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ABSTRACT

During the inference phase of Large Language Models (LLMs) with long con-
text, a substantial portion of GPU memory is allocated to the KV cache, with
memory usage increasing as the sequence length grows. To mitigate the GPU
memory footprint associate with KV cache, some previous studies have discarded
less important tokens based on the sparsity identified in attention scores in long
context scenarios. However, we argue that attention scores cannot indicate the
future importance of tokens in subsequent generation iterations, because attention
scores are calculated based on current hidden states. Therefore, we propose Om-
niKV, a token-dropping-free and training-free inference method, which achieves
a 1.68x speedup without any loss in performance. It is well-suited for offloading,
significantly reducing KV cache memory usage by up to 75% with it. The core
innovative insight of OmniKV is: Within a single generation iteration, there is
a high degree of similarity in the important tokens identified across consecutive
layers. Extensive experiments demonstrate that OmniKV achieves state-of-the-art
performance across multiple benchmarks, with particularly advantages in chain-
of-thoughts scenarios. OmniKV extends the maximum context length supported
by a single A100 for Llama-3-8B from 128K to 450K. 1.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated their profound impact across a multitude of
applications, such as chatbots (Achiam et al., 2023; Meta, 2024), agents (Wu et al., 2023; Chan
et al., 2023; Liu et al., 2023b), and embodied robotics (Mai et al., 2023; Zhang et al., 2024b). These
applications confirm the demand for LLMs with strong long context processing capabilities to tackle
complex tasks based on prior interaction histories or given information materials. Currently, some
studies have successfully extended the maximum context length of LLMs (Peng et al., 2023; Yang
et al., 2024; Young et al., 2024; Meta, 2024; Chen et al., 2023).

In long-context scenarios, LLMs inference incurs more massive GPU memory usage. Particularly,
a significant portion of this is attributed to the KV cache, which is proposed to accelerate LLMs
generation and reduce redundant computation. Moreover, the memory occupied by the KV cache
increases linearly with the sequence length. For instance, in the case of Llama-3-8B, with a batch
size of 8 and a context length of 128K tokens, the KV cache alone occupies over 134GB of GPU
memory, presenting a significant challenge to inference systems. To alleviate the high memory
usage of the KV cache in long-context scenarios, previous studies (Zhang et al., 2024c; Li et al.,
2024; Liu et al., 2024a) have attempted to identify and discard less important tokens based on
sparsity in attention in long-context scenarios (Wang et al., 2021; Ribar et al., 2024). Tokens with
lower cumulative attention scores are discarded, thereby reducing GPU memory occupation.

However, we argue that in multi-step reasoning scenarios, the important tokens vary depending
on the reasoning step. This variation arises because attention scores are calculated based on the
current hidden states, meaning that the attention scores of tokens only reflect their relevance to
current reasoning step. Consequently, some tokens with low scores may be recalled as important
and relevant tokens in subsequent reasoning steps as shown in Figure 1b. Discarding tokens may
lead to the loss of crucial information for completing subsequent reasoning steps.

1Due to company privacy policy, we have posted the core pseudo code of OmniKV in Section B. We will
release the code as soon as possible after approval.
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Motivated by this, we propose OmniKV, a novel inference method that retains the KV cache for all
tokens. This approach not only achieves performance comparable to that of the original model but
also accelerates decoding efficiency when context is longer than 32K. OmniKV is mainly built upon
an innovative insight: For a specific context, the tokens with high attention scores are very similar
across various layers. We refer to this phenomenon as Inter-Layer Attention Similarity. In other
words, a similar set of tokens is identified as important across multiple layers.

Specifically, OmniKV offloads most layers’ KV cache to CPU memory when processing the input
prompt (i.e., the prefill stage) but retains few “filter” layers’ entire KV cache. During the next token
prediction (i.e., the decode stage), OmniKV first exploits the sparsity of attention map, selecting a
few top-scoring tokens using top-k in these few “filter” layers. Next, other layers directly use the
subset of tokens chosen by the preceding filter layers as context. This way, OmniKV only needs to
load a small subset of tokens from CPU memory into GPU memory for attention computation. For a
decoding iteration, since many layers share the same index of tokens, we only perform≤ 3 transfers
between GPU and CPU. By using asynchronous transfer to overlap computation with transfer time,
the efficiency of decoding is unaffected even accelerated due to the shorter context computed in most
layers.

We conducted extensive experiments on various LLMs, including Llama-3-8B-262K 2, Yi-9B-200K
(Young et al., 2024) and Llama-3.1-70B (Meta, 2024) across benchmarks LongBench (Bai et al.,
2023) and InfiniteBench (Zhang et al., 2024a). We tested both single-step reasoning and multi-
step reasoning (Chain of Thoughts) setups. The results showed that OmniKV achieved the best
performance in both settings, especially in the multi-step reasoning setup. This demonstrates the
necessity of drop-free and the effectiveness of dynamic context selection. Moreover, OmniKV can
accelerate inference when context lengths exceed 32K. By using only a single A100 GPU, compared
to the original model’s efficiency, OmniKV achieves a 1.7x speedup with 128K context. When using
three A100s for origin model to pipeline inference with 450K context, OmniKV still achieves a 1.87x
speedup while using only a single A100.

2 RELATED WORK

Token Dropping and Offloading. Most similar studies to ours focus on discarding unimportant
tokens based on accumulated attention scores after the prefill stage. These tokens are then com-
pletely dropped in the decode stage (Zhang et al., 2024c; Liu et al., 2024a; Li et al., 2024; Ge et al.,
2024a). However, these methods might discard tokens that could become important in future rea-
soning steps. To ensure the lossless of information, we dynamically select a sparse subset of the KV
cache for each generation iteration to guarantee performance. In a related approach, Quest (Tang
et al., 2024) recognizes the importance of dynamic selection. Nonetheless, it fails to reduce memory
usage and may compromise recall. Due to representing a block with a single vector, Quest’s capacity
to retrieve relevant tokens may be compromised.

Another type of similar works involves KV cache offloading. Many studies offload layers’ KV cache
to CPU memory when VRAM is not sufficient (Sheng et al., 2023; Kwon et al., 2023b). However,
these methods do not leverage sparsity in attention. The data transfer volume over PCIe is 10 times
more than ours in long-context scenarios. InfLLM (Xiao et al., 2024a) similarly divides sequences
into blocks, selecting a few representative vectors as retrieval keys for a block. Then offloads other
data to CPU memory. However, the chosen few representative vectors may fail to fully capture the
block’s information, resulting in a relatively low recall rate.

Other Efficient Methods. Considerable efforts have been made to minimize KV cache while
incurring minimal performance loss to the model. One class of work compresses KV cache, such as
ICAE (Ge et al., 2024b) and Gist (Mu et al., 2024), which utilize LLMs as auto-encoders to compress
the context to a shorter sequence. Additionally, there are works that directly compress prompts at the
language level, thereby indirectly compressing KV cache, such as LLMLingua (Jiang et al., 2023).
Similar to model weight quantization, there are also attempts to quantize KV cache, such as KIVI
(Liu et al., 2024b) and SmoothQuant (Xiao et al., 2023). These compression or quantization works
are orthogonal to our method and can be used in conjunction.

2https://huggingface.co/gradientai
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Sparsity in LLMs. The sparsity of attention in long-context scenarios has been observed by previ-
ous studies (Liu et al., 2023a; Ribar et al., 2024; Wang et al., 2021). For example, Minference (Jiang
et al., 2024b) has demonstrated that with a context of 128k, only 4k tokens are required to accumu-
late 96.4% of the total attention score. However, the tokens with high attention scores vary across
different generation iterations, indicating that the sparse pattern is dynamic (Tang et al., 2024). This
implies that it is necessary to compute the full attention in every generation iteration and every layer
to determine the sparse pattern. Quest (Tang et al., 2024) and SparQ (Ribar et al., 2024) employed
approximate attention methods to circumvent the computationally expensive full attention. Infini-
Gen (Lee et al., 2024) introduced cross-layer similarity between consecutive two layers, leveraging
this characteristic to pre-select the critical KV cache. However, the loading time may still exceed
the computation time, resulting in GPU idleness. In contrast, we observe that the sparse patterns
between different layers exhibit high similarity, and thus we only compute full attention for a few
layers to obtain the sparse patterns for subsequent layers. To the best of our knowledge, we are the
first to highlight this.

3 INSIGHTS
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(a)

Context about Apollo 11
<BOS>Apollo 11 was the first manned mission to land on the Moon, led by Neil Armstrong
and Buzz Aldrin …… They spent around 135 minutes on the lunar surface, collecting 21.55 
kilograms of rock samples. Meanwhile …… splashing down in the Pacific Ocean on July 
24, concluding an eight-day mission. 

Questions:
1. When did the first manned mission to the moon take place?
2. Who is the person whose name begins with B? 
3. What role does he play in the team, and what has he accomplished?

LLM Output (w. Full Attention)
1. The first manned mission to the moon took place on July 20, 1969.
2<α>Buzz Aldrin. 
3. He is the second person to walk on the moon, and he collected<β>21.55 kilograms of 
rock samples. 

“<α>” as Current Token “.” “<β>” as Current Token “ ”

(b)
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Figure 1: Analysis of attention. (a) Inter-Layer Attention Similarity. This shows a high similarity
of important tokens/sub-context between layers even 16 layers apart. (b) An example of a multihop
question demonstrates the variation in important tokens across different generation iterations. (c)
Analysis of variety in important tokens. We retained the set of important tokens, then calculated the
cumulative attention scores of missing tokens.

Our work is grounded in three pivotal insights, which we verify through experiments utilizing pop-
ular models Llama-3-8B-Instruct, Yi-9B-200k, and Llama-3.1-70B-Instruct.

Intra-Layer Attention Sparsity. Studies have consistently revealed that attention matrices within
LLMs layers exhibit sparsity (Wang et al., 2021; Deng et al., 2024). This characteristic implies
that LLMs can generate nearly equivalent outputs by focusing on a reduced subset of tokens. Some
studies have enhanced inference speed or reduced GPU memory requirements based on sparsity
(Zhang et al., 2024c; Li et al., 2024; Tang et al., 2024). Due to the presence of sparsity, OmniKV
utilizes only a small subset of tokens in most layers. In this way, we not only reduced computation
but also decreased the communication volume between CPU and GPU.

Inter-Layer Attention Similarity. We introduce the concept of inter-layer attention similarity,
which is defined as, a fixed subset of tokens that receive significant attention in a specific layer,
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b) Shared Index for MulB Layers

(a) Context Filter

Figure 2: Overall Framework of OmniKV in decode stage. There are three types of layers in Om-
niKV. In prefill stage, all layers perform full attention and generate KV cache of context. Then
OmniKV offloads the KV cache generated by green layers to CPU memory. In the decode stage,
orange layers perform full attention because of lower sparsity or inference efficiency. Purple (filter)
layers perform full attention and a) select important tokens using context selector based on attention
scores calculated over observation window. Green layers b) load the subset of KV cache selected by
preceding filter layers to GPU and perform sparse attention. c) Only the KV Cache on the GPU is
visible to the LLM for generating next token.

maintains their prominence throughout successive layers. The value of similarity of a layer can
also be viewed as “filter” ability of this layer, and is calculated as the mean of the summation of
fixed tokens subset’s attention scores in subsequent layers. Figure 1a demonstrates that, beyond a
certain shallow layer, the similarity for one layer to successive n layers becomes exceptionally high.
Although the overall similarity between layers is already high, some layers exhibit higher “filter”
ability than others. We refer to these layers as “filter” layers. Subsequently, these layers function as
context selectors within OmniKV, identifying crucial tokens for each generation iteration and thus
facilitating sparse attention in subsequent layers.

Inter-Token Attention Variability. Intuitively, the important tokens should vary throughout the
generative process of LLMs, particularly under multi-task or multi-reasoning scenarios such as the
Chain of Thoughts (CoT) (Wei et al., 2023). As shown in Figure 1b, for a multi-hop question,
we highlight 12 tokens with the highest attention scores for two decoding steps respectively in
the CoT scenario. We can observe that, apart from the special BOS token, the other important
tokens are entirely different. Meanwhile, as demonstrated in Figure 1c, empirical studies on the
Multi-Hop QA task (Ho et al., 2020) also confirm this variability. For each generation iteration, we
compute the cumulative attention scores for the missing tokens to a token set, which stores 25%
most pivotal tokens during the prefill stage (i.e. Heavy Hitters in H2O). The spikes observed in
the figure indicate that some missing tokens have significant attention scores. This phenomenon
substantiates our intuition that the subsets of critical tokens identified exhibit significant fluctuations
across different generative steps. Motivated by this insight, OmniKV retains all KV cache to ensure
that performance remains unaffected.

4 METHOD

Based on the aforementioned insights, we propose OmniKV, a token-dropping-free and training-free
inference method. This design empowers OmniKV to sustain the performance of LLMs in multi-
reasoning settings. As depicted in Figure 2, OmniKV comprises two pivotal modules: the Context
Bank and the Context Selector.

The inference of auto-regressive LLMs can be divided into two stages: 1) Prefill, which encodes the
intermediate computational state of the input prompt as KV cache K,V to circumvent redundant
KV vector computations, and outputs the next token as the first input for decoding; 2) Decode, which
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takes the token predicted from the previous decode iteration as the current token, and predicts the
next token.

During the prefill stage, OmniKV initialize the Context Bank to store most “non-filter” layers’
KV cache in CPU memory based on inter-layer attention similarity. In the decode phase, OmniKV
adopts a plug-and-play Context Selector that dynamically identifies important subsets of KV cache
K,V on a few “filter” layers. Then the Context Bank propagates the selections to the “non-filter”
layers and load the corresponding subset of KV cache in a pack to GPU memory, since these layers
share a same index of tokens. In this way, OmniKV reduces computation and data transfer costs.

4.1 CONTEXT BANK

The proposed Context Bank utilizes inter-layer attention similarity to prefetch important tokens.
In scenarios of insufficient GPU memory, the Context Bank can also asynchronously preload the
corresponding KV cache from CPU memory, thereby alleviating memory constraints.

For the sake of simplicity in analysis, we will ignore the batch size here. In the prefill phase, an L-
layer LLM creates KV caches, {Ki,Vi}Li=1, by applying attention projection matrices Wk

i and Wv
i

to hidden states hp
i , yielding tensors in RH×N×d for both keys and values. Here, N represents the

length of the tokenized prompt p within the prefill context, H signifies number of attention heads,
and d denotes the hidden size of per attention head.

Firstly, We need to determine which layers are more effective for identifying important tokens.
These selected layers are referred to as “filter” layers. As illustrated in Figure 1a, although the
similarity between adjacent 16 layers is high, a significant gap is observed between the mean simi-
larities of 8 adjacent layers compared to 16 layers. To enhance performance by reducing the distance
between “filter” layers, OmniKV utilizes a set of hyperparameters L, where the size (m,m ≤ 3).
Compared to using a single “filter” layer, the sub-context used by “non-filter” layers theoretically
exhibits a higher degree of similarity when using multiple “filter” layers.

Consequently, OmniKV performs full attention on the layers within L to identify a small subset of
important tokens Ti, (i ∈ L). Due to the shallow layers’ reduced sparsity, OmniKV also performs
full attention without selection on preceding layers up to layer L0, (l < L0). Then, OmniKV utilizes
only these important tokens Ti as sub-context for the sparse attention layers l, where Li < l < Li+1.
Here, hw

i represents the hidden states of the observation window at layer i. The context selector
identifies important tokens that have significant attention scores over the observation window.

Ti =

{
ContextSelector(hw

i ,Ki) if i ∈ L
Ti−1 otherwise

for i ≥ L0 (1)

To avoid unnecessary GPU waiting when loading KV cache, OmniKV also performs full attention
on the L-adjacent layers, denoted as {l + 1}l∈L. This interleaves data transfer with computation.
Here, hl

i represents the hidden states of the last token. Finally, the entire attention mechanism can
be formulated as follows:

outi =
{
Attentioni(h

l
i,Ki,Vi) if i ∈ L or i− 1 ∈ L or i < L0

Attentioni(h
l
i,Ki[Ti],Vi[Ti]) otherwise

(2)

OmniKV significantly reduces the sequence length to less than 10% in sparse attention layers, which
leads to a decrease in time complexity. Upon identifying the critical tokens Ti in Lt (where Lt = i),
OmniKV retrieves the corresponding subset of KV caches Kj [Ti],Vj [Ti] (where Lt + 1 < j <
Lt+1) for sparse layers as a sub-context from the CPU memory.

Packed Load. Since layers between “filter” layers share the same sub-context tokens’ index T,
the KV cache for a series of consecutive sparse attention layers can be packed and loaded from
the CPU to the GPU at the nearest preceding “filter” layer. Consequently, OmniKV conducts only
m,m ≤ 3 loads, significantly reducing the slow PCIe transfer overheads compared to loading at
each layer.

4.2 CONTEXT SELECTOR

As described in Section 4.1, OmniKV selects important tokens Ti in “filter” layers L. Inspired
by previous works (Li et al., 2024; Xiao et al., 2024a), we propose a unified framework for token
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selection. OmniKV selects important tokens based on a score vector Si ∈ RN . The score Si is
calculated using a observation window hw

i . Commencing with the local window as the query states,
and the full context hc

i as the key states, we compute the attention scores Ai:

Qi = Wq
ih

w
i , Ki = Wk

i h
c
i , Ai = Softmax

(
QiK

⊤
i√

d

)
, Ai ∈ RH×|hw

i |×|hc
i | (3)

Next, to get the score Si, we first apply reduce-max to obtain the maximum score across attention
heads. Subsequently, a weighted vector α is utilized to perform a weighted summation on the
attention scores. Finally, we leverage topk to identify the important tokens Ti on score Si.

Si =

|hw
i |−1∑
j=0

αj max
0≤h<H

Ai[h, j], Si ∈ R|hc
i |, Ti = arg top k

0≤t<|hc
i |
(Si), Ti ∈ Rk (4)

Different α values assign varying weights to local window tokens and yield distinct selection
patterns. To further investigate which tokens of the observation window possess a stronger “fil-
ter” capability to identify important tokens T, this study explores three methods: 1) Uniform:
α = {1}|h

w
i |

i=0 . This approach implies that each token in the window produces equivalent contri-
bution when weighted and summed attention scores. 2) Exponential: α = {2i−|hw

i |}|h
w
i |

i=0 . This
approach implies that tokens closer to the end of the window produce higher contribution. 3) Last
Token: concat(α = {0}|h

w
i |−1

i=0 , {1}). This approach implies that we only consider the last token’s
attention score in the window.

5 EXPERIMENTS

To demonstrate the effectiveness of OmniKV, we conducted extensive experiments on Llama-3-
8B-262K, Yi-9B-200K and Llama-3.1-70B-Instruct mainly using the datasets InfiniteBench (Zhang
et al., 2024a) and LongBench (Bai et al., 2023). OmniKV demonstrated its effectiveness on 8B and
70B through experiments. Furthermore, we have explored its efficacy on Llama-3.1-405B, with the
results presented in Sec D.8 Ablation studies and minor or detailed experiments can be found in
Section D.

Implementation. For most tasks, we adopted greedy decoding. To prevent repetitive outputs,
we employed top-p decoding with p = 0.95, temperature = 0.8 for summarization tasks in In-
finiteBench. All performance and latency experiments were conducted on Nvidia A100 GPUs.
Llama-3.1-70B utilized 4-bit weight quantization via bitsandbytes (Dettmers et al., 2021), while
other models employed float16 formatting. We makes minor modifications based on Huggingface’s
transformers (Wolf et al., 2020). For exponential and uniform context selectors, we set the local
window size to 16. The “filter” layers L are set respectively {2, 8, 18}, {6, 11, 30}, {4, 19, 41} for
Llama-3-8B-262K, Yi-9B-200K and Llama-3.1-70B-Instruct.

To ensure fairness in comparison, we strictly set OmniKV to retain Mem% of KV caches on GPU.
This means we dynamically adjust the token budget for sparse attention layers based on the length
of the context prompt length. Mem% consists of two parts: First, OmniKV retains all KV caches
for full attention layers, which occupies 2|L|+L0

L of the total KV caches. Second, OmniKV’s token
budget for sparse layers is set to |T|

|p| % of KV caches. Therefore, the Mem% of KV cache for

OmniKV can be expressed as 2|L|+L0

L + |T|
|p| · (1 −

2|L|+L0

L ). For example, when Mem% is set to
30% and the memory usage of layers L is 25%, then the token budget is set to 6.7%.

Baselines. We employed three state-of-the-art methods for memory reduction as baselines, as well
as Full Attention. For methods other than InfLLM and Full Attention, we strictly limited the KV
cache size to Mem%. Specific settings and implementations can be found in the Section C. 1)
H2O (Zhang et al., 2024c), which discards tokens based on attention scores, has been proven to be
superior in performance by previous work (Yuan et al., 2024). + indicates dropping tokens within
each chunk in H2O due to incompatible with flash attention. 2) InfLLM (Xiao et al., 2024a), similar
to our method, does not discard any tokens. It divides the sequence into blocks, then chooses a few
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Table 1: Performance of single-step reasoning on LongBench (Bai et al., 2023). Italics indicate that
the model uses full attention baseline. Bold indicates the best performance under the same model.
∼ refers to InfLLM’s KV cache memory budget being roughly set to a specific value due to its
highly integrated implementation. + indicates dropping tokens within each chunk in H2O due to
incompatible with flash attention. Detailed results for every sub-task can be found in Table 4 and 5.

Methods %Mem Single-Doc QA Multi-Doc QA Summarize Few-Shot Synthetic Code Avg.

Llama-3-8B-262K 100% 29.2 22.9 24.9 65.9 43.5 48.9 39.2
H2O 30% 27.7 20.2 23.8 62.9 42.7 43.3 36.8
InfLLM ∼30% 28.1 15.3 19.1 62.7 36.5 48.5 35.0
StreamingLLM 30% 19.3 17.3 18.6 49.7 11.7 52.3 28.1
OmniKV w/ uni 30% 29.6 23.3 23.7 64.0 41.5 48.4 38.4
OmniKV w/ exp 30% 29.5 22.9 23.9 65.1 41.5 35.1 38.3
OmniKV w/ last 30% 29.5 22.9 24.4 64.9 41.2 48.4 38.5

Yi-9B-200K 100% 28.6 33.3 20.2 71.2 31.0 67.3 41.9
H2O 30% 26.0 33.5 17.5 68.7 31.1 66.6 40.6
InfLLM ∼30% 25.9 33.6 20.0 70.8 26.3 65.9 38.8
StreamingLLM 30% 12.4 11.3 13.5 56.3 2.9 60.7 26.2
OmniKV w/ uni 30% 28.2 34.3 20.0 71.0 29.1 65.0 41.3
OmniKV w/ exp 30% 28.1 34.0 20.0 71.2 30.6 65.5 41.6
OmniKV w/ last 30% 28.0 33.6 19.7 70.8 30.9 65.3 41.4

Llama-3.1-70B 100% 42.2 44.8 25.5 68.9 58.0 55.7 49.2
H2O+ 20% 36.6 38.9 24.1 61.2 24.5 54.0 39.9
InfLLM ∼20% 39.3 36.1 18.4 62.5 41.1 39.8 39.5
StreamingLLM 20% 16.7 12.3 18.7 45.6 7.5 61.1 27.0
OmniKV w/ uni 20% 40.8 43.8 23.6 67.7 57.7 53.8 47.9
OmniKV w/ exp 20% 42.0 44.3 24.6 68.4 57.6 55.2 48.7
OmniKV w/ last 20% 42.0 44.3 24.7 68.2 57.6 54.8 48.6

important tokens in each block as retrieval keys, and retrieves several relevant blocks as context
when decoding. 3) StreamingLLM (Xiao et al., 2024b) observes that the starting part of the input
prompt tokens occupies a large portion of the attention scores, and thus, in addition to the sliding
window approach, it retains an initial window as part of the context. 4) Full Attention (original
model), which does not discard any tokens and uses all tokens as context, serves as the theoretical
performance upper bound for comparison.

Datasets. To test OmniKV’s performance in single-step reasoning, we primarily used two widely
applied benchmarks: 1) InfiniteBench (Zhang et al., 2024a) with an average length of 145.1K,
covering multiple tasks. We uniformly adopted a 128K context for testing and truncated inputs
exceeding 128K at the middle. 2) We tested LongBench’s 18 tasks across multiple categories, with
most tasks’ average length ranging from 5K to 15K (Bai et al., 2023). During testing, all models
supported a context length longer than the longest sample, eliminating the need for truncation.

To assess OmniKV’s performance in multi-step reasoning, we utilized 2WikiMQA (Ho et al., 2020)
and HotpotQA (Yang et al., 2018) from LongBench. However, QA tasks may be biased, as questions
often focus on special information, such as a person’s birthplace, birth date, or awards received.
LLMs might prioritize this type of information during the prefill stage, potentially affecting the
accurate evaluation of their long-text capabilities. Motivated by this, we propose a benchmark called
2StageRetr. This task consists of a dictionary and an equation adding two numbers. LLMs need to
use the answer from the equation to search the dictionary, find the corresponding key, and output the
value associated with that key. Example and details can be found in Section A.

5.1 PERFORMANCE

Table 2: Performance of single-step reasoning on InfiniteBench (Zhang et al., 2024a).

Methods %Mem En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find Retr.PassKey Retr.Number Retr.KV Avg.

LLaMA-3-8B-262K 100% 22.0 13.3 65.9 6.0 12.8 20.8 26.5 100.0 100.0 14.4 38.1
H2O+ 30% 21.8 13.8 65.5 7.0 12.5 23.0 30.5 98.4 74.0 5.2 35.2
InfLLM ∼30% 17.3 9.3 44.5 4.0 17.7 29.1 24.5 100.0 100.0 0 34.6
OmniKV w/ last 30% 22.5 12.7 65.5 5.0 12.6 20.0 26.5 100.0 100.0 9.6 37.4

Yi-9B-200K 100% 19.3 11.1 66.3 2.0 15.6 24.1 24.8 100.0 100.0 20.2 38.3
H2O+ 30% 21.6 10.8 66.3 1.0 15.8 23.3 24.0 100.0 92.7 6.0 36.1
InfLLM ∼30% 6.7 12.1 37.1 3.5 14.8 21.5 34.0 100.0 100.0 0 32.9
OmniKV w/ last 30% 20.0 11.1 66.8 1.0 15.5 23.8 23.8 100.0 100.0 19.8 38.2
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Performance with Single-Step Reasoning. We demonstrate the effectiveness of OmniKV in the
Single-Step Reasoning scenarios, which is the standard evaluation method for both benchmarks. In
this format, the model receives an input and directly answers the question without providing inter-
mediate reasoning steps. Results from LongBench and InfiniteBench are presented in Table 1 and
2, respectively. The results indicate that OmniKV achieves the best performance and consistently
performs very close to the original full attention baseline across all tasks, showcasing OmniKV’s
stability. Particularly in Llama-3.1-70B, OmniKV significantly outperforms the baselines. In some
task categories, OmniKV even surpasses the baseline results. On InfiniteBench, although OmniKV’s
performance on the Math.Find task is slightly lower than InfLLM, it remains very close to the orig-
inal model. However, InfLLM performs poorly on the KV Retrieval task. Thus, the stability of
OmniKV’s performance, compared to the original model, facilitates its direct application in real-
world scenarios without the need for additional testing.
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Figure 3: Performance of multi-step reasoning with different token budget ratio of KV cache on
three multi-hop tasks.

Performance with Multi-Step Reasoning. OmniKV dynamically selects the necessary context
for attention computation. To demonstrate the necessity of drop-free and effectiveness of dynamic
context selection, we tested models on three multi-step reasoning tasks and adopted the CoT output
format to solve the problems. We use Exact Match as the metric, meaning that as long as the
standard answer appears in the model’s output, it is considered correct. The reason for employing a
simple metric is due to a more linear metric being better able to quantify performance gaps (Levy
et al., 2024; Schaeffer et al., 2023). The results of Llama-3.1-70B are shown in Figure 3. Results
show that OmniKV achieved the best performance under all budgets, demonstrating the effectiveness
of dynamic context selection. In the 2StageRetr task, we observe that H2O’s accuracy cannot exceed
its budget, indicating that without prior knowledge, H2O can only randomly retain key-value pairs
in task dictionary. We also conducted experiments on the Yi-9B-200K, as detailed in Section D.4.

Choice of Context Selectors. In Section 4.2, three context selectors are proposed. From Table 1
and Figure 3, it is evident that in single-step reasoning settings, the exponential and last selectors
perform better, while the uniform selector lags slightly but not significantly. In multi-step reasoning
settings, the last selector exhibits the best performance, while the uniform selector performs some-
what poorly. The exponential selector can be viewed as an intermediate state between the last and
uniform selectors. The fact that the last and exponential selectors outperform the uniform selector
suggests that the last may be the most optimal context selector. Moreover, the last method aligns with
the pretraining paradigm of LLMs, as the computation of context scores remains entirely consistent
with the original model.

From an engineering practice and inference efficiency perspective, last is also the simplest and has
the lowest latency, as this selector does not require maintaining cumulative scores for the window.
Therefore, in subsequent analysis experiments, we primarily focus on the last context selector.

5.2 LATENCY AND TRADE-OFF

We evaluated the end-to-end inference latency of OmniKV using a single NVIDIA A100 80GB GPU
and 12 cores of an Intel Xeon Platinum 8369B CPU at 2.90GHz. A 32-layer LLaMA-3-8B-262K
model was utilized, with “filter” layers L = {2, 8, 18}, applying flash attention (Dao et al., 2022),
and a batch size of 1. For different context length settings, the token budget for sparse attention
was set to 2048. During decoding, 50 tokens were generated, and the mean latency per token was
calculated over all decoding steps. In the prefill stage, we measured the Time To First Token (TTFT).
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Figure 4: End-to-end latency results. The left and right figures show the latency of the decode and
prefill stages respectively. OOM indicates the maximum context length supported by some methods
on a single A100 GPU.

The results are presented in Figure 4. The “Brutal Offload” approach refers to offloading all KV
cache of the final 20 layers to CPU, and pre-loading all KV cache for each layer 4 layers in advance.
InfLLM does not perform full attention during prefill, instead utilizing sparse attention in chunks.
Consequently, it achieves better latency at 450K context. However, employing sparse attention
in the prefill stage may impact the method’s performance (Yuan et al., 2024). OmniKV exhibits
identical latency to full attention during the prefill stage, which is attributed to the offload process
being covered by the full attention computation. We also tested the original model’s latency of 450K
context with 3 A100s. Overall, our method demonstrates the best latency performance.

Notably, when GPU memory is sufficient, i.e., within a 128K context for single A100, OmniKV can
store the entire KV cache in VRAM. At this point, OmniKV can still perform sparse attention with-
out offloading (OmniKV w/o offload), thus achieving a 1.68x decoding efficiency of 21.0 tokens/s
at 128K context. Moreover, we observe that OmniKV achieves lower latency than Full Attention
at 128K. This suggests that we can simply adopt a segmentation strategy for OmniKV to accelerate
decoding speed at any context length longer than 32K.
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Figure 5: Trade-off on token budgets for
sparse layers. Left axis shows the aver-
age score on InfiniteBench, and the right
axis shows the latency of decoding.

Under settings that save 70% of KV cache, we can run
Llama-3-8B with a 450K context on a single A100 80G
GPU at a speed of 7.5 tokens/s. We also validated the per-
formance under 512K ultra-long context on the Passkey
task using Llama-3-8B-1048k, achieving perfect results
as shown in Figure 7. Under 80% memory reduction, we
can run Llama-3.1-70B with a context of 150K tokens at
a speed of 4.5 tokens/s.

Trade-off between Performance and Efficiency. The
smaller the token budget used for sparse attention lay-
ers, the lower the latency caused by loading KV cache
from CPU. We evaluated the trade-off between perfor-
mance and efficiency on Llama-3-8B-262K for various
token budgets on InfiniteBench with 128K context. The
results are presented in Figure 5. Here, 6400 represents the token budget under Mem% = 30%. This
finding indicates that even retrieving only 128 relevant tokens per sparse layer as context can yield
satisfactory average score 35.9 higher than H2O+. Furthermore, selecting 1024 tokens achieves a
favorable balance between performance and latency. Detailed results could be found in Table 3.

5.3 ANALYSIS

As shown in Figure 1a, sparse patterns identified by some “filter” layers have higher similarity with
subsequent layers than other layers. Naturally, we have the following two research questions: 1)
Are these “filter” layers’ ability task-dependent or is this more of a model characteristics? 2) Which
layers have a greater ability to identify genuinely important tokens? 3) Is the performance varied
with “filter” capabilities?
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Figure 6: Analysis of “filter” ability in layers. For (a) and (b), left: Llama-3-8B-262K, right: Yi-
9B-200K. (a) The inter-layer attention similarity, also referred to as the “filter” capability of layers,
displays similar trends across various tasks. (b) Varying capabilities to capture important tokens. (c)
Varying performance on LongBench using Llama-3-8B-262K.

Task-Independent Filter Layers. To answer the first research question, we conducted experi-
ments on different tasks to collect those layers’ “filter” characteristics. The results, shown in Figure
6a, display the trends of similarity values for Llama-3-8B and Yi-9B across various tasks. We
can observe that these curves for different tasks generally follow same trends, suggesting that the
strength of “filter” is not task-dependent. Instead, the “filter” ability is more likely an intrinsic char-
acteristic of the layers themselves. This implies that once we select appropriate hyper-parameters L,
our method can be adapted to any task.

Accuracy of Context Selection. We use the CLongEval dataset (Qiu et al., 2024) to test whether
the layers can accurately assign higher attention scores to the context containing the answer. This
dataset provides the reference chunk where the standard answer is located. Although this chunk
covers a broad range, we can still compute the hit ratio as the proportion of important tokens within
the reference chunk. The results are shown in Figure 6b. We observed that the layers with stronger
“filter” ability demonstrate a higher hit ratio compared to neighboring layers. For example, the 8th
layer in Llama3-8B exhibits a peak in both Figure 6a and 6b. Likewise, the 14th layer in Yi-9B
displays similar characteristics. This suggests that certain layers develop a stronger capacity for
important token retrieval after training.

Performance Vary with Filter Ability. We conduct experiments using Llama3-8B-262K on
LongBench. As shown in Figure 6c, results indicate that layers 8, 10, 11, and 13 exhibit relatively
superior performance, which corresponds well with the higher “filter” ability observed in these lay-
ers as shown in Figure 6a. Similarly, the sudden performance decline in layer 12 and the abrupt
improvement in performance from layer 4 to layer 5 are also aligned in Figure 6a. Detail results can
be found in Section D.6.

6 CONCLUSION

This paper proposes OmniKV, a token-dropping-free and training-free inference method, delivering
a 1.7x improvement in inference efficiency without compromising performance in long-text sce-
narios. Moreover, OmniKV is highly compatible with offloading techniques, significantly reducing
KV cache memory consumption. The method is simple to implement and has promising practical
application prospects. In our future work, we plan to explore the integration of OmniKV with KV
cache quantization techniques to further minimize the usage of KV cache and enhance efficiency.

REPRODUCIBILITY STATEMENT

The hyper-parameters, hardware environment, decoding methods, and other pertinent details are
presented in Section 5. The core code for OmniKV is provided in Section B. Detailed settings and
implementation of baselines can be found in Section C.
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A 2STAGERETR

To mitigate the influence of these priors on the results, we propose the benchmark 2StageRetr. The
main idea behind this benchmark is to construct a two-step reasoning problem, using the result of
the first step to complete the second step. The task description is placed at the end of the prompt,
preventing the model from “mentally calculating” the result of the first step. Thus avoids LLMs
assigning high attention scores to answer tokens based on mentally computed results. Specifically,
the 2StageRetr consists of a dictionary composed of multiple pairs of numbers and colors, followed
by an addition equation. We ensure that the result of the addition is always a key in the dictionary.
Then the model needs to find the corresponding color in the dictionary based on the result of the
addition, and output it. An example of 2StageRetr is shown below.

2StageRetr Example

Lets play a game. You have a dict and a mathematical addition equation. The keys of a dictionary can
be any number. You need to find the corresponding key value in the dictionary after performing the
addition and output the value corresponding to that key. The Dict is {0: lime, 1: yellow, 2: red, 3:
black, 4: brown, ...... 17: brown, 18: maroon, 19: teal, 20: red, ..... 28: brown, 29: violet}
The equation is 8 + 10 = ? Answer the corresponding color based on the addition result.

Example output: Since 8 + 10 = 18, the corresponding color is “maroon”.

This design essentially ensures that LLMs, without prior knowledge of the problem, use pre-trained
prior knowledge to assign higher attention scores to certain key-value pairs in the dictionary. Con-
sequently, the H2O method is fundamentally akin to randomly discarding key-value pairs from the
dictionary. Hence, its performance cannot surpass the proportion of its token budget. In contrast, our
method selects the most relevant context based on the information within the observation window
each time, thereby achieving superior performance.

We set the dictionary size to not exceed 200, with numbers arranged sequentially from 0 to the
maximum value. This arithmetic sequence should be relatively simple for current LLMs, thereby
primarily assessing the model’s retrieval capability.

The average length of this dataset is only 739 tokens, with the maximum length being 1382 tokens.
However, current cache drop-based methods do not perform very well on this task.

B DETAILED IMPLEMENTATION

The actual code implementation required only a minor modification of the code sourced from Hug-
gingface’s Transformers library (Wolf et al., 2020). Here we present the core pseudo code of Om-
niKV in Algorithm 1. This algorithm demonstrate the attention forward procedure of one layer.

C BASELINES SETTINGS

Here we provide a detailed description of the settings for different baselines.

1) H2O. As H2O requires the output of attention scores, which is incompatible with flash attention,
the intermediate activation values directly lead to out of memory errors when processing long se-
quences. Therefore, when the context length exceeds 60K or when using models larger than 30B,
we must calculate attention in chunks and remove tokens based on the attention score within each
chunk. We denote this approach with + in our results. To ensure fairness in comparison, we strictly
set H2O to retain Mem% of KV caches. We also modified code for supporting GQA (Ainslie et al.,
2023) in Llama-3 and Yi.

2) InfLLM. Since InfLLM uses an LRU-based block cache and has many hyper-parameters, limiting
the KV cache by percentage leads to efficiency degradation and performance decline. Therefore,
InfLLM is configured to use an average of Mem% of KV caches.
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Algorithm 1: Attention Forward of OmniKV
Input: observation window’s hidden states hw

i , filter layers L, context cache K,V, visible KV
cache Kv,Vv , current layer i, attention query weight Wq

i , token budget k, window
weights α

if i ∈ L then
Qw

i ←Wq
ih

w
i ▷ get query states

Ai ← Softmax
(

Qw
i K⊤

i√
d

)
▷ get attention scores

Si ←
∑|hw

i |−1
j=0 αj max0≤h<H Ai[h, j] ▷ get context scores

Ti ← arg top k
0≤t<|hc

i |
(Si) ▷ select important tokens

t← get the index of i in L
for j = Lt + 2→ Lt+1 − 1 do

Kv
j ,V

v
j ← LoadToGPU(Kj [Ti],Vj [Ti]) ▷ load subsets of KV cache to GPU

end
end
if i ∈ L or i < L0 or i− 1 ∈ L then

Kv
i ,V

v
i ← Ki,Vi ▷ use original cache for layers performing full attention

end
Finally, perform normal Attention with visible KV cache Kv

i ,V
v
i .

3) StreamingLLM. We strictly set StreamingLLM to retain Mem% of KV caches with 1% for
initial sink tokens and Mem− 1% for local window tokens.

4) Full Attention (original model). To avoid excessive GPU memory consumption by intermediate
activations in the MLP, we split the hidden states along the sequence length dimension into chunks
of size 4000. This reduces peak memory usage without affecting efficiency.

D ABLATION STUDIES AND DETAILED EXPERIMENTS

D.1 NEEDLE-IN-A-HAYSTACK

As OmniKV employs an 8B model capable of supporting a 450K context on a single A100 GPU,
we conducted needle-in-a-haystack tests with a maximum context length of 450K, achieving fully
accurate performance. We continued to use L = {2, 8, 18}, with a token budget of 1024 for sparse
layers. We also conducted tests with an input length of 512K on a single NVIDIA H20, also achiev-
ing entirely accurate results.The results are shown in Figure 7.

D.2 DETAILED TRADE-OFF

Here, we present the detailed trade-off between efficiency and performance. Our test results on
InfiniteBench are shown in Table 3. The latency here refers end-to-end time of per token in decoding
stage.

Table 3: Detailed results on trade-off between performance and efficiency.

Budget En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find RT.passkey RT.Num RT.KV Avg. Latency (ms)

128 19.1 12.5 64.2 4.0 10.9 20.6 26.6 100.0 100.0 1.0 35.9 50.4
256 19.4 13.8 62.9 6.0 11.8 20.6 26.6 100.0 100.0 2.8 36.4 51.9
512 20.8 12.9 63.3 4.5 11.8 20.6 26.6 100.0 100.0 5.8 36.6 55.7
1024 20.5 12.9 64.6 5.5 12.1 20.6 26.6 100.0 100.0 6.6 36.9 62.5
2048 21.4 12.9 65.5 3.0 12.2 20.3 26.6 100.0 100.0 7.6 37.0 78.8
4096 20.7 12.6 65.5 4.5 12.4 20.3 26.6 100.0 100.0 8.6 37.1 95.5
6400 22.5 12.7 65.5 5.0 12.6 20.0 26.5 100.0 100.0 9.6 37.4 135.1
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Figure 7: Needle-in-a-haystack test. Results indicate that OmniKV applied to Llama-3-8B-1M
achieves perfect retrieval results.

D.3 DETAILED LONGBENCH RESULTS

We present the detailed results on LongBench, showing the scores for each subtask, as shown in
Table 4 and 5.

Table 4: Detailed results on LongBench (Part 1).

Single-Document QA Multi-Document QA Summarization
Model MultiFieldQA EN NarrativeQA Qasper 2WikiMQA Dureader HotpotQA Musique Gov Report qmsum vcsum
Llama-3-8B-262K 43.6 16.0 28.2 21.7 28.3 27.5 14.3 34.5 25.3 15.1
H2O 39.8 16.8 26.5 19.3 23.9 24.5 13.2 31.2 25.3 15.2
StreamingLLM 22.1 13.4 22.5 20.1 12.9 24.1 12.3 26.5 21.4 8.1
InfLLM 41.2 16.8 26.2 16.5 19.8 16.5 8.4 33.1 24.2 0.2
OmniKV w/ last 43.0 17.0 28.6 21.8 28.2 27.0 14.6 34.2 24.9 14.1
OmniKV w/ uni 43.6 17.1 28.4 22.3 29.9 26.9 14.3 32.1 25.2 13.9
OmniKV w/ exp 43.7 16.7 28.3 21.9 28.5 26.7 14.6 33.6 24.5 13.8

Yi-9B-200K 37.1 13.6 35.3 35.6 19.4 50.8 27.5 30.7 20.4 9.8
H2O 34.4 14.9 29.1 35.5 20.1 50.0 28.7 22.5 20.8 9.4
StreamingLLM 17.1 2.6 17.7 19.2 10.8 10.9 4.5 19.0 15.9 5.9
InfLLM 25.6 15.2 37.1 31.5 23.3 53.3 26.5 30.1 20.7 9.2
OmniKV w/ last 38.3 11.9 34.1 36.0 21.3 50.2 27.2 30.9 19.2 9.3
OmniKV w/ uni 38.1 12.9 33.7 35.7 21.9 51.8 27.9 31.1 20.4 8.7
OmniKV w/ exp 38.7 12.7 33.1 36.0 21.7 50.6 27.8 31.0 20.1 9.0

Llama-3.1.70B 54.9 27.9 44.1 54.5 31.2 58.8 34.8 35.2 24.0 17.5
H2O+ 45.1 29.5 35.4 42.7 27.3 52.7 32.9 32.9 23.0 16.6
StreamingLLM 25.3 10.1 14.9 19.5 10.0 15.5 4.4 26.7 19.8 9.8
InfLLM 50.2 24.7 43.2 47.3 32.7 43.2 21.4 19.9 20.1 15.3
OmniKV w/ last 54.8 27.5 43.7 56.2 28.0 59.3 33.9 33.5 24.2 16.5
OmniKV w/ uni 53.7 26.5 42.3 55.9 26.2 58.6 34.6 31.6 23.9 15.5
OmniKV w/ exp 53.8 27.7 44.5 56.0 28.3 57.8 35.3 33.6 24.2 16.2

D.4 MULTI-STEP REASONING RESULTS OF YI-9B-200K

To further validate the effectiveness of OmniKV in multi-step reasoning, we continued experiments
using Yi-9B-200K. The average length of 2StageRetr is 739, so the token budget is 739×0.067 = 49.
To avoid an excessively low budget, while ensuring fairness in comparison, we set the “filter” layers
L = {3, 11, 30} to allocate more token budgets for sparse layers.

As shown in Table 6, OmniKV achieved the best results across all three datasets, particularly under
a constrained token budget. This further validates the effectiveness of our approach. Yi-9B-200K
does not follow instruction to directly answer in 2StageRetr.

D.5 ABLATION STUDIES

OmniKV comprises a Context Selector and a Context Bank, which are highly coupled modules.
When the Context Selector is removed, implying the computation of entire context, the method
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Table 5: Detailed results on LongBench (Part 2).

Few-Shot Syntheic Tasks Code
Model lsht trec TriviaQA Passage Count Passage Retrieval EN lcc RepoBench-p
Llama-3-8B-262K 44.5 69.5 83.7 0.0 87.0 52.5 45.4
H2O 35.0 68.5 85.5 0.0 85.5 42.8 43.8
StreamingLLM 20.5 60.0 68.7 1.7 21.8 55.8 48.8
InfLLM 37.0 68.5 82.7 6.5 66.5 52.3 44.8
OmniKV w/ last 44.5 69.5 80.9 0.0 82.5 51.4 45.4
OmniKV w/ uni 41.5 68.5 82.0 0.0 83.0 51.4 45.4
OmniKV w/ exp 43.5 69.5 82.5 0.0 83.0 37.5 32.9

Yi-9B-200K 48.5 78.5 86.8 3.0 59.0 71.6 63.1
H2O 42.0 77.5 86.8 2.8 59.5 70.7 62.6
StreamingLLM 24.3 69.5 75.2 3.1 2.8 64.4 57.1
InfLLM 48.0 77.0 87.6 3.2 49.5 69.4 62.4
OmniKV w/ last 48.5 78.5 85.5 3.3 58.5 69.5 61.3
OmniKV w/ uni 48.0 78.5 86.7 2.8 55.5 68.9 61.1
OmniKV w/ exp 48.5 78.5 86.6 3.3 58.0 69.7 61.3

Llama-3.1.70B 46.0 75.0 85.9 18.5 97.5 48.2 63.3
H2O+ 30.0 68.5 85.1 9.5 39.5 50.4 57.6
StreamingLLM 4.0 54.5 78.4 1.5 13.6 67.3 55.0
InfLLM 36.0 65.5 86.0 5.5 76.8 32.3 47.4
OmniKV w/ last 44.5 74.3 85.9 18.0 97.3 49.2 60.5
OmniKV w/ uni 42.0 74.5 86.8 18.0 97.5 47.8 59.8
OmniKV w/ exp 44.0 75.0 86.4 18.0 97.3 48.7 61.8

Table 6: Multi-step reasoning results of Yi-9B-200K.

Model CoT %Mem 2WikiMQA HotpotQA 2StageRetr

Yi-9B-200K ✗ 100.0% 27.0 40.0 -
Yi-9B-200K ✓ 100.0% 64.0 48.5 36.0
H2O ✓ 30.0% 55.5 45.5 13.0
H2O ✓ 40.0% 60.5 47.0 19.0
H2O ✓ 50.0% 64.0 50.0 26.0
OmniKV ✓ 30.0% 58.0 51.0 14.0
OmniKV ✓ 40.0% 62.0 51.0 32.0
OmniKV ✓ 50.0% 64.0 50.0 31.0

becomes equivalent to full attention if GPU memory is sufficient. Otherwise, we have to offload
some layers’ KV cache, then the approach becomes identical to Brutal Offload. Although the per-
formance of Brutal Offload is entirely equivalent to that of the original model, the frequent loading
and offloading during the decode stage incurs significant overhead.

Without the Context Bank, indicating that we do not apply inter-layer attention similarity, we can
only utilize the Context Selector at each layer to choose the token set T. However, selecting impor-
tant tokens/context itself requires full attention at the current layer, which means efficiency would
be significantly reduced. The only potential benefit might be using a shorter context to avoid inter-
ference from irrelevant information, possibly leading to better performance.

Table 7: Detailed results on trade-off between performance and efficiency.

Variant En.Sum En.QA En.MC En.Dia Zh.QA Code.Debug Math.Find RT.passkey RT.Num RT.KV Avg. Latency (ms)

OmniKV w/o CS 22.0 13.3 65.9 6.0 12.8 20.8 26.5 100.0 100.0 14.4 38.1 569.4
OmniKV w/o CB 21.8 13.5 61.5 4.5 13.6 21.5 26.2 100.0 100.0 9.8 37.2 184.4
OmniKV 22.5 12.7 65.5 5.0 12.6 20.0 26.5 100.0 100.0 9.6 37.4 54.3

D.6 PERFORMANCE OF FILTER LAYERS

Theoretically, if we select “filter” layers with stronger “filter” capabilities, we can expect improved
performance. However, ensuring a completely fair performance comparison when testing different
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selected layers is challenging. This is due to the sequential nature of the layers; even if we ensure
that the total number of layers performing full attention remains consistent, there can still be issues
with uneven spacing between “filter” layers. Attempting to evenly distribute the “filter” layer set
introduces additional variables. Nonetheless, experimental results indicate that layers with enhanced
“filter” capabilities tend to exhibit superior performance to some extent. We conduct experiments
on both LongBench and InfiniteBench. The results are shown in Table 8.

Table 8: Performance on LongBench of different filter layers settings.

Filter Layers Single-Doc QA Multi-Doc QA Summarization Few-Shot Synthetic Code Avg.

2,4,18 27.0 19.9 21.4 58.1 42.8 46.0 35.8
2,5,18 29.3 22.8 23.4 63.4 42.5 47.1 38.1
2,7,18 29.3 22.1 23.6 65.2 41.8 47.2 38.2
2,8,18 29.6 22.9 24.4 65.0 41.3 48.4 38.6
2,9,18 28.6 22.5 24.1 65.1 41.8 47.4 38.2
2,10,18 30.2 23.0 24.0 65.1 42.8 47.5 38.8
2,11,18 31.0 22.7 23.9 65.4 43.0 48.2 39.0
2,12,18 29.8 21.2 23.0 63.2 42.1 47.8 37.8
2,13,18 30.1 22.5 23.7 65.4 42.5 48.2 38.7

D.7 AN EXAMPLE OF INTER-LAYER ATTENTION SIMILARITY MAP

To directly observe the “filter” capability of layers, we also demonstrated the similarity between any
two layers. We visualized the cumulative attention scores for the top-2048 token set from Llama-3-
8B-262K on HotpotQA as a measure of similarity, consistently as before. As shown in Figure 8, for
layer 8, despite being 12 layers apart from layer 20, the token set T8 selected by layer 8 still achieves
a cumulative attention score of 0.87 at layer 20. This substantially demonstrates the effective ability
of layer 8 to select important tokens.

D.8 EFFECTIVENESS OF OMNIKV ON LARGER MODELS

We first visualized the Inter-Layer Attention Similarity of Llama-3.1 405B, as illustrated in Figure 9.
The 405B model continues to exhibit remarkably high inter-layer similarity, indicating that OmniKV
can be effectively applied to it. Additionally, we conducted further evaluations on two tasks from
LongBench, Qasper and Qmsum. And the results are presented in Table 9.

Table 9: OmniKV in 405B.

Setting qasper qmsum

Llama 3.1 405B 50.0 25.5
OmniKV 48.5 25.9

D.9 COMPATIBILITY OF OMNIKV

In this paper, most of the experiments are conducted using the Huggingface Transformers. However,
this framework is typically not used as an inference engine. Current engines used for large model
inference, such as vLLM (Kwon et al., 2023a) and LightLLM (ModelTC, 2023), are much faster
than those based on Hugging Face Transformers. Therefore, we adapted OmniKV to one of them,
LightLLM, to demonstrate that OmniKV has a excellent usability in real-world scenarios. The
results are shown in Table 10.

Continuous Batching. Continuous Batching is a technique used in the training and inference of
Large Language Models (LLMs) to optimize computational efficiency, particularly in scenarios
where the model processes sequences of varying lengths. The core idea behind continuous batching
is to dynamically group input sequences into batches that can be processed in parallel, even if the
sequences have different lengths. OmniKV can be natually integrated with Continuous Bathcing.
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Figure 8: An Example of Inter-Layer Attention Similarity Map.

Table 10: Average latency of per token for each request (ms/token, tp=4).

Setting Lightllm+OmniKV Lightllm+origin vLLM+origin

128k, bs=16 46.2 73.5 72.3
256k, bs=8 44.9 75.4 73.1
512k, bs=4 44.9 78.1 75.6

Based on lightLLM, we find that the continuous batching technique decrease the average latency of
multiple 64K-length requests from 41.7s to 37.8s.

Tensor parallelism. Tensor parallelism(TP) is a technique used in large language models (LLMs)
and other deep learning models to distribute the computation of tensors (multi-dimensional arrays)
across multiple devices, such as GPUs. This approach is particularly useful for training and inference
with very large models that cannot fit into the memory of a single device. Using LightLLM, we have
implemented OmniKV with tensor parallelism. Experimental shown in Table 11 results indicate that
with TP enabled, OmniKV can still achieve considerable acceleration compared the original model.
Another observation is that Lightllm+OmniKV experiences reduced decoding latency as sequence
length increases. This is because the “non-filter layers” have a fixed sequence length of 2048. As
the batch size decreases, the computation also decreases for “non-filter layers”.

More technical details of TP. The attention heads is distributed across different GPUs in tensor
parallelism, and the outputs are aggregated using all-reduce, making inter-GPU communication
a key factor in efficiency. For tp = n , OmniKV maintains n indices of important tokens for
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Figure 9: Inter-Layer Attention Similarity of Llama-3.1 405B.

Table 11: Throughput results of decoding (tp=4), using Llama-3-8B-Instruct-262K.

Setting Lightllm+OmniKV Lightllm+origin vLLM+origin

128k, bs=16 345.9 217.7 221.3
256k, bs=8 177.5 106.1 109.4
512k, bs=4 89.1 51.2 52.9

each card. Each index of important tokens is computed solely by the card’s own attention heads,
thereby eliminating the need for inter-GPU communication. Since different attention heads may
have distinct indices, the system intuitively exhibits greater flexibility. We have also substantiated
this through experiments(Shown in Table 12).

Table 12: Performance comparison across datasets.

Setting 2WikiMQA Qasper HotpotQA lcc qmsum

tp=8 21.7 28.0 27.3 52.3 25.9
tp=1 21.8 28.6 27.0 51.4 24.9

Pipeline parallelism. Pipeline parallelism(PP) is a technique used to parallelize the execution of
LLMs across multiple devices or processors. This approach is particularly useful for deep neural
networks, where the model can be divided into smaller, sequential stages, and each stage can be
processed on a different device. OmniKV is also natually compatible with pipeline parallelism. The
experiments of Llama-3.1-70B shown in Table 1 is conducted using pipeline parallelism.

Context parallelism. Context parallelism(CP) is a technique used in large language models (LLMs)
to improve training and inference efficiency by distributing the processing of input sequences across
multiple devices or processors. This approach leverages the fact that many LLMs, such as transform-
ers, process input sequences in a way that allows for parallel computation. Indeed, when OmniKV
is used, there is no need to enable context parallelism. This is due to OmniKV only needs around
2048 tokens to achieve excellent results. Nevertheless, OmniKV can still be integrated with context
parallelism. In this case, the communication latency in multi-GPU parallelism often exceeds the
computational latency of a single GPU. Hence, we can employ context parallelism only in dense
(full) attention layers, while utilizing a single GPU for sparse attention layers. This means we sim-
ply need to configure which layers will implement context parallelism. We can allocate samples to
different GPUs when the batch size is larger than 1 to prevent resource wastage.
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D.10 PREFILL ACCELERATION

OmniKV is designed to enhance decoding speed. However, given the importance of prefill acceler-
ation, we have modified OmniKV to optimize the prefill stage as well. Experimental results indicate
that OmniKV-prefill achieves a 1.90x reduction in latency without performance loss compared to the
original model with an input length of 256K. The code here is implemented using the Transformers
library, enhanced with Flash Attention.

Specifically, during the prefill stage, we divide the sequence dimension into multiple chunks for
computation. For each chunk, we also use the “filter layer” to select important tokens. Since the
sequence length of the query chunk is no longer 1, we employ the uniform computation method
introduced in Section 4.2 to select important tokens in the “filter layer”.

Table 13 and Table 14 show latency and quality preserving results. Here, “r” denotes the size of
the selected tokens, with the ratio of token size to chunk size being “r”. Thus, the larger the value
of r, the less information is lost. The results indicate that r=2 has achieved a fine balance between
efficiency and performance.

Table 13: Prefill latency (s) on a single NVIDIA-H20.

Setting 256k 128k 64k 32k 16k

OmniKV-prefill, r=1 105.9 36.7 14.3 6.2 2.8
OmniKV-prefill, r=2 107.2 38.8 15.9 6.5 2.9
OmniKV-prefill, r=4 112.9 42.8 17.1 6.8 3.0
OmniKV-prefill, r=8 133.3 49.2 19.0 6.9 2.9
MInference 61.6 28.1 13.0 6.5 3.7
Llama-3-8B-262K (origin) 203.8 58.6 18.3 6.5 2.6

MInference (Jiang et al., 2024a) is specifically designed for Prefill acceleration and optimizes mul-
tiple CUDA kernels. But OmniKV solely relies on the Huggingface-transformers library, conse-
quently less efficient.

Table 14: Quality preserving results on LongBench.

Setting %Mem Single-Doc QA Multi-Doc QA Summarization Few-Shot Synthetic Tasks Code

Llama-3-8B-262K (origin) 100% 29.2 22.9 24.9 65.9 43.5 48.9
Minference 30% 29.2 22.4 25.3 65.8 41.0 49.8
OmniKV-prefill, r=1 30% 29.8 22.0 24.0 63.5 33.3 50.0
OmniKV-prefill, r=2 30% 30.0 23.1 24.3 65.1 40.0 49.6
OmniKV-prefill, r=4 30% 29.8 22.9 24.3 65.9 42.0 49.1
OmniKV-prefill, r=8 30% 29.8 22.9 24.3 65.9 42.0 49.0
OmniKV-prefill, all 30% 29.6 23.3 23.7 64.0 41.5 48.4
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