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ABSTRACT

Large linear systems are ubiquitous in modern computational science and engi-
neering. The main recipe for solving them is the use of Krylov subspace iterative
methods with well-designed preconditioners. Deep learning models can be used as
nonlinear preconditioners during the iteration of linear solvers such as the conju-
gate gradient (CG) method. Neural network models require an enormous number
of parameters to approximate well in this setup. Another approach is to take ad-
vantage of small graph neural networks (GNNs) to construct preconditioners with
predefined sparsity patterns. Recently, GNNs have been shown to be a promis-
ing tool for designing preconditioners to reduce the overall computational cost of
iterative methods by constructing them more efficiently than with classical lin-
ear algebra techniques. However, preconditioners designed with these approaches
cannot outperform those designed with classical methods in terms of the number
of iterations in CG. In our work, we recall well-established preconditioners from
linear algebra and use them as a starting point for training the GNN to obtain pre-
conditioners that reduce the condition number of the system more significantly.
Numerical experiments show that our approach outperforms both classical and
neural network-based methods for an important class of parametric partial differ-
ential equations. We also provide a heuristic justification for the loss function used
and show that preconditioners obtained by learning with this loss function reduce
the condition number in a more desirable way for CG.

1 INTRODUCTION

Modern computational science and engineering problems are often based on parametric partial dif-
ferential equations (PDEs). The lack of analytical solutions for realistic engineering problems (heat
transfer, fluid flow, structural mechanics, etc.) leads researchers to exploit advances in numerical
analysis. The basic numerical methods for solving PDEs, such as finite element, finite difference,
finite volume and meshless methods (e.g., smoothed particle hydrodynamics), result in a system of
linear equations Ax = b, A € R"*", z € R", and b € R". These systems are usually sparse,
i.e. the number of non-zero elements is < n?. Furthermore, some classes of parametric PDEs
are characterized by a very large dimension of the parametric space and by a high variation of the
parameters for a given sample.

Typically, the application of parametric PDEs produces large linear systems, often with entries of
varying scale, and therefore poses significant computational challenges. Projection Krylov subspace
iterative methods are widely used to solve such systems. They rely on finding an optimal solution in
a subspace constructed as follows: K,.(A,b) = span{b, Ab, A%b,..., A"~ 1}.

The conjugate gradient (CG) method is used to solve large sparse systems with symmetric and pos-
itive definite (SPD) matrices (Saad, 2003; |/Axelsson, |1996). CG has a well-established convergence
theory and convergence guarantees for any symmetric matrix. However, the convergence rate of CG
is determined by 1/%(A). The condition number x(A) of an SPD matrix A, defined in 2-norm, is a

ratio between the maximum and minimum eigenvalues x(A) = |Amax| / [Amin|-
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Real-world applications with non-smooth high-contrast coefficient functions and high-dimensional
linear systems separate eigenvalues and results into ill-conditioned problems. Decades of research in
numerical linear algebra have been devoted to constructing preconditioners P for ill-conditioned A
to improve the condition number in the form (for left-preconditioned systems) (P~ 1A) < k(A).

The well-designed preconditioner should tend to approximate A, be easily invertible and be sparse
or admit an efficient matrix-vector product. The construction of a preconditioner is typically a trade-
off between the quality of the approximation and the cost of storage/inversion of the preconditioner
(Saad, 2003).

In this paper, we propose a novel neural method for preconditioner design called PreCorrector (short
for Preconditioner Corrector). Preconditioners constructed with PreCorrector have better effect on
the spectrum than classical preconditioners by learning correction for the latter. Our contributions
are as follows:

1. We propose a novel scheme for preconditioner design based on learning correction for
well-established preconditioners from linear algebra with the GNN.

2. We propose an understanding of the loss function used with emphasis on low frequencies.
We also provide experimental justification for the understanding of learning with such an
objective.

3. We propose a novel dataset generation approach with a measurable complexity metric that
addresses real-world problems.

4. We provide extensive experiments with varying matrix sizes and dataset complexities to
demonstrate the superiority of the proposed approach and loss function over classical pre-
conditioners.

2 NEURAL DESIGN OF PRECONDITIONER

Related work While there are a dozen different preconditioners in linear algebra, for example
(Saad\ [2003}; |Axelsson, [1996): block Jacobi preconditioner, Gauss-Seidel preconditioner, sparse ap-
proximate inverse preconditioner, algebraic multigrid methods, etc., the choice of preconditioner
depends on the specific problem, and practitioners often rely on a combination of theoretical un-
derstanding and numerical experimentation to select the most effective preconditioner. Even a brief
description of all of them is beyond the scope of a single research paper. One can refer to the related
literature for more details

The growing popularity of neural operators for learning mappings between infinite dimensional
spaces (e.g., (Hao et al.| 2024} |Cao et al., 2024} Raonic et al.| 2024))) is also present in recent work
on using neural networks to speed up iterative solvers. The FCG-NO (Rudikov et al.,|2024) approach
combines neural operators with the conjugate gradient method to act as a nonlinear preconditioner
for the flexible conjugate gradient method (Notayl [2000). This method uses a proven convergence
bound as a training loss. A novel class of hybrid preconditioners (Kopanicakova & Karniadakis)}
2024) combines DeepONet with standard iterative methods to solve parametric linear systems. This
framework uses DeepONet for low-frequency error components and conventional methods for high-
frequency components. The HINTS (Zhang et al., [2022) method integrates traditional relaxation
techniques with DeepONet. It targets different spectral regions, ensuring a uniform convergence
rate. It is also possible to use convolutional neural networks to speed up multigrid method (Azulay
& Treister, 20225 |Li et al.,[2024)), which require materialization of sparse matrices into dense format.
However, these approaches can suffer from the curse of dimensionality when applied to large linear
systems and can be too expensive to apply at each iteration step.

The authors of (L1 et al., [2023} [Hdusner et al., [2023)) present a novel approach to preconditioner
design using GNNs that aim to approximate the matrix factorization and use it as a preconditioner.
These approaches use shallow GNNs and typically require a single inference before the iteration
process. GNNs take the initial left hand side matrix and right hand side vector as input and construct
preconditioners in the form of a Cholesky decomposition. However, these GNNs cannot produce
preconditioners that have a better effect on the condition number of the solving system than their
classical analogues.
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Problem statement We consider systems of linear algebraic equations from the discretization of
differential operators Ax = b formed with a symmetric positive definite (SPD) matrix A > 0. One
can use Gaussian elimination of complexity O(n?3) to solve small linear systems, but not real-world
problems, which produce large and ill-conditioned systems.

Preconditioned linear systems Before solving initial systems by iterative methods, we want to
obtain a preconditioner P such that the preconditioned linear system P~ Az = P~'b has a lower
condition number than the initial system. If one knows the sparsity pattern of A, then possible
options are incomplete LU decompositions (ILU) (Saad, 2003): (i) with p-level of fill-in denoted
as ILU(p) and (ii) ILU decomposition with threshold with p-level of fill-in denoted as ILUt(p).
Additional information about these preconditioners can be found in the Appendix

In this paper we focus on the SPD matrices so instead of ILU, ILU(p) and ILUt(p) we use the
incomplete Choletsky factorization IC, IC(p) and ICt(p). Further, we will form the preconditioners
in the form of Choletsky decomposition (Trefethen & Baul|2022) P = LLT with sparse L obtained
by different methods.

Preconditioners with neural networks Our utlimate goal is to find such a decomposition that
k((L(O)L(O)T)~PA) < k((LLT)"*A) < k(A), where L is the classical numerical IC decompo-
sition and L(#) = F(A) is an approximate decomposition with some function F. Several papers (Li
et al.| [2023; |Hausner et al.,|2023)) suggest using GNN as a function F to minimize certain loss func-
tion:

L(#) = GNN(6, A, b) . (1)

Loss function The key question is which objective function to minimize in order to construct a
preconditioner. A natural choice, which is also used in (Hausner et al.} 2023)), is:

min || P — A%, 2)

By design, this objective minimizes high frequency components (large eigenvalues), which is not
desired. Low frequency components (small eigenvalues) are the most important because they corre-
spond to the simulated phenomenon, when high frequency comes from discretization methods. It is
also known that CG eliminates errors corresponding to high frequencies first and struggles the most
with low frequencies. We suggest using A~ as the weight for the previous optimization objective
to take into account low frequency since A(A) = A~1(A71):

min |[(P — A)A™Y[2, (3)

Let us rewrite this objective using Hutchinson’s estimator (Hutchinson, | 1989):

(P = A) A7 |5 = [PA™ = 1|f} = Tx (PA™ = )T (PA™" = 1)

—F. [J(PA” _)T(pATt - 1)5] —E.|[(PAT = De|2, e~ N(0,1). &)

Suppose we have a dataset of linear systems A;x; = b;, then the training objective withe = b;, P =
L(O)L(6)" and A; 'b; = x; will be:

LN
L= N ; HL(‘))L(Q)T% - szz )

This loss function has appeared previously in related research (Li et al.l 2023) but with an under-
standing of the inductive bias from the PDE data distribution. We claim that training with loss (3)
allows to obtain better preconditioners than with loss (2). In the Section [5} we demonstrate that
loss (3) does indeed mitigate low-frequency components.
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3 LEARN CORRECTION FOR ILU

Our main goal is to construct preconditioners that reduce the condition number of an SPD matrix
more than classical preconditioners with the same sparisy pattern.

3.1 GRAPH NEURAL NETWORK WITH PRESERVING SPARSITY PATTERN

Following the idea of (Li et al.l 2023), we use the message-passing GNN architecture (Zhou et al.,
2020) to preserve the sparsity pattern and predict the lower triangular matrix to create a precondi-
tioner in a form of IC decomposition.

The duality between sparse matrices and graphs is used to obtain vertices and edges, such as Az =
b—G=(V,E),wherea; ; =e;; € E,b; =v; € V. The original GNN architecture from (Li et al.,
2023):

1. First step is to use node and edge encoders to increase their dimensionality with multi-layer
perceptrons (MLPs): v; = MLP,(v;), e; j; = MLP.(e; ;).

2. Then the encoded graph is processed with 7" rounds of message passing (Brandstetter et al.}
2022) (t = 1,...,T) to transfer information between vertices and edges. During a single
round, we update vertices with v; ;11 = MLP,,, 1, (v 4, Zj €i,j.+V;.¢), and then update the
edges with € jt+1 = MLPmp,e(ei,j,ta Ui,t+1'Uj,t+1)7 for ¢ 7’5 J-

3. Next step is to decode the lower triangular matrix while preserving the information in the
upper triangular part of the matrix. To do this we average the bidirectional edges, decode
them with MLP and then zero out the upper triangular part: e; ;7 = (e; ;7 + €j,;,1)/2
and L; jji<j = MLPaecoa (€ 5,7), Li jli>; = 0-

4. After all round of message passing the diagonal of the decomposition inherited as the diag-
onal from original matrix to ensure SPD property in resulting decomposition diag(L(0)) :=

y/diag(A).

5. Finally, assemble the preconditioner in a form of Choletsky decomposition P :=
LO)LO)T.

In our experiments, we observe that training GNN from scratch can be unstable and results in pre-
conditioners that have weaker effect on the spectrum than their classical analogues. Moreover, with
growing matrix size, the very first step of training, when GNN is initialized with random weights,
overflows loss since the residual with random P is huge. We propose to solve both problems by
learning corrections to classical preconditioners.

3.2 PRECORRECTOR

Instead of passing left hand side matrix A as input to GNN in (I)), we propose: (i) to pass L from the
IC decomposition to the GNN and (ii) to train GNN to predict a correction for this decomposition

(Figure [T):

L(f) = L + o - GNN(6, L, b). (6)

The correction coefficient « is also a learning parameter that is updated during training. At the
beginning of training, we set & = 0 to ensure that the first gradient updates come from pure IC
factorization. Since we already start with a good initial guess, we observed that pinning the diagonal
is redundant and limits the training of the PreCorrector. Moreover, GNN in (6) takes as input the
lower-triangular matrix L from IC instead of A, so we are not anchored to a single specific sparse
pattern of A and we can: (i) omit half of the graph and speed up the training process and (ii) use
different sparsity patterns to obtain even better preconditioners. In Experiment section, we show that
the proposed approach with input L from IC(0) and ICt(1) produces better preconditioners compared
to classical IC(0) and ICt(1) and previous preconditioners using neural networks.
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Figure 1: PreCorrector scheme that takes IC(0) as input. (a) Start with linear system Ax = b. (b)
Obtain Lg from IC(0) decomposition. (¢) Input L and b to GNN. (d) Calculate L(6) with equation|§|
and construct preconditioner in form of IC. (Very right picture) Note that obtained preconditioner
in form of IC(0) decomposition can be stored as initial matrix A.

4 DATASET

We test PreCorrector on SPD matrices obtained by discretization of elliptic equations. We consider
a 2D diffusion equation:

=V - (k(z)Vu(z)) = f(z), in Q
5 (N

and 2D Poisson equation:

Y , (8)
€0 -

where k() is a diffusion coefficient, u(x) is a solution and f(z) is a forcing term.

The diffusion equation is chosen because it occurs frequently in many engineering applications,
such as: composite modeling 2016), geophysical surveys (Oristaglio & Hohmann,
[1984), fluid flow modeling (Muravleva et al.,[2021). In these industrial applications, the coefficient
functions are discontinuous, i.e. they change rapidly within neighbouring cells. Examples include
the flow of immiscible fluids of different viscosities and fluid flow in heterogeneous porous media.

The condition number of a linear system depends on both the grid size and the contrast, but usually
in scientific machine learning research, high contrast is not taken into account. In Section [5.1] we
demonstrate that the previous approach can handle growing matrix size with constant coefficients
quite well, but faces problems with growing contrast in the coefficients.

We propose to use a Gaussian Random Field (GRF) ¢(x) to generate the coefficients. To control the
complexity of the diffusion equation with discontinuous coefficients, we can measure the contrast in
the GRF:
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contrast = exp ( max (¢(z)) — min (¢(z))). ©)

Then we generate coefficients for the equation (7)) as k(x) = exp (¢(z)).

By changing the variance in the GRF, we can control the contrast of the coefficients and thus the
complexity. We generate datasets for each grid value from {32, 64, 128}. The contrast in the
diffusion equation is controlled with a variance in the coefficient function GRF and takes value from
{0.1, 0.5, 0.7}. The Gaussian covariance model is used in GRF. The forcing term f is sampled
from the standard normal distribution A'(0, 1) and each PDE is discretized using the 5-point finite
difference method. GRF is generated using the parafields libraryﬂ More details about datasets
can be found in the Appendix[A.6

5 EXPERIMENTS

In our approach, we used both IC(0) and ICt(1) to train the PreCorrector. In the next section, we
will use the following notations:

* 1C(0), ICt(1) and ICt(5) are classical preconditioners from linear algebra with a correspond-
ing level of fill-in.

* PreCor [IC(O)] and PreCor [ICt(l)} is PreCorrector with corresponding preconditioners as
input.

Metrics The main comparison of preconditioners designed with different algorithms are made by
comparing total time including preconditioner construction time and the number of CG iterations
to achieve a given tolerance. For construction time, we report averaged values over 200 runs of
preconditioner construction and for CG time and iterations we report averaged values over the test
set as well as standard deviations for the average values. Construction time for PreCorrector is
reported including construction time of classical preconditioners.

The main idea behind using GNNs to construct preconditioners is to preserve the sparsity pattern.
Therefore, the algorithmic complexity of using preconditioners (matrix-vector product) is the same
when using preconditioners with the same sparsity pattern. This allows a fair evaluation of the
quality of neural preconditioners with the same sparsity pattern only in terms of the number of
CG iterations. Furthermore, all approaches to IC decomposition with the same sparsity pattern,
including the classical ones, compete with each other in terms of construction time, effect on the
spectrum (i.e., number of CG iterations) and generalization ability.

Experiments environment Each dataset in the Section [ consists of 1000 training and 200 test
linear systems. The final neural networks are trained with batch size 8, learning rate 10~2 and Adam
optimizer. For a fair comparison, we set the GNN architecture to 5 message passing rounds and 2
hidden layers with 16 hidden features in all MLPs (see Section[3.T) in each experiment. PreCorrector
training always starts with the parameter o = 0 in (6). For GNN training, we used libraries from the
JAX ecosystem: jax (Bradbury et al.,|2018), optax (Kidger & Garcia, [2021)), equinox (Deep-
Mind et al., [2020). We used a single GPU Nvidia A40 48Gb for training. The construction time of
preconditioners with neural design was measured on the same GPU. Preconditioners with classical
algorithms were generated on the Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz with ilupp li-
brar Mayer| (2007). The CG method was run on the same CPU using the scipy (Virtanen et al.,
2020) implementation.

5.1 PRECONDITIONERS COMPARISON

Experiments with classical algorithms Preconditioners constructed with PreCorrector outper-
form classical algorithms with the same sparsity pattern in both total time and effect on the spectrum,
i.e., CG iterations (Table E]) While the IC(0) construction algorithm is simple and faster than the

"https://github.com/parafields/parafields
Zhttps://github.com/c-f-h/ilupp
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Table 1: Comparison on diffusion equation with variance 0.7: classical algorithms for IC(0) and

ICt(1) and PreCorrector. Pre-time stands for precomputations time.

Time (iters)

Time (iters)

Time (iters)

Grid Method Pre-time to 1073 to 10~ t0 102
o v TR VT TRy

o Teeetn] soc WD O e
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(95 £3.5) (119 + 3.4) (139 + 3.5)
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Table 2: Comparison on diffusion equation with variance 0.7:

PreCor [ICt(l)] . Pre-time stands for precomputations time.

classical algorithms for ICt(5) and

Time (iters)

Time (iters)

Time (iters)

Grid Method Pre-time to 1073 to 10~ 0 10~°
Lo tew e MR Mien . aisen
Precorlicyn)] 23100 M0 E 0TI T
T I A T R P N
cvtciy]_si e PR S0 e

PreCor[IC(0)] inference, the PreCor [IC(0)] requires fewer iterations to achieve the required toler-
ance. The more efficient preconditioner ICt(1) with a more complex construction algorithm makes
up the difference with construction time of PreCor [ICt(l)]. The proposed approach based on this

preconditioner, PreCor [ICt(l)} , has a better effect on spectrum of the initial A than classical ICt(1).

In Table[2|one can observe that PreCor [ICt(l)] generally performs on par with ICt(5) in terms of total
time, which is denser than the initial left hand side A (see Appendix[A.6). While ICt(5) has fewer CG
iterations, denser preconditioners have more operations when used during iterations. Consequently,
for larger grid sizes, the total time of PreCor [ICt(l)} is less than that of ICt(5). Moreover, the
construction cost of ICt(5) scales worse than the inference of PreCorrector. Therefore, PreCorrector
is a more farvorable method for large systems than effective dense preconditioners. Additional
information on the scalability of the PreCorrector can be found in the Appendix [A.5] One can find
more results on different datasets in Appendix and Appendix

In our experiments, the value of the correction coefficient « is always negative when training with
loss (@). Interestingly, when we train PreCorrector with loss ([2), « is always positive. Detailed
values of cv can be found in the Appendix [A.8]
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Finally, certain engineering problems require iterative solvers to be run multiple times on the same
matrices. For these problems, the preconditioner’s precomputation overhead contributes less to the
total time. We also observe a good generalization of our approach when transferring our precondi-
tioner between grids and datasets (see Appendix[A.4). The transferability of the PreCorrector allows
both to use the trained PreCorrector on similar problems and to train the PreCorrector on the easier
problems with inference on the hard ones.

Table 3: Comparison on Poisson equation: classical algorithms for IC(0), GNN from (Li et al.,
2023)) and PreCorrector. Pre-time stands for precomputations time.

Time (iters)

Time (iters)

Time (iters)

Grid Method Pre-time to 1073 to 1076 to 107°
c@  re-w0nt HEENY Mrien eato
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Table 4: Comparison on diffusion equation with variance 0.1: classical algorithms for IC(0), GNN
from (Li et al., 2023) and PreCorrector. 1) None of the test linear systems converged to 1073

tolerance in 300 iterations.
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Experiments with neural preconditioner design Preconditioners constructed with GNNs from
previous works (Li et al., 2023 Hausner et al.l 2023) report speedup compared to classical precon-
ditioners when the latter had a long construction time. At the same time, they cannot outperform
the effect of IC(0) on the spectrum of the initial matrix. We implemented the approach of (Li et al.,
2023)) and compared it with PreCorrector and IC(0).

Experiments on simple Poisson equation show that both PreCor [IC(O)] and GNN from (Li et al.}

2023)) have similar number of CG iterations. However, PreCor [IC(O)] has lighter inference and thus
less total time-to-solution. Note that constructing IC(0) with the ilupp library takes negligible
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time comapred to the total CG time. With PDE coefficients generated as Gaussian random fields
with small discontinuities in them, the GNN from (L1 et al.,|2023)) cannot reach the same number of
CQG iterations as the classical IC(0), while quality of the PreCorrector does not degenerate when it is
trained on the datasets with higher contrast.

Results for GNN from (Li et al.,2023) are obtained with the same GNN hyperparameters and archi-
tecture as reported in the original paper with only one change: GNN is initialized with all weights
and biases equal to zero and trained untill convergence. Without this change in architecture, the
training did not converge. We also observed unstable training of the GNN from (L1 et al., 2023)) and
unpredictable quality of the preconditioner depending on the training length. In our experiments,
we could get a better preconditioner if we did not train until convergence. However, we could not
predict the time for early stopping except by directly computing x(P~1A), which is too expensive.

5.2 LOSS FUNCTION

The equivalence of the losses (3) and (5) allows to avoid explicit inverse materialization and provides
maximum complexity of the matrix-vector product in the loss during training. Recall that A comes
from the 5-point finite difference discretization of the diffusion equation (Section[d). A tends to a
diagonal matrix with n — oo and we can assume that A is a diagonal matrix for sufficiently large
linear systems. Minimizing a matrix product between the preconditioner and A~! in (3) makes the
eigenvalues tend to 1.

As mentioned in Section[2} one should focus on approximating the low frequency components. The
loss (3) does indeed reduce the distance between the extreme eigenvalues compared to IC(0) which
can be observed in Table[5] Moreover, the gap between the extreme eigenvalues is covered by the
increase in the minimum eigenvalue, which supports the hypothesis of low frequency cancellation.
The maximum eigenvalue also increase, but by a much smaller order of magnitude.

In Table [5] we have also included recently obtained bounds for the minimum and maximum eigen-
values (Hausner et al., [2024):

Amin > [|PAH [t > (JPA™Y =Tl 1) (10,
/\max S HA - PHQHP_lHQ +1

At the same time, the preconditioner trained with the loss function (2)) without weighting with A~!
gives a worse effect on spectrum of A (Table [6) and takes much more time to converge (Figure [2)).
Different distributions of the eigenvalues can be found in Figure[3]in the Appendix [A.3]

Table 5: Condition number, spectrum and value of loss for a sampled model from on diffusion
equation with variance 0.7 on grid 128 x 128. The loss value is calculated directly with A~L.

Matrix k(P 1A) Awmin Amax  ||[LLTA™Y — 1|2 Bound Amin  Bound Am

A 87565  17.5506 1536813.4 — — —

(LoLg)™'A 749 0.0016 1.2 1.04-10° 9.7-107* 230
(L(O)LO)T) ' A 78 0.1981 15.5 1.73-10° 84-107° 4157

6 DISCUSSION

In our work, we propose a neural design of preconditioners for the CG iterative method that can
outperform analogous classical preconditioners with the same sparsity pattern of the ILU family in
terms of both effect on the spectrum and total time-to-solution. Using the classical preconditioners
as a starting point and learning corrections for them, we achieve stable and fast training convergence
that can handle parametric PDEs with contrast coefficients. We also propose a complexity metric to
measure the complexity of PDEs with random coefficients.
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Table 6: Comparison of losses (Z) and (3). Number of CG iterations on the diffusion equation with
0.7 on grid 64 x 64. During training Hutchinson trick is applied for both losses. !Condition number
and eigenvalues are calculated on a single sampled linear system.

Loss 1073 10-¢ 107%  w(P71A) AL AL
123 +£4.7 155453 182454 571 0.0033 1.88
(Ours) 42 +1.7 55+ 2.1 67 £25 60 0.1406 8.40
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6x10° o
|, <,
I | 4x10° < |t 10°
a I
3% 106 =3
2x10°

107!
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Epoch

Figure 2: Test losses during training of PreCor [IC(O)] on the diffusion equation with variance 0.7
During training Hutchinson trick is applied for both losses.

We provide numerical evidence for our observation of low-frequency cancellation with the loss
function used. However, we found no trace of this relationship in the numerical analysis literature.
We believe that there exists a learnable transformation that will be universal for different sparse
matrices to construct the ILU decomposition that will significantly reduce x(A). We propose that
this loss analysis is the key ingredient for successful learning of the general form transformation.

7 LIMITATIONS

The limitations of the proposed approach are as follows:

1. Theoretical study of the loss function used. We provide only a heuristic understanding with
experimental justification for the loss function. A theoretical analysis of the loss function
is the subject of future research.

2. The target objective in norms other than ||- || » may provide a tighter bound on the spectrum.
Investigating the possible use of target values in other norms is a logical next step.

3. Experiments on other meshes and sparsity patterns of the resulting left hand side matrices
A. Generalization of the PreCorrector to transformation in the space of sparse matrices
with general sparsity patterns.

4. While the PreCorrector has only been tested on systems with SPD matrices from the dis-
cretization of elliptic equations, further work will require generalization to irregular grids,
non-symmetric problems, hyperbolic PDEs, nonlinear problems, to other iterative solvers
such as GMRES and BiCGSTAB and modification of the preconditioner design accord-

ingly.

5. The forcing term f(x) is sampled from the standard normal distribution, but the case of
complex forcing terms needs to be studied separately as it can also affect the complexity of
solving parametric PDEs.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS WITH IC(0) AND ICT(1) PRECONDITIONERS

Table 7: Comparison on diffusion equation with variance 0.1: classical algorithms for IC(0) and

ICt(1) and PreCorrector. Pre-time stands for precomputations time.

Time (iters)

Time (iters)

Time (iters)

Grid Pre-time to 1073 to 107¢ to 107°

L6.10-4 0-145£0010 0.185+0.012 0.218+0.014

: (65 + 1.4) (84 + 1.0) (99 + 0.9)
_3 0.099 + 0.087 0.126 + 0.088  0.151 £ 0.089

64 % 64 PreCor[IC(0)]  2.0-10 (334 0.6) (43 + 0.6) (53 +0.6)

X

8.6.10-4 0.090 +£0.0020 0.1154+0.002 0.136 £ 0.001

: (40 + 0.9) (51 + 0.8) (61 + 0.6)
_3 0.088 + 0.094 0.112 +0.094 0.134 £ 0.094

PreCor [ICt(1)]  2.3-10 (23 +0.5) (31 + 0.4) (38 + 0.4)
16, 10-4 0992£0.153  1267+£0.191 1489 £0.221

: (131 + 3.2) (168 + 1.9) (198 + 1.9)
_3 0.425 + 0.080 0.538 + 0.086  0.643 £ 0.094

195 » 198 PreCor[IC(0)]  2.0- 10 (52 + 1.5) (66 + 1.3) (80 + 1.6)

X

34.10°% 0.555 + 0.074 0.709 +£0.092 0.833 +0.109

: (80 + 1.9) (102 + 1.3) (120 + 1.1)
_3 0.367 + 0.069 0.469 +0.071  0.560 £ 0.074

PreCor [ICt(1)] 5.0 10 (37 +0.9) (48 + 0.8) (58 + 0.8)

Table 8: Comparison on diffusion equation with variance 0.5: classical algorithms for IC(0) and

ICt(1) and PreCorrector. Pre-time stands for precomputations time.

Time (iters)

Time (iters)

Time (iters)

Grid Pre-time to 1073 to 1076 to 107°

1.6-10-* 0.165 &+ 0.067 0.207 £0.069 0.242 + 0.070

: (73+2.1) 93+ 2.1) (109 + 2.2)
5 0.098-+0.095 0.124+0.096 0.148 = 0.097

ot 6 PreCor[IC(0)] 2.0 10 (38 +1.1) (50 + 1.3) (60 & 1.4)

X

96.10-4 0.101 =£0.003 0.128 = 0.003 0.150 £ 0.003

: (44 +1.3) (56 + 1.3) (66 + 1.4)
5 0.085+0.077 0.107+0.077 0.128 & 0.078

PreCor [ICt(1)]  2.4-10 (27 4 0.8) (35 + 0.9) (43 + 1.0)
A7.10-4 1.086 £0.163 1.367 =0.203 1.601 £ 0.237

: (147 + 4.3) (185 + 4.0) (217 + 4.0)
5 0.498+£0.113 0.628+£0.123 0.748 & 0.134

195 » 198 PreCor[IC(0)] 2.0 10 (62 +2.7) (78 + 2.9) (94 + 3.4)

X

34.10-3 0.629 = 0.084 0.791 £0.107 0.927 £ 0.125

: (89 + 2.6) (112 + 2.5) (132 + 2.5)
5 0344+£0.083 0.437+0.093 0.525+0.101

PreCor [ICt(1)] 5.0 10 (43 +1.5) (55 + 1.8) (66 + 1.8)
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A.2 ADDITIONAL EXPERIMENTS WITH ICT(5) PRECONDITIONER

Table 9: Comparison on diffusion equation with variance 0.1:

PreCor [ICt(l)]. Pre-time stands for precomputations time.

Table 10: Comparison on diffusion equation with variance 0.5:

classical algorithms for ICt(5) and

Time (iters)

Time (iters)

Time (iters)

Grid Method Pre-time to 1073 to 107° to 107°

T
Precorficun)]  23.10-+ OUSS 0094 0LIZE00N 01340051

e e PR MEikey . eison
PrecoiCn)]  50.10-+ 93670060 046920071 03600074

PreCor [ICt(l)]. Pre-time stands for precomputations time.

classical algorithms for ICt(5) and

Time (iters)

Time (iters)

Time (iters)

Grid Method Pre-time to 1073 to 107° to 107°
I e e
PreCor[ICi(1)] 24100 OUSSEOUTT 0107 L 0.077 0,128 2 0,078
T Bt S A et S P
PreCorlCi()] 501070 MO0 043710093 08280101

A.3 DISTRIBUTION OF EIGENVALUES

1200

1000
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Figure 3: Distribution of eigenvalues for a sampled linear system of diffusion equation with variance
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06 08

10

12 0.0 0.5

0.7 on grid 64 x 64. (From left to right): initial left hand side A, A preconditioned with IC(0),
A preconditioned with PreCor[IC(0)] trained with loss (2), A preconditioned with PreCor[IC(0)]
trained with loss (3). Hutchinson estimator is used for both losses.
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A.4 GENERALIZATION

1073 10~°
39 7 156 49 98 196
07— 25 43 67 — — 36 —— 55 —— 85 —
30 41 80 39 53 101
36 1C(0) 147 a7 1C(0) 185
05— 24 Trained 62 — |— 32 Trained 78 —
27 Transferred 67 36 Transferred 84
32 65 131 42 84 168
01— 21 33 52 — +— 28 —— 43 —— 66 —
25 36 51 33 47 65
g
-9 —12
s 10 10
5 | | | | | |
> 58 115 228 66 129 255
07— 42 68 102 — +— 49 —— 80 — 118 —
47 64 120 54 7% 136
56 IC(0) 217 63 IC(0) 245
05— 39 Trained 94 | — 47 Trained 109 —
43 Transferred 100 51 Transferred 115
50 99 198 58 113 224
01— 35 53 80 — — 41 —— 62 —— 92
41 59 79 49 70 93
32 64 128 32 64 128
Grid

Figure 4: Generalization of PreCorrector on unseen datasets. Values are number of CG iterations
to achieve required tolerance, which specified in the title of each plot. Blue — IC(0) is used as
preconditioner. Black — PreCorrector [IC(O)}; trained and inferenced on the same dataset. Red —
PreCorrector [IC(O)] ; trained on the diffusion eqaution with variance 0.5 on grid 64 x 64; inferenced
on the dataset, that is described by axes values.

A.5 SCALABILITY

The PreCorrector is a combination of several MLPs with message-passing connections. When grow-
ing non-zero elements nnz (i.e., growing a matrix size) with the same sparsity pattern, the complexity
of the PreCorrector forward call grows linearly. The algorithm for IC(0) has O(nnz). We expect a
small increase in computational cost for larger systems, since with matrix grows we are only inter-
ested in the growth of non-zero elements in the matrix. The growth of non-zero elements is much less
severe than the growth of a matrix size due to the nature of matrices — discretization of PDEs. The
PreCorrector works directly on the edges and nodes of the graph and can be easily data-parallelized.
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A.6 DATASET DESCRIPTION
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Figure 5: Coefficient function k(x) = exp (¢(z)) for grid 128 x 128 with different variances.

Table 11: Contrast values for diffusion equation with various variances.

Variance Grid Min contrast Mean contrast Max contrast

32 ) 7 11
0.1 64 ) 8 12
128 6 8 14
32 36 86 179
0.5 64 45 103 200
128 50 116 297
32 180 277 697
0.7 64 200 318 742
128 300 426 798

Table 12: Size of linear systems and number of nonzero elements (nnz) for different grid sizes and
matrices.

Grid 32 x 32 Grid 64 x 64  Grid 128 x 128

Matrix Size nnz,% Size nnz, %  Size nnz, %
A 04761 0.1205 0.0303
L from IC(0) 0.2869 0.0725 0.0182
LfromICtl) 1024 03785 409 (oge1 16384 0040
L from ICt(5) 0.7547 0.1920 0.0485

A.7 INCOMPLETE LU FACTORIZATION
Full LU decomposition (Trefethen & Bau, [2022) for a square non-singular matrix defined as the
product of the lower and upper triangular matrices B = LpUp. In general, these matrices have no

restriction on the position and number of elements within their triangular structure and can even be
dense for a sparse matrix B. On the other hand, an ILU is an approximate LU factorization:

A=~ LU, (11)

where LU — A satisfies certain constraints.
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Zero fill-in ILU, denoted ILU(0), is an approximate LU factorization A ~ LyUp in such a way
that L has exactly the same sparsity pattern as the lower part of A and Uy has exactly the same
sparsity pattern as the upper part of A. For the ILU(p) decomposition the level of fill-in is defined
hierarchically. The product of the factors of the ILU(0) decomposition produces a new matrix B with
a larger number of non-zero elements. The factors of the ILU(1) factorization have the same sparsity
patterns as lower and upper parts of the sparsity pattern of the matrix B. With this recursion one gets
a pattern of the ILU(p) factorization with p-level of fill-in. ILU(0) is a typical choice to precondition
iterative solvers and relies only on the levels of fill-in, e.g. sparsity patterns (Saad,|2003)). One can
obtain better approximation with ILU by using incomplete factorizations with thresholding.

One such technique is the ILU factorization with thresholding (ILUt(p)). The parameter p defines the
number of additional non-zeros allowed per column in the resulting factorization. For the ILUt(p)
decomposition, the algorithm is more complex and involves both dropping values by some prede-
fined threshold and controlling the number of possible non-zero values in the factorization. In the
case of ILUt(p), the value p represents additional non-zero values allowed in the factorization per
row. The thresholding algorithm provides a more flexible and effective way to approximate the in-
verse of a matrix, especially for realistic problems where the numerical values of the matrix elements
are important.

The complexity of solving sparse linear systems with matrices in the form of the Choletsky decom-
position defined by the number of non-zero elements O(nnz). This value also defines the storage
complexity and the complexity of preconditioner construction.

A.8 DETAILS ON CORRECTION COEFFICIENT

Table 13: Values of the learned coefficient « from () with loss (3).

Grid 32 x 32 Grid 64 x 64 Grid 128 x 128
Equation Variance IC(0) ICl) IC(0) ICyl) IC(0) IC1)
Poisson — ~0.159 —0.091 —0.188 —0.095 —0.202 —0.116
Diffusion 0.1 —0.107 —0.073 —0.099 —0.082 —0.115 —0.086
Diffusion 0.5 —0.068 —0.034 —0.064 —0.051 —0.094 —0.055
Diffusion 0.7  —0.066 —0.031 —0.070 —0.043 —0.062 —0.031
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