easily tell the difference between a simple
synthetic policy and a genuine human trajectory. 89.3% of
real-life / synthetic comparisons were evaluated in favor of
the real-life trajectory looking “more real” than the synthetic.
The response was similarly high for the VR / synthetic
comparisons, with 88.9% evaluated in favor of the virtual over
the synthetic (Table IV).

Also consistent with expectations, the real-life trajectories
were the most-frequently chosen as “more real,” with approx-
imately 67% of responses choosing it as more “real” in a pair
(Table IV). However, VR trajectories do not lag far behind;
59% of responses chose the VR trajectories as “more real” in
a pair (Table IV). Of particular note is that 36.5% of real-life /
VR comparisons were evaluated in favor of the VR trajectory
looking “more real” (Table V); these responses claimed that
the VR trajectory looked “more real” than a real trajectory.

Though 36.5% is still a bit away from 50%, which would
mean that real-life trajectories are indistinguishable from VR



Truth Value →
Guessed value ↓ Real-life VR Synthetic

Real 67.0% 58.6% 10.9%
Fake 33.0% 41.4% 89.1%

(a) Percentages

Truth Value →
Guessed value ↓ Real-life VR Synthetic

Real 547 482 19
Fake 269 340 155
Total 816 822 174

(b) Counts

TABLE IV: Confusion matrix for survey respondent guesses
(real / fake) vs. truth category (real-life, VR, synthetic)

Pairing Real-life / VR Real-life /
Synthetic

VR /
Synthetic

% Correct (N) 64.5% (732) 89.3% (84) 88.9% (90)

TABLE V: Percent correct of each pairing. “Correct” is
defined as selecting real as more “real” when compared with
either VR or synthetic, and selecting VR as more “real” when
compared to synthetic.

trajectories, this number still substantiates the claim that VR
trajectories can evoke genuine pedestrian responses. First
of all, the results confirm that real-life trajectories are less
distinguishable from VR trajectories than they are from fully-
synthetic trajectories, supporting the claim that the VR system
evokes more natural pedestrian responses than simple policies
used by synthetic pedestrian simulators [9, 38]. Second, there
could be other reasons evaluators are able to tell the difference
between real and VR trajectories that have nothing to do with
how ”real” VR trajectories are. For example, one respondent
who evaluated 3 comparisons between real-life and VR tra-
jectories and marked all the real-life ones as more “real” gave
the free response answer that “the fake pedestrians seem to
cross dangerously close to the vehicles, and sometimes stop
in the middle of the road...” Though this respondent labelled all
real-life trajectories as “more real” than the corresponding VR
ones, their explanation for their rating is not necessarily true. It
is generally considered dangerous and not commonly observed
that pedestrians “cross dangerously close to the vehicles.” As
observed in all drone-collected videos, the average jaywalker
in real-life is a “safe” jaywalker who only jaywalks when there
is sufficient gap in the vehicles. However, sometimes there are
pedestrians who do engage in risk-taking behavior. Sometimes
there are jaywalkers who jaywalk even on heavily-trafficked
roads. These jaywalkers, not able to find a gap between
vehicles, must stop in the middle of the road before they
can cross completely. Though rare, “dangerous” jaywalkers
do exist in real-life, and it is important that safety-critical AV
systems have their data.

VII. LIMITATIONS, DISCUSSION, AND FUTURE WORK

A. Interview Responses from Part 1 Not Addressed by VR
System

There were some concerns elicited by the participants of
the Part 1 structured interview that were not addressed by the
evaluated VR pedestrian simulator. Some of these concerns
form the foundation for future work:

1) I1 and I2 suggested that the data from vehicle simulators
may be less noisy than real-life data, enlarging the sim-
to-real gap. In the VR CARLA environment, vehicles
follow simple policies like the Intelligent Driver Model,
always driving perfectly along predefined paths. This
may not realistically reproduce human driving behavior,
which is imperfect, and sometimes deviates from the
center of the lane. In the future, more complex and noisy
driving policies can be implemented into the CARLA
environment to create more realistic vehicle behavior.
In addition, as described in the concurrent work con-
tributing the VR system [3], a real human driver can be
hooked into the simulator as an additional vehicle agent.
The real human driver will create vehicle trajectories that
pedestrians users may deem more natural.

2) I4 pointed out that certain object categories were under-
represented in their company’s large internal dataset,
thus impacting the ability of the AV system to detect
them. For example, small children, specific types of
signage such as construction zone signs, skateboarders,
trikes, and bicycles in particular were lacking. Future
work includes inviting children and elderly to collect
data with our system, so we can make use of the low-risk
benefits of the VR environment to obtain the lacking but
much-needed behavioral data of vulnerable road users.

B. Free Responses from Part 2 Eliciting System Limitations

The qualitative responses summarized in Section V-C2 to
the free response question, What aspects of the system or
environment were unrealistic?, revealed certain limitations of
the VR system that can be expanded in future work. While
some concerns are difficult to address with the state of current
technologies, such as (1), (2), and (4), other concerns can
be resolved with additional engineering of the VR system
or revised study design. To address (3), giving participants
a longer time to familiarize themselves with the VR headset
may increase their reassurance that they will not run into
obstacles in the real world. To address (5), sound can be easily
added to the simulation as it is available in CARLA. However,
we chose not to use it in our study, so that participants
could hear us when we verbally instructed participants to
where they should walk. (6) can be addressed by adding
into the scene the relevant environmental elements, all of
which are available as assets in Unreal Engine. (7) may be
a bit more difficult to address across all environments, but
can be addressed for the sidewalk / curb situation by adding
physical objects in the real world to match those in the virtual
world, and carefully calibrating the virtual-to-real mapping. (8)



can be addressed by integrating into the system the driving
simulator extension, which has already been developed. A
human driver participant can then use the driving simulator
to operate the vehicles in more natural way. Furthermore, the
vehicles currently move based on default CARLA policies;
better policies can be integrated into CARLA for more real-
istic vehicle movement. (10) can be addressed by adding in
additional pedestrians into the simulation, which the system
also supports; each pedestrian would require an additional
VR setup, including headset, wireless tracker, and computer.
Alternatively, autonomous pedestrians could be added into
the simulator. Although these pedestrians would move based
on simple policies, these policies are reactive to the user’s
movements. To address (11), participants can be given tasks
to do rather than specific goals to navigate to, such as “Please
drop off a letter in the nearest mail box,” rather than “Please
walk across the road.”

With some design modifications and system engineering,
nearly all of the concerns raised by the users can be addressed.

C. Part 3 Study Design Choice Limitations

One limitation of the design of our evaluative study is
that there may not be enough information from a simple 2D
schematic for a human evaluator to determine if a trajectory is
“real.” As shown by the results, there is enough information
present in the 2D trajectory schematics to distinguish between
a real-life and a simple synthetic linear policy, as well as
between a VR and a simple synthetic linear policy. However,
the evaluator has no access to information that could be used
to make a better decision, such as body pose. As future work,
a body-pose data collection system can be set up in real-life
and used to collect body pose data from real-life jaywalkers.
The body pose data can be used to create animations for a
third-person 3D full-body trajectory comparative evaluation.

Again, it is important to note that just because a VR-
collected trajectory is distinguishable from a real trajectory by
a human evaluator, that does not necessarily imply that it is
unrealistic or unseen in real-life. The VR system specializes in
collecting data of uncommon scenarios. This means that even
though the VR-collected data may exhibit aggressive behavior,
it is behavior that may still be seen in real-life.

VIII. CONCLUSION

Safely and ethically collecting pedestrian trajectory data for
training reliable autonomous vehicle models is a complex and
nuanced problem; but Virtual Reality data collection offers a
solution. A VR data collection system fills the need for diverse
and comprehensive data while overcoming the difficulty of
obtaining such data in the real world. Through semi-structured
interviews, a first-person evaluation, and a third-person survey,
we provide substantial evidence that VR-based system can
evoke a genuine response from pedestrian users, and thus
offers an effective data collection solution.

Despite some limitations in the sense of presence within
the virtual environment, the data collected still appears to
be reasonably similar to that collected in real-life scenarios.

This presents a compelling case for VR as an effective tool
for gathering pedestrian data, particularly in complex, high-
risk, or ethically challenging scenarios that are difficult to
replicate in the real world. These findings add a new dimension
to our understanding of vehicle-pedestrian data collection,
emphasizing the potential for VR technology to play a vital
role in shaping the future of safe and reliable autonomous
transport.
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