
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OMNIKV: DYNAMIC CONTEXT SELECTION FOR EFFI-
CIENT LONG-CONTEXT LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

During the inference phase of Large Language Models (LLMs) with long con-
text, a substantial portion of GPU memory is allocated to the KV cache, with
memory usage increasing as the sequence length grows. To mitigate the GPU
memory footprint associate with KV cache, some previous studies have discarded
less important tokens based on the sparsity identified in attention scores in long
context scenarios. However, we argue that attention scores cannot indicate the
future importance of tokens in subsequent generation iterations, because attention
scores are calculated based on current hidden states. Therefore, we propose Om-
niKV, a token-dropping-free and training-free inference method, which achieves
a 1.68x speedup without any loss in performance. It is well-suited for offloading,
significantly reducing KV cache memory usage by up to 75% with it. The core
innovative insight of OmniKV is: Within a single generation iteration, there is
a high degree of similarity in the important tokens identified across consecutive
layers. Extensive experiments demonstrate that OmniKV achieves state-of-the-art
performance across multiple benchmarks, with particularly advantages in chain-
of-thoughts scenarios. OmniKV extends the maximum context length supported
by a single A100 for Llama-3-8B from 128K to 450K. 1.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated their profound impact across a multitude of
applications, such as chatbots (Achiam et al., 2023; Meta, 2024), agents (Wu et al., 2023; Chan
et al., 2023; Liu et al., 2023b), and embodied robotics (Mai et al., 2023; Zhang et al., 2024b). These
applications confirm the demand for LLMs with strong long context processing capabilities to tackle
complex tasks based on prior interaction histories or given information materials. Currently, some
studies have successfully extended the maximum context length of LLMs (Peng et al., 2023; Yang
et al., 2024; Young et al., 2024; Meta, 2024; Chen et al., 2023).

In long-context scenarios, LLMs inference incurs more massive GPU memory usage. Particularly,
a significant portion of this is attributed to the KV cache, which is proposed to accelerate LLMs
generation and reduce redundant computation. Moreover, the memory occupied by the KV cache
increases linearly with the sequence length. For instance, in the case of Llama-3-8B, with a batch
size of 8 and a context length of 128K tokens, the KV cache alone occupies over 134GB of GPU
memory, presenting a significant challenge to inference systems. To alleviate the high memory
usage of the KV cache in long-context scenarios, previous studies (Zhang et al., 2024c; Li et al.,
2024; Liu et al., 2024a) have attempted to identify and discard less important tokens based on
sparsity in attention in long-context scenarios (Wang et al., 2021; Ribar et al., 2024). Tokens with
lower cumulative attention scores are discarded, thereby reducing GPU memory occupation.

However, we argue that in multi-step reasoning scenarios, the important tokens vary depending
on the reasoning step. This variation arises because attention scores are calculated based on the
current hidden states, meaning that the attention scores of tokens only reflect their relevance to
current reasoning step. Consequently, some tokens with low scores may be recalled as important
and relevant tokens in subsequent reasoning steps as shown in Figure 1b. Discarding tokens may
lead to the loss of crucial information for completing subsequent reasoning steps.

1Due to company privacy policy, we have posted the core pseudo code of OmniKV in Section B. We will
release the code as soon as possible after approval.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Motivated by this, we propose OmniKV, a novel inference method that retains the KV cache for all
tokens. This approach not only achieves performance comparable to that of the original model but
also accelerates decoding efficiency when context is longer than 32K. OmniKV is mainly built upon
an innovative insight: For a specific context, the tokens with high attention scores are very similar
across various layers. We refer to this phenomenon as Inter-Layer Attention Similarity. In other
words, a similar set of tokens is identified as important across multiple layers.

Specifically, OmniKV offloads most layers’ KV cache to CPU memory when processing the input
prompt (i.e., the prefill stage) but retains few “filter” layers’ entire KV cache. During the next token
prediction (i.e., the decode stage), OmniKV first exploits the sparsity of attention map, selecting a
few top-scoring tokens using top-k in these few “filter” layers. Next, other layers directly use the
subset of tokens chosen by the preceding filter layers as context. This way, OmniKV only needs to
load a small subset of tokens from CPU memory into GPU memory for attention computation. For a
decoding iteration, since many layers share the same index of tokens, we only perform≤ 3 transfers
between GPU and CPU. By using asynchronous transfer to overlap computation with transfer time,
the efficiency of decoding is unaffected even accelerated due to the shorter context computed in most
layers.

We conducted extensive experiments on various LLMs, including Llama-3-8B-262K 2, Yi-9B-200K
(Young et al., 2024) and Llama-3.1-70B (Meta, 2024) across benchmarks LongBench (Bai et al.,
2023) and InfiniteBench (Zhang et al., 2024a). We tested both single-step reasoning and multi-
step reasoning (Chain of Thoughts) setups. The results showed that OmniKV achieved the best
performance in both settings, especially in the multi-step reasoning setup. This demonstrates the
necessity of drop-free and the effectiveness of dynamic context selection. Moreover, OmniKV can
accelerate inference when context lengths exceed 32K. By using only a single A100 GPU, compared
to the original model’s efficiency, OmniKV achieves a 1.7x speedup with 128K context. When using
three A100s for origin model to pipeline inference with 450K context, OmniKV still achieves a 1.87x
speedup while using only a single A100.

2 RELATED WORK

Token Dropping and Offloading. Most similar studies to ours focus on discarding unimportant
tokens based on accumulated attention scores after the prefill stage. These tokens are then com-
pletely dropped in the decode stage (Zhang et al., 2024c; Liu et al., 2024a; Li et al., 2024; Ge et al.,
2024a). However, these methods might discard tokens that could become important in future rea-
soning steps. To ensure the lossless of information, we dynamically select a sparse subset of the KV
cache for each generation iteration to guarantee performance. In a related approach, Quest (Tang
et al., 2024) recognizes the importance of dynamic selection. Nonetheless, it fails to reduce memory
usage and may compromise recall. Due to representing a block with a single vector, Quest’s capacity
to retrieve relevant tokens may be compromised.

Another type of similar works involves KV cache offloading. Many studies offload layers’ KV cache
to CPU memory when VRAM is not sufficient (Sheng et al., 2023; Kwon et al., 2023b). However,
these methods do not leverage sparsity in attention. The data transfer volume over PCIe is 10 times
more than ours in long-context scenarios. InfLLM (Xiao et al., 2024a) similarly divides sequences
into blocks, selecting a few representative vectors as retrieval keys for a block. Then offloads other
data to CPU memory. However, the chosen few representative vectors may fail to fully capture the
block’s information, resulting in a relatively low recall rate.

Other Efficient Methods. Considerable efforts have been made to minimize KV cache while
incurring minimal performance loss to the model. One class of work compresses KV cache, such as
ICAE (Ge et al., 2024b) and Gist (Mu et al., 2024), which utilize LLMs as auto-encoders to compress
the context to a shorter sequence. Additionally, there are works that directly compress prompts at the
language level, thereby indirectly compressing KV cache, such as LLMLingua (Jiang et al., 2023).
Similar to model weight quantization, there are also attempts to quantize KV cache, such as KIVI
(Liu et al., 2024b) and SmoothQuant (Xiao et al., 2023). These compression or quantization works
are orthogonal to our method and can be used in conjunction.

2https://huggingface.co/gradientai

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Sparsity in LLMs. The sparsity of attention in long-context scenarios has been observed by previ-
ous studies (Liu et al., 2023a; Ribar et al., 2024; Wang et al., 2021). For example, Minference (Jiang
et al., 2024b) has demonstrated that with a context of 128k, only 4k tokens are required to accumu-
late 96.4% of the total attention score. However, the tokens with high attention scores vary across
different generation iterations, indicating that the sparse pattern is dynamic (Tang et al., 2024). This
implies that it is necessary to compute the full attention in every generation iteration and every layer
to determine the sparse pattern. Quest (Tang et al., 2024) and SparQ (Ribar et al., 2024) employed
approximate attention methods to circumvent the computationally expensive full attention. Infini-
Gen (Lee et al., 2024) introduced cross-layer similarity between consecutive two layers, leveraging
this characteristic to pre-select the critical KV cache. However, the loading time may still exceed
the computation time, resulting in GPU idleness. In contrast, we observe that the sparse patterns
between different layers exhibit high similarity, and thus we only compute full attention for a few
layers to obtain the sparse patterns for subsequent layers. To the best of our knowledge, we are the
first to highlight this.

3 INSIGHTS

0 5 10 15 20
Transformer Layer ID

0.825

0.850

0.875

0.900

0.925

0.950

In
te

r-L
ay

er
 A

ttn
 S

im
ila

rit
y

Llama3-8B - n=8
Llama3-8B - n=16

0 20 40 60
Transformer Layer ID

0.80

0.85

0.90

0.95

In
te

r-L
ay

er
 A

ttn
 S

im
ila

rit
y

Llama3.1-70B - n=8
Llama3.1-70B - n=16

(a)

Context about Apollo 11
<BOS>Apollo 11 was the first manned mission to land on the Moon, led by Neil Armstrong
and Buzz Aldrin …… They spent around 135 minutes on the lunar surface, collecting 21.55
kilograms of rock samples. Meanwhile …… splashing down in the Pacific Ocean on July
24, concluding an eight-day mission.

Questions:
1. When did the first manned mission to the moon take place?
2. Who is the person whose name begins with B?
3. What role does he play in the team, and what has he accomplished?

LLM Output (w. Full Attention)
1. The first manned mission to the moon took place on July 20, 1969.
2<α>Buzz Aldrin.
3. He is the second person to walk on the moon, and he collected<β>21.55 kilograms of
rock samples.

“<α>” as Current Token “.” “<β>” as Current Token “ ”

(b)

0 20 40 60
Decode Steps

0.0

0.2

0.4

Su
m

 M
iss

in
g

Sc
or

es Llama3-8B

0 20 40
Decode Steps

0.0

0.2

0.4

Su
m

 M
iss

in
g

Sc
or

es Yi-9B

0 100 200
Decode Steps

0.0

0.2

0.4

Su
m

 M
iss

in
g

Sc
or

es Llama3.1-70B

(c)

Figure 1: Analysis of attention. (a) Inter-Layer Attention Similarity. This shows a high similarity
of important tokens/sub-context between layers even 16 layers apart. (b) An example of a multihop
question demonstrates the variation in important tokens across different generation iterations. (c)
Analysis of variety in important tokens. We retained the set of important tokens, then calculated the
cumulative attention scores of missing tokens.

Our work is grounded in three pivotal insights, which we verify through experiments utilizing pop-
ular models Llama-3-8B-Instruct, Yi-9B-200k, and Llama-3.1-70B-Instruct.

Intra-Layer Attention Sparsity. Studies have consistently revealed that attention matrices within
LLMs layers exhibit sparsity (Wang et al., 2021; Deng et al., 2024). This characteristic implies
that LLMs can generate nearly equivalent outputs by focusing on a reduced subset of tokens. Some
studies have enhanced inference speed or reduced GPU memory requirements based on sparsity
(Zhang et al., 2024c; Li et al., 2024; Tang et al., 2024). Due to the presence of sparsity, OmniKV
utilizes only a small subset of tokens in most layers. In this way, we not only reduced computation
but also decreased the communication volume between CPU and GPU.

Inter-Layer Attention Similarity. We introduce the concept of inter-layer attention similarity,
which is defined as, a fixed subset of tokens that receive significant attention in a specific layer,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Context Bank
GPU MemCPU Mem

Layer ID

Offloaded
KV Cache

0

1

8

…
…

…
…

KV Cache on GPU + Obs Window

b) Index
Select

then Load

Context
Selector

✔✖✖✔

LLM

Last Token

Next Token

c) Visible KV Cache

Cache on GPU

Cache on CPU
Sparse A6n on Tokens Selected

by Nearest Previous Filter Layer

Full A6n but not Select

Full Attn and Select (Filter Layer)

b) Shared Index for MulB Layers

(a) Context Filter

Figure 2: Overall Framework of OmniKV in decode stage. There are three types of layers in Om-
niKV. In prefill stage, all layers perform full attention and generate KV cache of context. Then
OmniKV offloads the KV cache generated by green layers to CPU memory. In the decode stage,
orange layers perform full attention because of lower sparsity or inference efficiency. Purple (filter)
layers perform full attention and a) select important tokens using context selector based on attention
scores calculated over observation window. Green layers b) load the subset of KV cache selected by
preceding filter layers to GPU and perform sparse attention. c) Only the KV Cache on the GPU is
visible to the LLM for generating next token.

maintains their prominence throughout successive layers. The value of similarity of a layer can
also be viewed as “filter” ability of this layer, and is calculated as the mean of the summation of
fixed tokens subset’s attention scores in subsequent layers. Figure 1a demonstrates that, beyond a
certain shallow layer, the similarity for one layer to successive n layers becomes exceptionally high.
Although the overall similarity between layers is already high, some layers exhibit higher “filter”
ability than others. We refer to these layers as “filter” layers. Subsequently, these layers function as
context selectors within OmniKV, identifying crucial tokens for each generation iteration and thus
facilitating sparse attention in subsequent layers.

Inter-Token Attention Variability. Intuitively, the important tokens should vary throughout the
generative process of LLMs, particularly under multi-task or multi-reasoning scenarios such as the
Chain of Thoughts (CoT) (Wei et al., 2023). As shown in Figure 1b, for a multi-hop question,
we highlight 12 tokens with the highest attention scores for two decoding steps respectively in
the CoT scenario. We can observe that, apart from the special BOS token, the other important
tokens are entirely different. Meanwhile, as demonstrated in Figure 1c, empirical studies on the
Multi-Hop QA task (Ho et al., 2020) also confirm this variability. For each generation iteration, we
compute the cumulative attention scores for the missing tokens to a token set, which stores 25%
most pivotal tokens during the prefill stage (i.e. Heavy Hitters in H2O). The spikes observed in
the figure indicate that some missing tokens have significant attention scores. This phenomenon
substantiates our intuition that the subsets of critical tokens identified exhibit significant fluctuations
across different generative steps. Motivated by this insight, OmniKV retains all KV cache to ensure
that performance remains unaffected.

4 METHOD

Based on the aforementioned insights, we propose OmniKV, a token-dropping-free and training-free
inference method. This design empowers OmniKV to sustain the performance of LLMs in multi-
reasoning settings. As depicted in Figure 2, OmniKV comprises two pivotal modules: the Context
Bank and the Context Selector.

The inference of auto-regressive LLMs can be divided into two stages: 1) Prefill, which encodes the
intermediate computational state of the input prompt as KV cache K,V to circumvent redundant
KV vector computations, and outputs the next token as the first input for decoding; 2) Decode, which

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

takes the token predicted from the previous decode iteration as the current token, and predicts the
next token.

During the prefill stage, OmniKV initialize the Context Bank to store most “non-filter” layers’
KV cache in CPU memory based on inter-layer attention similarity. In the decode phase, OmniKV
adopts a plug-and-play Context Selector that dynamically identifies important subsets of KV cache
K,V on a few “filter” layers. Then the Context Bank propagates the selections to the “non-filter”
layers and load the corresponding subset of KV cache in a pack to GPU memory, since these layers
share a same index of tokens. In this way, OmniKV reduces computation and data transfer costs.

4.1 CONTEXT BANK

The proposed Context Bank utilizes inter-layer attention similarity to prefetch important tokens.
In scenarios of insufficient GPU memory, the Context Bank can also asynchronously preload the
corresponding KV cache from CPU memory, thereby alleviating memory constraints.

For the sake of simplicity in analysis, we will ignore the batch size here. In the prefill phase, an L-
layer LLM creates KV caches, {Ki,Vi}Li=1, by applying attention projection matrices Wk

i and Wv
i

to hidden states hp
i , yielding tensors in RH×N×d for both keys and values. Here, N represents the

length of the tokenized prompt p within the prefill context, H signifies number of attention heads,
and d denotes the hidden size of per attention head.

Firstly, We need to determine which layers are more effective for identifying important tokens.
These selected layers are referred to as “filter” layers. As illustrated in Figure 1a, although the
similarity between adjacent 16 layers is high, a significant gap is observed between the mean simi-
larities of 8 adjacent layers compared to 16 layers. To enhance performance by reducing the distance
between “filter” layers, OmniKV utilizes a set of hyperparameters L, where the size (m,m ≤ 3).
Compared to using a single “filter” layer, the sub-context used by “non-filter” layers theoretically
exhibits a higher degree of similarity when using multiple “filter” layers.

Consequently, OmniKV performs full attention on the layers within L to identify a small subset of
important tokens Ti, (i ∈ L). Due to the shallow layers’ reduced sparsity, OmniKV also performs
full attention without selection on preceding layers up to layer L0, (l < L0). Then, OmniKV utilizes
only these important tokens Ti as sub-context for the sparse attention layers l, where Li < l < Li+1.
Here, hw

i represents the hidden states of the observation window at layer i. The context selector
identifies important tokens that have significant attention scores over the observation window.

Ti =

{
ContextSelector(hw

i ,Ki) if i ∈ L
Ti−1 otherwise

for i ≥ L0 (1)

To avoid unnecessary GPU waiting when loading KV cache, OmniKV also performs full attention
on the L-adjacent layers, denoted as {l + 1}l∈L. This interleaves data transfer with computation.
Here, hl

i represents the hidden states of the last token. Finally, the entire attention mechanism can
be formulated as follows:

outi =
{
Attentioni(h

l
i,Ki,Vi) if i ∈ L or i− 1 ∈ L or i < L0

Attentioni(h
l
i,Ki[Ti],Vi[Ti]) otherwise

(2)

OmniKV significantly reduces the sequence length to less than 10% in sparse attention layers, which
leads to a decrease in time complexity. Upon identifying the critical tokens Ti in Lt (where Lt = i),
OmniKV retrieves the corresponding subset of KV caches Kj [Ti],Vj [Ti] (where Lt + 1 < j <
Lt+1) for sparse layers as a sub-context from the CPU memory.

Packed Load. Since layers between “filter” layers share the same sub-context tokens’ index T,
the KV cache for a series of consecutive sparse attention layers can be packed and loaded from
the CPU to the GPU at the nearest preceding “filter” layer. Consequently, OmniKV conducts only
m,m ≤ 3 loads, significantly reducing the slow PCIe transfer overheads compared to loading at
each layer.

4.2 CONTEXT SELECTOR

As described in Section 4.1, OmniKV selects important tokens Ti in “filter” layers L. Inspired
by previous works (Li et al., 2024; Xiao et al., 2024a), we propose a unified framework for token

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

selection. OmniKV selects important tokens based on a score vector Si ∈ RN . The score Si is
calculated using a observation window hw

i . Commencing with the local window as the query states,
and the full context hc

i as the key states, we compute the attention scores Ai:

Qi = Wq
ih

w
i , Ki = Wk

i h
c
i , Ai = Softmax

(
QiK

⊤
i√

d

)
, Ai ∈ RH×|hw

i |×|hc
i | (3)

Next, to get the score Si, we first apply reduce-max to obtain the maximum score across attention
heads. Subsequently, a weighted vector α is utilized to perform a weighted summation on the
attention scores. Finally, we leverage topk to identify the important tokens Ti on score Si.

Si =

|hw
i |−1∑
j=0

αj max
0≤h<H

Ai[h, j], Si ∈ R|hc
i |, Ti = arg top k

0≤t<|hc
i |
(Si), Ti ∈ Rk (4)

Different α values assign varying weights to local window tokens and yield distinct selection
patterns. To further investigate which tokens of the observation window possess a stronger “fil-
ter” capability to identify important tokens T, this study explores three methods: 1) Uniform:
α = {1}|h

w
i |

i=0 . This approach implies that each token in the window produces equivalent contri-
bution when weighted and summed attention scores. 2) Exponential: α = {2i−|hw

i |}|h
w
i |

i=0 . This
approach implies that tokens closer to the end of the window produce higher contribution. 3) Last
Token: concat(α = {0}|h

w
i |−1

i=0 , {1}). This approach implies that we only consider the last token’s
attention score in the window.

5 EXPERIMENTS

To demonstrate the effectiveness of OmniKV, we conducted extensive experiments on Llama-3-
8B-262K, Yi-9B-200K and Llama-3.1-70B-Instruct mainly using the datasets InfiniteBench (Zhang
et al., 2024a) and LongBench (Bai et al., 2023). OmniKV demonstrated its effectiveness on 8B and
70B through experiments. Furthermore, we have explored its efficacy on Llama-3.1-405B, with the
results presented in Sec D.8 Ablation studies and minor or detailed experiments can be found in
Section D.

Implementation. For most tasks, we adopted greedy decoding. To prevent repetitive outputs,
we employed top-p decoding with p = 0.95, temperature = 0.8 for summarization tasks in In-
finiteBench. All performance and latency experiments were conducted on Nvidia A100 GPUs.
Llama-3.1-70B utilized 4-bit weight quantization via bitsandbytes (Dettmers et al., 2021), while
other models employed float16 formatting. We makes minor modifications based on Huggingface’s
transformers (Wolf et al., 2020). For exponential and uniform context selectors, we set the local
window size to 16. The “filter” layers L are set respectively {2, 8, 18}, {6, 11, 30}, {4, 19, 41} for
Llama-3-8B-262K, Yi-9B-200K and Llama-3.1-70B-Instruct.

To ensure fairness in comparison, we strictly set OmniKV to retain Mem% of KV caches on GPU.
This means we dynamically adjust the token budget for sparse attention layers based on the length
of the context prompt length. Mem% consists of two parts: First, OmniKV retains all KV caches
for full attention layers, which occupies 2|L|+L0

L of the total KV caches. Second, OmniKV’s token
budget for sparse layers is set to |T|

|p| % of KV caches. Therefore, the Mem% of KV cache for

OmniKV can be expressed as 2|L|+L0

L + |T|
|p| · (1 −

2|L|+L0

L). For example, when Mem% is set to
30% and the memory usage of layers L is 25%, then the token budget is set to 6.7%.

Baselines. We employed three state-of-the-art methods for memory reduction as baselines, as well
as Full Attention. For methods other than InfLLM and Full Attention, we strictly limited the KV
cache size to Mem%. Specific settings and implementations can be found in the Section C. 1)
H2O (Zhang et al., 2024c), which discards tokens based on attention scores, has been proven to be
superior in performance by previous work (Yuan et al., 2024). + indicates dropping tokens within
each chunk in H2O due to incompatible with flash attention. 2) InfLLM (Xiao et al., 2024a), similar
to our method, does not discard any tokens. It divides the sequence into blocks, then chooses a few

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance of single-step reasoning on LongBench (Bai et al., 2023). Italics indicate that
the model uses full attention baseline. Bold indicates the best performance under the same model.
∼ refers to InfLLM’s KV cache memory budget being roughly set to a specific value due to its
highly integrated implementation. + indicates dropping tokens within each chunk in H2O due to
incompatible with flash attention. Detailed results for every sub-task can be found in Table 4 and 5.

Methods %Mem Single-Doc QA Multi-Doc QA Summarize Few-Shot Synthetic Code Avg.

Llama-3-8B-262K 100% 29.2 22.9 24.9 65.9 43.5 48.9 39.2
H2O 30% 27.7 20.2 23.8 62.9 42.7 43.3 36.8
InfLLM ∼30% 28.1 15.3 19.1 62.7 36.5 48.5 35.0
StreamingLLM 30% 19.3 17.3 18.6 49.7 11.7 52.3 28.1
OmniKV w/ uni 30% 29.6 23.3 23.7 64.0 41.5 48.4 38.4
OmniKV w/ exp 30% 29.5 22.9 23.9 65.1 41.5 35.1 38.3
OmniKV w/ last 30% 29.5 22.9 24.4 64.9 41.2 48.4 38.5

Yi-9B-200K 100% 28.6 33.3 20.2 71.2 31.0 67.3 41.9
H2O 30% 26.0 33.5 17.5 68.7 31.1 66.6 40.6
InfLLM ∼30% 25.9 33.6 20.0 70.8 26.3 65.9 38.8
StreamingLLM 30% 12.4 11.3 13.5 56.3 2.9 60.7 26.2
OmniKV w/ uni 30% 28.2 34.3 20.0 71.0 29.1 65.0 41.3
OmniKV w/ exp 30% 28.1 34.0 20.0 71.2 30.6 65.5 41.6
OmniKV w/ last 30% 28.0 33.6 19.7 70.8 30.9 65.3 41.4

Llama-3.1-70B 100% 42.2 44.8 25.5 68.9 58.0 55.7 49.2
H2O+ 20% 36.6 38.9 24.1 61.2 24.5 54.0 39.9
InfLLM ∼20% 39.3 36.1 18.4 62.5 41.1 39.8 39.5
StreamingLLM 20% 16.7 12.3 18.7 45.6 7.5 61.1 27.0
OmniKV w/ uni 20% 40.8 43.8 23.6 67.7 57.7 53.8 47.9
OmniKV w/ exp 20% 42.0 44.3 24.6 68.4 57.6 55.2 48.7
OmniKV w/ last 20% 42.0 44.3 24.7 68.2 57.6 54.8 48.6

important tokens in each block as retrieval keys, and retrieves several relevant blocks as context
when decoding. 3) StreamingLLM (Xiao et al., 2024b) observes that the starting part of the input
prompt tokens occupies a large portion of the attention scores, and thus, in addition to the sliding
window approach, it retains an initial window as part of the context. 4) Full Attention (original
model), which does not discard any tokens and uses all tokens as context, serves as the theoretical
performance upper bound for comparison.

Datasets. To test OmniKV’s performance in single-step reasoning, we primarily used two widely
applied benchmarks: 1) InfiniteBench (Zhang et al., 2024a) with an average length of 145.1K,
covering multiple tasks. We uniformly adopted a 128K context for testing and truncated inputs
exceeding 128K at the middle. 2) We tested LongBench’s 18 tasks across multiple categories, with
most tasks’ average length ranging from 5K to 15K (Bai et al., 2023). During testing, all models
supported a context length longer than the longest sample, eliminating the need for truncation.

To assess OmniKV’s performance in multi-step reasoning, we utilized 2WikiMQA (Ho et al., 2020)
and HotpotQA (Yang et al., 2018) from LongBench. However, QA tasks may be biased, as questions
often focus on special information, such as a person’s birthplace, birth date, or awards received.
LLMs might prioritize this type of information during the prefill stage, potentially affecting the
accurate evaluation of their long-text capabilities. Motivated by this, we propose a benchmark called
2StageRetr. This task consists of a dictionary and an equation adding two numbers. LLMs need to
use the answer from the equation to search the dictionary, find the corresponding key, and output the
value associated with that key. Example and details can be found in Section A.

5.1 PERFORMANCE

Table 2: Performance of single-step reasoning on InfiniteBench (Zhang et al., 2024a).

Methods %Mem En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg.

LLaMA-3-8B-262K 100% 22.0 13.3 65.9 6.0 12.8 20.8 26.5 100.0 100.0 14.4 38.1
H2O+ 30% 21.8 13.8 65.5 7.0 12.5 23.0 30.5 98.4 74.0 5.2 35.2
InfLLM ∼30% 17.3 9.3 44.5 4.0 17.7 29.1 24.5 100.0 100.0 0 34.6
OmniKV w/ last 30% 22.5 12.7 65.5 5.0 12.6 20.0 26.5 100.0 100.0 9.6 37.4

Yi-9B-200K 100% 19.3 11.1 66.3 2.0 15.6 24.1 24.8 100.0 100.0 20.2 38.3
H2O+ 30% 21.6 10.8 66.3 1.0 15.8 23.3 24.0 100.0 92.7 6.0 36.1
InfLLM ∼30% 6.7 12.1 37.1 3.5 14.8 21.5 34.0 100.0 100.0 0 32.9
OmniKV w/ last 30% 20.0 11.1 66.8 1.0 15.5 23.8 23.8 100.0 100.0 19.8 38.2

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Performance with Single-Step Reasoning. We demonstrate the effectiveness of OmniKV in the
Single-Step Reasoning scenarios, which is the standard evaluation method for both benchmarks. In
this format, the model receives an input and directly answers the question without providing inter-
mediate reasoning steps. Results from LongBench and InfiniteBench are presented in Table 1 and
2, respectively. The results indicate that OmniKV achieves the best performance and consistently
performs very close to the original full attention baseline across all tasks, showcasing OmniKV’s
stability. Particularly in Llama-3.1-70B, OmniKV significantly outperforms the baselines. In some
task categories, OmniKV even surpasses the baseline results. On InfiniteBench, although OmniKV’s
performance on the Math.Find task is slightly lower than InfLLM, it remains very close to the orig-
inal model. However, InfLLM performs poorly on the KV Retrieval task. Thus, the stability of
OmniKV’s performance, compared to the original model, facilitates its direct application in real-
world scenarios without the need for additional testing.

20 25 30 35 40
Token Budget (Percentage)

40

50

60

70

2W
ik

iM
QA

 S
co

re

20 25 30 35 40
Token Budget (Percentage)

30

40

50

60

Ho
tp

ot
QA

 S
co

re

20 25 30 35 40
Token Budget (Percentage)

20

40

60

80

100

2S
ta

ge
Re

tr
Sc

or
e

H2O OmniKV w/ last OmniKV w/ uni OmniKV w/ exp StreamingLLM Full w/o CoT Full w/ CoT

Figure 3: Performance of multi-step reasoning with different token budget ratio of KV cache on
three multi-hop tasks.

Performance with Multi-Step Reasoning. OmniKV dynamically selects the necessary context
for attention computation. To demonstrate the necessity of drop-free and effectiveness of dynamic
context selection, we tested models on three multi-step reasoning tasks and adopted the CoT output
format to solve the problems. We use Exact Match as the metric, meaning that as long as the
standard answer appears in the model’s output, it is considered correct. The reason for employing a
simple metric is due to a more linear metric being better able to quantify performance gaps (Levy
et al., 2024; Schaeffer et al., 2023). The results of Llama-3.1-70B are shown in Figure 3. Results
show that OmniKV achieved the best performance under all budgets, demonstrating the effectiveness
of dynamic context selection. In the 2StageRetr task, we observe that H2O’s accuracy cannot exceed
its budget, indicating that without prior knowledge, H2O can only randomly retain key-value pairs
in task dictionary. We also conducted experiments on the Yi-9B-200K, as detailed in Section D.4.

Choice of Context Selectors. In Section 4.2, three context selectors are proposed. From Table 1
and Figure 3, it is evident that in single-step reasoning settings, the exponential and last selectors
perform better, while the uniform selector lags slightly but not significantly. In multi-step reasoning
settings, the last selector exhibits the best performance, while the uniform selector performs some-
what poorly. The exponential selector can be viewed as an intermediate state between the last and
uniform selectors. The fact that the last and exponential selectors outperform the uniform selector
suggests that the last may be the most optimal context selector. Moreover, the last method aligns with
the pretraining paradigm of LLMs, as the computation of context scores remains entirely consistent
with the original model.

From an engineering practice and inference efficiency perspective, last is also the simplest and has
the lowest latency, as this selector does not require maintaining cumulative scores for the window.
Therefore, in subsequent analysis experiments, we primarily focus on the last context selector.

5.2 LATENCY AND TRADE-OFF

We evaluated the end-to-end inference latency of OmniKV using a single NVIDIA A100 80GB GPU
and 12 cores of an Intel Xeon Platinum 8369B CPU at 2.90GHz. A 32-layer LLaMA-3-8B-262K
model was utilized, with “filter” layers L = {2, 8, 18}, applying flash attention (Dao et al., 2022),
and a batch size of 1. For different context length settings, the token budget for sparse attention
was set to 2048. During decoding, 50 tokens were generated, and the mean latency per token was
calculated over all decoding steps. In the prefill stage, we measured the Time To First Token (TTFT).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 8 16 32 64 12
8

25
6

45
0

Context Length (K Tokens)

50

100

150

200

250

De
co

de
 L

at
en

cy
/To

ke
n

(m
s)

OO
MBrutal Offload

Full
Full w/ multi gpus
H2O
InfLLM
OmniKV
OmniKV w/o offload

4 8 16 32 64 12
8

25
6

45
0

Context Length (K Tokens)

0

100

200

300

Pr
ef

ill
La

te
nc

y
(s

)

OO
MBrutal Offload

Full
Full w/ multi gpus
H2O
InfLLM
OmniKV
OmniKV w/o offload

Figure 4: End-to-end latency results. The left and right figures show the latency of the decode and
prefill stages respectively. OOM indicates the maximum context length supported by some methods
on a single A100 GPU.

The results are presented in Figure 4. The “Brutal Offload” approach refers to offloading all KV
cache of the final 20 layers to CPU, and pre-loading all KV cache for each layer 4 layers in advance.
InfLLM does not perform full attention during prefill, instead utilizing sparse attention in chunks.
Consequently, it achieves better latency at 450K context. However, employing sparse attention
in the prefill stage may impact the method’s performance (Yuan et al., 2024). OmniKV exhibits
identical latency to full attention during the prefill stage, which is attributed to the offload process
being covered by the full attention computation. We also tested the original model’s latency of 450K
context with 3 A100s. Overall, our method demonstrates the best latency performance.

Notably, when GPU memory is sufficient, i.e., within a 128K context for single A100, OmniKV can
store the entire KV cache in VRAM. At this point, OmniKV can still perform sparse attention with-
out offloading (OmniKV w/o offload), thus achieving a 1.68x decoding efficiency of 21.0 tokens/s
at 128K context. Moreover, we observe that OmniKV achieves lower latency than Full Attention
at 128K. This suggests that we can simply adopt a segmentation strategy for OmniKV to accelerate
decoding speed at any context length longer than 32K.

128 256 512 1024 2048 40966400

Token Budget for Sparse Layers

36.00
36.25
36.50
36.75
37.00
37.25
37.50

Av
g.

 P
er

f o
n

In
fB

en
ch

60

80

100

120

De
co

de
 L

at
en

cy
 (m

s)

Figure 5: Trade-off on token budgets for
sparse layers. Left axis shows the aver-
age score on InfiniteBench, and the right
axis shows the latency of decoding.

Under settings that save 70% of KV cache, we can run
Llama-3-8B with a 450K context on a single A100 80G
GPU at a speed of 7.5 tokens/s. We also validated the per-
formance under 512K ultra-long context on the Passkey
task using Llama-3-8B-1048k, achieving perfect results
as shown in Figure 7. Under 80% memory reduction, we
can run Llama-3.1-70B with a context of 150K tokens at
a speed of 4.5 tokens/s.

Trade-off between Performance and Efficiency. The
smaller the token budget used for sparse attention lay-
ers, the lower the latency caused by loading KV cache
from CPU. We evaluated the trade-off between perfor-
mance and efficiency on Llama-3-8B-262K for various
token budgets on InfiniteBench with 128K context. The
results are presented in Figure 5. Here, 6400 represents the token budget under Mem% = 30%. This
finding indicates that even retrieving only 128 relevant tokens per sparse layer as context can yield
satisfactory average score 35.9 higher than H2O+. Furthermore, selecting 1024 tokens achieves a
favorable balance between performance and latency. Detailed results could be found in Table 3.

5.3 ANALYSIS

As shown in Figure 1a, sparse patterns identified by some “filter” layers have higher similarity with
subsequent layers than other layers. Naturally, we have the following two research questions: 1)
Are these “filter” layers’ ability task-dependent or is this more of a model characteristics? 2) Which
layers have a greater ability to identify genuinely important tokens? 3) Is the performance varied
with “filter” capabilities?

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Layer ID

In
te

r-L
ay

er
 A

ttn
 S

im

In
te

r-L
ay

er
 A

ttn
 S

im

Layer ID(a)

0 5 10 15 20 25 30
Layer ID

0.025
0.050
0.075

Hi
t R

at
e

Random Hit Rate

0 10 20 30 40
Layer ID

0.02

0.04

Hi
t R

at
e

Random Hit Rate

(b)

5 10
Layer ID

36

37

38

39

Av
g.

 P
er

f L
on

gB
en

ch

(c)

Figure 6: Analysis of “filter” ability in layers. For (a) and (b), left: Llama-3-8B-262K, right: Yi-
9B-200K. (a) The inter-layer attention similarity, also referred to as the “filter” capability of layers,
displays similar trends across various tasks. (b) Varying capabilities to capture important tokens. (c)
Varying performance on LongBench using Llama-3-8B-262K.

Task-Independent Filter Layers. To answer the first research question, we conducted experi-
ments on different tasks to collect those layers’ “filter” characteristics. The results, shown in Figure
6a, display the trends of similarity values for Llama-3-8B and Yi-9B across various tasks. We
can observe that these curves for different tasks generally follow same trends, suggesting that the
strength of “filter” is not task-dependent. Instead, the “filter” ability is more likely an intrinsic char-
acteristic of the layers themselves. This implies that once we select appropriate hyper-parameters L,
our method can be adapted to any task.

Accuracy of Context Selection. We use the CLongEval dataset (Qiu et al., 2024) to test whether
the layers can accurately assign higher attention scores to the context containing the answer. This
dataset provides the reference chunk where the standard answer is located. Although this chunk
covers a broad range, we can still compute the hit ratio as the proportion of important tokens within
the reference chunk. The results are shown in Figure 6b. We observed that the layers with stronger
“filter” ability demonstrate a higher hit ratio compared to neighboring layers. For example, the 8th
layer in Llama3-8B exhibits a peak in both Figure 6a and 6b. Likewise, the 14th layer in Yi-9B
displays similar characteristics. This suggests that certain layers develop a stronger capacity for
important token retrieval after training.

Performance Vary with Filter Ability. We conduct experiments using Llama3-8B-262K on
LongBench. As shown in Figure 6c, results indicate that layers 8, 10, 11, and 13 exhibit relatively
superior performance, which corresponds well with the higher “filter” ability observed in these lay-
ers as shown in Figure 6a. Similarly, the sudden performance decline in layer 12 and the abrupt
improvement in performance from layer 4 to layer 5 are also aligned in Figure 6a. Detail results can
be found in Section D.6.

6 CONCLUSION

This paper proposes OmniKV, a token-dropping-free and training-free inference method, delivering
a 1.7x improvement in inference efficiency without compromising performance in long-text sce-
narios. Moreover, OmniKV is highly compatible with offloading techniques, significantly reducing
KV cache memory consumption. The method is simple to implement and has promising practical
application prospects. In our future work, we plan to explore the integration of OmniKV with KV
cache quantization techniques to further minimize the usage of KV cache and enhance efficiency.

REPRODUCIBILITY STATEMENT

The hyper-parameters, hardware environment, decoding methods, and other pertinent details are
presented in Section 5. The core code for OmniKV is provided in Section B. Detailed settings and
implementation of baselines can be found in Section C.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input, 2024. URL https://arxiv.org/abs/2404.02690.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. In The Twelfth International Conference
on Learning Representations, 2024a.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
for context compression in a large language model. In The Twelfth International Conference on
Learning Representations, 2024b.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop qa dataset for comprehensive evaluation of reasoning steps, 2020. URL https://arxiv.
org/abs/2011.01060.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 13358–13376, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024a.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024b.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023a.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023b.

11

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2404.02690
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models, 2024. URL https://arxiv.org/
abs/2402.14848.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024a.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An llm-
agent collaboration framework with agent team optimization. arXiv preprint arXiv:2310.02170,
2023b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Jinjie Mai, Jun Chen, Guocheng Qian, Mohamed Elhoseiny, Bernard Ghanem, et al. Llm as a robotic
brain: Unifying egocentric memory and control. 2023.

Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

ModelTC. Lightllm: An efficient lightweight llm serving framework. https://github.com/
ModelTC/lightllm, 2023.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36, 2024.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Zexuan Qiu, Jingjing Li, Shijue Huang, Wanjun Zhong, and Irwin King. Clongeval: A chinese
benchmark for evaluating long-context large language models. arXiv preprint arXiv:2403.03514,
2024.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient llm inference. In Forty-first International Conference on
Machine Learning, 2024.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage?, 2023. URL https://arxiv.org/abs/2304.15004.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. In Forty-first International Confer-
ence on Machine Learning, 2024.

12

https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2407.21783
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://arxiv.org/abs/2304.15004

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 97–110. IEEE, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-
the-art natural language processing, 2020. URL https://arxiv.org/abs/1910.03771.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, and Maosong Sun. Infllm: Training-free long-context extrapolation for llms with an efficient
context memory, 2024a. URL https://arxiv.org/abs/2402.04617.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024b.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Jiayi Yuan, Hongyi Liu, Shaochen, Zhong, Yu-Neng Chuang, Songchen Li, Guanchu Wang, Duy
Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui Liu, and Xia Hu. Kv cache compression,
but what must we give in return? a comprehensive benchmark of long context capable approaches,
2024. URL https://arxiv.org/abs/2407.01527.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. ∞bench: Extending long context
evaluation beyond 100k tokens, 2024a. URL https://arxiv.org/abs/2402.13718.

Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Xuelong Li, and Zhen Wang. Towards
efficient llm grounding for embodied multi-agent collaboration. arXiv preprint arXiv:2405.14314,
2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024c.

13

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2407.01527
https://arxiv.org/abs/2402.13718

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A 2STAGERETR

To mitigate the influence of these priors on the results, we propose the benchmark 2StageRetr. The
main idea behind this benchmark is to construct a two-step reasoning problem, using the result of
the first step to complete the second step. The task description is placed at the end of the prompt,
preventing the model from “mentally calculating” the result of the first step. Thus avoids LLMs
assigning high attention scores to answer tokens based on mentally computed results. Specifically,
the 2StageRetr consists of a dictionary composed of multiple pairs of numbers and colors, followed
by an addition equation. We ensure that the result of the addition is always a key in the dictionary.
Then the model needs to find the corresponding color in the dictionary based on the result of the
addition, and output it. An example of 2StageRetr is shown below.

2StageRetr Example

Lets play a game. You have a dict and a mathematical addition equation. The keys of a dictionary can
be any number. You need to find the corresponding key value in the dictionary after performing the
addition and output the value corresponding to that key. The Dict is {0: lime, 1: yellow, 2: red, 3:
black, 4: brown, 17: brown, 18: maroon, 19: teal, 20: red, 28: brown, 29: violet}
The equation is 8 + 10 = ? Answer the corresponding color based on the addition result.

Example output: Since 8 + 10 = 18, the corresponding color is “maroon”.

This design essentially ensures that LLMs, without prior knowledge of the problem, use pre-trained
prior knowledge to assign higher attention scores to certain key-value pairs in the dictionary. Con-
sequently, the H2O method is fundamentally akin to randomly discarding key-value pairs from the
dictionary. Hence, its performance cannot surpass the proportion of its token budget. In contrast, our
method selects the most relevant context based on the information within the observation window
each time, thereby achieving superior performance.

We set the dictionary size to not exceed 200, with numbers arranged sequentially from 0 to the
maximum value. This arithmetic sequence should be relatively simple for current LLMs, thereby
primarily assessing the model’s retrieval capability.

The average length of this dataset is only 739 tokens, with the maximum length being 1382 tokens.
However, current cache drop-based methods do not perform very well on this task.

B DETAILED IMPLEMENTATION

The actual code implementation required only a minor modification of the code sourced from Hug-
gingface’s Transformers library (Wolf et al., 2020). Here we present the core pseudo code of Om-
niKV in Algorithm 1. This algorithm demonstrate the attention forward procedure of one layer.

C BASELINES SETTINGS

Here we provide a detailed description of the settings for different baselines.

1) H2O. As H2O requires the output of attention scores, which is incompatible with flash attention,
the intermediate activation values directly lead to out of memory errors when processing long se-
quences. Therefore, when the context length exceeds 60K or when using models larger than 30B,
we must calculate attention in chunks and remove tokens based on the attention score within each
chunk. We denote this approach with + in our results. To ensure fairness in comparison, we strictly
set H2O to retain Mem% of KV caches. We also modified code for supporting GQA (Ainslie et al.,
2023) in Llama-3 and Yi.

2) InfLLM. Since InfLLM uses an LRU-based block cache and has many hyper-parameters, limiting
the KV cache by percentage leads to efficiency degradation and performance decline. Therefore,
InfLLM is configured to use an average of Mem% of KV caches.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 1: Attention Forward of OmniKV
Input: observation window’s hidden states hw

i , filter layers L, context cache K,V, visible KV
cache Kv,Vv , current layer i, attention query weight Wq

i , token budget k, window
weights α

if i ∈ L then
Qw

i ←Wq
ih

w
i ▷ get query states

Ai ← Softmax
(

Qw
i K⊤

i√
d

)
▷ get attention scores

Si ←
∑|hw

i |−1
j=0 αj max0≤h<H Ai[h, j] ▷ get context scores

Ti ← arg top k
0≤t<|hc

i |
(Si) ▷ select important tokens

t← get the index of i in L
for j = Lt + 2→ Lt+1 − 1 do

Kv
j ,V

v
j ← LoadToGPU(Kj [Ti],Vj [Ti]) ▷ load subsets of KV cache to GPU

end
end
if i ∈ L or i < L0 or i− 1 ∈ L then

Kv
i ,V

v
i ← Ki,Vi ▷ use original cache for layers performing full attention

end
Finally, perform normal Attention with visible KV cache Kv

i ,V
v
i .

3) StreamingLLM. We strictly set StreamingLLM to retain Mem% of KV caches with 1% for
initial sink tokens and Mem− 1% for local window tokens.

4) Full Attention (original model). To avoid excessive GPU memory consumption by intermediate
activations in the MLP, we split the hidden states along the sequence length dimension into chunks
of size 4000. This reduces peak memory usage without affecting efficiency.

D ABLATION STUDIES AND DETAILED EXPERIMENTS

D.1 NEEDLE-IN-A-HAYSTACK

As OmniKV employs an 8B model capable of supporting a 450K context on a single A100 GPU,
we conducted needle-in-a-haystack tests with a maximum context length of 450K, achieving fully
accurate performance. We continued to use L = {2, 8, 18}, with a token budget of 1024 for sparse
layers. We also conducted tests with an input length of 512K on a single NVIDIA H20, also achiev-
ing entirely accurate results.The results are shown in Figure 7.

D.2 DETAILED TRADE-OFF

Here, we present the detailed trade-off between efficiency and performance. Our test results on
InfiniteBench are shown in Table 3. The latency here refers end-to-end time of per token in decoding
stage.

Table 3: Detailed results on trade-off between performance and efficiency.

Budget En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find RT.passkey RT.Num RT.KV Avg. Latency (ms)

128 19.1 12.5 64.2 4.0 10.9 20.6 26.6 100.0 100.0 1.0 35.9 50.4
256 19.4 13.8 62.9 6.0 11.8 20.6 26.6 100.0 100.0 2.8 36.4 51.9
512 20.8 12.9 63.3 4.5 11.8 20.6 26.6 100.0 100.0 5.8 36.6 55.7
1024 20.5 12.9 64.6 5.5 12.1 20.6 26.6 100.0 100.0 6.6 36.9 62.5
2048 21.4 12.9 65.5 3.0 12.2 20.3 26.6 100.0 100.0 7.6 37.0 78.8
4096 20.7 12.6 65.5 4.5 12.4 20.3 26.6 100.0 100.0 8.6 37.1 95.5
6400 22.5 12.7 65.5 5.0 12.6 20.0 26.5 100.0 100.0 9.6 37.4 135.1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

10
K

16
K

32
K

64
K

12
8K

25
6K

51
2K

Context Length

0
11
22
33
44
56
67
78
89

100

De
pt

h
Pe

rc
en

t (
%

)

Needle in A Haystack Llama-3-8B-1M w/ OmniKV 512K Context

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Needle-in-a-haystack test. Results indicate that OmniKV applied to Llama-3-8B-1M
achieves perfect retrieval results.

D.3 DETAILED LONGBENCH RESULTS

We present the detailed results on LongBench, showing the scores for each subtask, as shown in
Table 4 and 5.

Table 4: Detailed results on LongBench (Part 1).

Single-Document QA Multi-Document QA Summarization
Model MultiFieldQA EN NarrativeQA Qasper 2WikiMQA Dureader HotpotQA Musique Gov Report qmsum vcsum
Llama-3-8B-262K 43.6 16.0 28.2 21.7 28.3 27.5 14.3 34.5 25.3 15.1
H2O 39.8 16.8 26.5 19.3 23.9 24.5 13.2 31.2 25.3 15.2
StreamingLLM 22.1 13.4 22.5 20.1 12.9 24.1 12.3 26.5 21.4 8.1
InfLLM 41.2 16.8 26.2 16.5 19.8 16.5 8.4 33.1 24.2 0.2
OmniKV w/ last 43.0 17.0 28.6 21.8 28.2 27.0 14.6 34.2 24.9 14.1
OmniKV w/ uni 43.6 17.1 28.4 22.3 29.9 26.9 14.3 32.1 25.2 13.9
OmniKV w/ exp 43.7 16.7 28.3 21.9 28.5 26.7 14.6 33.6 24.5 13.8

Yi-9B-200K 37.1 13.6 35.3 35.6 19.4 50.8 27.5 30.7 20.4 9.8
H2O 34.4 14.9 29.1 35.5 20.1 50.0 28.7 22.5 20.8 9.4
StreamingLLM 17.1 2.6 17.7 19.2 10.8 10.9 4.5 19.0 15.9 5.9
InfLLM 25.6 15.2 37.1 31.5 23.3 53.3 26.5 30.1 20.7 9.2
OmniKV w/ last 38.3 11.9 34.1 36.0 21.3 50.2 27.2 30.9 19.2 9.3
OmniKV w/ uni 38.1 12.9 33.7 35.7 21.9 51.8 27.9 31.1 20.4 8.7
OmniKV w/ exp 38.7 12.7 33.1 36.0 21.7 50.6 27.8 31.0 20.1 9.0

Llama-3.1.70B 54.9 27.9 44.1 54.5 31.2 58.8 34.8 35.2 24.0 17.5
H2O+ 45.1 29.5 35.4 42.7 27.3 52.7 32.9 32.9 23.0 16.6
StreamingLLM 25.3 10.1 14.9 19.5 10.0 15.5 4.4 26.7 19.8 9.8
InfLLM 50.2 24.7 43.2 47.3 32.7 43.2 21.4 19.9 20.1 15.3
OmniKV w/ last 54.8 27.5 43.7 56.2 28.0 59.3 33.9 33.5 24.2 16.5
OmniKV w/ uni 53.7 26.5 42.3 55.9 26.2 58.6 34.6 31.6 23.9 15.5
OmniKV w/ exp 53.8 27.7 44.5 56.0 28.3 57.8 35.3 33.6 24.2 16.2

D.4 MULTI-STEP REASONING RESULTS OF YI-9B-200K

To further validate the effectiveness of OmniKV in multi-step reasoning, we continued experiments
using Yi-9B-200K. The average length of 2StageRetr is 739, so the token budget is 739×0.067 = 49.
To avoid an excessively low budget, while ensuring fairness in comparison, we set the “filter” layers
L = {3, 11, 30} to allocate more token budgets for sparse layers.

As shown in Table 6, OmniKV achieved the best results across all three datasets, particularly under
a constrained token budget. This further validates the effectiveness of our approach. Yi-9B-200K
does not follow instruction to directly answer in 2StageRetr.

D.5 ABLATION STUDIES

OmniKV comprises a Context Selector and a Context Bank, which are highly coupled modules.
When the Context Selector is removed, implying the computation of entire context, the method

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Detailed results on LongBench (Part 2).

Few-Shot Syntheic Tasks Code
Model lsht trec TriviaQA Passage Count Passage Retrieval EN lcc RepoBench-p
Llama-3-8B-262K 44.5 69.5 83.7 0.0 87.0 52.5 45.4
H2O 35.0 68.5 85.5 0.0 85.5 42.8 43.8
StreamingLLM 20.5 60.0 68.7 1.7 21.8 55.8 48.8
InfLLM 37.0 68.5 82.7 6.5 66.5 52.3 44.8
OmniKV w/ last 44.5 69.5 80.9 0.0 82.5 51.4 45.4
OmniKV w/ uni 41.5 68.5 82.0 0.0 83.0 51.4 45.4
OmniKV w/ exp 43.5 69.5 82.5 0.0 83.0 37.5 32.9

Yi-9B-200K 48.5 78.5 86.8 3.0 59.0 71.6 63.1
H2O 42.0 77.5 86.8 2.8 59.5 70.7 62.6
StreamingLLM 24.3 69.5 75.2 3.1 2.8 64.4 57.1
InfLLM 48.0 77.0 87.6 3.2 49.5 69.4 62.4
OmniKV w/ last 48.5 78.5 85.5 3.3 58.5 69.5 61.3
OmniKV w/ uni 48.0 78.5 86.7 2.8 55.5 68.9 61.1
OmniKV w/ exp 48.5 78.5 86.6 3.3 58.0 69.7 61.3

Llama-3.1.70B 46.0 75.0 85.9 18.5 97.5 48.2 63.3
H2O+ 30.0 68.5 85.1 9.5 39.5 50.4 57.6
StreamingLLM 4.0 54.5 78.4 1.5 13.6 67.3 55.0
InfLLM 36.0 65.5 86.0 5.5 76.8 32.3 47.4
OmniKV w/ last 44.5 74.3 85.9 18.0 97.3 49.2 60.5
OmniKV w/ uni 42.0 74.5 86.8 18.0 97.5 47.8 59.8
OmniKV w/ exp 44.0 75.0 86.4 18.0 97.3 48.7 61.8

Table 6: Multi-step reasoning results of Yi-9B-200K.

Model CoT %Mem 2WikiMQA HotpotQA 2StageRetr

Yi-9B-200K ✗ 100.0% 27.0 40.0 -
Yi-9B-200K ✓ 100.0% 64.0 48.5 36.0
H2O ✓ 30.0% 55.5 45.5 13.0
H2O ✓ 40.0% 60.5 47.0 19.0
H2O ✓ 50.0% 64.0 50.0 26.0
OmniKV ✓ 30.0% 58.0 51.0 14.0
OmniKV ✓ 40.0% 62.0 51.0 32.0
OmniKV ✓ 50.0% 64.0 50.0 31.0

becomes equivalent to full attention if GPU memory is sufficient. Otherwise, we have to offload
some layers’ KV cache, then the approach becomes identical to Brutal Offload. Although the per-
formance of Brutal Offload is entirely equivalent to that of the original model, the frequent loading
and offloading during the decode stage incurs significant overhead.

Without the Context Bank, indicating that we do not apply inter-layer attention similarity, we can
only utilize the Context Selector at each layer to choose the token set T. However, selecting impor-
tant tokens/context itself requires full attention at the current layer, which means efficiency would
be significantly reduced. The only potential benefit might be using a shorter context to avoid inter-
ference from irrelevant information, possibly leading to better performance.

Table 7: Detailed results on trade-off between performance and efficiency.

Variant En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find RT.passkey RT.Num RT.KV Avg. Latency (ms)

OmniKV w/o CS 22.0 13.3 65.9 6.0 12.8 20.8 26.5 100.0 100.0 14.4 38.1 569.4
OmniKV w/o CB 21.8 13.5 61.5 4.5 13.6 21.5 26.2 100.0 100.0 9.8 37.2 184.4
OmniKV 22.5 12.7 65.5 5.0 12.6 20.0 26.5 100.0 100.0 9.6 37.4 54.3

D.6 PERFORMANCE OF FILTER LAYERS

Theoretically, if we select “filter” layers with stronger “filter” capabilities, we can expect improved
performance. However, ensuring a completely fair performance comparison when testing different

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

selected layers is challenging. This is due to the sequential nature of the layers; even if we ensure
that the total number of layers performing full attention remains consistent, there can still be issues
with uneven spacing between “filter” layers. Attempting to evenly distribute the “filter” layer set
introduces additional variables. Nonetheless, experimental results indicate that layers with enhanced
“filter” capabilities tend to exhibit superior performance to some extent. We conduct experiments
on both LongBench and InfiniteBench. The results are shown in Table 8.

Table 8: Performance on LongBench of different filter layers settings.

Filter Layers Single-Doc QA Multi-Doc QA Summarization Few-Shot Synthetic Code Avg.

2,4,18 27.0 19.9 21.4 58.1 42.8 46.0 35.8
2,5,18 29.3 22.8 23.4 63.4 42.5 47.1 38.1
2,7,18 29.3 22.1 23.6 65.2 41.8 47.2 38.2
2,8,18 29.6 22.9 24.4 65.0 41.3 48.4 38.6
2,9,18 28.6 22.5 24.1 65.1 41.8 47.4 38.2
2,10,18 30.2 23.0 24.0 65.1 42.8 47.5 38.8
2,11,18 31.0 22.7 23.9 65.4 43.0 48.2 39.0
2,12,18 29.8 21.2 23.0 63.2 42.1 47.8 37.8
2,13,18 30.1 22.5 23.7 65.4 42.5 48.2 38.7

D.7 AN EXAMPLE OF INTER-LAYER ATTENTION SIMILARITY MAP

To directly observe the “filter” capability of layers, we also demonstrated the similarity between any
two layers. We visualized the cumulative attention scores for the top-2048 token set from Llama-3-
8B-262K on HotpotQA as a measure of similarity, consistently as before. As shown in Figure 8, for
layer 8, despite being 12 layers apart from layer 20, the token set T8 selected by layer 8 still achieves
a cumulative attention score of 0.87 at layer 20. This substantially demonstrates the effective ability
of layer 8 to select important tokens.

D.8 EFFECTIVENESS OF OMNIKV ON LARGER MODELS

We first visualized the Inter-Layer Attention Similarity of Llama-3.1 405B, as illustrated in Figure 9.
The 405B model continues to exhibit remarkably high inter-layer similarity, indicating that OmniKV
can be effectively applied to it. Additionally, we conducted further evaluations on two tasks from
LongBench, Qasper and Qmsum. And the results are presented in Table 9.

Table 9: OmniKV in 405B.

Setting qasper qmsum

Llama 3.1 405B 50.0 25.5
OmniKV 48.5 25.9

D.9 COMPATIBILITY OF OMNIKV

In this paper, most of the experiments are conducted using the Huggingface Transformers. However,
this framework is typically not used as an inference engine. Current engines used for large model
inference, such as vLLM (Kwon et al., 2023a) and LightLLM (ModelTC, 2023), are much faster
than those based on Hugging Face Transformers. Therefore, we adapted OmniKV to one of them,
LightLLM, to demonstrate that OmniKV has a excellent usability in real-world scenarios. The
results are shown in Table 10.

Continuous Batching. Continuous Batching is a technique used in the training and inference of
Large Language Models (LLMs) to optimize computational efficiency, particularly in scenarios
where the model processes sequences of varying lengths. The core idea behind continuous batching
is to dynamically group input sequences into batches that can be processed in parallel, even if the
sequences have different lengths. OmniKV can be natually integrated with Continuous Bathcing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30

Layer ID

0

5

10

15

20

25

30

La
ye

r I
D

1.00 0.89 0.81 0.87 0.88 0.70 0.74 0.73 0.63 0.67 0.57 0.63 0.82 0.65 0.57 0.61 0.55 0.59 0.60 0.70 0.48 0.59 0.51 0.58 0.49 0.52 0.62 0.50 0.55 0.62 0.66 0.37

0.96 0.85 0.91 0.92 0.78 0.77 0.77 0.81 0.73 0.67 0.73 0.85 0.63 0.60 0.69 0.65 0.65 0.66 0.75 0.61 0.71 0.67 0.64 0.62 0.66 0.72 0.66 0.62 0.76 0.74 0.50

0.94 0.90 0.91 0.81 0.79 0.78 0.82 0.74 0.72 0.71 0.85 0.66 0.67 0.83 0.75 0.66 0.72 0.79 0.73 0.73 0.72 0.76 0.76 0.75 0.77 0.72 0.68 0.75 0.75 0.42

0.95 0.91 0.78 0.79 0.78 0.72 0.71 0.66 0.68 0.87 0.62 0.57 0.71 0.67 0.64 0.68 0.77 0.63 0.75 0.70 0.72 0.69 0.66 0.70 0.67 0.64 0.71 0.72 0.53

0.96 0.83 0.82 0.83 0.88 0.77 0.78 0.73 0.85 0.65 0.65 0.75 0.70 0.66 0.70 0.76 0.68 0.72 0.66 0.68 0.69 0.66 0.74 0.68 0.65 0.77 0.77 0.45

0.91 0.85 0.84 0.93 0.84 0.83 0.82 0.87 0.81 0.75 0.89 0.79 0.77 0.77 0.85 0.80 0.76 0.76 0.73 0.79 0.75 0.81 0.75 0.69 0.80 0.80 0.41

0.94 0.85 0.90 0.89 0.86 0.83 0.88 0.82 0.82 0.87 0.82 0.81 0.81 0.84 0.78 0.77 0.79 0.77 0.76 0.76 0.80 0.75 0.69 0.79 0.79 0.46

0.93 0.95 0.90 0.89 0.90 0.88 0.89 0.87 0.91 0.85 0.78 0.81 0.85 0.81 0.80 0.83 0.75 0.80 0.79 0.84 0.76 0.73 0.82 0.81 0.42

0.99 0.95 0.95 0.90 0.85 0.94 0.91 0.94 0.91 0.91 0.83 0.90 0.87 0.81 0.83 0.83 0.85 0.81 0.84 0.80 0.71 0.84 0.81 0.36

0.98 0.93 0.92 0.88 0.96 0.94 0.93 0.92 0.91 0.87 0.88 0.84 0.81 0.83 0.82 0.83 0.81 0.84 0.78 0.69 0.83 0.80 0.35

0.98 0.92 0.87 0.95 0.95 0.93 0.92 0.91 0.87 0.89 0.90 0.82 0.86 0.81 0.84 0.83 0.85 0.80 0.76 0.86 0.84 0.34

0.95 0.89 0.96 0.93 0.91 0.91 0.89 0.87 0.90 0.88 0.83 0.87 0.82 0.84 0.81 0.86 0.82 0.74 0.84 0.82 0.37

0.95 0.88 0.82 0.86 0.83 0.84 0.80 0.85 0.76 0.76 0.80 0.74 0.77 0.72 0.79 0.75 0.68 0.77 0.79 0.57

0.99 0.97 0.93 0.94 0.95 0.88 0.90 0.90 0.84 0.88 0.86 0.86 0.83 0.87 0.83 0.75 0.86 0.86 0.34

0.98 0.95 0.96 0.95 0.90 0.90 0.90 0.85 0.88 0.86 0.88 0.86 0.88 0.84 0.76 0.86 0.85 0.31

0.97 0.95 0.94 0.90 0.92 0.90 0.86 0.88 0.87 0.89 0.86 0.89 0.87 0.77 0.87 0.85 0.38

0.98 0.95 0.91 0.92 0.93 0.87 0.91 0.88 0.91 0.89 0.88 0.88 0.79 0.86 0.84 0.39

0.98 0.91 0.91 0.92 0.87 0.91 0.87 0.90 0.88 0.88 0.86 0.79 0.86 0.83 0.36

0.95 0.92 0.93 0.87 0.91 0.89 0.91 0.88 0.90 0.87 0.78 0.88 0.87 0.35

0.96 0.93 0.88 0.91 0.88 0.91 0.90 0.91 0.88 0.79 0.88 0.84 0.38

0.96 0.88 0.92 0.90 0.91 0.91 0.92 0.90 0.80 0.88 0.86 0.35

0.94 0.91 0.90 0.91 0.91 0.92 0.90 0.81 0.89 0.87 0.41

0.96 0.92 0.92 0.93 0.91 0.91 0.80 0.87 0.87 0.36

0.95 0.93 0.93 0.91 0.90 0.81 0.84 0.86 0.35

0.96 0.93 0.91 0.91 0.80 0.88 0.87 0.39

0.97 0.91 0.91 0.81 0.87 0.86 0.34

0.96 0.92 0.82 0.91 0.90 0.35

0.95 0.84 0.91 0.89 0.36

0.91 0.90 0.87 0.37

0.95 0.90 0.32

0.95 0.41

0.99

0.0

0.2

0.4

0.6

0.8

Figure 8: An Example of Inter-Layer Attention Similarity Map.

Table 10: Average latency of per token for each request (ms/token, tp=4).

Setting Lightllm+OmniKV Lightllm+origin vLLM+origin

128k, bs=16 46.2 73.5 72.3
256k, bs=8 44.9 75.4 73.1
512k, bs=4 44.9 78.1 75.6

Based on lightLLM, we find that the continuous batching technique decrease the average latency of
multiple 64K-length requests from 41.7s to 37.8s.

Tensor parallelism. Tensor parallelism(TP) is a technique used in large language models (LLMs)
and other deep learning models to distribute the computation of tensors (multi-dimensional arrays)
across multiple devices, such as GPUs. This approach is particularly useful for training and inference
with very large models that cannot fit into the memory of a single device. Using LightLLM, we have
implemented OmniKV with tensor parallelism. Experimental shown in Table 11 results indicate that
with TP enabled, OmniKV can still achieve considerable acceleration compared the original model.
Another observation is that Lightllm+OmniKV experiences reduced decoding latency as sequence
length increases. This is because the “non-filter layers” have a fixed sequence length of 2048. As
the batch size decreases, the computation also decreases for “non-filter layers”.

More technical details of TP. The attention heads is distributed across different GPUs in tensor
parallelism, and the outputs are aggregated using all-reduce, making inter-GPU communication
a key factor in efficiency. For tp = n , OmniKV maintains n indices of important tokens for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Transformer Layer ID

0.80

0.85

0.90

0.95

In
te

r-L
ay

er
 A

ttn
 S

im
ila

rit
y

Llama3.1-405B - n=8
Llama3.1-405B - n=16

Figure 9: Inter-Layer Attention Similarity of Llama-3.1 405B.

Table 11: Throughput results of decoding (tp=4), using Llama-3-8B-Instruct-262K.

Setting Lightllm+OmniKV Lightllm+origin vLLM+origin

128k, bs=16 345.9 217.7 221.3
256k, bs=8 177.5 106.1 109.4
512k, bs=4 89.1 51.2 52.9

each card. Each index of important tokens is computed solely by the card’s own attention heads,
thereby eliminating the need for inter-GPU communication. Since different attention heads may
have distinct indices, the system intuitively exhibits greater flexibility. We have also substantiated
this through experiments(Shown in Table 12).

Table 12: Performance comparison across datasets.

Setting 2WikiMQA Qasper HotpotQA lcc qmsum

tp=8 21.7 28.0 27.3 52.3 25.9
tp=1 21.8 28.6 27.0 51.4 24.9

Pipeline parallelism. Pipeline parallelism(PP) is a technique used to parallelize the execution of
LLMs across multiple devices or processors. This approach is particularly useful for deep neural
networks, where the model can be divided into smaller, sequential stages, and each stage can be
processed on a different device. OmniKV is also natually compatible with pipeline parallelism. The
experiments of Llama-3.1-70B shown in Table 1 is conducted using pipeline parallelism.

Context parallelism. Context parallelism(CP) is a technique used in large language models (LLMs)
to improve training and inference efficiency by distributing the processing of input sequences across
multiple devices or processors. This approach leverages the fact that many LLMs, such as transform-
ers, process input sequences in a way that allows for parallel computation. Indeed, when OmniKV
is used, there is no need to enable context parallelism. This is due to OmniKV only needs around
2048 tokens to achieve excellent results. Nevertheless, OmniKV can still be integrated with context
parallelism. In this case, the communication latency in multi-GPU parallelism often exceeds the
computational latency of a single GPU. Hence, we can employ context parallelism only in dense
(full) attention layers, while utilizing a single GPU for sparse attention layers. This means we sim-
ply need to configure which layers will implement context parallelism. We can allocate samples to
different GPUs when the batch size is larger than 1 to prevent resource wastage.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.10 PREFILL ACCELERATION

OmniKV is designed to enhance decoding speed. However, given the importance of prefill acceler-
ation, we have modified OmniKV to optimize the prefill stage as well. Experimental results indicate
that OmniKV-prefill achieves a 1.90x reduction in latency without performance loss compared to the
original model with an input length of 256K. The code here is implemented using the Transformers
library, enhanced with Flash Attention.

Specifically, during the prefill stage, we divide the sequence dimension into multiple chunks for
computation. For each chunk, we also use the “filter layer” to select important tokens. Since the
sequence length of the query chunk is no longer 1, we employ the uniform computation method
introduced in Section 4.2 to select important tokens in the “filter layer”.

Table 13 and Table 14 show latency and quality preserving results. Here, “r” denotes the size of
the selected tokens, with the ratio of token size to chunk size being “r”. Thus, the larger the value
of r, the less information is lost. The results indicate that r=2 has achieved a fine balance between
efficiency and performance.

Table 13: Prefill latency (s) on a single NVIDIA-H20.

Setting 256k 128k 64k 32k 16k

OmniKV-prefill, r=1 105.9 36.7 14.3 6.2 2.8
OmniKV-prefill, r=2 107.2 38.8 15.9 6.5 2.9
OmniKV-prefill, r=4 112.9 42.8 17.1 6.8 3.0
OmniKV-prefill, r=8 133.3 49.2 19.0 6.9 2.9
MInference 61.6 28.1 13.0 6.5 3.7
Llama-3-8B-262K (origin) 203.8 58.6 18.3 6.5 2.6

MInference (Jiang et al., 2024a) is specifically designed for Prefill acceleration and optimizes mul-
tiple CUDA kernels. But OmniKV solely relies on the Huggingface-transformers library, conse-
quently less efficient.

Table 14: Quality preserving results on LongBench.

Setting %Mem Single-Doc QA Multi-Doc QA Summarization Few-Shot Synthetic Tasks Code

Llama-3-8B-262K (origin) 100% 29.2 22.9 24.9 65.9 43.5 48.9
Minference 30% 29.2 22.4 25.3 65.8 41.0 49.8
OmniKV-prefill, r=1 30% 29.8 22.0 24.0 63.5 33.3 50.0
OmniKV-prefill, r=2 30% 30.0 23.1 24.3 65.1 40.0 49.6
OmniKV-prefill, r=4 30% 29.8 22.9 24.3 65.9 42.0 49.1
OmniKV-prefill, r=8 30% 29.8 22.9 24.3 65.9 42.0 49.0
OmniKV-prefill, all 30% 29.6 23.3 23.7 64.0 41.5 48.4

21

	Introduction
	Related Work
	Insights
	Method
	Context Bank
	Context Selector

	Experiments
	Performance
	Latency and Trade-Off
	Analysis

	Conclusion
	2StageRetr
	Detailed Implementation
	Baselines Settings
	Ablation Studies and Detailed Experiments
	Needle-in-a-haystack
	Detailed trade-off
	Detailed LongBench Results
	Multi-Step Reasoning Results of Yi-9B-200K
	Ablation Studies
	Performance of Filter Layers
	An Example of Inter-Layer Attention Similarity Map
	push0 g 0 GpopEffectiveness of OmniKV on Larger Modelsyellowpush0 g 0 Gpoptowidthheightdepth
	push0 g 0 GpopCompatibility of OmniKVyellowpush0 g 0 Gpoptowidthheightdepth
	push0 g 0 GpopPrefill Accelerationyellowpush0 g 0 Gpoptowidthheightdepth

