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ABSTRACT

The interpretability of complex neural networks remains a critical challenge, es-
pecially for models already deployed in high-stakes domains. To address this,
we introduce a post-hoc adaptation of the Feature Selection Layer (FSL). Our ap-
proach reframes the FSL as a lightweight, trainable module that integrates with
already frozen pre-trained models on tabular datasets to highlight the features
the original model considers most important. This post-hoc FSL learns relevance
weights for input features by fine-tuning its weights based on the original model’s
learned outputs. Crucially, this process is non-invasive, operating without alter-
ing the original model’s architecture or its learned parameters. We conducted
our experiments using both statistical and visual metrics, including accuracy, F1
score, recall, precision, weighted t-SNE and silhouette score, and also analyzed
the stability of the post-hoc FSL on high-dimensional synthetic and real-world
tabular datasets. We compare the post-hoc FSL feature weighting method using
these metrics against the original embedded FSL and other post-hoc interpretabil-
ity methods, such as Integrated Gradients, Noise Tunnel, DeepLIFT, Gradient
SHAP, and Feature Ablation. Experimental results demonstrate that post-hoc FSL
feature weighting method successfully identified relevant features across the dif-
ferent datasets, maintaining the predictive power of the original neural network
while enhancing its interpretability. While post-hoc FSL achieves similar predic-
tive, visual and stability results comparable to the original FSL, it demonstrated
distinct advantages over other state-of-the-art methods. Despite a trade-off in the
Jaccard, Spearman and Pearson stability metrics, post-hoc FSL approach yielded,
on average, superior performance on visual and clustering-based interpretability
for real-world datasets, as measured by weighted t-SNE and the silhouette score.

1 INTRODUCTION

Over the past decade, the availability of massive amounts of data has positioned Deep Neural Net-
works (DNNs) as one of the most effective approaches for large-scale knowledge extraction. These
models have achieved state-of-the-art performance in diverse domains such as computer vision,
natural language processing, and healthcare by accurately diagnosing diseases and helping to an-
ticipating them (Wason, 2018; Badawy et al.l [2023; [Khan et al. |2023). However, most DNNs
operate as “black boxes,” where the learned representations and decision-making processes remain
opaque. The lack of interpretability presents serious challenges in high-stakes domains, especially in
healthcare, where understanding a model’s behavior is as crucial as its predictive accuracy. In con-
texts where medical diagnosis decisions and treatment recommendations are influenced by machine
learning models, transparency becomes essential, not only for medical practitioners, but also for
regulatory approval and ethical accountability (Miotto et al.| 2018} Murad et al.| 2024)). Moreover,
non-transparent models increase the risk of hidden biases, where illegitimate factors may influence
predictions without detection. For instance, models trained on biased datasets may inadvertently
exploit sensitive attributes to improve accuracy, ultimately leading to unfair or unsafe outcomes
(Princel |2023). Addressing the trade-off between accuracy and interpretability remains a critical
challenge in the safe and reliable deployment of deep learning systems. To address this interpretabil-
ity problem, feature weighting methods are a popular approach, assigning scores to input features
based on their relevance to a model’s predictions (Molnar et al., 2020). These methods are par-
ticularly valuable as they provide insight into feature behavior within complex models like DNNs,
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especially in high-dimensional data problems. Among these techniques, the Feature Selection Layer
(FSL), proposed by [Figueroa Barraza et al.|(2021)), is an embedded method designed to learn feature
relevance based on the model’s internal dynamics during the training phase. This is achieved by
attaching a new, trainable layer between the input and the main network. However, its embedded
nature requires joint training from scratch, limiting its use for interpreting pre-trained DNN mod-
els. To overcome this limitation, we propose a post-hoc variant that preserves FSL’s effectiveness
while enabling feature relevance analysis on existing neural networks without altering their internal
parameters, thereby enhancing interpretability and potentially improving predictive performance.

2 RELATED WORK

2.1 FEATURE SELECTION

Feature selection is a critical process for identifying an optimal subset of features to enhance model
performance and reduce complexity (Barbieri et al., |2024). These techniques often rely on feature
weighting to assign a relevance score to each feature (Tahir et al.l |2007) and are typically catego-
rized into several groups based on their interaction with the model training process (Miao & Niul
2016). Filter methods are model-agnostic, ranking features via statistical tests as a preprocessing
step. While computationally efficient, they often overlook feature interactions (Lazar et al., [2012).
Wrapper methods leverage a specific predictive model to score and select feature subsets. This ap-
proach can yield high performance but is computationally expensive and tends to generalize poorly
to different models (Barbier: et al., |2024). Embedded methods integrate feature selection directly
into the model’s training procedure. Similar to wrappers, the resulting feature set is model-specific
and may not be optimal for other architectures (Barbieri et al., [2024)). Hybrid approaches combine
different feature selection methods to balance performance and efficiency (Ang et al.l 2015), and
Ensemble methods aggregate the results of multiple selection runs to produce a more robust and
stable final feature set.

2.2 FEATURE SELECTION LAYER

The Feature Selection Layer (FSL), introduced by [Figueroa Barraza et al.| (2021)), is an embedded
feature weighting method for neural networks. It consists of a dense layer between the neural net-
work’s input and its first hidden layer, where each neuron maintains a one-to-one correspondence
with an input feature. Weights, initialized as 1/n, being n the total number of features, are jointly
trained with the network and reflect feature relevance during learning. A modified L1 regularization
term is added to ensure the interaction between features, which is calculated as:

n
Z WFSL -1
t
t=1

r(WHE) = X (1)

where WL represents the weights from the FSL, n is the number of features and ) is a value be-
tween 0 and 1 that determines the strength of the regularization. FSL them adds two hyperparameters
to the network: the FSL activation function and the ) term for regularization.

2.3 POST-HOC METHODS

Post-hoc feature attribution methods are pivotal for interpreting “black box” models such as neural
networks. Prominent gradient techniques including Integrated Gradients (Sundararajan et al.,|2017),
DeepLIFT (Shrikumar et al.,[2017), and Gradient SHAP (Lundberg & Lee, 2017) compute feature
relevance relative to a reference input, or baseline. Integrated Gradients calculates relevance scores
by integrating gradients along a linear path from the baseline to the input features. Similarly, Gradi-
ent SHAP utilizes gradients along such paths, but uses approximation to Shapley values to determine
feature relevance. In contrast to these path-based approaches, DeepLIFT compares the activation of
each neuron to its reference activation and backpropagates contribution scores based on this dif-
ference. Other prominent post-hoc interpretability methods include Feature Ablation (Kokhlikyan
et al.,|2020), a perturbation-based approach that evaluates feature importance based on the change in
the model’s output upon their ablation, and Noise Tunnel (Kokhlikyan et al., 2020), a technique de-
signed to smooth feature attributions and reduce noise, thereby improving the reliability of gradient-
based methods like Integrated Gradients. For our experiments we apply Noise Tunnel in conjunction
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with Integrated Gradients. In this work, we evaluate the proposed post-hoc FSL variation of the FSL
against these post-hoc methods using the metrics detailed in Section[4.2]

3  PROPOSED IMPLEMENTATION

We propose a novel post-hoc feature weighting method designed to enhance the interpretabil-
ity of pre-trained neural networks. Our method adapts the Feature Selection Layer (FSL) from
Figueroa Barraza et al.|(2021), reformulating it as a trainable module applicable to any compatible
pre-trained neural network. The core objective is to identify the most relevant features for a model’s
predictions without altering its original learned parameters.

3.1 ARCHITECTURE AND MECHANISM

Architecturally, the proposed post-hoc FSL remains faithful to the original FSL. It is a dense, train-
able layer with a one-to-one mapping between neurons and input features, placed between the input
and a pre-trained network (Figure 1)). Each feature #; is scaled by a trainable weight ;, producing
a weighted vector wx passed to the subsequent layers of the network. Despite its distinct training
paradigm, we retain the inherent benefits of the FSL architecture, which is computationally efficient
and performs competitively in dimensionality reduction and accuracy when compared to AFS (Gui
et al.,[2019), Random Forest, ReliefF, and Mutual Information (Figueroa Barraza et al., 2021).

3.2 PosT-HOoC TRAINING PROCEDURE

Our feature weighing approach operates via a distinct post-hoc training procedure. Given a pre-
trained model f, with its internal parameters frozen, a vector ¥ that represents a single input, a
vector w which represents the weights from the FSL, an activation function a, a loss function ¢, and
a learning rate 7, the training process is as follows:

Step 1: Our feature weighting layer is integrated between the input layer and the hidden layers from

the pre-trained neural network (Equation 2).

Step 2: Data is fed through the combined model (FSL and the frozen network), and the final output
is used to compute the loss function of the whole model (Equation 3).

Step 3: During backpropagation the parameters of the pre-trained network remain unchanged, gra-
dients are computed only for the FSL weights.

Step 4: Steps 2 and 3 are repeated over several epochs. This allows the weights of the post-hoc FSL
to converge, with their final magnitudes representing the feature importance.
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Figure 1: Representation of post-hoc Feature Selection Layer. In this example, four input features
are individually multiplied by their activated weights within the FSL before being passed to the pre-
trained model. During fine-tuning, only the weights within the FSL are updated, while all parameters
of the pre-trained model remain frozen.
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3.3 LAYER CONFIGURATION: REGULARIZATION, ACTIVATION, AND INITIALIZATION

We adopt three design choices to regulate the Feature Selection Layer (FSL). First, we apply the
standard L1 regularization to promote sparsity by shrinking weights of irrelevant features toward
zero. Second, we use ReLU activation to ensure non-negative weights, simplifying interpretation,
a weight of zero indicates irrelevance, and positive values represent feature’s importance. Third,
we initialize weights to 1.0 instead of 1/n, providing a stable starting point in which all features
are ingested by the pre-trained model initially using unchanged values and preventing initializations
with weights close to zero. This allows the optimization process to more effectively distinguish
between features to retain and those to discard, ultimately improving both training dynamics and
model performance.

4 EXPERIMENTS

This section details the experimental setup used to evaluate the proposed post-hoc FSL method. We
describe the datasets (Section[4.T)), the evaluation metrics (Section[d.2), and the specific implemen-
tation details (Section 4.3)).

4.1 DATASETS

To evaluate the proposed feature selection layer, we employed a diverse range of datasets to analyze
its performance across various relevant challenges, such as high dimensionality, low sample sizes,
and the presence of noisy features. To this end, we utilized both synthetic (Section and real-
world datasets (Section[4.1.2)). The synthetic data is composed of a pre-defined number of relevant
and noisy features. The real-world datasets include an email spam classification dataset (Balakal
2020) and gene expression microarray data (Feltes et al., 2019), which are characteristically high-
dimensional with a low number of samples. The purpose of using this variety of datasets is to
comprehensively assess post-hoc FSL’s ability to reduce dimensionality and, consequently, enhance
the interpretability of neural network models by highlighting salient features while filtering out noisy

ones. All datasets are fully described in[Table 7|at[Appendix A}

4.1.1 SYNTHETIC DATASETS

For this analysis, we used two synthetic datasets with controlled proportions of relevant and irrele-
vant features. The XOR dataset (Barbieri et al., 2024) contains 500 samples and 50 features, with
two informative and 48 noisy ones. SynthA includes 3, 000 samples and 100 features, of which 30
are relevant. It was generated by first defining an n-dimensional hypercube, where n is the number
of informative features. Then, Gaussian clusters of data points are created at each vertex of the
hypercube, with an equal number of clusters assigned to each class. The informative features are
the ones that are coordinates for the created points in the hypercube (Barbieri et al., |2024). Syn-
thetic data provides ground truth for feature relevance, enabling direct evaluation of post-hoc FSL’s
selection accuracy (Section[d.2)), based on the weights assigned to each feature.

4.1.2 REAL-WORLD DATASETS

To evaluate the post-hoc FSL on real-world high dimensionality and low sample sizes (HDLSS)
challenges, we selected datasets from two domains. First, we utilized microarray datasets from
the CuMiDa repository (Feltes et al.l 2019), a database of Homo sapiens datasets selected from
over 30,000 GEO experiments, following bias-reduction guidelines by |Grisci et al.|(2024), we used
Liver-GSE22405 (48 samples, 22,284 features, binary classification) and Breast-GSE45827 (151
samples, 54, 676 features, six-class classification). Additionally, we evaluated a spam email dataset
(Balakal |2020) with 5, 172 samples and 3, 000 features, representing word frequencies in the email
corpus.
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4.2 EVALUATION METRICS

To evaluate the post-hoc FSL method, we employed several metrics to assess its effectiveness. We
group these into three categories: statistical metrics (Section .2.T)), visual analysis (Section[d.2.7),
and stability (Section 4.2.3)).

4.2.1 PERFORMANCE METRICS

We assess model predictive performance using accuracy, precision, recall, and F1 score. To evaluate
feature selection, we leverage synthetic datasets with known ground truth and apply two metrics
(Barbieri et al., [2024): Percentage of Informative Features Selected (PIFS) measures the pro-
portion of informative features captured in a selected subset (Equation 4); Percentage of Selected
Features that are Informative (PSFI) quantifies how many selected features are truly informative
(Equation 3). Each metric spans from 0.0, indicating no informative features were selected, to 1.0,
reflecting ideal selection.

PIFS = |Sselected N Sinformativel (4)
‘ Sinformative |

| Sselected N Sinformative |

PSFI = &)

| S selected ‘

4.2.2 VISUAL METRICS

For visual analysis, we utilize a variation of the t-SNE (t-Distributed Stochastic Neighbor Embed-
ding), a visualization algorithm originally proposed by (Maaten & Hintonl [2008)). t-SNE projects
high-dimensional data into a low-dimensional space (typically two dimensions) by calculating the
pairwise distances between data points, commonly using the Euclidean distance. To specifically vi-
sualize the discriminative power of the features identified by the post-hoc FSL, we employ a variant
known as weighted t-SNE (Grisci et al., 2025). This approach introduces a weighted Euclidean dis-
tance to enhance the visualization based on the feature weights provided by the feature weighting al-
gorithm, which range from zero (less relevant) to one (more relevant). When scaling each dimension
by its weight, dimensions with higher weights contribute more significantly to the distance between
points and thus have a greater influence on their final positions. To assess how feature weights affect
cluster separability, we used the silhouette coefficient (Rousseeuw} 1987), which ranges from —1 to
1. Higher values indicate well-separated and dense clusters, while values near 0 suggest boundary
points and values close to —1 indicates that the points are closer to some other cluster than the one
they are assigned.

4.2.3 STABILITY METRICS

To evaluate the stability of the post-hoc FSL feature weighting method, we incorporated a stability
analysis protocol. The goal is to evaluate how the method’s output changes with small perturbations
in the training data. Data perturbation is defined as changes in the training samples and can be
simulated by adding, removing, or re-sampling instances (Awada et al., [2012)). For this purpose,
we employed k-fold Cross-Validation, a widely used technique to evaluate model performance and
measure the stability of feature selection methods (Awada et al) |2012). The implementation of
this protocol begins by partitioning the dataset into & stratified folds. The process then iterates k
times; in each iteration, the feature weighting method is applied to a training set composed of k-1
folds, while a different fold is held out. The feature weights generated in each iteration are stored.
After completing all k iterations, this procedure yields k distinct sets of feature weights, allowing
us to evaluate the stability of the feature weighting method by analyzing the consistency across
these results. To assess the consistency of the feature weighting algorithms, we apply three metrics
across the k sets of feature weights proposed by |Barbieri et al.| (2024). The Jaccard Index measures
the overlap between two sets with the top-n selected features, capturing the subset stability. The
Person correlation evaluates the similarity of feature weights. Lastly, the Spearman rank correlation
quantifies the agreement between feature rankings. All metric equations are detailed in[Appendix B|
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4.3 EXPERIMENTS SETUP

For our experimental evaluation, we trained two distinct models: (1) a baseline model without any
embedded feature weighting mechanism and (2) a model with an embedded Feature Selection Layer
(FSL). The baseline model was designed to be interpreted by the proposed post-hoc FSL and other
post-hoc methods, as described in Section[2.3] To assess post-hoc FSL effectiveness, we compared
it against state-of-the-art post-hoc methods introduced in Section and the original FSL method
using the statistical, visual, and stability metrics from Section@

5 RESULTS AND DISCUSSION

5.1 RESULTS FOR SYNTHETIC DATASET

When comparing the predictive performance for the XOR dataset, the baseline model achieved near-
optimal predictive performance, 0.999 across all metrics, while both FSL and post-hoc FSL reached
perfect scores of 1.0. All models consistently identified the two relevant features across folds, as
shown by PIFS, PSFI, Jaccard, and Pearson metrics (Table 1] and [Table 8| of [Appendix C)). Despite
this, low Spearman correlations indicate that while the algorithms successfully prioritized relevant
features over irrelevant ones, the relative positions among informative features, as well as among
irrelevant ones, can vary. Silhouette scores and weighted t-SNE visualizations
[Appendix C) confirmed improved class separablllty when compared to the standard t-SNE, though
no method showed clear superiority.

Table 1: Results for stability metrics using the XOR dataset. Bold indicates the highest average.
Jaccard was calculated using the top-2 weighted features.

Model Jaccard Spearman Pearson

Integrated Gradients 1.000 + 0.000 0.151 +0.114 0.996 + 0.001

Noise Tunnel 1.000 +0.000 0.162+0.111 0.987 + 0.004
Deep Lift 1.000 = 0.000 0.153 +0.114 0.996 £ 0.001
Gradient SHAP 1.000 + 0.000 0.158 £0.112 0.990 £+ 0.003
Feature Ablation 1.000 + 0.000 0.159 +£0.107 0.998 £ 0.001
FSL 1.000 + 0.000 0.111 +0.132 0.988 £ 0.007
Post-hoc FSL 1.000 + 0.000 0.126 £ 0.140 0.988 +£0.010

Table 2: Silhouette scores using the XOR and SynthA datasets. Bold indicates the highest
average; best statistically significant results (p < 0.01) from Kruskal-Wallis and Dunn’s tests are
marked in orange.

Model XOR Silhouette Score SynthA Silhouette Score
None 0.003 £ 0.002 0.043 £ 0.000
Integrated Gradients 0.203 &+ 0.002 0.235 £ 0.049
Noise Tunnel 0.201 +£ 0.002 0.177 £ 0.083
Deep Lift 0.203 &+ 0.002 0.233 £ 0.064
Gradient SHAP 0.203 £ 0.002 0.194 + 0.083
Feature Ablation 0.205 4+ 0.002 0.181 £ 0.076
FSL 0.205 £ 0.001 0.191 £ 0.090
Post-hoc FSL 0.204 £ 0.003 0.115 + 0.077

reveals a performance disparity between FSL and post-hoc FSL on the SynthA dataset.
Although post-hoc FSL moderately improved over the baseline, FSL consistently achieved higher
predictive metrics. Moreover, the post-hoc FSL method underperformed both the FSL and other
post-hoc approaches, as evidenced by the weighted t-SNE visualization presented in of

and the silhouette scores in[Table 2] yielding lower average values and reduced stability
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metrics. Despite these limitations, it reached PFSI and PIFS scores of 0.906 on the top-30 features
(Table 8| of |Appendix CJ), demonstrating its ability to identify informative features, albeit, in this
specific case, less effectively than the FSL, which reached perfect scores of 1.0 on both metrics.
These results also influenced post-hoc FSL stability scores (Table 4), which also had an inferior
performance when compared to the other methods. We hypothesize that the synthetic dataset’s
structure may have hindered post-hoc FSL’s feature identification. Nonetheless, its performance on
real-world, high-dimensional datasets remained strong.

Table 3: Prediction performance using the SynthA dataset. Bold indicates the highest average;
best statistically significant results (p < 0.01) from Kruskal-Wallis and Dunn’s tests are marked in
orange.

Model F1 Score Accuracy Precision Recall
Baseline 0.890 £+ 0.010 0.890 = 0.009 0.892 + 0.009 0.890 = 0.009
FSL 0.954 +0.007 0.954 £0.007 0.954+0.006 0.954 4+ 0.007
FSL post-hoc 0.916 =+ 0.009 0.916 + 0.009 0.917 + 0.009 0.916 + 0.009

Table 4: Results for stability metrics using the SynthA dataset.
average. Jaccard was calculated using the top-30 weighted features.

Bold indicates the highest

Model Jaccard Spearman Pearson
Integrated Gradients 0.855 £ 0.028 0.758 £ 0.038 0.969 + 0.009
Noise Tunnel 0.954 +0.031 0.752 +0.038 0.974 £+ 0.007
Deep Lift 0.976 + 0.034 0.760 + 0.037 0.971 + 0.008
Gradient SHAP 0.939 £ 0.041 0.750 £ 0.041 0.975 + 0.006
Feature Ablation 0.956 + 0.050 0.759 + 0.037 0.980 % 0.005
FSL 1.000 £ 0.000 0.805+0.030 0.980 + 0.003
Post-hoc FSL 0.759 £ 0.052 0.759 £ 0.030 0.770 £ 0.027

To complement our experiments, we incorporated TabPFEN, a pre-trained neural network model
introduced by [Hollmann et al.| (2022)), to evaluate the performance of post-hoc FSL. TabPFN is
a Transformer-based architecture designed for supervised classification on small tabular datasets.
It operates efficiently without requiring hyperparameter tuning and demonstrates competitive per-
formance against state-of-the-art classification methods. Given the model’s complexity and time
constraints, we restricted this experiment to the SynthA dataset. Additionally, due to source code
compatibility, comparisons were made using the original Kernel SHAP implementation. Both post-
hoc techniques successfully identified the most relevant features, yielding identical PSFI and PIFS
scores of 0.966 when evaluating the top-30 ranked features, which ideally should include all, and
only, the informative features. When comparing the generated rankings, both methods assigned
greater importance to the noisy feature “noisy_85” while undervaluing the informative feature “in-
formative_24”. Nonetheless, post-hoc FSL outperformed both weighted t-SNE using Kernel SHAP
weights and standard t-SNE (Figure 2)), achieving a higher silhouette score of 0.316 compared to
0.186 and 0.070, respectively.

5.2 RESULTS FOR REAL-WORLD DATASETS

We evaluated the performance of the post-hoc FSL variation on real-world datasets, as described in
Section d.1.2] These datasets comprise tasks in spam email detection and microarray analysis, the
latter being characterized by high dimensionality and a low sample size. The results for the Spam
dataset are presented in [6] and As shown in the baseline and post-hoc
FSL models achieved the highest performance metrics. The baseline model, in particular, recorded
the best average scores across accuracy, F1 score, recall, and precision. While the baseline model
demonstrated the top performance, post-hoc FSL obtained comparable results and outperformed
FSL. In terms of visual separability metrics, the FSL post-hoc yielded the best results, achieving a
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(a) Without weights (b) FSL post-hoc (c) Kernel SHAP

Figure 2: Weighted t-SNE of the post-hoc FSL and Kernel SHAP methods using the TabPFN
model SynthA dataset was used for the experiment.

higher average silhouette coefficient than both the FSL and the other post-hoc methods. However,
regarding stability, both, post-hoc FSL and FSL, were inferior to the other post-hoc approaches.
Although the method exhibits limited stability across different runs, it consistently assigns mean-
ingful weights to a subset of the most relevant features. This suggests that, while the overall feature
ranking may vary, the features identified as important by the method tend to be informative. A more

in-depth analysis of the stability metrics is provided in [Appendix D}

Table 5: Prediction performance for real-world datasets. Bold indicates the highest average;
best statistically significant results (p < 0.01) from Kruskal-Wallis and Dunn’s tests are marked in
orange.

(a) Spam dataset

Model F1 Score Accuracy Precision Recall
Baseline 0.976 £ 0.005 0.976 +£0.005 0.977+0.005 0.976 + 0.005
FSL 0.968 £ 0.004 0.968 £ 0.004 0.969 + 0.004 0.968 + 0.004

FSL post-hoc 0.973 £ 0.003 0.973 £ 0.003 0.974 £ 0.003 0.973 £ 0.003

(b) Liver dataset

Model F1 Score Accuracy Precision Recall
Baseline 0.800 + 0.076 0.800 £ 0.076 0.858 £ 0.079 0.800 £ 0.076
FSL 0.840 £ 0.083 0.840+0.083 0.893+0.055 0.840+ 0.083

Post-hoc FSL 0.827 £ 0.070 0.827 £ 0.070 0.884 £ 0.047 0.827 £ 0.070

(c) Breast dataset

Model F1 Score Accuracy Precision Recall
Baseline 0.942 + 0.024 0.945 + 0.021 0.955 + 0.024 0.945 £ 0.021
FSL 0.955 £ 0.033 0.958 £ 0.030 0.964 + 0.030 0.958 £+ 0.030

FSL post-hoc ~ 0.970 £0.033 0.970£0.032 0.978 £0.024 0.970 £ 0.032

Analysis of the Liver and Breast microarray datasets shows that post-hoc FSL achieved comparable
results to the baseline and the FSL when compared to their predictive power (Table 5). However,
the post-hoc FSL and the FSL methods exhibit significantly superior performance in generating
meaningful feature attributions. When evaluating the quality of feature selection through weighted t-
SNE visualizations (Figure 6] [7]of[Appendix C) with their respective silhouette coefficients (Table 6)),
both FSL methods outperformed all other state-of-the-art post-hoc techniques. On the Liver dataset,
the post-hoc FSL variant yielded the highest silhouette score. In contrast, the FSL was the top
performer on the Breast dataset. These results underscore the FSL’s capacity to identify highly
relevant features that lead to better-defined class clusters.
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Table 6: Silhouette score for real-world dataset. Bold indicates the highest average; best statisti-
cally significant results (p < 0.01) from Kruskal-Wallis and Dunn’s tests are marked in orange.

Model Spam Liver Breast
None 0.090 £ 0.000 0.066 £ 0.000 0.192 £ 0.000
Integrated Gradients 0.202 +0.031 0.170 £ 0.031 0.451 +0.036
Noise Tunnel 0.189 + 0.034 0.178 £0.044 0.447 £ 0.045
Deep Lift 0.202 +0.025 0.172 £ 0.049 0.449 £ 0.030
Gradient SHAP 0.209 + 0.022 0.199 + 0.042 0.450 £ 0.040
Feature Ablation 0.196 £ 0.029 0.181 £ 0.030 0.450 £ 0.033
FSL 0.234 +0.013 0.574+0.141 0.647 £ 0.021
Post-hoc FSL 0.235 £ 0.069 0.666 = 0.012 0.511 £ 0.078

(e) Gradient SHAP

(f) Feature Ablation (g) FSL (h) Post-hoc FSL

Figure 3: Weighted t-SNE of all feature weighing metrics using the Spam dataset.

6 CONCLUSION

This paper explores the development of a variation of the Feature Selection Layer (FSL) as a post-
hoc feature weighing method to improve the interpretability of pre-trained Deep Neural Networks.
Our work demonstrates that the proposed method not only achieves high performance in identifying
relevant features in high-dimensional datasets but also shows performance comparable to, and in
several cases surpassing, other state-of-the-art post-hoc feature weighting methods.

6.1 LIMITATIONS AND FUTURE WORK

While our method proved to be an efficient feature weighing method when used in binary classifica-
tion datasets, it showed unstable perfomance when dealing with multi-class classification problems,
as it was unable to capture local and class-specific relationships with features. Futhermore, our
proposed method is specifically designed for tabular data, where each feature has a fixed meaning
within the dataset. However, this is not the case for images, where meaning of each pixel can vary
across samples. Future research should therefore focus on adapting our post-hoc method to address
these conditions, thereby extending its interpretability capabilities to such domains.
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REPRODUCIBILITY STATEMENT

Paper source code is available at [The link will be shared after the reviewing process.]
with all necessary dependencies and steps to reproduce each of the experiments presented
in this paper. The original code of the weighted t-SNE (Grisci et al) [2025) can be
found at |https:github.com/sbcblab/weighted tSNE. CuMiDa datasets (Feltes et al. 2019) can
be found at https:sbcb.inf.ufrgs.br/cumida and Spam dataset (Balakal, |2020) can be found at
https://www.kaggle.com/datasets/balakal8/email-spam-classification-dataset-csv. Both XOR and
SynthA dataset are available at the same repository of the paper source code. TabPFN source code
is available at https://github.com/PriorLabs/TabPFN and Kernel SHAP documentation is available
at https://shap.readthedocs.io/en/latest/.
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APPENDIX

A DATASETS DESCRIPTION

describes each dataset used on the present work experiments and how many folds were
created to conduce stability experiments. All selected synthetic and real-world datasets consist of
complete numerical features with no missing values. The choice of the microarray datasets from
CuMiDa repository is particularly advantageous as it not only provides datasets with the desired
HDLSS characteristics but also offers baseline accuracy scores from other machine learning tech-
niques, serving as a valuable point of comparison.

Table 7: Datasets used for the experiments

Name Feature type Labels Features Informative Foldsused Samples
XOR Binary 2 50 2 11 500
SynthA Numerical 2 100 30 11 3000
Spam Numerical 2 3000 Unknown 11 5172
Liver-22405 Numerical 2 22284 Unknown 15 48
Breast-45827  Numerical 6 54676 Unknown 15 151

B STABILITY METRICS

The Jaccard Index measures the overlap between top-n selected features from two sets
A and B, capturing subset stability. The Pearson correlation coefficient evaluates the
similarity of feature weights, where x and y are random variables, x; and y; are their respective ith
values, n is the number of observations, and Z, § are their means. Lastly, the Spearman rank cor-
relation (Equation 8)) quantifies the agreement between feature rankings, with p and ¢ representing
ranked permutations and n the number of elements, thereby capturing the stability of rank order
across selections.

ANB
B = G5 ©
P Z;L:l(fz - 59)(% - 37) 7
VS SEEN CTRE e SEN (T e
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C COMPLEMENTARY RESULTS FROM EXPERIMENTS

[Figure 4 presents the weighted t-SNE visualizations for the XOR dataset, complementing the silhou-
ette scores reported in All methods improved cluster separation relative to the unweighted
baseline shown in suggesting successful identification of the two informative features.
This is confirmed in where all algorithms achieved perfect PIFS and PSFI scores of 1.0
when selecting the top two features, indicating consistent detection of the relevant inputs. The same
table also reports results for the SynthA dataset, where the top-30 features were used as this corre-
spond to the known set of informative features. FSL was the only method to achieve a perfect score
of 1.0, while post-hoc FSL reached 0.9, the lowest among the evaluated approaches. This discrep-
ancy is reflected in the silhouette scores in where post-hoc FSL also recorded the lowest
value among feature weighting methods. Nonetheless, it successfully identified the majority of rel-
evant features, contributing to improved cluster visualization in the weighted t-SNE visualization

shown in
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[Figure 6] and [Figure 7] complement the silhouette scores reported in[Table 6|for the Liver and Breast
datasets. In the Liver dataset, both FSL and post-hoc FSL improved cluster separation between the
two classes, with post-hoc FSL achieving the highest silhouette score. The reason behind the highest
silhouette score is visually discernible. For the Breast dataset, the visualization is more complex due
to the larger number of classes. However, FSL produced the most distinct clustering, as reflected
in its superior silhouette score. Post-hoc FSL ranked second, and despite the increased difficulty in
visual interpretation, its performance remains visually distinguishable from the others.
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Figure 4: Weighted t-SNE of all feature weighing metrics using the XOR dataset.

Table 8: Comparison of PIFS and PFSI scores for the XOR and SynthA datasets. The metrics
were calculated using the subset of the top-2 most weighted features for the XOR dataset, while the
SynthA dataset was calculate using the top-30.

XOR SynthA

Model PIFS PFSI PIFS PFSI
Integrated Gradients 1.00 1.00 0.99 0.99
Noise Tunnel 1.00 1.00 097 097
Deep Lift 1.00 1.00 0.99 0.99
Gradient SHAP 1.00 1.00 0.96 0.96
Feature Ablation 1.00 1.00 0.99 0.99
FSL 1.00 1.00 1.00 1.00
Post-hoc FSL 1.00 1.00 0.90 0.90

D STABILITY METRICS ANALYSIS

As discussed in Section [5.1] although all algorithms effectively prioritized relevant features over
irrelevant ones, the relative ranking of features, both informative and non-informative, varied across
executions. Unlike synthetic datasets, real-world datasets lack ground truth for feature relevance,
preventing the use of Jaccard scores based on the exact number of informative features. Focusing on
stability metrics for the Spam dataset (Table 9), the Jaccard scores were relatively consistent across
methods, indicating stable selection of features within the top-100 ranking across multiple runs.
In contrast, Spearman scores, which assess rank-order consistency, revealed greater instability for
FSL and post-hoc FSL, suggesting that their feature rankings fluctuated more significantly between
executions. Pearson scores were generally higher across all methods, likely due to the large number
of consistently irrelevant features with near-zero weights. This behavior is illustrated in [Figure 8|
which tracks feature rank changes across executions. Relevant features tended to remain within
the top-30 positions, while irrelevant ones clustered near the bottom. However, it is also possible to
notice a considerable variation between these regions, particularly for post-hoc FSL, which exhibited
the lowest stability scores, while FSL exhibited the highest stability scores (Table 4).
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(e) Gradient SHAP (f) Feature Ablation (g) FSL (h) Post-hoc FSL

Figure 5: Weighted t-SNE of all feature weighing metrics using the SynthA dataset.

(a) Without weights (b) Integrated Gradients (c) Noise Tunnel (d) Deep Lift

(e) Gradient SHAP (f) Feature Ablation (g) FSL (h) Post-hoc FSL

Figure 6: Weighted t-SNE of all feature weighing metrics using the Liver dataset.

Another important consideration for multi-class datasets, as Breast, is that FSL and post-hoc FSL
computes a single, global importance weight for each feature based on its aggregated contribution
across all classes. This global attribution approach is inherently less effective in complex multi-class
settings, where a feature’s relevance is often highly context-dependent-critical for predicting certain
classes but not others. Most of the post-hoc methods, and all the ones that we used to compare
with post-hoc FSL on this work, are capable to individually assess feature contributions for each
specific class. This approach successfully captures local and class-specific relationships, which,
when aggregated, produce a more robust and meaningful global attribution.
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(e) Gradient SHAP (f) Feature Ablation (g) FSL (h) Post-hoc FSL

Figure 7: Weighted t-SNE of all feature weighing metrics using the breast dataset.

Table 9: Results for stability metrics using the spam dataset. In bold is the highest average of
each metric. Jaccard was calculated using the top-100 weighted features.

Model Jaccard Spearman Pearson
Integrated Gradients 0.482 +0.041 0.739 +0.028 0.817 + 0.025
Noise Tunnel 0.431 £0.047 0.553 £0.036 0.725 £ 0.029
Deep Lift 0.480 +0.041 0.738 +0.028 0.816 + 0.025
Gradient SHAP 0.483 + 0.040 0.698 + 0.028 0.807 + 0.026
Feature Ablation 0.486 +0.043 0.741 +0.028 0.818 +0.025
FSL 0.397 + 0.029 0.157 £ 0.021 0.728 + 0.022
Post-hoc FSL 0.382 +0.039 0.312 +0.024 0.614 + 0.084
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Figure 8: Feature ranking between different executions on SynthA dataset. All rankings were
created from the feature weights in descending order. Each algorithm was executed 11 times. The
vertical axis represents each individual execution, while the horizontal axis shows the ranking po-
sition of each feature, from 1 (top) to 300 (bottom), within that run. Different colors represent
different features. A clear distinction emerged, with relevant features consistently ranking at the top
positions, while noisy features fluctuate across positions at the bottom of the graph.
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