
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING FROM LINEAR ALGEBRA:
A GRAPH NEURAL NETWORK APPROACH TO
PRECONDITIONER DESIGN FOR
CONJUGATE GRADIENT SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large linear systems are ubiquitous in modern computational science and engi-
neering. The main recipe for solving them is the use of Krylov subspace iterative
methods with well-designed preconditioners. Deep learning models can be used as
nonlinear preconditioners during the iteration of linear solvers such as the conju-
gate gradient (CG) method. Neural network models require an enormous number
of parameters to approximate well in this setup. Another approach is to take ad-
vantage of small graph neural networks (GNNs) to construct preconditioners with
predefined sparsity patterns. Recently, GNNs have been shown to be a promis-
ing tool for designing preconditioners to reduce the overall computational cost of
iterative methods by constructing them more efficiently than with classical lin-
ear algebra techniques. However, preconditioners designed with these approaches
cannot outperform those designed with classical methods in terms of the number
of iterations in CG. In our work, we recall well-established preconditioners from
linear algebra and use them as a starting point for training the GNN to obtain pre-
conditioners that reduce the condition number of the system more significantly.
Numerical experiments show that our approach outperforms both classical and
neural network-based methods for an important class of parametric partial differ-
ential equations. We also provide a heuristic justification for the loss function used
and show that preconditioners obtained by learning with this loss function reduce
the condition number in a more desirable way for CG.

1 INTRODUCTION

Modern computational science and engineering problems are often based on parametric partial dif-
ferential equations (PDEs). The lack of analytical solutions for realistic engineering problems (heat
transfer, fluid flow, structural mechanics, etc.) leads researchers to exploit advances in numerical
analysis. The basic numerical methods for solving PDEs, such as finite element, finite difference,
finite volume and meshless methods (e.g., smoothed particle hydrodynamics), result in a system of
linear equations Ax = b, A ∈ Rn×n, x ∈ Rn, and b ∈ Rn. These systems are usually sparse,
i.e. the number of non-zero elements is ≪ n2. Furthermore, some classes of parametric PDEs
are characterized by a very large dimension of the parametric space and by a high variation of the
parameters for a given sample.

Typically, the application of parametric PDEs produces large linear systems, often with entries of
varying scale, and therefore poses significant computational challenges. Projection Krylov subspace
iterative methods are widely used to solve such systems. They rely on finding an optimal solution in
a subspace constructed as follows: Kr(A, b) = span{b, Ab, A2b, . . . , Ar−1}..
The conjugate gradient (CG) method is used to solve large sparse systems with symmetric and pos-
itive definite (SPD) matrices (Saad, 2003; Axelsson, 1996). CG has a well-established convergence
theory and convergence guarantees for any symmetric matrix. However, the convergence rate of CG
is determined by

√
κ(A). The condition number κ(A) of an SPD matrix A, defined in 2-norm, is a

ratio between the maximum and minimum eigenvalues κ(A) = |λmax|
/
|λmin|.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Real-world applications with non-smooth high-contrast coefficient functions and high-dimensional
linear systems separate eigenvalues and results into ill-conditioned problems. Decades of research in
numerical linear algebra have been devoted to constructing preconditioners P for ill-conditioned A
to improve the condition number in the form (for left-preconditioned systems) κ(P−1A) ≪ κ(A).

The well-designed preconditioner should tend to approximate A, be easily invertible and be sparse
or admit an efficient matrix-vector product. The construction of a preconditioner is typically a trade-
off between the quality of the approximation and the cost of storage/inversion of the preconditioner
(Saad, 2003).

In this paper, we propose a novel neural method for preconditioner design called PreCorrector (short
for Preconditioner Corrector). Preconditioners constructed with PreCorrector have better effect on
the spectrum than classical preconditioners by learning correction for the latter. Our contributions
are as follows:

1. We propose a novel scheme for preconditioner design based on learning correction for
well-established preconditioners from linear algebra with the GNN.

2. We propose an understanding of the loss function used with emphasis on low frequencies.
We also provide experimental justification for the understanding of learning with such an
objective.

3. We propose a novel dataset generation approach with a measurable complexity metric that
addresses real-world problems.

4. We provide extensive experiments with varying matrix sizes and dataset complexities to
demonstrate the superiority of the proposed approach and loss function over classical pre-
conditioners.

2 NEURAL DESIGN OF PRECONDITIONER

Related work While there are a dozen different preconditioners in linear algebra, for example
(Saad, 2003; Axelsson, 1996): block Jacobi preconditioner, Gauss-Seidel preconditioner, sparse ap-
proximate inverse preconditioner, algebraic multigrid methods, etc., the choice of preconditioner
depends on the specific problem, and practitioners often rely on a combination of theoretical un-
derstanding and numerical experimentation to select the most effective preconditioner. Even a brief
description of all of them is beyond the scope of a single research paper. One can refer to the related
literature for more details

The growing popularity of neural operators for learning mappings between infinite dimensional
spaces (e.g., (Hao et al., 2024; Cao et al., 2024; Raonic et al., 2024)) is also present in recent work
on using neural networks to speed up iterative solvers. The FCG-NO (Rudikov et al., 2024) approach
combines neural operators with the conjugate gradient method to act as a nonlinear preconditioner
for the flexible conjugate gradient method (Notay, 2000). This method uses a proven convergence
bound as a training loss. A novel class of hybrid preconditioners (Kopaničáková & Karniadakis,
2024) combines DeepONet with standard iterative methods to solve parametric linear systems. This
framework uses DeepONet for low-frequency error components and conventional methods for high-
frequency components. The HINTS (Zhang et al., 2022) method integrates traditional relaxation
techniques with DeepONet. It targets different spectral regions, ensuring a uniform convergence
rate. It is also possible to use convolutional neural networks to speed up multigrid method (Azulay
& Treister, 2022; Li et al., 2024), which require materialization of sparse matrices into dense format.
However, these approaches can suffer from the curse of dimensionality when applied to large linear
systems and can be too expensive to apply at each iteration step.

The authors of (Li et al., 2023; Häusner et al., 2023) present a novel approach to preconditioner
design using GNNs that aim to approximate the matrix factorization and use it as a preconditioner.
These approaches use shallow GNNs and typically require a single inference before the iteration
process. GNNs take the initial left hand side matrix and right hand side vector as input and construct
preconditioners in the form of a Cholesky decomposition. However, these GNNs cannot produce
preconditioners that have a better effect on the condition number of the solving system than their
classical analogues.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Problem statement We consider systems of linear algebraic equations from the discretization of
differential operators Ax = b formed with a symmetric positive definite (SPD) matrix A ≻ 0. One
can use Gaussian elimination of complexity O(n3) to solve small linear systems, but not real-world
problems, which produce large and ill-conditioned systems.

Preconditioned linear systems Before solving initial systems by iterative methods, we want to
obtain a preconditioner P such that the preconditioned linear system P−1Ax = P−1b has a lower
condition number than the initial system. If one knows the sparsity pattern of A, then possible
options are incomplete LU decompositions (ILU) (Saad, 2003): (i) with p-level of fill-in denoted
as ILU(p) and (ii) ILU decomposition with threshold with p-level of fill-in denoted as ILUt(p).
Additional information about these preconditioners can be found in the Appendix A.7.

In this paper we focus on the SPD matrices so instead of ILU, ILU(p) and ILUt(p) we use the
incomplete Choletsky factorization IC, IC(p) and ICt(p). Further, we will form the preconditioners
in the form of Choletsky decomposition (Trefethen & Bau, 2022) P = LL⊤ with sparse L obtained
by different methods.

Preconditioners with neural networks Our utlimate goal is to find such a decomposition that
κ((L(θ)L(θ)⊤)−1A) ≪ κ((LL⊤)−1A) ≪ κ(A), where L is the classical numerical IC decompo-
sition and L(θ) = F(A) is an approximate decomposition with some function F . Several papers (Li
et al., 2023; Häusner et al., 2023) suggest using GNN as a function F to minimize certain loss func-
tion:

L(θ) = GNN(θ,A, b) . (1)

Loss function The key question is which objective function to minimize in order to construct a
preconditioner. A natural choice, which is also used in (Häusner et al., 2023), is:

min
∥∥P −A

∥∥2
F
. (2)

By design, this objective minimizes high frequency components (large eigenvalues), which is not
desired. Low frequency components (small eigenvalues) are the most important because they corre-
spond to the simulated phenomenon, when high frequency comes from discretization methods. It is
also known that CG eliminates errors corresponding to high frequencies first and struggles the most
with low frequencies. We suggest using A−1 as the weight for the previous optimization objective
to take into account low frequency since λ(A) = λ−1(A−1):

min
∥∥(P −A)A−1

∥∥2
F

(3)

Let us rewrite this objective using Hutchinson’s estimator (Hutchinson, 1989):

∥∥(P −A
)
A−1

∥∥2
F
=

∥∥PA−1 − I
∥∥2
F
= Tr

(
(PA−1 − I)⊤(PA−1 − I)

)
= Eε

[
ε⊤(PA−1 − I)⊤(PA−1 − I)ε

]
= Eε

∥∥(PA−1 − I)ε
∥∥2
2
, ε ∼ N (0, 1). (4)

Suppose we have a dataset of linear systems Aixi = bi, then the training objective with ε = bi, P =
L(θ)L(θ)⊤ and A−1

i bi = xi will be:

L =
1

N

N∑
i=1

∥∥L(θ)L(θ)⊤xi − bi
∥∥2
2

(5)

This loss function has appeared previously in related research (Li et al., 2023) but with an under-
standing of the inductive bias from the PDE data distribution. We claim that training with loss (3)
allows to obtain better preconditioners than with loss (2). In the Section 5, we demonstrate that
loss (3) does indeed mitigate low-frequency components.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 LEARN CORRECTION FOR ILU

Our main goal is to construct preconditioners that reduce the condition number of an SPD matrix
more than classical preconditioners with the same sparisy pattern.

3.1 GRAPH NEURAL NETWORK WITH PRESERVING SPARSITY PATTERN

Following the idea of (Li et al., 2023), we use the message-passing GNN architecture (Zhou et al.,
2020) to preserve the sparsity pattern and predict the lower triangular matrix to create a precondi-
tioner in a form of IC decomposition.

The duality between sparse matrices and graphs is used to obtain vertices and edges, such as Ax =
b → G = (V, E), where ai,j = ei,j ∈ E , bi = vi ∈ V . The original GNN architecture from (Li et al.,
2023):

1. First step is to use node and edge encoders to increase their dimensionality with multi-layer
perceptrons (MLPs): vi = MLPv(vi), ei,j = MLPe(ei,j).

2. Then the encoded graph is processed with T rounds of message passing (Brandstetter et al.,
2022) (t = 1, . . . , T) to transfer information between vertices and edges. During a single
round, we update vertices with vi,t+1 = MLPmp,v(vi,t,

∑
j ei,j,tvj,t), and then update the

edges with ei,j,t+1 = MLPmp,e(ei,j,t, vi,t+1vj,t+1), for i ̸= j.

3. Next step is to decode the lower triangular matrix while preserving the information in the
upper triangular part of the matrix. To do this we average the bidirectional edges, decode
them with MLP and then zero out the upper triangular part: ei,j,T =

(
ei,j,T + ej,i,T

)
/2

and Li,j|i≤j = MLPdecod(ei,j,T), Li,j|i>j = 0.

4. After all round of message passing the diagonal of the decomposition inherited as the diag-
onal from original matrix to ensure SPD property in resulting decomposition diag(L(θ)) :=√

diag(A).

5. Finally, assemble the preconditioner in a form of Choletsky decomposition P :=
L(θ)L(θ)⊤.

In our experiments, we observe that training GNN from scratch can be unstable and results in pre-
conditioners that have weaker effect on the spectrum than their classical analogues. Moreover, with
growing matrix size, the very first step of training, when GNN is initialized with random weights,
overflows loss since the residual with random P is huge. We propose to solve both problems by
learning corrections to classical preconditioners.

3.2 PRECORRECTOR

Instead of passing left hand side matrix A as input to GNN in (1), we propose: (i) to pass L from the
IC decomposition to the GNN and (ii) to train GNN to predict a correction for this decomposition
(Figure 1):

L(θ) = L+ α · GNN(θ, L, b). (6)

The correction coefficient α is also a learning parameter that is updated during training. At the
beginning of training, we set α = 0 to ensure that the first gradient updates come from pure IC
factorization. Since we already start with a good initial guess, we observed that pinning the diagonal
is redundant and limits the training of the PreCorrector. Moreover, GNN in (6) takes as input the
lower-triangular matrix L from IC instead of A, so we are not anchored to a single specific sparse
pattern of A and we can: (i) omit half of the graph and speed up the training process and (ii) use
different sparsity patterns to obtain even better preconditioners. In Experiment section, we show that
the proposed approach with input L from IC(0) and ICt(1) produces better preconditioners compared
to classical IC(0) and ICt(1) and previous preconditioners using neural networks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Sparse matrix,
A ∈ Rgrid2×grid2

b ∈ Rgrid×grid

IC(0)

Rgrid·grid GNN

P = L(θ)L(θ)⊤

(a) (b)
L0

(d)

(a) (c)

(c) L0

(d)
α · GNN(θ, L0, b)

Figure 1: PreCorrector scheme that takes IC(0) as input. (a) Start with linear system Ax = b. (b)
Obtain L0 from IC(0) decomposition. (c) Input L0 and b to GNN. (d) Calculate L(θ) with equation 6
and construct preconditioner in form of IC. (Very right picture) Note that obtained preconditioner
in form of IC(0) decomposition can be stored as initial matrix A.

4 DATASET

We test PreCorrector on SPD matrices obtained by discretization of elliptic equations. We consider
a 2D diffusion equation:

−∇ ·
(
k(x)∇u(x)

)
= f(x), in Ω

u(x)
∣∣∣
x∈∂Ω

= 0
, (7)

and 2D Poisson equation:

−∇2u(x) = f(x), in Ω

u(x)
∣∣∣
x∈∂Ω

= 0
, (8)

where k(x) is a diffusion coefficient, u(x) is a solution and f(x) is a forcing term.

The diffusion equation is chosen because it occurs frequently in many engineering applications,
such as: composite modeling (Carr & Turner, 2016), geophysical surveys (Oristaglio & Hohmann,
1984), fluid flow modeling (Muravleva et al., 2021). In these industrial applications, the coefficient
functions are discontinuous, i.e. they change rapidly within neighbouring cells. Examples include
the flow of immiscible fluids of different viscosities and fluid flow in heterogeneous porous media.

The condition number of a linear system depends on both the grid size and the contrast, but usually
in scientific machine learning research, high contrast is not taken into account. In Section 5.1 we
demonstrate that the previous approach can handle growing matrix size with constant coefficients
quite well, but faces problems with growing contrast in the coefficients.

We propose to use a Gaussian Random Field (GRF) ϕ(x) to generate the coefficients. To control the
complexity of the diffusion equation with discontinuous coefficients, we can measure the contrast in
the GRF:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

contrast = exp
(
max

(
ϕ(x)

)
−min

(
ϕ(x)

))
. (9)

Then we generate coefficients for the equation (7) as k(x) = exp (ϕ(x)).

By changing the variance in the GRF, we can control the contrast of the coefficients and thus the
complexity. We generate datasets for each grid value from {32, 64, 128}. The contrast in the
diffusion equation is controlled with a variance in the coefficient function GRF and takes value from
{0.1, 0.5, 0.7}. The Gaussian covariance model is used in GRF. The forcing term f is sampled
from the standard normal distribution N (0, 1) and each PDE is discretized using the 5-point finite
difference method. GRF is generated using the parafields library1. More details about datasets
can be found in the Appendix A.6.

5 EXPERIMENTS

In our approach, we used both IC(0) and ICt(1) to train the PreCorrector. In the next section, we
will use the following notations:

• IC(0), ICt(1) and ICt(5) are classical preconditioners from linear algebra with a correspond-
ing level of fill-in.

• PreCor
[
IC(0)

]
and PreCor

[
ICt(1)

]
is PreCorrector with corresponding preconditioners as

input.

Metrics The main comparison of preconditioners designed with different algorithms are made by
comparing total time including preconditioner construction time and the number of CG iterations
to achieve a given tolerance. For construction time, we report averaged values over 200 runs of
preconditioner construction and for CG time and iterations we report averaged values over the test
set as well as standard deviations for the average values. Construction time for PreCorrector is
reported including construction time of classical preconditioners.

The main idea behind using GNNs to construct preconditioners is to preserve the sparsity pattern.
Therefore, the algorithmic complexity of using preconditioners (matrix-vector product) is the same
when using preconditioners with the same sparsity pattern. This allows a fair evaluation of the
quality of neural preconditioners with the same sparsity pattern only in terms of the number of
CG iterations. Furthermore, all approaches to IC decomposition with the same sparsity pattern,
including the classical ones, compete with each other in terms of construction time, effect on the
spectrum (i.e., number of CG iterations) and generalization ability.

Experiments environment Each dataset in the Section 4 consists of 1000 training and 200 test
linear systems. The final neural networks are trained with batch size 8, learning rate 10−3 and Adam
optimizer. For a fair comparison, we set the GNN architecture to 5 message passing rounds and 2
hidden layers with 16 hidden features in all MLPs (see Section 3.1) in each experiment. PreCorrector
training always starts with the parameter α = 0 in (6). For GNN training, we used libraries from the
JAX ecosystem: jax (Bradbury et al., 2018), optax (Kidger & Garcia, 2021), equinox (Deep-
Mind et al., 2020). We used a single GPU Nvidia A40 48Gb for training. The construction time of
preconditioners with neural design was measured on the same GPU. Preconditioners with classical
algorithms were generated on the Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz with ilupp li-
brary2 Mayer (2007). The CG method was run on the same CPU using the scipy (Virtanen et al.,
2020) implementation.

5.1 PRECONDITIONERS COMPARISON

Experiments with classical algorithms Preconditioners constructed with PreCorrector outper-
form classical algorithms with the same sparsity pattern in both total time and effect on the spectrum,
i.e., CG iterations (Table 1). While the IC(0) construction algorithm is simple and faster than the

1https://github.com/parafields/parafields
2https://github.com/c-f-h/ilupp

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison on diffusion equation with variance 0.7: classical algorithms for IC(0) and
ICt(1) and PreCorrector. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

IC(0) 1.6 · 10−4 0.169± 0.006 0.213± 0.007 0.248± 0.007
(77± 2.9) (98± 3.2) (115± 3.1)

PreCor
[
IC(0)

]
2.0 · 10−3 0.112 ± 0.097 0.141 ± 0.098 0.170 ± 0.099

(42± 1.7) (55± 2.1) (67± 2.5)

ICt(1) 8.7 · 10−4 0.105± 0.004 0.133± 0.004 0.155± 0.004
(46± 1.8) (59± 1.9) (69± 1.9)

PreCor
[
ICt(1)

]
2.3 · 10−3 0.091 ± 0.070 0.115 ± 0.071 0.138 ± 0.072

(29± 1.4) (38± 1.7) (47± 1.9)

128× 128

IC(0) 5.1 · 10−4 1.071± 0.189 1.338± 0.229 1.554± 0.261
(156± 5.6) (196± 5.5) (228± 5.7)

PreCor
[
IC(0)

]
2.0 · 10−3 0.571 ± 0.078 0.720 ± 0.079 0.859 ± 0.079

(67± 3.2) (85± 3.5) (102± 3.9)

ICt(1) 3.8 · 10−3 0.720± 0.098 0.902± 0.122 1.048± 0.141
(95± 3.5) (119± 3.4) (139± 3.5)

PreCor
[
ICt(1)

]
5.4 · 10−3 0.470 ± 0.071 0.593 ± 0.078 0.708 ± 0.086

(50± 2.5) (64± 2.9) (77± 3.1)

Table 2: Comparison on diffusion equation with variance 0.7: classical algorithms for ICt(5) and
PreCor

[
ICt(1)

]
. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

ICt(5) 2.1 · 10−3 0.069 ± 0.003 0.087 ± 0.003 0.103 ± 0.003
(22± 0.8) (28± 0.8) (34± 0.8)

PreCor
[
ICt(1)

]
2.3 · 10−3 0.091± 0.070 0.115± 0.071 0.138± 0.072

(29± 1.4) (38± 1.7) (47± 1.9)

128× 128

ICt(5) 8.9 · 10−3 0.570± 0.071 0.705± 0.088 0.833± 0.104
(48± 1.7) (60± 1.6) (70± 1.8)

PreCor
[
ICt(1)

]
5.4 · 10−3 0.470 ± 0.071 0.593 ± 0.078 0.708 ± 0.086

(50± 2.5) (64± 2.9) (77± 3.1)

PreCor
[
IC(0)

]
inference, the PreCor

[
IC(0)

]
requires fewer iterations to achieve the required toler-

ance. The more efficient preconditioner ICt(1) with a more complex construction algorithm makes
up the difference with construction time of PreCor

[
ICt(1)

]
. The proposed approach based on this

preconditioner, PreCor
[
ICt(1)

]
, has a better effect on spectrum of the initial A than classical ICt(1).

In Table 2 one can observe that PreCor
[
ICt(1)

]
generally performs on par with ICt(5) in terms of total

time, which is denser than the initial left hand side A (see Appendix A.6). While ICt(5) has fewer CG
iterations, denser preconditioners have more operations when used during iterations. Consequently,
for larger grid sizes, the total time of PreCor

[
ICt(1)

]
is less than that of ICt(5). Moreover, the

construction cost of ICt(5) scales worse than the inference of PreCorrector. Therefore, PreCorrector
is a more farvorable method for large systems than effective dense preconditioners. Additional
information on the scalability of the PreCorrector can be found in the Appendix A.5. One can find
more results on different datasets in Appendix A.1 and Appendix A.2.

In our experiments, the value of the correction coefficient α is always negative when training with
loss (3). Interestingly, when we train PreCorrector with loss (2), α is always positive. Detailed
values of α can be found in the Appendix A.8.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Finally, certain engineering problems require iterative solvers to be run multiple times on the same
matrices. For these problems, the preconditioner’s precomputation overhead contributes less to the
total time. We also observe a good generalization of our approach when transferring our precondi-
tioner between grids and datasets (see Appendix A.4). The transferability of the PreCorrector allows
both to use the trained PreCorrector on similar problems and to train the PreCorrector on the easier
problems with inference on the hard ones.

Table 3: Comparison on Poisson equation: classical algorithms for IC(0), GNN from (Li et al.,
2023) and PreCorrector. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

IC(0) 1.9 · 10−4 0.134± 0.001 0.166± 0.001 0.199± 0.001
(62± 0.0) (77± 0.0) (93± 0.0)

PreCor
[
IC(0)

]
2.0 · 10−3 0.093 ± 0.072 0.118 ± 0.072 0.142 ± 0.072

(31± 0.3) (41± 0.4) (50± 0.1)

(Li et al., 2023) 2.5 · 10−3 0.106± 0.076 0.131± 0.077 0.154± 0.077
(33± 0.0) (42± 0.0) (50± 0.0)

128× 128

IC(0) 4.6 · 10−4 0.901± 0.116 1.223± 0.156 1.412± 0.181
(115± 0.0) (157± 0.5) (181± 0.0)

PreCor
[
IC(0)

]
2.0 · 10−3 0.391 ± 0.085 0.497 ± 0.093 0.594 ± 0.100

(48± 0.7) (61± 0.2) (73± 0.5)

(Li et al., 2023) 2.5 · 10−3 0.430± 0.078 0.537± 0.079 0.645± 0.081
(50± 0.0) (63± 0.0) (76± 0.0)

Table 4: Comparison on diffusion equation with variance 0.1: classical algorithms for IC(0), GNN
from (Li et al., 2023) and PreCorrector. 1) None of the test linear systems converged to 10−3

tolerance in 300 iterations.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

32× 32

IC(0) 7.2 · 10−5 0.043± 0.001 0.055± 0.002 0.066± 0.002
(32± 0.6) (42± 0.7) (50± 0.6)

PreCor
[
IC(0)

]
1.6 · 10−3 0.040 ± 0.092 0.050 ± 0.092 0.060 ± 0.092

(21± 0.4) (28± 0.4) (35± 0.4)

(Li et al., 2023) 2.5 · 10−3 0.088± 0.070 0.113± 0.071 0.135± 0.071
(60± 5.9) (79± 7.6) (96± 9.1)

64× 64

IC(0) 1.6 · 10−4 0.145± 0.010 0.185± 0.012 0.218± 0.014
(65± 1.4) (84± 1.0) (99± 0.9)

PreCor
[
IC(0)

]
2.0 · 10−3 0.099 ± 0.087 0.126 ± 0.088 0.151 ± 0.089

(33± 0.6) (43± 0.6) (53± 0.6)

(Li et al., 2023) 2.5 · 10−3 nan1 nan1 nan1

Experiments with neural preconditioner design Preconditioners constructed with GNNs from
previous works (Li et al., 2023; Häusner et al., 2023) report speedup compared to classical precon-
ditioners when the latter had a long construction time. At the same time, they cannot outperform
the effect of IC(0) on the spectrum of the initial matrix. We implemented the approach of (Li et al.,
2023) and compared it with PreCorrector and IC(0).

Experiments on simple Poisson equation show that both PreCor
[
IC(0)

]
and GNN from (Li et al.,

2023) have similar number of CG iterations. However, PreCor
[
IC(0)

]
has lighter inference and thus

less total time-to-solution. Note that constructing IC(0) with the ilupp library takes negligible

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

time comapred to the total CG time. With PDE coefficients generated as Gaussian random fields
with small discontinuities in them, the GNN from (Li et al., 2023) cannot reach the same number of
CG iterations as the classical IC(0), while quality of the PreCorrector does not degenerate when it is
trained on the datasets with higher contrast.

Results for GNN from (Li et al., 2023) are obtained with the same GNN hyperparameters and archi-
tecture as reported in the original paper with only one change: GNN is initialized with all weights
and biases equal to zero and trained untill convergence. Without this change in architecture, the
training did not converge. We also observed unstable training of the GNN from (Li et al., 2023) and
unpredictable quality of the preconditioner depending on the training length. In our experiments,
we could get a better preconditioner if we did not train until convergence. However, we could not
predict the time for early stopping except by directly computing κ(P−1A), which is too expensive.

5.2 LOSS FUNCTION

The equivalence of the losses (3) and (5) allows to avoid explicit inverse materialization and provides
maximum complexity of the matrix-vector product in the loss during training. Recall that A comes
from the 5-point finite difference discretization of the diffusion equation (Section 4). A tends to a
diagonal matrix with n → ∞ and we can assume that A is a diagonal matrix for sufficiently large
linear systems. Minimizing a matrix product between the preconditioner and A−1 in (3) makes the
eigenvalues tend to 1.

As mentioned in Section 2, one should focus on approximating the low frequency components. The
loss (3) does indeed reduce the distance between the extreme eigenvalues compared to IC(0) which
can be observed in Table 5. Moreover, the gap between the extreme eigenvalues is covered by the
increase in the minimum eigenvalue, which supports the hypothesis of low frequency cancellation.
The maximum eigenvalue also increase, but by a much smaller order of magnitude.

In Table 5 we have also included recently obtained bounds for the minimum and maximum eigen-
values (Häusner et al., 2024):

λmin ≥ ∥PA−1∥−1
F ≥

(
∥PA−1 − I∥F + 1

)−1

λmax ≤ ∥A− P∥2∥P−1∥2 + 1
. (10)

At the same time, the preconditioner trained with the loss function (2) without weighting with A−1

gives a worse effect on spectrum of A (Table 6) and takes much more time to converge (Figure 2).
Different distributions of the eigenvalues can be found in Figure 3 in the Appendix A.3

Table 5: Condition number, spectrum and value of loss (3) for a sampled model from on diffusion
equation with variance 0.7 on grid 128× 128. The loss value is calculated directly with A−1.

Matrix κ(P−1A) λmin λmax
∥∥LL⊤A−1 − I

∥∥2

F
Bound λmin Bound λmax

A 87565 17.5506 1536813.4 — — —(
L0L

⊤
0

)−1
A 749 0.0016 1.2 1.04 · 106 9.7 · 10−4 230(

L(θ)L(θ)⊤
)−1

A 78 0.1981 15.5 1.73 · 103 8.4 · 10−3 4157

6 DISCUSSION

In our work, we propose a neural design of preconditioners for the CG iterative method that can
outperform analogous classical preconditioners with the same sparsity pattern of the ILU family in
terms of both effect on the spectrum and total time-to-solution. Using the classical preconditioners
as a starting point and learning corrections for them, we achieve stable and fast training convergence
that can handle parametric PDEs with contrast coefficients. We also propose a complexity metric to
measure the complexity of PDEs with random coefficients.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Comparison of losses (2) and (3). Number of CG iterations on the diffusion equation with
0.7 on grid 64× 64. During training Hutchinson trick is applied for both losses. 1Condition number
and eigenvalues are calculated on a single sampled linear system.

Loss 10−3 10−6 10−9 κ(P−1A)1 λ1
min λ1

max

(2) 123± 4.7 155± 5.3 182± 5.4 571 0.0033 1.88
(3) (Ours) 42 ± 1.7 55 ± 2.1 67 ± 2.5 60 0.1406 8.40

Figure 2: Test losses during training of PreCor
[
IC(0)

]
on the diffusion equation with variance 0.7

During training Hutchinson trick is applied for both losses.

We provide numerical evidence for our observation of low-frequency cancellation with the loss
function used. However, we found no trace of this relationship in the numerical analysis literature.
We believe that there exists a learnable transformation that will be universal for different sparse
matrices to construct the ILU decomposition that will significantly reduce κ(A). We propose that
this loss analysis is the key ingredient for successful learning of the general form transformation.

7 LIMITATIONS

The limitations of the proposed approach are as follows:

1. Theoretical study of the loss function used. We provide only a heuristic understanding with
experimental justification for the loss function. A theoretical analysis of the loss function
is the subject of future research.

2. The target objective in norms other than ∥·∥F may provide a tighter bound on the spectrum.
Investigating the possible use of target values in other norms is a logical next step.

3. Experiments on other meshes and sparsity patterns of the resulting left hand side matrices
A. Generalization of the PreCorrector to transformation in the space of sparse matrices
with general sparsity patterns.

4. While the PreCorrector has only been tested on systems with SPD matrices from the dis-
cretization of elliptic equations, further work will require generalization to irregular grids,
non-symmetric problems, hyperbolic PDEs, nonlinear problems, to other iterative solvers
such as GMRES and BiCGSTAB and modification of the preconditioner design accord-
ingly.

5. The forcing term f(x) is sampled from the standard normal distribution, but the case of
complex forcing terms needs to be studied separately as it can also affect the complexity of
solving parametric PDEs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Owe Axelsson. Iterative solution methods. Cambridge university press, 1996.

Yael Azulay and Eran Treister. Multigrid-augmented deep learning preconditioners for the helmholtz
equation. SIAM Journal on Scientific Computing, 45(3):S127–S151, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631–640, 2024.

EJ Carr and IW Turner. A semi-analytical solution for multilayer diffusion in a composite medium
consisting of a large number of layers. Applied Mathematical Modelling, 40(15-16):7034–7050,
2016.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu
Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL http:
//github.com/google-deepmind.

Wenrui Hao, Xinliang Liu, and Yahong Yang. Newton informed neural operator for computing
multiple solutions of nonlinear partials differential equations. arXiv preprint arXiv:2405.14096,
2024.

Paul Häusner, Ozan Öktem, and Jens Sjölund. Neural incomplete factorization: learning precondi-
tioners for the conjugate gradient method. arXiv preprint arXiv:2305.16368, 2023.

Paul Häusner, Aleix Nieto Juscafresa, and Jens Sjölund. Learning incomplete factorization precon-
ditioners for gmres. arXiv preprint arXiv:2409.08262, 2024.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in JAX via callable PyTrees and
filtered transformations. Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

Alena Kopaničáková and George Em Karniadakis. Deeponet based preconditioning strategies for
solving parametric linear systems of equations. arXiv preprint arXiv:2401.02016, 2024.

Kangan Li, Sabit Mahmood Khan, and Yashar Mehmani. Machine learning for preconditioning el-
liptic equations in porous microstructures: A path to error control. Computer Methods in Applied
Mechanics and Engineering, 427:117056, 2024.

Yichen Li, Peter Yichen Chen, Tao Du, and Wojciech Matusik. Learning preconditioners for conju-
gate gradient pde solvers. In International Conference on Machine Learning, pp. 19425–19439.
PMLR, 2023.

Jan Mayer. A multilevel crout ilu preconditioner with pivoting and row permutation. Numerical
Linear Algebra with Applications, 14(10):771–789, 2007.

11

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://github.com/google-deepmind
http://github.com/google-deepmind

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ekaterina A Muravleva, Dmitry Yu Derbyshev, Sergei A Boronin, and Andrei A Osiptsov. Multigrid
pressure solver for 2d displacement problems in drilling, cementing, fracturing and eor. Journal
of Petroleum Science and Engineering, 196:107918, 2021.

Yvan Notay. Flexible conjugate gradients. SIAM Journal on Scientific Computing, 22(4):1444–
1460, 2000.

Michael L Oristaglio and Gerald W Hohmann. Diffusion of electromagnetic fields into a two-
dimensional earth: A finite-difference approach. Geophysics, 49(7):870–894, 1984.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima Alai-
fari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36, 2024.

Alexander Rudikov, Vladimir Fanaskov, Ekaterina Muravleva, Yuri M Laevsky, and Ivan Oseledets.
Neural operators meet conjugate gradients: The fcg-no method for efficient pde solving. arXiv
preprint arXiv:2402.05598, 2024.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Enrui Zhang, Adar Kahana, Eli Turkel, Rishikesh Ranade, Jay Pathak, and George Em Karniadakis.
A hybrid iterative numerical transferable solver (hints) for pdes based on deep operator network
and relaxation methods. arXiv preprint arXiv:2208.13273, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL EXPERIMENTS WITH IC(0) AND ICT(1) PRECONDITIONERS

Table 7: Comparison on diffusion equation with variance 0.1: classical algorithms for IC(0) and
ICt(1) and PreCorrector. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

IC(0) 1.6 · 10−4 0.145± 0.010 0.185± 0.012 0.218± 0.014
(65± 1.4) (84± 1.0) (99± 0.9)

PreCor
[
IC(0)

]
2.0 · 10−3 0.099 ± 0.087 0.126 ± 0.088 0.151 ± 0.089

(33± 0.6) (43± 0.6) (53± 0.6)

ICt(1) 8.6 · 10−4 0.090± 0.0020 0.115± 0.002 0.136± 0.001
(40± 0.9) (51± 0.8) (61± 0.6)

PreCor
[
ICt(1)

]
2.3 · 10−3 0.088 ± 0.094 0.112 ± 0.094 0.134 ± 0.094

(23± 0.5) (31± 0.4) (38± 0.4)

128× 128

IC(0) 4.6 · 10−4 0.992± 0.153 1.267± 0.191 1.489± 0.221
(131± 3.2) (168± 1.9) (198± 1.9)

PreCor
[
IC(0)

]
2.0 · 10−3 0.425 ± 0.080 0.538 ± 0.086 0.643 ± 0.094

(52± 1.5) (66± 1.3) (80± 1.6)

ICt(1) 3.4 · 10−3 0.555± 0.074 0.709± 0.092 0.833± 0.109
(80± 1.9) (102± 1.3) (120± 1.1)

PreCor
[
ICt(1)

]
5.0 · 10−3 0.367 ± 0.069 0.469 ± 0.071 0.560 ± 0.074

(37± 0.9) (48± 0.8) (58± 0.8)

Table 8: Comparison on diffusion equation with variance 0.5: classical algorithms for IC(0) and
ICt(1) and PreCorrector. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

IC(0) 1.6 · 10−4 0.165± 0.067 0.207± 0.069 0.242± 0.070
(73± 2.1) (93± 2.1) (109± 2.2)

PreCor
[
IC(0)

]
2.0 · 10−3 0.098 ± 0.095 0.124 ± 0.096 0.148 ± 0.097

(38± 1.1) (50± 1.3) (60± 1.4)

ICt(1) 9.6 · 10−4 0.101± 0.003 0.128± 0.003 0.150± 0.003
(44± 1.3) (56± 1.3) (66± 1.4)

PreCor
[
ICt(1)

]
2.4 · 10−3 0.085 ± 0.077 0.107 ± 0.077 0.128 ± 0.078

(27± 0.8) (35± 0.9) (43± 1.0)

128× 128

IC(0) 4.7 · 10−4 1.086± 0.163 1.367± 0.203 1.601± 0.237
(147± 4.3) (185± 4.0) (217± 4.0)

PreCor
[
IC(0)

]
2.0 · 10−3 0.498 ± 0.113 0.628 ± 0.123 0.748 ± 0.134

(62± 2.7) (78± 2.9) (94± 3.4)

ICt(1) 3.4 · 10−3 0.629± 0.084 0.791± 0.107 0.927± 0.125
(89± 2.6) (112± 2.5) (132± 2.5)

PreCor
[
ICt(1)

]
5.0 · 10−3 0.344 ± 0.083 0.437 ± 0.093 0.525 ± 0.101

(43± 1.5) (55± 1.8) (66± 1.8)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 ADDITIONAL EXPERIMENTS WITH ICT(5) PRECONDITIONER

Table 9: Comparison on diffusion equation with variance 0.1: classical algorithms for ICt(5) and
PreCor

[
ICt(1)

]
. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

ICt(5) 1.9 · 10−3 0.070 ± 0.003 0.083 ± 0.003 0.098 ± 0.003
(20± 0.6) (27± 0.4) (32± 0.4)

PreCor
[
ICt(1)

]
2.3 · 10−3 0.088± 0.094 0.112± 0.094 0.134± 0.094

(23± 0.5) (31± 0.4) (38± 0.4)

128× 128

ICt(5) 7.9 · 10−3 0.488± 0.074 0.625± 0.095 0.736± 0.112
(42± 1.1) (54± 0.8) (64± 0.7)

PreCor
[
ICt(1)

]
5.0 · 10−3 0.367 ± 0.069 0.469 ± 0.071 0.560 ± 0.074

(37± 0.9) (48± 0.8) (58± 0.8)

Table 10: Comparison on diffusion equation with variance 0.5: classical algorithms for ICt(5) and
PreCor

[
ICt(1)

]
. Pre-time stands for precomputations time.

Time (iters) Time (iters) Time (iters)
Grid Method Pre-time to 10−3 to 10−6 to 10−9

64× 64

ICt(5) 2.2 · 10−3 0.068 ± 0.002 0.086 ± 0.002 0.112 ± 0.002
(21± 0.8) (28± 0.7) (33± 0.7)

PreCor
[
ICt(1)

]
2.4 · 10−3 0.085± 0.077 0.107± 0.077 0.128± 0.078

(27± 0.8) (35± 0.9) (43± 1.0)

128× 128

ICt(5) 8.1 · 10−3 0.465± 0.050 0.588± 0.062 0.689± 0.073
(45± 1.4) (57± 1.2) (68± 1.2)

PreCor
[
ICt(1)

]
5.0 · 10−3 0.344 ± 0.083 0.437 ± 0.093 0.525 ± 0.101

(43± 1.5) (55± 1.8) (66± 1.8)

A.3 DISTRIBUTION OF EIGENVALUES

Figure 3: Distribution of eigenvalues for a sampled linear system of diffusion equation with variance
0.7 on grid 64 × 64. (From left to right): initial left hand side A, A preconditioned with IC(0),
A preconditioned with PreCor

[
IC(0)

]
trained with loss (2), A preconditioned with PreCor

[
IC(0)

]
trained with loss (3). Hutchinson estimator is used for both losses.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 GENERALIZATION

Figure 4: Generalization of PreCorrector on unseen datasets. Values are number of CG iterations
to achieve required tolerance, which specified in the title of each plot. Blue – IC(0) is used as
preconditioner. Black – PreCorrector

[
IC(0)

]
; trained and inferenced on the same dataset. Red –

PreCorrector
[
IC(0)

]
; trained on the diffusion eqaution with variance 0.5 on grid 64×64; inferenced

on the dataset, that is described by axes values.

A.5 SCALABILITY

The PreCorrector is a combination of several MLPs with message-passing connections. When grow-
ing non-zero elements nnz (i.e., growing a matrix size) with the same sparsity pattern, the complexity
of the PreCorrector forward call grows linearly. The algorithm for IC(0) has O(nnz). We expect a
small increase in computational cost for larger systems, since with matrix grows we are only inter-
ested in the growth of non-zero elements in the matrix. The growth of non-zero elements is much less
severe than the growth of a matrix size due to the nature of matrices – discretization of PDEs. The
PreCorrector works directly on the edges and nodes of the graph and can be easily data-parallelized.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.6 DATASET DESCRIPTION

Figure 5: Coefficient function k(x) = exp (ϕ(x)) for grid 128× 128 with different variances.

Table 11: Contrast values for diffusion equation with various variances.

Variance Grid Min contrast Mean contrast Max contrast

0.1
32 5 7 11
64 5 8 12
128 6 8 14

0.5
32 36 86 179
64 45 103 200
128 50 116 297

0.7
32 180 277 697
64 200 318 742
128 300 426 798

Table 12: Size of linear systems and number of nonzero elements (nnz) for different grid sizes and
matrices.

Grid 32× 32 Grid 64× 64 Grid 128× 128

Matrix Size nnz, % Size nnz, % Size nnz, %

A

1024

0.4761

4096

0.1205

16384

0.0303
L from IC(0) 0.2869 0.0725 0.0182
L from ICt(1) 0.3785 0.0961 0.0242
L from ICt(5) 0.7547 0.1920 0.0485

A.7 INCOMPLETE LU FACTORIZATION

Full LU decomposition (Trefethen & Bau, 2022) for a square non-singular matrix defined as the
product of the lower and upper triangular matrices B = LBUB . In general, these matrices have no
restriction on the position and number of elements within their triangular structure and can even be
dense for a sparse matrix B. On the other hand, an ILU is an approximate LU factorization:

A ≈ LU, (11)

where LU −A satisfies certain constraints.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Zero fill-in ILU, denoted ILU(0), is an approximate LU factorization A ≈ L0U0 in such a way
that L0 has exactly the same sparsity pattern as the lower part of A and U0 has exactly the same
sparsity pattern as the upper part of A. For the ILU(p) decomposition the level of fill-in is defined
hierarchically. The product of the factors of the ILU(0) decomposition produces a new matrix B with
a larger number of non-zero elements. The factors of the ILU(1) factorization have the same sparsity
patterns as lower and upper parts of the sparsity pattern of the matrix B. With this recursion one gets
a pattern of the ILU(p) factorization with p-level of fill-in. ILU(0) is a typical choice to precondition
iterative solvers and relies only on the levels of fill-in, e.g. sparsity patterns (Saad, 2003). One can
obtain better approximation with ILU by using incomplete factorizations with thresholding.

One such technique is the ILU factorization with thresholding (ILUt(p)). The parameter p defines the
number of additional non-zeros allowed per column in the resulting factorization. For the ILUt(p)
decomposition, the algorithm is more complex and involves both dropping values by some prede-
fined threshold and controlling the number of possible non-zero values in the factorization. In the
case of ILUt(p), the value p represents additional non-zero values allowed in the factorization per
row. The thresholding algorithm provides a more flexible and effective way to approximate the in-
verse of a matrix, especially for realistic problems where the numerical values of the matrix elements
are important.

The complexity of solving sparse linear systems with matrices in the form of the Choletsky decom-
position defined by the number of non-zero elements O(nnz). This value also defines the storage
complexity and the complexity of preconditioner construction.

A.8 DETAILS ON CORRECTION COEFFICIENT

Table 13: Values of the learned coefficient α from (6) with loss (3).

Grid 32× 32 Grid 64× 64 Grid 128× 128

Equation Variance IC(0) ICt(1) IC(0) ICt(1) IC(0) ICt(1)

Poisson — −0.159 −0.091 −0.188 −0.095 −0.202 −0.116
Diffusion 0.1 −0.107 −0.073 −0.099 −0.082 −0.115 −0.086
Diffusion 0.5 −0.068 −0.034 −0.064 −0.051 −0.094 −0.055
Diffusion 0.7 −0.066 −0.031 −0.070 −0.043 −0.062 −0.031

17

	Introduction
	Neural design of preconditioner
	Learn correction for ILU
	Graph neural network with preserving sparsity pattern
	PreCorrector

	Dataset
	Experiments
	Preconditioners comparison
	Loss function

	Discussion
	Limitations
	Appendix
	Additional experiments with IC(0) and ICt(1) preconditioners
	Additional experiments with ICt(5) preconditioner
	Distribution of eigenvalues
	Generalization
	Scalability
	Dataset description
	Incomplete LU factorization
	Details on correction coefficient

