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Abstract
Layer-wise distillation is a powerful tool to com-
press large models (i.e. teacher models) into small
ones (i.e., student models). The student distills
knowledge from the teacher by mimicking the
hidden representations of the teacher at every in-
termediate layer. However, layer-wise distillation
is difficult. Since the student has a smaller model
capacity than the teacher, it is often under-fitted.
Furthermore, the hidden representations of the
teacher contain redundant information that the stu-
dent does not necessarily need for the target task’s
learning. To address these challenges, we propose
a novel Task-aware layEr-wise Distillation (TED).
TED designs task-aware filters to align the hidden
representations of the student and the teacher at
each layer. The filters select the knowledge that
is useful for the target task from the hidden repre-
sentations. As such, TED reduces the knowledge
gap between the two models and helps the stu-
dent to fit better on the target task. We evaluate
TED in two scenarios: continual pre-training and
fine-tuning. TED demonstrates significant and
consistent improvements over existing distillation
methods in both scenarios. Code is available
at https://github.com/cliang1453/
task-aware-distillation.

1. Introduction
Large pre-trained language models have achieved state-of-
the-art performances in many natural language processing
tasks (Wang et al., 2019; Rajpurkar et al., 2016a). However,
their deployment in resource-limited scenarios is hindered
by their huge number of parameters (Raffel et al., 2019;

1H. Milton Stewart School of Industrial and Systems En-
gineering, Georgia Institute of Technology, Atlanta, U.S.A.
2Microsoft, Redmond, U.S.A.. Correspondence to: Chen Liang
<cliang73@gatech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Radford et al., 2019; Brown et al., 2020; He et al., 2020;
2023). Knowledge Distillation (KD) (Hinton et al., 2015)
is a powerful tool to compress large models (i.e., teacher
models) into small ones (i.e., student models) with a mini-
mal loss of performance. This approach trains the student
to match the output predictions of the teacher.

However, such a last-layer-only distillation approach does
not exploit the intermediate layers of the teacher, which
contain rich semantic and syntactic knowledge. To leverage
such knowledge, researchers have proposed a layer-wise
distillation approach, which trains the student to match the
hidden representation of the teacher at each layer (Sun et al.,
2019; Jiao et al., 2020; Sun et al., 2020b; Hou et al., 2020;
Zuo et al., 2022). Such an approach often improves the
generalization performance of the student model.

Nevertheless, layer-wise distillation faces two major chal-
lenges. First, the student may struggle to mimic the hidden
representations of the teacher due to their large capacity gap.
This often leads to large discrepancies between their hidden
representations. Consequently, model training/optimization
often favors reducing such large discrepancies over the train-
ing loss of the student (i.e., the target task’s loss such as
cross-entropy), resulting in an under-fitted student model.
Second, mimicking the hidden representations may not be
beneficial for the target task’s learning. This is because the
hidden representations of the teacher often contain redun-
dant information (Dalvi et al., 2020; Durrani et al., 2020).
Given the limited capacity of the student, such redundant
information may compete with the useful information for
distillation, hindering the useful knowledge from being dis-
tilled. Our empirical observations show that for some tasks,
layer-wise distillation only marginally outperforms standard
KD (Table 2).

To address these challenges, we propose a novel layer-
wise distillation method, TED (Task-aware layEr-wise
Distillation), which distills task-specific knowledge from
the teacher to the student. We design a pair of task-aware
filters for each layer of the teacher and student1. Each filter

1For simplicity, we assume that the student and teacher are of
the same depth (number of layers) but different widths. The case
of different depths will be elaborated in Section 2.
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Figure 1. An illustration of TED’s two-stage training framework. In Stage I (left), we fix the model parameters and only train the filters
and task-specific heads based on the target task loss. In Stage II (right), we jointly train the student and its filters by aligning the filter
outputs of each pair of the teacher and the student layers.

is a neural network with a task-specific head (e.g., a linear
soft-max layer for classification), and is trained to extract
the predictive knowledge from the hidden representation of
the corresponding model. Figure 1 illustrates the training
procedure of TED, which consists of two stages:

• Stage I: We train the task-aware filters for both the teacher
and the student models, while keeping the model parameters
frozen. At each layer, the filter takes the hidden representa-
tion of the model as input, and produces a target task’s loss
(e.g., cross-entropy) as output. The filter is subsequently
optimized based on such a loss to capture the predictive
knowledge from the hidden representation.

• Stage II: We jointly train the student model and its task-
aware filters, while keeping the teacher and its filters fixed.
At each layer, we feed the hidden representation of the
teacher and the student to their respective filters (without
the task-specific heads). Then, we adopt a regularizer that
penalizes the discrepancy between the filtered representa-
tions. This regularizer encourages the student to learn the
task-specific knowledge from the teacher, while ignoring
the redundant information.

The task-aware filters serve as a selection mechanism that
reduces the knowledge gap between the teacher and the stu-
dent and encourages the distillation of task-specific knowl-
edge. This makes distillation easier for the student.

We evaluate TED on two settings: continual pre-training
and task-specific fine-tuning. In the continual pre-training
setting, we distill a 6-layer GPT-2 student model (82M)
from a 12-layer GPT-2 teacher model (125M) (Radford
et al., 2019). We show that TED outperforms existing
methods in both zero-shot and transfer learning settings
on various downstream tasks (Paperno et al., 2016; Merity
et al., 2017). In the task-specific fine-tuning setting, we
distill a DeBERTaV3-xsmall student model (70M) from a
DeBERTaV3-base teacher model (183M) (He et al., 2023).

We demonstrate that TED achieves significant improve-
ment on the GLUE benchmark (Wang et al., 2019) and the
SQuAD v1.1/2.0 question answering datasets (Rajpurkar
et al., 2016a; 2018).

The rest of the paper is organized as follows: Section 2
briefly reviews the background; Section 3 presents our pro-
posed method; Section 4 presents experiments on language
modeling; Section 5 presents experiments on natural lan-
guage understanding; Section 6 presents analysis of models;
and Section 8 discusses and concludes the paper.

2. Background
Transformer-based Language Models. The Transformer
architecture is a powerful neural network design for model-
ing sequential data, such as natural language (Vaswani et al.,
2017; Devlin et al., 2019; Radford et al., 2019; He et al.,
2023). It consists of multiple layers that are stacked on top
of each other. Each layer performs two operations: a multi-
head self-attention mechanism and a two-layer feed-forward
neural network. We use f(·; Θ) to denote a Transformer-
based model f that has a set of parameters Θ, where f takes
an input sequence x from the input sample space X and
produces an output prediction. We define the loss function
L(Θ) = Ex∼X [`(f(x; Θ))], where ` is the target task loss.
For example, ` is the causal language modeling loss for
generative models (i.e.,

∑|x|
t=1 log p(xt|x<t; Θ)).

Knowledge Distillation is a powerful approach to compress
large models (i.e., teacher models) into smaller models (i.e.,
student models) by transferring knowledge from the former
to the latter (Hinton et al., 2015). The student is trained to
mimic the output predictions of the teacher. Specifically, we
denote the teacher as ft(Θt) and the student as fs(Θs) and
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consider the following optimization problem:

min
Θs

L(Θs) +Dpred(Θt,Θs), (1)

where Dpred(Θt,Θs) is the distillation loss, a distance met-
ric between the output predictions of the teacher and the
student. For example, Dpred can be the KL-divergence:
KL(ft(Θt)/T, fs(Θs)/T ), where T > 0 is the tempera-
ture that controls the softness of the prediction probability
distributions (Hinton et al., 2015). A commonly adopted dis-
tillation scheme is the offline distillation, where the teacher
is fully-trained and fixed, and the student is optimized based
on Eq. 1.

Layer-wise Distillation. In large Transformer-based mod-
els, the output predictions of the models may not capture all
the semantic and syntactic knowledge encoded in the inter-
mediate layers. Therefore, researchers propose a layer-wise
distillation approach, which aligns the hidden representa-
tions of the student and the teacher at each layer (Romero
et al., 2015; Sun et al., 2019; 2020b; Jiao et al., 2020; Hou
et al., 2020; Zuo et al., 2022; Liang et al., 2023). Specifi-
cally, we denote the hidden representation at the k-th layer
of a K-layer student as Hk

s ∈ R|x|×ds , and at the M(k)-th
layer of the teacher as HM(k)

t ∈ R|x|×dt . Here |x| is the
sequence length; ds and dt are the hidden dimensions of
the student and the teacher, respectively. M(·) is a layer
mapping function that determines from which layer in the
teacher that a student layer should distill. For example, if
we set M(k) = 2k, the student would distill from every
other layer in the teacher. The layer-wise distillation loss is
defined as:

Dlayer(Θt, [Θs,Ws]) =

K∑
k=1

MSE(H
M(k)
t , Hk

sW
k
s ). (2)

Here MSE(·, ·) is the mean-squared error, W k
s ∈ Rds×dt is

a randomly initialized and learnable linear projection that
projects Hk

s into the same space as HM(k)
t , and Ws =

{W k
s }Kk=1. In practice, the student is often optimized using

multiple distillation losses, e.g.,

min
Θs,Ws

L(Θs) + α1Dpred(Θt,Θs) + α2Dlayer(Θt, [Θs,Ws]).

(3)

where α1, α2 ≥ 0 are hyper-parameters. Besides the in-
termediate layers, distilling knowledge from the attention
scores and the embedding layers can also improve the dis-
tillation performance (Sun et al., 2020b; Jiao et al., 2020;
Wang et al., 2020; 2021). Eq. 3 can be further extended by
adding such losses.

3. Method
We introduce TED, a two-stage training framework that uses
task-aware filters to distill knowledge from a teacher to a

student. The task-aware filters are neural networks that learn
to extract task-specific knowledge from the hidden represen-
tations of the teacher and the student. In the first stage, we
add a task-aware filter to each layer of the teacher and the
student. We train these filters using the task-specific loss
while keeping the model parameters frozen. In the second
stage, we fine-tune the student and its filters by minimizing
the discrepancy between the filtered representations of the
teacher and the student.

3.1. Stage I: Training Task-aware Filters

For a student that contains K layers, we select K corre-
sponding layers from the teacher to match with the student
using a layer mapping function, M(·), as defined in Sec-
tion 2. We then equip each layer with a task-aware filter to
extract the task-specific knowledge from the hidden repre-
sentation of this layer. Each filter is a neural network with
a task-specific head (e.g., a linear soft-max layer for clas-
sification). It takes in the hidden representation generated
by this layer and outputs a prediction for the target task.
For example, for a classification task, the filter outputs a
probability distribution over the classes.

For simplicity, we only specify how to train task-aware
filters for the teacher. The student is treated similarly (see
Section 4 for details). To train the task-aware filters, we fix
the parameters of the teacher, which is already pre-trained
2. In other words, we only update the parameters of the
filters. We denote the task-aware filter at the M(k)-th layer
as gkt (·;W k

t ), where W k
t is the filter’s parameters. The filter

takes in the hidden representation HM(k)
t at the M(k)-th

layer, and outputs a task-specific loss

Lk
t (Θ

M(k)
t ,W k

t ) = Ex∼X [`(gkt (H
M(k)
t ;W k

t ))], (4)

where Θ
M(k)
t is the teacher’s parameters up to the M(k)-

th layer. The loss function ` depends on the task and the
setting. For example, ` is the causal language modeling
loss for continual pre-training and the cross-entropy loss for
fine-tuning of classification tasks. Given the loss in Eq. 4,
we train the K filters jointly:

min
Wt

K∑
k=1

Lk
t (Θ

M(k)
t ,W k

t ), (5)

where Wt = {W k
t }Kk=1. By training the task-aware fil-

ters, we can reduce the redundant information in the hidden
representations, and keep the information that is useful for
learning the target task.
Remark 3.1. We can choose different neural network archi-
tectures to implement the task-aware filters, such as a simple

2We discuss in detail how to initialize the teacher and the
student models in Section 4 and 5.
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linear projection that maps the input to a lower-dimensional
space, a multi-layer perceptron that applies a sequence of
nonlinear transformations, or a stack of Transformer layers
that encode the input with attention mechanism. We com-
pare the performances of these architectures in Section 6.5.

3.2. Stage II: task-aware Layer-wise Distillation

In Stage II, we remove the task-specific heads in the task-
aware filters, which are learned in Stage I. Then, we freeze
the parameters of the teacher and its filters, and fine-tune
the student and its filters by minimizing the discrepancy
between the filtered representations at each layer of the two
models.

Formally, we denote gks (·,W k
s ) as the task-aware filters at

the k-th layer of the student. Then the task-aware layer-wise
distillation loss is defined as

DTED ([Θt,Wt] , [Θs,Ws])

=

K∑
k=1

MSE
(
gkt (H

M(k)
t ;W k

t ), gks (Hk
s ;W k

s )
)
, (6)

which measures the discrepancy between the filtered rep-
resentations of the teacher and the student. Based on the
distillation loss, the training objective for the student and its
filters is

min
Θs,Ws

L(Θs) + α1Dpred(Θt,Θs)

+α2DTED([Θt,Wt], [Θs,Ws]), (7)

where L is the target task’s loss and Dpred is the prediction
distillation loss defined in Eq 1 and α1, α2 ≥ 0 are hyper-
parameters. By using the task-aware filters, Eq. 7 imposes
an easier requirement on the student than the conventional
layer-wise distillation loss (Eq. 3). That is, Eq. 3 requires
the student to match the teacher on the unfiltered hidden
representations, regardless of their relevance to the target
task.
Remark 3.2. We can also keep the task-specific heads in the
task-aware filters and penalize the KL-divergence instead of
the mean-squared error. We compare the performances of
these two variants in Section 6.6.

4. Language Modeling
4.1. Data

First, we evaluate TED in the continual pre-training setting
by distilling generative models on language modeling tasks.
We use Open WebText3 (Gokaslan et al., 2019), an open-
source replication of the OpenAI WebText corpus (Radford
et al., 2019) for open domain pre-training. It is a massive En-
glish corpus containing 8M training documents and around

3https://huggingface.co/datasets/openwebtext

38GB of texts extracted from 45M links of Reddit post urls.
Data pre-processing details are deferred to Appendix A.1.1.

Second, we evaluate the distilled student model by con-
ducting zero-shot and transfer learning experiments on two
downstream tasks: LAMBADA (Paperno et al., 2016) and
WikiText-103 (Merity et al., 2017). LAMBADA evaluates
the ability of language models in modeling long-range de-
pendencies. The dataset consists of full texts of 2662 novels
extracted from BookCorpus (Zhu et al., 2015). WikiText-
103 is a collection of over 100M tokens extracted from the
set of verified good and featured articles on Wikipedia.

4.2. Models

Teacher Model. We use a pre-trained GPT-2 (Radford et al.,
2019) as the teacher model. GPT-2 is a Transformer-based
model trained on Open WebText using a causal language
modeling objective. We adopt the base version of GPT-2
(GPT-212, 125M parameters), which contains 12 layers and
has a hidden dimension of dt = 768.

Student Model. We initialize a 6-layer (i.e., K = 6) stu-
dent model (GPT-26, 82M parameters) with a subset of
layers from the teacher. We adopt the layer mapping func-
tion M(k) = 2k − 1 for k ≤ K/2 and M(k) = 2k for
k > K/2 following Sanh et al. 2019. We further discuss
how to initialize the student model when its architecture is
not a shallow version of the teacher in Appendix A.4.

4.3. Training

Stage I. For the teacher model, we design each filter as a
linear projection, i.e., W k

t ∈ Rdt×dt , and randomly initial-
ize a filter for each layer that is selected to match with a
student layer. We fix the parameters of the teacher model
and train the filters based on Eq 5 for one epoch. We use
AdamW (Loshchilov & Hutter, 2019) as the optimizer and
use 4k tokens as the batch size. We adopt a linear decay
learning rate schedule with a learning rate of 2.5×10−4 and
a warmup ratio of 0.05. Then, we directly take the trained
filter at the M(k)-th layer of the teacher to be the filter at
the k-th layer of the student without further training. It is
intuitive that the trained filters of the teacher can serve as
sufficiently good filters of the student because the student
is initialized with a subset of layers from the teacher. Full
implementation details are deferred to Appendix A.1.2.

Stage II. We train the student and its filters based on Eq 7
for four epochs. We follow the same hyper-parameter con-
figurations as in Stage I, and set α1 = 2.5, α2 = 0.1 and
temperature T = 2.0.

Baselines. We consider two baseline methods: 1) KD opti-
mizes the student model based onL(Θs)+α1Dpred(Θt,Θs)
(Eq. 1), which is adopted by DistilGPT-26 (Sanh et al., 2019).
2) LWD optimizes the student model based on L(Θs) +
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Table 1. Zero-shot and transfer learning performance of GPT-26 models on test sets. We report the results of DistilGPT-2 from Sanh et al.
(2019), and the results of GPT-212 from Radford et al. (2019). Other results are from our own implementation.

Method Test Zero-Shot Transfer Learning
Open WebText WikiText-103 LAMBADA WikiText-103 LAMBADA

ppl↓ ppl↓ ppl↓ Acc↑ ppl↓ ppl↓ Acc↑
GPT-212 (Teacher) 23.1 37.5 35.1 46.0 15.9 37.2 34.8

DistilGPT-26 (KD) 31.9 - - - 21.1 - -
DistilGPT-26 (KD, Re-Imp) 29.1 49.0 87.9 22.9 19.3 50.1 31.7
GPT-26 (LWD) 29.7 51.9 91.9 22.0 19.3 50.6 31.5

GPT-26 (TED) 28.5 48.1 87.2 23.0 19.0 48.6 32.1

α1Dpred(Θt,Θs) + α2Dlayer(Θt, [Θs,Ws]) (Eq. 3).

4.4. Main Results

Table 1 shows the zero-shot and transfer learning perfor-
mance of the GPT-26 models. For Open WebText, we split
5% for testing. For the zero-shot setting, we directly eval-
uate the student model on the test sets. For the transfer
learning setting, we fine-tune the student model on the
downstream language modeling tasks. We have the fol-
lowing observations: 1) LWD does not always lead to a
better performance than KD, suggesting that the student
may have difficulty mimicking the teacher at every layer. 2)
TED can significantly improve model performance, espe-
cially on Open WebText. This suggests that distilling the
task-specific knowledge to the student yields a better model.

5. Natural Language Understanding
5.1. Data

We further evaluate TED on natural language understanding
(NLU) tasks. We consider the widely used General Lan-
guage Understanding Evaluation (GLUE, Wang et al. 2019)
benchmark, which contains nine NLU tasks, including tex-
tual entailment, sentiment analysis and text similarity. We
also evaluate TED on SQuAD v1.1/2.0 (Rajpurkar et al.,
2016a; 2018), which are widely used question answering
datasets. Details about the datasets are deferred to Ap-
pendix A.2.1.

5.2. Models

We use DeBERTaV3 models (He et al., 2023) as the
teacher and student models. DeBERTaV3 is pre-trained
in an ELECTRA-style (Clark et al., 2020) on 160GB open-
domain corpus (Gokaslan et al., 2019; Trinh & Le, 2018;
Nagel, 2016). It improves BERT (Devlin et al., 2019) with
disentangled attention and enhanced mask decoder, and
achieves the state-of-the-art downstream performance.

Teacher Model. We initialize the teacher model for each
task with a DeBERTaV3-base model that has been fine-
tuned on the target task. The model has 183M parameters,
12 layers and a hidden dimension of 768 (i.e., dt = 768).
We fine-tune the model using AdamW as the optimizer. We
adopts a linear decay learning rate schedule with a warmup
ratio in {0.05, 0.1}. We choose the learning rate from
{1, 1.5, 2, 2.5, 3} × 10−5, the batch size from {16, 32, 64},
the number of training epochs from {3, 6, 8} and the dropout
ratio from {0.05, 0.1}. Full implementations details are de-
ferred to Appendix A.2.2.

Student Model. We initialize the student model for each
task with a DeBERTaV3-xsmall model that has been fine-
tuned on the target task. The model contains a total 70M
parameters (including 22M backbone parameters). It has
12 layers and a hidden dimension of 384 (i.e., ds = 384).
We further discuss how to initialize the student model when
there does not exist a pre-trained or fine-tuned model with
the desired architecture in Appendix A.4.

5.3. Training

Stage I. Since the teacher and student have different hidden
dimensions, we set W k

t ∈ Rdt×dt and W k
s ∈ Rds×dt . We

randomly initialize a filter for each layer of the student
and the teacher (recall that they have the same number of
layers). We freeze the model parameters of the teacher and
the student, and train their filters on the target task following
the same hyper-parameter configurations in Section 5.2. Full
implementations details are deferred to Appendix A.2.3.

Stage II. We then train the student and its filters
based on Eq 7 on the target task. We follow the
same hyper-parameter configurations as in Stage I.
We choose α1 ∈ {1.0, 2.5, 5.0, 10.0}, choose α2 ∈
{10, 20, 50, 100, 200, 500, 1000}, and set the temperature
T = 2.0.
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Table 2. Evaluation results on GLUE dev set. The teacher is a fine-tuned DeBERTaV3-base model (183M) and the student is a
DeBERTaV3-xsmall model (70M). Results of “Fine-tune” are obtained by directly fine-tuning the DeBERTaV3-xsmall model on the
target task without distillation.

Method MNLI-m/mm QQP QNLI SST-2 RTE CoLA MRPC STSB Avg.
Acc Acc/F1 Acc Acc Acc Mcc Acc/F1 P/S Score

Teacherbase 90.5/90.6 92.3/89.7 94.2 96.0 86.1 68.8 90.8/93.5 92.4/92.2 88.9

Fine-tunexs 88.3/88.1 91.7/88.8 92.5 93.5 79.7 68.3 90.2/93.0 90.9/90.5 86.9
KDxs 88.5/88.1 91.7/88.8 92.9 93.9 80.5 66.3 91.2/93.7 91.0/90.8 87.0
LWDxs 88.8/88.3 91.8/89.0 92.9 93.9 80.2 66.8 90.2/93.0 91.0/90.6 87.0

TEDxs 88.8/88.7 92.2/89.5 93.1 94.2 81.8 68.5 90.4/93.2 91.3/91.1 87.5

Table 3. Evaluation results on SQuAD v1.1 and SQuAD v2.0 validation sets. The teacher is a fine-tuned DeBERTaV3-base model and the
student is a DeBERTaV3-xsmall model.

Method SQuAD v1.1 SQuAD v2.0 Avg.
EM/F1 EM/F1 Score

Teacherbase 87.1/93.1 85.4/88.4 90.8

Fine-tunexs 83.5/90.4 82.0/84.8 87.6
KDxs 84.8/91.4 82.6/85.5 88.5
LWDxs 84.9/91.5 82.8/85.6 88.6

TEDxs 85.4/91.7 83.0/85.8 88.8

5.4. Main Results

Table 2 and Table 3 show the evaluation results of the student
on the GLUE benchmark and SQuAD v1.1/2.0 datasets,
respectively. TED achieves consistent and significant gains
over nine out of ten tasks over the best distillation baseline.
For example, TED achieves a gain of 0.5 on some large
datasets, e.g., QQP, and a gain of 1.0 on some small datasets,
e.g., RTE. For certain small datasets (e.g., RTE, MRPC,
STS-B), LWD does not always produce a better performance
than KD. In contrast, TED improves upon KD in two out of
three cases.

5.5. BERT Experiments

To compare with the state-of-the-art task-specific distilla-
tion baselines, we present in Table 4 the results of a 6-
layer BERT-base student model (BERT-base6, 66M) dis-
tilled from a fine-tuned 12-layer BERT-base teacher model
(BERT-base12, 109M). TED achieves comparable perfor-
mance with noticeable benefits over the existing baselines
on three NLU tasks. All implementation details are deferred
to Appendix A.2.4.

6. Analysis
We further verify that the task-aware filters can capture the
task-specific knowledge and ease distillation. All implemen-

Table 4. Evaluation results on GLUE dev set. The teacher is a fine-
tuned BERT-base12 (12 layers), and the student is a BERT-base6
(6 layers), except for CoDIR, which uses a RoBERTa-base as the
teacher. References: PKD (Sun et al., 2019), BERT-of-Thesus (Xu
et al., 2020), MixKD (Liang et al., 2020), ProKT (Shi et al., 2021),
CoDIR (Sun et al., 2020a).

Method MNLI-m/mm SST-2 RTE

Teacher12 84.5/84.7 92.6 71.3

KD6 82.1/82.3 90.8 65.4
LWD6 82.7/83.1 90.9 67.6
PKD6 81.3/- 91.3 66.5
Thesus6 82.3/- 91.5 68.2
MixKD6 82.5/- 92.1 67.9
ProKT6 82.8/83.2 91.3 68.4
CoDIR6 83.6/82.8 93.6 65.6

TED6 83.4/84.0 91.7 68.8

tation details are deferred to Appendix A.3.

6.1. Filters Capture Task-Specific Knowledge

Table 5 shows the evaluation results of a student model
trained on the target task with their task-aware filters re-
placed by the filters trained on a different task. If the filters
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Table 5. Evaluation results on GLUE dev set. The teacher is fine-tuned DeBERTaV3-base model and the student is a DeBERTaV3-xsmall
model.

Method RTE SST-2 MRPC STS-B

LWDxs 80.2 93.9 90.2 91.0
TEDxs (Filters Learned on MNLI) 80.5 93.4 90.0 91.2
TEDxs (Filters Learned on QNLI) 81.6 93.5 89.1 91.4
TEDxs (Filters Learned on SST-2) 79.7 94.2 90.2 90.8
TEDxs (Filters Learned on the Target Task) 81.8 94.2 90.4 91.3
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Figure 2. Left: Training loss of the GPT-26 student on the target task (i.e., language modeling) on Open WebText. Middle and Right:
Distillation loss averaged by the number of layers of the GPT-26 student on Open WebText and the DeBERTaV3-xsmall student on MNLI,
respectively.

Table 6. Evaluation results of different types of filter initialization. We evaluate the DeBERTaV3-xsmall student on the GLUE dev set and
the GPT-26 student on the Open WebText test set. “N/A” is because we initializeWs of GPT-26 fromWt.

Wt Ws Target Tasks

Method Trained on Trained on MNLI-m/mm SST-2 RTE Open WebText
target task? target task? Acc↑ Acc↑ Acc↑ ppl↓

Abl.1 3 NoWs 87.4/86.9 92.0 77.2 31.82
Abl.2 NoWt 7 88.7/88.5 93.5 79.5 29.74
Abl.3 3 7 88.7/88.6 93.9 79.9 29.66
Abl.4 NoWt 3 88.8/88.6 94.0 81.5 N/A
TED 3 3 88.8/88.7 94.2 81.8 28.49

are trained on the target task, TED shows consistent gains
over LWD. In contrast, if the filters are trained on a differ-
ent task, the gains become smaller and vary significantly
across tasks, suggesting the task-aware filters can learn task-
specific knowledge4.

6.2. TED Alleviates Under-fitting and Eases Distillation

Figure 2 (Left) shows the training loss of the student on
the target task (i.e., language modeling) during distillation.

4The cause of high variance could be that the filters trained
on tasks that are more similar to the target task perform better.
For example, on the RTE task, filters trained on MNLI and QNLI
perform better than those trained on SST-2, likely because the
task-relevant knowledge can be transferred across NLI tasks.

TED leads to a faster convergence and a lower training loss
than LWD, which suggests that TED improves the fitting
of the student on the target task. Figure 2 (Middle and
Right) shows the distillation loss averaged by the number of
layers. The distillation loss in TED has a smaller magnitude
and a lower variance than LWD. This suggests that TED
effectively eases the distillation.

6.3. Contribution of the Filters

To investigate the contribution of the filters, we initialize the
filters with trained weights (3), randomly initialized weights
(7), or no filters at all (NoWt/Ws). Table 6 shows that: 1)
Using trained filters for the teacher significantly improves
the distillation performance, as long as the student has a
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Table 7. Evaluation results on GLUE dev set. The teacher is DeBERTaV3-large (435M), and the student is DeBERTaV3-xsmall (70M).

Method MNLI-m/mm SST-2 RTE

TEDxs (Teacherbase) 88.8/88.7 94.2 81.8

Teacherlarge 91.7/91.8 96.3 91.4

Fine-tunexs (Teacherlarge) 88.3/88.1 93.5 79.7
KDxs (Teacherlarge) 88.4/88.4 94.4 77.9
LWDxs (Teacherlarge) 88.5/88.5 93.6 79.4
TEDxs (Teacherlarge) 88.8/88.8 94.6 81.4

Table 8. Evaluation results of the GPT-26 student using different filter architectures.

Filter Architectures Zero-Shot Transfer Learning
WikiText-103 LAMBADA WikiText-103 LAMBADA

ppl↓ ppl↓ Acc↑ ppl↓ ppl↓ Acc↑
Linear Projection 48.12 87.27 22.99 19.03 48.63 32.08
Two-layer MLP 47.78 86.88 23.09 19.03 48.61 32.08
One Subsequent Layer 48.05 87.01 23.02 19.02 48.50 32.08
All Subsequent Layers 48.13 87.79 22.86 19.17 48.48 32.04

set of filters that can learn to match the teacher’s filtered
output. In other words, TED can be still beneficial even if
the student filters are not trained in Stage I but randomly
initialized for Stage II. 2) If the student filters are initialized
from trained weights instead of randomly initialized, the
distillation performance can be further improved.

6.4. TED Alleviates the Capacity Gap Issue

Table 7 shows the performance of a DeBERTaV3-xsmall
student (70M) distilled from a 6 times larger DeBERTaV3-
large model (435M), which contains 24 layers and has a
hidden dimension of 1024. All implementation details are
deferred to Appendix A.3.1. When using this large teacher,
LWD performs worse, e.g., the student achieves only 79.4
in RTE while achieving 80.2 when using the DeBERTaV3-
base teacher (Table 2). In contrast, TED maintains a compa-
rable performance, e.g., the student achieves a 0.4 points of
gain on SST-2.

6.5. Filter Architectures

Table 8 shows the student performance when the filters are
initialized with different architectures: 1) a linear projec-
tion; 2) a two-layer perceptron with GeLU as non-linearity
(Hendrycks & Gimpel, 2016); 3) layer(s) initialized from
the weights of the subsequent layer(s), e.g., for the first layer
of the model, we use the second (or from second to last)
layer(s) as the filter. By introducing non-linearity in the fil-
ters, the zero-shot performance slightly improves while the
transfer learning performance remains insensitive. Further

increasing the filter complexity exhibits little benefits.

6.6. Design of Distillation Loss

If we keep the task specific head of each filter trained in
Stage I and bring it to Stage II, then the filtered output
would be a prediction probability distribution instead of
a hidden representation. Then we can substitute the MSE
between the two hidden representations in Eq. 6 with the
KL-divergence between the two probability distributions.
Table 9 shows that such an approach also shows noticeable
improvements over the baselines. This suggests that the
prediction probability can also preserve some task-specific
knowledge.

Table 9. Evaluation results under different designs of the task-
aware distillation loss. The teacher is DeBERTaV3-base and the
student is DeBERTaV3-xsmall.

Method MNLI SQuAD 2.0
m/mm EM/F1

KD 88.5/88.1 81.0/84.2
LWD 88.8/88.3 81.5/84.4

TED (KL) 88.6/88.7 81.9/84.7
TED (MSE) 88.8/88.7 82.0/84.9

6.7. Hyper-parameter Study

We further investigate whether TED is sensitive to α2, the
hyper-parameter that controls the strength of DTED. Fig-
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Figure 3. Evaluation performance of DeBERTaV3-xsmall under different values of α2.

ure 3 shows the performance of the DeBERTaV3-xsmall
student on MNLI-m and SQuAD v1.0 under different values
of α2. TED shows consistent gains over a wide range of
values of α2.

7. Discussion
Computational Costs of TED. In the training phase, TED
incurs an additional computational overhead beyond what is
required by layer-wise distillation (LWD). This is due to the
training of task-aware filters in Stage I. However, this over-
head is relatively moderate, accounting for approximately
10% of the computational cost of LWD. This is because the
number of filter parameters is around 2%-4% of the model
parameters, and the training of the filters does not require
any back-propagation on the model parameters. Despite the
overhead during training, TED retains the same inference
speed as LWD during the model deployment phase. This
is because all filters are discarded at this stage, with only
model parameters being utilized for inference.

Exploring Task-aware Distillation in Multi-task Setting.
We design TED for task-specific distillation, where a task-
specific student is trained by distilling knowledge from a
target task. However, task-specific distillation exhibits sev-
eral practical limitations: 1) It lacks scalability as one needs
to distill a new student for every new task. 2) Certain tasks
have zero or few training samples, making them unsuitable
for distillation. To resolve these limitations, one potential di-
rection is to explore the idea of task-aware distillation in the
multi-task setting (Sanh et al., 2021; Longpre et al., 2023).
In this setting, one can leverage knowledge from hundreds
of tasks to distill a single multi-task student which general-
izes well on various seen and unseen tasks. One possible
strategy, for example, is to design multiple filters, each serv-
ing as an expert specialized in extracting knowledge from a
group of relevant tasks. During the distillation process, each
input sample can be routed to its most task-relevant filter(s).

Filtering and Distilling Knowledge from Large Lan-
guage Models. Pre-trained large language models (LLMs),
with up to hundreds of billions of parameters, have demon-

strated remarkable generalizability on a wide range of tasks.
How to effectively transfer the knowledge from these power-
ful LLMs into smaller models has therefore become an area
of research interest (Hsieh et al., 2023; Jiang et al., 2023;
Taori et al., 2023; Peng et al., 2023). However, it is challeng-
ing to directly apply TED, an layer-wise distillation (LWD)
approach, to LLMs due to two primary reasons: 1) LWD
requires the access to the layer-wise hidden representations,
making it incompatible with models that are closed-source.
2) The computational cost of LWD scales with the model
depth and hidden dimension, which is prohibitively expen-
sive in such models. Yet, the underlying idea of selecting
and transferring task-relevant knowledge could be useful for
LLM distillation, particularly given the significant teacher-
student capacity gap. For example, a possible strategy is
to use a LLM teacher to generate task-relevant input and
output samples in a controllable manner, and then use these
samples to distill the student model.

8. Conclusion
Layer-wise distillation is challenging as the student may
struggle to mimic the hidden representations of a much
larger teacher. We propose TED, which first learns task-
aware filters to extract the task-specific knowledge from
the teacher and the student, then minimizes the discrepancy
between the filtered outputs. This encourages the student to
learn filtered knowledge, which contains more task-relevant
signals. Our experiments verify that the filters can effec-
tively capture task-specific knowledge and ease layer-wise
distillation.
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A. Appendix
A.1. Language Modeling Experiment

A.1.1. DATA

Open WebText is an open source effort to reproduce OpenAI’s WebText dataset. The dataset is created by extracting Reddit
post urls from the Reddit submissions dataset5. These links are then deduplicated, filtered to exclude non-html content, and
shuffled randomly. Near-duplicate documents are identified using local-sensitivity hashing. They are hashed into sets of
5-grams and all documents that had a similarity threshold of greater than 0.5 were removed. All language modeling datasets
were tokenized based on byte-level BPE (Sennrich et al., 2016) with a vocabulary size of 50257 (Radford et al., 2019). The
max sequence length of the input training sample is 1024.

A.1.2. TRAINING

Our implementation is based on Huggingface Transformers 6. The GPT-2 base model consists 12 layers and has 12 attention
heads in each attention module. The input and intermediate hidden dimension in the feed-forward network is 768 and
1024, respectively. We use mixed precision training and train on 8 80G Nvidia A100 GPUs. Detailed hyper-parameters are
summarized in Table 10.

Table 10. Hyper-parameters for training GPT-26 on Open WebText.

Hyper-parameters Stage I Stage II

Dropout 0.1 0.1
Warmup Ratio 0.05 0.05
Learning Rates 0.00025 0.00025
Batch Size 4000 4000
Weight Decay 0 0
Training Epochs 1 4
Learning Rate Decay Linear Linear
Adam ε 1× 10−6 1× 10−6

Adam β1 0.9 0.9
Adam β2 0.98 0.98

A.2. Natural Language Understanding Experiment

A.2.1. DATA

GLUE is a commonly used natural language understanding benchmark containing nine tasks. The benchmark includes
question answering (Rajpurkar et al., 2016b), linguistic acceptability (CoLA, Warstadt et al. 2019), sentiment analysis (SST,
Socher et al. 2013), text similarity (STS-B, Cer et al. 2017), paraphrase detection (MRPC, Dolan & Brockett 2005), and
natural language inference (RTE & MNLI, Dagan et al. 2006; Bar-Haim et al. 2006; Giampiccolo et al. 2007; Bentivogli
et al. 2009; Williams et al. 2018) tasks. Details of the GLUE benchmark, including tasks, statistics, and evaluation metrics,
are summarized in Table 14.

SQuAD 1.1/2.0 is the Stanford Question Answering Dataset (SQuAD) v1.1 and v2.0 (Rajpurkar et al., 2018; 2016a), two
popular machine reading comprehension benchmarks from approximately 500 Wikipedia articles with questions and answers
obtained by crowdsourcing. The SQuAD v2.0 dataset includes unanswerable questions about the same paragraphs.

A.2.2. MODEL

We initialize the teacher for each target task as a DeBERTaV3-base model fine-tuned on the target task. We fine-tune the
model by adding a target task classification head on top of the last layer. The detailed hyper-parameters are listed in Table 13.
We initialize the student for each target task as a pre-trained DeBERTaV3-xsmall model.

5https://files.pushshift.io/reddit/submissions/
6https://github.com/huggingface/transformers/tree/v4.17.0

13



Less is More: Task-aware Layer-wise Distillation for Language Model Compression

A.2.3. TRAINING

We follow the hyper-parameter configurations listed in Table 13 for both the Stage I and Stage II training. Our implementation
is based on Huggingface Transformers. We use mixed precision training and train on 8 32G Nvidia V100 GPUs.

For Stage I, we empirically observe that if we first fine-tune the student on the target task, then train the filters on top of
the fine-tuned student, the distillation performance would improve. We hypothesize that the student filters can learn to
capture more task-relevant knowledge if the student is properly initialized on the target task. As a result, we also fine-tune
the student model following the hyper-parameter configuration listed in Table 13 before Stage I. As shown in Table 11,
initializing the student model with fine-tuned weights will not largely influence the final distillation performance.

Table 11. Performance comparison of initializing the student with fine-tuned and pre-trained weights.

Method Θs MNLI-m/mm QQP QNLI SST-2 RTE Avg
Fine-tuned? Acc Acc Acc Acc Acc Score

LWD 7 88.8/88.3 91.8 92.9 93.9 80.2 89.5
Abl. 3 88.7/88.5 92.0 92.8 93.5 79.5 89.3

A.2.4. BERT EXPERIMENTS

Model. We initialize the teacher model with a pre-trained 12-layer BERT-base model that has been fine-tuned on the target
task (BERT-base12). The teacher model contains 110M parameters and has a hidden dimension of dt = 768. We initialize
the student model with 6 selected layers from the fine-tuned teacher model (BERT-base6). Specifically, we define the layer
mapping function M(k) = 2k − 1 for k ≤ K/2 and M(k) = 2k for k > K/2, which is the same as Sanh et al. 2019. The
fine-tuning hyper-parameters are listed in Table 12.

Stage I. We initialize each task-aware filter of the teacher with size dt× dt. We fix the fine-tuned teacher and train the filters
following the hyper-parameter configurations listed in Table 12. We directly take the trained k-th filter of the teacher as the
k-th filter of the student without further training.

Stage II. We distill the student model and its filters following the hyper-parameter configurations listed in Table 12. Our
implementation is based on Huggingface Transformers. We conduct all experiments using mixed precision training on 8
32G Nvidia V100 GPUs.

Table 12. Hyper-parameters for fine-tuning BERT-base12 on MNLI.

Hyper-parameters BERT-base

Dropout of Task Layer 0.1
Warmup Steps 1000
Learning Rates 3× 10−5

Batch Size 32
Weight Decay 0
Training Epochs 3
Learning Rate Decay Linear
Adam ε 1× 10−6

Adam β1 0.9
Adam β2 0.98

A.3. Experiments in Analysis

A.3.1. EXPERIMENTS IN SECTION 6.2

Model. We initialize the teacher model with a pre-trained 24-layer DeBERTaV3-large model that has been fine-tuned on the
target task. The teacher model contains 435M parameters and has a hidden dimension dt = 1024. We initialize the student
model with a 12-layer DeBERTav3-xsmall model. The student model contains 70M parameters and has a hidden dimension
ds = 384. We define the layer mapping function M(k) = 2k − 1 for k ≤ K/2 and M(k) = 2k for k > K/2, which is the
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same as Sanh et al. 2019. The fine-tuning hyper-parameters are listed in Table 13.

Stage I. We initialize each filter of the teacher model with the size dt × dt and each filter of the student model with the size
ds × dt. We fix the model parameters of the teacher and the student and train their filters following the hyper-parameters
summarized in Table 13.

Stage II. We distill the student model and its filters following the hyper-parameters listed in Table 13. Our implementation
is based on Huggingface Transformers. We conduct all experiments using mixed precision training on 8 32G Nvidia V100
GPUs.

Table 13. Hyper-parameters for fine-tuning DeBERTaV3 models on the downstream tasks.
Hyper-parameters DeBERTaV3-large DeBERTaV3-base DeBERTaV3-xsmall

Dropout of Task Layer {0.05, 0.1} {0.05, 0.1, 0.15} {0.05, 0.1, 0.15}
Learning Rates {6, 7, 10} × 10−6 {1, 1.5, 2, 2.5, 3, 4, 5} × 10−5 {3, 3.5, 5, 6, 8, 9} × 10−5

Batch Size {32, 64} {12, 16, 32, 64} {12,16,32, 64}
Weight Decay 0 0 0
Training Epochs {2,6,8} {2,3,6,8} {2,3,6,8}
Learning Rate Decay Linear Linear Linear
Adam ε 1× 10−6 1× 10−6 1× 10−6

Adam β1 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98

Table 14. Summary of the GLUE benchmark.

Corpus Task #Train #Dev #Test #Label Metrics

Single-Sentence Classification (GLUE)
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

A.4. Discussion on the Model Initialization

The model initialization is critical to the learning of the task-aware filters. If the model parameters have not been properly
initialized and the filters are directly trained upon such parameters, the filters may fail to learn sufficient task-relevant
knowledge and become useless. Below we list our recommended practices for model initialization under different scenarios:

Distillation in the pre-training setting. This setting considers a pre-trained model as the teacher and produces a pre-trained
model as the student.

Case 1. If there exists a pre-trained model with the desired student architecture, we can directly initialize the student with its
weights and proceed to Stage I.

Case 2. If there does not exist a pre-trained model with the desired student architecture, we consider the following three
cases: Case 2.1. If there is sufficient computational budget, we can pre-train the student from scratch and then proceed to
Stage I. Case 2.2. If there is no pre-training budget but the desired student architecture is a shallow version of the teacher
(like in the GPT-26 case), we can initialize the student with a subset of teacher layers. We can directly adopt the filters of the
teacher at the corresponding layers as the filters of the student, and proceed to Stage II. Case 2.3. Otherwise, we recommend
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directly proceeding to Stage II.

Distillation in the fine-tuning setting. This setting considers a fine-tuned model as the teacher and produces a fine-tuned
model as the student.

Case 1. If there exists a pre-trained model with the desired student architecture (like the DeBERTaV3-xsmall case), we can
fine-tune the pre-trained model on the target task, initialize the student with its weights, and proceed to Stage I.

Case 2. If there does not exist a pre-trained model with the desired student architecture, we consider the following three
cases: Case 2.1. If there is sufficient computational budget, we can pre-train and fine-tune the student from scratch and
then proceed to Stage I. Case 2.2. If there is limited computational budget, but the desired student architecture is a shallow
version of the teacher (like the BERT-base6 case), we can initialize the student with a subset of teacher layers. We directly
adopt the filters of the teacher at the corresponding layers as the filters of the student, and proceed to Stage II. Case 2.3.
Otherwise, we recommend directly proceeding to Stage II.
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