
Under review as submission to TMLR

Neuronal Learning Analysis using Cycle-Consistent Adver-
sarial Networks

Anonymous authors
Paper under double-blind review

Abstract

Recent advances in neural imaging technologies enable high-quality recordings from hun-
dreds of neurons over multiple days, with the potential to uncover how activity in neural cir-
cuits reshapes over learning. However, the complexity and dimensionality of population re-
sponses pose significant challenges for analysis. To cope with this problem, existing methods
for studying neuronal adaptation and learning often impose strong assumptions on the data
or model that may result in biased descriptions of the activity changes. In this work, we avoid
such biases by developing a data-driven analysis method for revealing activity changes due to
task learning. We use a variant of cycle-consistent adversarial networks to learn the unknown
mapping from pre- to post-learning neuronal responses. To do so, we develop an end-to-end
pipeline to preprocess, train, validate and interpret the unsupervised learning framework
with calcium imaging data. We validate our method on two synthetic datasets with known
ground-truth transformation, as well as on V1 recordings obtained from behaving mice,
where the mice transition from novice to expert-level performance in a visual-based behav-
ioral experiment. We show that our models can identify neurons and spatiotemporal activ-
ity patterns relevant to learning the behavioral task, in terms of subpopulations maximizing
behavioral decoding performance and task characteristics not explicitly used for training the
models. Together, our results demonstrate that analyzing neuronal learning processes with
data-driven deep unsupervised methods can unravel activity changes in complex datasets.

1 Introduction

One of the objectives in computational neuroscience is to study the dynamics of neural processing and how
neural activity reshapes when learning a task. A major hurdle in this endeavor was the difficulty in obtaining
high-quality neural recordings of the same set of neurons across an extended period of learning a task. With
the advent of modern neural imaging technologies, it is now possible to monitor a large population of neurons
over days or even weeks (Williams et al., 2018a; Steinmetz et al., 2021), thus allowing experimentalists to
obtain in vivo recordings from the same set of neurons across different learning stages.

Significant efforts have been put into extracting interpretable descriptions of how cortical responses change
with experience. Proposed approaches to model changes in neuronal activity include linear latent variable
models such as PCA, TCA, GPFA, GPFADS, and PSID (Cunningham & Byron, 2014; Williams et al.,
2018b; Sani et al., 2021; Yu et al., 2009; Rutten et al., 2020), as well as methods employing deep learning
models but with linear changes or mapping including LFADS and PfLDS (Pandarinath et al., 2018; Gao
et al., 2016). While these methods enabled substantial progress in understanding the structure of neuronal
activity, they impose strong assumptions inherent in the modeling technique or the analysis, such as the
linearity assumption in linear latent variable models. Therefore, making sense of the unknown mapping
between pre- and post-learning neural activity in an unbiased manner remains a significant challenge, and a
data-driven method to interpret the circuit dynamics in learning is highly desirable.

In recent years, deep neural networks (DNNs) have seen tremendous success in many biomedical applica-
tions (Cao et al., 2018; Zemouri et al., 2019; Piccialli et al., 2021) thanks to their ability to identify and
learn features from complex data in a data-driven way. Specifically, deep generative networks have shown

1

Under review as submission to TMLR

promising results in analyzing and synthesizing neuronal activities. For instance, Pandarinath et al. (2018)
developed a variational autoencoder (VAE) to learn latent dynamics from single-trial spiking activities and
Prince et al. (2021) extended the framework to work with calcium imaging data. Moreover, numerous works
have demonstrated that generative adversarial networks (GAN) are capable of synthesizing neuronal activi-
ties that capture the low-level statistics of recordings obtained from behaving animals (Molano-Mazon et al.,
2018; Ramesh et al., 2019; Li et al., 2020), suggesting that this model class is a good candidate for revealing
changes in long-term recordings.

In this work, we explore the use of cycle-consistent adversarial networks (Zhu et al., 2017), or CycleGAN,
to learn the mapping between pre- and post-learning neuronal activities in an unsupervised and data-driven
manner. In other words, given the neural recordings of a novice animal, can we translate the responses
that correspond to the animal with expert-level performance, and vice versa? The resulting transformation
summarizes these changes in response characteristics in a compact form and is obtained in a fully data-driven
way. Such a transformation can be useful in follow-up studies to 1) identify neurons that are particularly
important for describing the changes in the overall response statistics, not limited to first or second-order
statistics; 2) detect response patterns relevant for changes from pre- to post-learning; 3) determine what
experimental details are of particular interest for learning. To summarize, our work brings the following
contributions:

– We derive an end-to-end procedure to train, validate and interpret the unsupervised learning framework
on neuronal recordings.

– We empirically evaluate the CycleGAN performance with 4 different commonly used GAN objective
formulations, including GAN (Goodfellow et al., 2014), LSGAN (Mao et al., 2017), WGANGP (Arjovsky
et al., 2017) and DRAGAN (Kodali et al., 2017).

– We validate our method on 3 datasets: 1) a simulated dataset where we can compare the transformation
result against the ground-truth neuron firing patterns; 2) an augmented dataset where a handcrafted
transformation is applied to examine the reconstruction performance of the model from unpaired data;
3) a recorded dataset where V1 neurons from behaving mice were monitored across multiple days in a
virtual environment, where the first and last day of the recording should reflect pre-learning and post-
learning neuronal activities, respectively.

– We incorporate self-attention and feature-importance visualization techniques into the model architec-
tures and framework, which enable us to visualize and identify neurons that the models deemed relevant
in the transformation process.

– We perform a decoding analysis on two behavioral variables and show that using the top-30 neurons
learned by the models, can achieve similar decoding performance as using all neurons.

– We propose a novel neuron ordering method that can improve the learning performance of convolutional-
based neural networks by per-sorting the spatial order of the neurons as a preprocessing step.

Notations used in this manuscript are listed in Table A.1 for convenience.

2 Methods

2.1 CycleGAN

CycleGAN (Zhu et al., 2017) is a GAN-based unsupervised framework that learns the mapping between two
unpaired distributions X and Y via adversarial training and cycle-consistency optimization. The framework
has shown excellent results in a number of unsupervised translation tasks, including natural language trans-
lation (Gomez et al., 2018) and molecular optimization (Maziarka et al., 2020), to name a few. The Cycle-
GAN framework is a core part of the unsupervised learning mechanism used in this work. Here, we provide
a brief description of the method and a number of variations that we employed in this project.

2

Under review as submission to TMLR

Table 1: The optimization objectives for generator G and discriminator DY (symmetric to F and DX)
in GAN (Goodfellow et al., 2014), LSGAN (Mao et al., 2017), WGANGP (Arjovsky et al., 2017) and
DRAGAN (Kodali et al., 2017) formulations. λGP denotes the gradient penalty coefficient in WGANGP
and DRAGAN, ϵ is the [0, 1] linear interpolation coefficient for WGANGP and c is the Gaussian standard
deviation for DRAGAN.

Model Loss functions of G and DY

GAN LG = − E
x∼X

[
log(DY (G(x)

]
LDY = − E

y∼Y

[
log(DY (y))

]
− E

x∼X

[
log(1 − DY (G(x)))

]
LSGAN LG = − E

x∼X

[
(DY (G(x) − 1)2

]
LDY = − E

y∼Y

[
(DY (y) − 1)2

]
+ E

x∼X

[
DY (G(x))2

]
WGANGP LG = − E

x∼X

[
DY (G(x))

]
LDY = E

x∼X

[
DY (G(x))

]
− E

y∼Y

[
DY (y)

]
+ λGP E

x∼X,y∼Y

[(
∥ ∇D(ϵy + (1 − ϵ)G(x)) ∥2 −1

)2
]

DRAGAN LG = E
x∼X

[
log(1 − DY (G(x)))

]
LDY = − E

y∼Y

[
log(Dy(y))

]
− E

x∼X

[
log(1 − DY (G(x)))

]
+ λGP E

y∼Y,z∼N (0,c)

[(
∥ ∇D(y + z) ∥2 −1

)2
]

Let X and Y be two distributions with unpaired mappings. CycleGAN consists of four networks: generator
G : X → Y that maps novice activities to expert activities and generator F : Y → X that maps expert
activities to novice activities; discriminator DX : X → [0, 1] and discriminator DY : Y → [0, 1] that learn to
distinguish novice and expert neural activities, respectively. In a forward cycle step (X → Y → X, illustrated
in Figure B.1), we first sample a novice recording x from distribution X and apply transformation G to obtain
ŷ = G(x). We expect ŷ to resemble data from the expert distribution Y . Hence DY learns to minimize
(1) LDY = −Ey∼Y [(DY (y) − 1)2] + Ex∼X [DY (G(x))2]. Similar to a typical GAN, generator G learns to
deceive DY with the objective of (2) LG = −Ex∼X [(DY (G(x))−1)2]. Note that these are the same objectives
used in LSGAN (Mao et al., 2017). However, DY can only verify if ŷ ∈ Y , though cannot ensure that ŷ
is the corresponding expert activity of the novice recording x. Moreover, X and Y are not paired. Hence
we cannot directly compare ŷ with samples in Y . To tackle this issue, another transformation is applied to
reconstruct the novice recording x̄ = F (ŷ), where the distance ∥ x−x̄ ∥ or ∥ x−F (G(x)) ∥ should be minimal.
Therefore, the generators also optimize this cycle-consistent loss (3) Lcycle = Ex∼X [∥ x−F (G(x)) ∥]+Ey∼Y [∥
y−G(F (y)) ∥]. Mean absolute error (MAE) was used as the distance function, though other distance functions
can also be employed. In addition, we would expect x̂ = F (x) and ŷ = G(y) to be in distributions X and Y
given that F : Y → X and G : X → Y , hence the identity loss objective (4) LG

identity = Ey∼Y [∥ y − G(y) ∥].

Taken all together, G optimizes the following objectives: (5) LG
total = LG + λcycleLcycle + λidentityLG

identity,
where λidentity and λcycle are hyper-parameters for identity and cycle loss coefficients. All four networks are
trained jointly (LF

total and LDX are the same as LG
total and LDY but in opposite directions). To the best of

our knowledge, very few works empirically evaluate other GAN formulations in the CycleGAN framework.
Here, we evaluate three common GAN objectives (see Table 1), including GAN (Goodfellow et al., 2014),
WGANGP (Arjovsky et al., 2017) and DRAGAN (Kodali et al., 2017).

3

Under review as submission to TMLR

2.2 Model pipeline

We devised an end-to-end analysis framework1, including data preprocessing and augmentation, model train-
ing, model interpretation, and evaluation of the translated calcium signals and their inferred spike trains.
The entire framework pipeline is summarized in Figure 1. Here, we first describe the most basic form of our
framework. Model architectures, synthetic and recorded datasets, as well as other improvements and modifi-
cations to the CycleGAN framework to make it compatible with neural data are discussed in later subsections.

Generally, we use X and Y to denote the two unpaired distributions of neuronal activity, where the two
generators G and F should learn the mapping of X to Y and Y to X, respectively. The two distributions are
represented in the form of calcium fluorescence signals of W neurons over N segments, each segment consist
of H time-steps, therefore, we can represent the data as a matrix with shape (N, H, W). In order to take
advantage of the spatiotemporal information in calcium responses using 2-dimensional convolutional neural
networks (CNNs), we further convert the segment to shape (N, H, W, 1), effectively treating each segment as
a gray-scale image. We normalize each set to the range [0, 1], and divide the datasets into train-validation-
test sets with a ratio of 70%:15%:15%.

In addition to the cycle-consistency and identity loss comparison metrics to validate the transformation
performance, we also compare the first and second order statistics of the translated responses X̂ = F (Y)
and Ŷ = G(X) against X and Y . To that end, we first infer spike trains from the fluorescence signals using
Cascade (Rupprecht et al., 2021), the state-of-the-art spike deconvolution algorithm. We then compute the
following spike train similarities and statistics: (1) mean firing rate for evaluating single neuron statistics; (2)
pairwise Pearson correlation for evaluating pairwise statistics; (3) pairwise van Rossum distance (Rossum,
2001) for evaluating general spike train similarity. These quantities are evaluated across the whole population
for each neuron or neuron pair and we compare the resulting distributions over these quantities obtained
from the original and translated data: (a) X | X̂, (b) X | X̄, (c) Y | Ŷ and (d) Y | Ȳ . We, therefore, validate
the whole spatiotemporal first and second-order statistics as well as general spike train similarities.

Furthermore, we incorporated a number of recently proposed model interpretation methods into our pipeline
in order to improve the explainability of this work, detailed in Section 2.3 and Section 2.4. Briefly, we designed
a self-attention generator architecture in which the model is encouraged to learn a set of attention masks
that filters out irrelevant information in the input data. These masks can then be used to visualize regions
or neurons in the calcium responses that the model self-identified to be important. The attention module,
being part of the generator architecture, operates in a low-dimension latent space. Thus, it can be difficult
to identify fine-grain information from neuronal activity. To address this shortcoming, we implemented an
additional feature importance method that enables a more detailed visual explanation with respect to the
virtual reality (VR) experiment (more in Section 2.6). GradCAM, introduced in Selvaraju et al. (2017), is a
post hoc algorithm to identify regions in the input (e.g. natural image) that a CNN classifier attends to in
its classification process. In this work, we adapted GradCAM to generate localization maps (or activation
maps) for all four networks. Note that, unlike the self-attention module, GradCAM does not consist of any
trainable parameters and is not part of the overall optimization objective. The two visualization techniques
allowed us to confirm that the models are indeed learning meaningful features from the neuronal responses.

All models were trained with the Adam optimizer (Kingma & Ba, 2014) for 200 epochs where the models
converged. A single NVIDIA A100 GPU was used to train the various networks which, on average, took
15 hours to complete. We selected the hyper-parameters by a random search (Bergstra & Bengio, 2012) on
the simulated dataset, and the same settings were then used in the subsequent datasets. The final hyper-
parameters are shown in Table B.1.

1The software codebase is attached as a supplementary file and it will be made publicly available on upon acceptance.

4

Under review as submission to TMLR

cycle-consistent loss

Autoencoder Preprocessing

segementation

order neurons

augmentation

normalization

Generator G Generator F

Discriminator DXDiscriminator DY

1

2

3

4

3

5

6

6

Anaylsis

Ca2+ comparsion

attention visualization

spike inference

spike analysis

decoding analysis

CycleGAN

Figure 1: Illustration of the complete pipeline used in this work. Black directed lines represent the flow of
data and the numbers indicate its order. Note that only the forward cycle step X → Y → X is shown here
for better readability.

5

Under review as submission to TMLR

2.3 Networks architecture

The generator used in this work, shown in Figure 2, is based on the architecture in CycleGAN with two main
modifications: (1) level-wise residual connection and (2) attention-gated residual connection. Generally, the
model consists of 2 down-sampling blocks (DS1 and DS2), followed by 9 residual blocks (RBi for 1 ≤ i ≤ 9),
then 2 up-sampling blocks (US1 and US2). Each down-sampling block (see Blue box in Figure 2) uses a 2D
strided convolution layer to reduce the spatiotemporal dimensions by a factor of 2, which is then followed
by Instance Normalization (IN, Ulyanov et al. 2016), GELU (Hendrycks & Gimpel, 2016) activation and
Spatial Dropout. Each up-sampling block has the same structure as the down-sampling blocks but with a
transposed convolution layer instead. Each residual block consists of two convolution blocks with padding
added to offset the dimensionality reduction and a skip connection that connects the input to the block with
the output of the last convolution block via element-wise addition. A convolution layer with a filter size of
1 then compresses the channel of the output from US1, and finally, a sigmoid activation is applied to scale
the output to the range [0, 1].

Residual connections are known to improve gradient flow in CNNs, thus mitigating the issue of vanishing
gradients (He et al., 2016a;b; Huang et al., 2017). Therefore, shortcut connections are added between the
down-sampling and up-sampling blocks of the same level. For instance, the output of down-sampling block
DS2 is concatenated with the output of residual block RB9, then passes the resultant vector to the next up-
sampling block US1. Such level-wise residual connections were first introduced in Ronneberger et al. (2015).
We denote the level-wise residual network as ResNet.

Furthermore, we adapted the additive attention gate (AG) module in Oktay et al. (2018) as a replacement
for the concatenation operation in the residual connection described above. The yellow block in Figure 2
illustrates the AG structure. AG takes two inputs q and a, both with height HAG and width WAG but
varying channels, where q is the output of the previous processing block and a is a shortcut connection
from the down-sampling block of the same level. In AG1 for instance, q and a are the output of RB9 and DS2
respectively. Both q and a are processed by two separate 1×1 convolution layers and IN. The two vectors are
then summed element-wise such that overlapping regions from the two vectors would have higher intensity.
We then apply ReLU activation to eliminate negative values, followed by a 1 × 1 convolution layer with 1
filter and IN, resulting in a vector with shape (HAG, WAG, 1). Sigmoid activation is applied to obtain a [0, 1]
attention mask σ, where units closer to 1 indicate regions that are more relevant. We apply the sigmoid
mask to a, and concatenate it with q. Here, q is a set of high-level features processed by the stack of residual
blocks, whereas a is the low-dimensional representation of the original input. Therefore, the sigmoid attention
mask should learn to eliminate information in the input that is less relevant to the output. Moreover, as the
attention mask is of the same dimension as the input q, we can later superimpose the attention mask onto q
to visualize the region of interest learned by the model. We denote the attention-gated ResNet as AGResNet.

As for the discriminator, we use a PatchGAN-based (Isola et al., 2017) architecture, as it provides more
fine-grained discrimination information to the generators instead of the single value discrimination in the
discriminator in vanilla GAN. DX and DY contain 3 down-sampling blocks where each block reduces the
spatiotemporal dimension by a factor of 2, like the down-sampling blocks in the generators. For an input
sample with shape (H = 2048, W = 102, C = 1), the discriminator outputs a sigmoid activated vector with
shape (256, 13, 1). Each element has range [0, 1] where a value closer to 1 suggests that the corresponding
patch is from a real sample. The discriminators are kept relatively simple so that the generators would not
be over-powered, especially in the initial phase of training.

2.4 Decoding analysis

The aforementioned visual explanation methods enable us to identify regions or neurons in the responses
to which the models are more attentive. For instance, we expect the generators to focus on the activities
surrounding the reward zone in the virtual corridor as the grating patterns disappear on the monitors. We
hypothesize that a subset of neurons is more informative in the neuronal learning transformation and that the
models should learn to be more attentive toward this group of neurons. To that end, we trained a regression
model to decode behavioral variables (position and velocity) when provided with calcium responses of (1)
all neurons, (2) top-30 (out of 102) neurons according to the activation maps, (3) rest of the neurons and

6

Under review as submission to TMLR

Padding

CONV Block

×9

Input

CONV Block DS1

CONV
InstanceNorm

GELU
2D Dropout

CONV Block DS2

Residual Block RBi

Attention Gate AG1

CONV Block

+

Padding
CONV Block

Padding

CONV Block US1

Attention Gate AG2

CONV Block

CONV Block

Padding

Sigmoid

Output

q

+

InstanceNorm
1×1 CONV

InstanceN
orm

1×1 CO
N

V

a

InstanceNorm
1×1 CONV

ReLU

Sigmoid

×
Concat

Figure 2: Architecture diagram of generator G and F . + and × denote addition and element-wise multipli-
cation respectively. Note that the additive attention gate (AG) block can be replaced by a concatenation
operation between the output of the previous block and the output from the down-sampling block from the
same level. For example, if AG is not used, then the input to US1 is concat(DS2, RB9).

7

Under review as submission to TMLR

(4) 30 randomly selected neurons. We kept the regression model fairly simple since we are only interested
in the change in performance when training the model with different combinations of neurons. Here, we
trained a recurrent neural network (RNN) decoder which consists of a GRU-layer (Cho et al., 2014) with 128
units followed by a fully-connected layer to output a scalar. The model was trained to optimize the mean-
squared error (MSE) between its predictions and the behavioral variables using the Adam optimizer (Kingma
& Ba, 2014). Finally, for each variable-neuron combination, we fit the decoder 20 times, each with a different
random seed, and compare their performance in terms of R2 on the test set. If the selected neurons are
indeed more influential, then in contrast to using (1) all neurons, we expect a drop in performance when the
model is trained with the (3) rest of the neurons. Moreover, the decoding accuracy when provided with (2)
top-30 neurons should be significantly different from (4) selecting 30 neurons randomly.

2.5 Neuron ordering

As discussed in Section 2.3, we are using convolutional-based networks for the generators and discriminators.
It has been shown that CNNs with a smaller kernel can often perform as well or even better than models with
larger kernels while maintaining fewer trainable parameters thus easier to train (He et al., 2016a; Li et al.,
2021). Nevertheless, a small kernel can potentially limit the receptive field of the model, or the region in the
input that the model is exposed to in each convolution step (Araujo et al., 2019). In addition, the recordings
obtained from the VR experiment were annotated based on how visible the neurons were in the calcium
image, rather than ordered in a particular statistical manner (see Figure 3). This could potentially restrict
CNNs with a small receptive field to learn meaningful spatial-temporal information from the population
responses. To mitigate this issue, we propose a novel procedure to pre-sort X and Y , such that neurons that
are highly correlated or relevant are nearby in their ordering. A naive approach is to sort the neurons by
their firing rate or pairwise correlation, where the neuron with the highest firing rate or the neuron that, on
average, is most correlated to other neurons is ranked first in the input array. However, it is possible that
not all high-firing neurons or most correlated neurons are the most influential in the learning process. This
calls for an automated and data-driven approach to rank neurons in a meaningful order. Deep autoencoders
have shown excellent results in feature extraction and representation learning (Gondara, 2016; Wang et al.,
2016; Tschannen et al., 2018), and we can take advantage of their unsupervised feature learning ability.

We employed a deep autoencoder AE which learns to reconstruct calcium signals in X and Y jointly. AE is
a fairly typical convolution-based autoencoder with 3 (encoder) down-sampling and (decoder) up-sampling
blocks, and a bottleneck layer in between. The down-sampling block consists of a 1D convolution layer
followed by IN, GELU activation, and Spatial Dropout, whereas a 1D transpose convolution is used in the up-
sampling block instead. We first optimize the mean-squared error (MSE) reconstruction loss on the training
set of X and Y . Then we use the per-neuron reconstruction error on the validation set to sort neurons
in ascending order: (6) neuron order = argsort

(
0.5 ×

[
MSE(X, AE(X)) + MSE(Y, AE(Y))

])
. It is important

to note that the proposed neuron ordering process is an optional data preprocessing step that allows 2D
convolution-based models to take advantage of the spatial information presented in neuronal responses and
is not mandatory for the unsupervised learning method to work. We also compare our method against
neurons ordered by their original annotation, average firing rate and pairwise correlation. Furthermore,
to demonstrate that 2D convolution can indeed better learn the spatial structure in neuronal responses,
we added a 1D variant of AGResNet (denote as 1D-AGResNet) as a baseline which disregards all spatial
information in the data.

2.6 Recorded data

To record neuronal activities with pre- and post-learning responses, we conducted a virtual reality (VR)
experiment that follows a similar procedure as in Pakan et al. (2018) and Henschke et al. (2020). Briefly, a
head-fixed mouse was placed on a linear treadmill that allows it to move forward and backward. A lick spout
and two monitors were placed in front of the treadmill and a virtual corridor with a defined grating pattern
was shown to the mouse. A reward (water drop) was available if the mouse licked within the predefined reward
location in the virtual corridor (at 120 to 140 cm), in which a black screen is shown as a visual clue, and
the mouse learns to utilize both visual information and self-motion feedback to maximize reward. Figure 3

8

Under review as submission to TMLR

illustrates the experiment setup. The same set of neurons in the primary visual cortex was labeled with the
GCaMP6 calcium indicator and monitored throughout 5 days of experiments. The fluorescence signals were
then decontaminated and extracted from the calcium imaging data using FISSA (Keemink et al., 2018), and
the relative changes in fluorescence (∆F/F0) over time were used as a proxy for an action potential. Four
mice were trained in the experiment and all mice achieved expert-level performance within 4 days of training.
For instance, Mouse 1 took on average 36% less time to complete a trial with a 52% improvement in the
received rewards from day 1 to day 4. Trial information of Mouse 1 is shown in Table 2 (see Appendix C for
Mouse 2 - 4). This dataset provides excellent insights into how cortical responses reshape with experience,
and therefore, we utilize the recordings obtained on the 1st (pre-learning) and 4th day2 (post-learning) of
the experiment as Xrec and Yrec, respectively.

We want the models to identify patterns relevant to the animal experiment in a completely data-driven
manner. To this end, the models get the fluorescence input signals with minimal data preprocessing. Briefly,
we segment the two recording sessions Xrec and Yrec with a sliding window of size H = 2048 along the
temporal dimension (around 85s in wall-time), resulting in data with shape (N, H, W) where W is the
number of neurons and N is the number of segments. We then follow the same pre-processing procedure as
specified in Section 2.2.

Ca 2+ imaging

n 1 n 2 n 3 n 102

(N, 2048, 102, 1)

Figure 3: (Left) illustration of the mouse virtual-environment setup. A defined grating pattern is displayed
on the monitors and the mouse can move forward and backward in the virtual corridor. When the mouse
approaches the reward zone, which was set at 120 cm to 140 cm from the initial start point, the grating
pattern would disappear and be replaced with a blank screen. If the mouse licked within the virtual reward
zone, then a droplet of water was given to the mouse as a reward. Trials reset at 160 cm. The figure is based
on Figure 1 in Pakan et al. (2018). (Right) original coordinates and annotation order of the 102 recorded
neurons. i.e. neuron 1 here would be at index 0 in the data matrix, and neuron 65 would be at index 64.

Table 2: Mouse 1 trial information where 102 V1 neurons were monitored across 5 days of training, and the
rodent achieved “expert” level by day 4 with a success rate of > 75% at the task.

Day Duration Num. trials Avg. trial duration Licks Rewards

1 894.73s 129 6.94s 2813 140
2 898.68s 177 5.08s 2364 182
3 897.16s 192 4.67s 2217 198
4 898.45s 203 4.43s 1671 213
5 897.25s 264 3.40s 1298 327

2Mouse 2 and 3 performed worse on the 5th day, hence, here, we use the recordings obtained on the 4th day.

9

Under review as submission to TMLR

2.7 Synthetic data

Given that the transformation from pre-learning to post-learning neuronal activities is unknown, there is
no simple method to assess the alignment performance in calcium imaging data. In addition, CycleGAN
was first introduced for image-to-image translation. Albeit the two image distributions are not aligned and
hence cannot be compared directly, one could still visually inspect whether or not x̂ = F (y) and ŷ = G(x)
are reasonable transformations. However, evaluating a large number of calcium traces via visual inspection
would be exceedingly difficult, if not impossible. Instead, we introduce two synthetic datasets with known
ground truth: a simulated dataset (Section 2.7.1) and an augmented dataset (Section 2.7.2), which enable
us to assess and visualize the translation performance when learning from unpaired calcium signals. For
clarity purposes, we denote the simulated data as Xsim and Ysim, the augmented data as Xaug and Yaug and
the original recorded data as Xrec and Yrec for the rest of this paper.

2.7.1 Simulated data

Figure 4: The (Left) average firing pattern of two simulated populations, (Blue) Xsim and (Orange) Ysim.
Each simulated population is divided in half, where each half exhibits different firing patterns sampled from
a Poisson distribution. Neurons in Xsim are high firing (3Hz) from 17s to 34s (solid line) and from 59s to 73s;
whereas Ysim are active from 12s to 22s and from 46s to 60s. (Right) Two randomly selected spike trains and
their convolved calcium-like traces from the two simulated populations, the top, and bottom panels show
the first and second firing pattern respectively. Figure E.1 shows a sample population of xsim and ysim.

We first simulate the neuronal responses of two populations of size 128. Each trial is sampled from a Poisson
distribution with a trial duration of 10s (i.e. 240 time-steps at 24Hz) for a total of 1400 trials (i.e. about
the same as the Mouse 1 recorded data in Section 2.2). In addition to the background activity at ∼ 0.1 Hz,
each population consists of two distinct firing patterns. Half of the neurons in the first population are highly
active (∼ 3 Hz) from 17s to 34s, and the other half from 59s to 73s; whereas neurons in the second population
are active from 12s to 22s and from 46s to 60s. We use an exponential onset and double decay function fCa,
as described in Grewe et al. (2010), to obtain fluorescence-like traces from the spike times t:

fCa(t) =
{

0 for t ≤ t0[
1 − e−(t−t0)/τonset

][
A1e−(t−t0)/τ1 + A2e−(t−t0)/τ2

]
otherwise (7)

where A1, τ1, A2 and τ2 are the amplitude and decay time parameters for the first and second exponential
decay; τonset is the action potential onset time. We then add Gaussian noise (signal-to-noise ratio of 10) to
the convolved traces to improve realism. We denote the simulated responses from the two populations as
Xsim and Ysim, their overall firing patterns and samples of calcium-like traces are shown in Figure 4. Notably,
we shuffle the neuron index such that the traces appear less structured and thus increase the difficulty for
the generators to learn the mapping between the two sets, an example of the shuffled populations is shown
in Figure E.1. This simulated dataset allows us to directly compare the activity patterns of the transformed
traces, ŷsim = G(xsim) and x̂sim = F (ysim), against the ground truth patterns.

10

Under review as submission to TMLR

2.7.2 Augmented data

We investigated whether or not the unsupervised learning framework can recover or translate neuron-specific
responses from unpaired calcium traces; furthermore, to verify the aforementioned visual explanation meth-
ods can reveal meaningful patterns from the neuronal recordings, we introduced an additional synthetic
dataset – the augmented dataset Xaug and Yaug, where Yaug = Φ(Xaug) with a handcrafted spatiotemporal
transformation: (8) Φ(xaug) = mdiagonalxaug + 0.5η, where mdiagonal is a diagonal mask to zero-out the lower
left corners of the signals and η is sampled from Gaussian noise N (µx, σ2

x) with the per-neuron mean and
standard deviation from xaug. Importantly, we shuffle the training and validation set after the augmentation
procedure, so that Xaug and Yaug are unpaired during model training, while maintaining the original neuron
order in the test set, hence allowing us to compute ∥ Xaug − F (Yaug) ∥ and ∥ Yaug − G(Xaug) ∥ using com-
mon distance metrics. An example of xaug and yaug is available in Figure 5 (example traces are available in
later Sections). Such spatiotemporal augmentation, though biologically unrealistic, allows easy visual veri-
fication of the transformation learned by the generators. In addition, one would expect the models to focus
on regions surrounding the masked area in xaug and yaug, thus, allowing us to ensure that the attention gate
modules and localization maps function as intended.

Figure 5: Example of a randomly selected segment from Mouse 1 recordings (Left) xaug and its corresponding
(Right) augmented yaug = Φ(xaug). Note the bottom left corner in yaug has been masked out with noise
added to the segment. TURBO color-map is applied to improve readability.

3 Results

The main objective of the framework is to identify a meaningful transformation between two neuronal
datasets in a data-driven manner. We first assessed the framework’s ability to learn the mapping between
two data distributions using two synthetic datasets with known ground truth pairing. We then applied the
same method on recorded data obtained from the primary visual cortex of behaving mice in a VR experiment.

3.1 Simulated data

In order to ensure that the framework can learn to transform calcium signals from one firing pattern to
another, we first fit our models on the simulated dataset with the AGResNet generator architecture and
LSGAN objectives. In order to increase the difficulty of the mapping task, neurons in Xsim and Ysim were
originally shuffled jointly prior to model training (see the bottom row in Figure E.1), and we rearranged the
neurons in the test set to their original order after inference. Figure 6 shows the average activity patterns (in
∆F/F) of Xsim against X̂sim = F (Ysim) and Ysim against Ŷsim = G(Xsim) over the entire population. The
transformations in both directions achieved excellent results with NRMSE = 0.0494 and R2 = 0.9680 between
Xsim and X̂sim, and conversely, NRMSE = 0.0345 and R2 = 0.9845 between Ysim and Ŷsim. In all cases, the
translated responses can closely match the two activity patterns of their respective target distributions, and
demonstrate the model’s unsupervised learning capabilities when trained with calcium signals.

3.2 Augmented data

Next, we fit our models on the augmented dataset, with known handcrafted augmentation, to show that
our method is capable of learning subtle differences and recovering responses from unpaired calcium traces.

11

Under review as submission to TMLR

Figure 6: The average response patterns of (Left) X̂sim against Xsim (NRMSE = 0.0494, R2 = 0.9680), and
(Right) Ŷsim against Ysim (NRMSE = 0.0345, R2 = 0.9845). The solid and dotted lines indicate the two
activity patterns in each population, the gray and colored lines correspond to the average simulated and
translated responses, and the shaded areas show their variance. For reference, NRMSE(Xsim, Ysim) = 0.4577
and R2(Xsim, Ysim) = 0.1884.

Figure 9 shows calcium signals of the forward and backward cycle transformation from 3 neurons in a
population, each with a different level of masked activities. Without paired samples, G was able to learn
the augmentation Φ and mask out the appropriate regions in xaug, and conversely, F was able to recover
responses from the masked regions in yaug. For instance, F was able to recover the 4 spikes of fluorescence
signals from the augmented input in Neuron 98 (bottom panel in Figure 9). Given that the difference
between Xaug and Yaug is the replacement of noise in the lower-ranked neurons (i.e. lower-left corner if we
plot the population response as a 2D image), we expected DY to discriminate based on activities around
the augmentation region. The activation map of DY (yaug), shown in Figure 8, indeed demonstrates a high
level of attention along the edge of the diagonal region. On the other hand, since no augmentation was
done on the input to DX , the localization map does not appear to have a particular structural area of focus.
Interestingly, once we overlay the reward zones onto the input segment, we observed that the areas of focus
learned by DX are loosely aligned with the reward zones. Note that reward zones are external task-relevant
regions that are expected to shape the neural activity in the primary visual cortex as the visual patterns
change when the mouse enters the reward zone. These findings suggested that DY learned to distinguish an
input by predominantly focusing on the edge of the masking area, whereas DX learned distinctive patterns
from highly ranked neurons around the reward zones. We then inspected what the generators have learned,
with respect to their given inputs, via the attention gate modules. The attention masks AG1 and AG2 in G
and F , displayed in Figure 7, suggested that both generators ignored responses in the augmentation region.
This is likely caused by the fact that information in that area is not relevant to either transformation. G
learns to replace the calcium traces from the to-be-masked region with noise, hence ignoring the information
from that region; F learns to recover responses in the masked region, as the information from the masked
region is noise and hence not relevant for the model to learn from.

Xaug and Yaug are paired in the test set, which enables us to directly evaluate the transformation result with
common distance metrics, making this a good testbed to compare different generator architectures, GAN
objective formulations, and neuron ordering methods. Results on the test set are summarized in Table 3.
We first compared generator architectures when trained with the LSGAN objective. The AGResNet achieved
transformation errors of MAE(Xaug, X̂aug) = 0.1508 and MAE(Yaug, Ŷaug) = 0.2520, outperforming the ResNet
and baseline identity model. We then investigated how different commonly used GANs objectives perform
in the CycleGAN settings. Interestingly, models trained with DRAGAN and WGANGP objectives obtained
lower cycle-consistent errors than GAN and LSGAN yet performed poorly in the intermediate transforma-
tions F (Yaug) and G(Xaug). We observed that DX(F (Yaug)) and DY (G(Xaug)) were neither informative nor
impactful to the overall objective and that the generators focused on optimizing the cycle-consistent loss in-
stead. It is likely that the gradient penalty term in DRAGAN and WGANGP further complicates the already
perplexing overall optimization objective, hence hindering the discriminators from learning meaningful fea-
tures and being overpowered by the generators. Finally, we compared if and how different neuron ordering
methods affect the unsupervised mapping performance. 1D-AGResNet, which disregards spatial information

12

Under review as submission to TMLR

in the data, performed significantly worse than AGResNet with 2D convolution, suggesting that the spatial
structure in the neural activities is indeed essential and learnable by the models. Overall, models trained on
sorted neurons achieved better results, and neurons ordered by the AE reconstruction loss is the most per-
formant. The proposed neuron preprocessing step can thus be a simple to implement and effective method
to enhance the learning performance of convolution-based models. In the remaining work, we use the LS-
GAN objective to train the generators with the AGResNet architecture along with neurons ordered based on
AE reconstruction errors, as this combination achieved the best overall results on the augmented data.

Figure 7: Learned attention masks AG1 and AG2 from AGResNet generators (Left) G(xaug) and (Right)
F (yaug). The extracted sigmoid masks showed that the generators learned to ignore the augmentation
region in the lower left corner of the latent dimension. TURBO color-map is used to improve visibility and the
histogram on the right of each panel shows the neuron-wise attention distribution.

Figure 8: Activation maps of (Left) DX(xaug) and (Right) DY (yaug) overlaid their respective input. As
expected, DY were attentive toward activities along the diagonal masking area as the most prominent
feature of yaug is the augmentation region. Interestingly, DX focused on neuronal activities surrounding the
reward zones (indicated by the yellow and orange vertical dotted lines). Neurons were ordered based on AE
reconstruction loss, the exact ordering is available in Table D.1.

3.3 Recorded data

The results from the two synthetic datasets demonstrated the framework’s capability in learning the unknown
mappings in calcium traces. Moreover, the visual explanation methods indicated that the networks are
indeed learning meaningful features. We then applied our framework onto (Xrec) pre-learning and (Yrec)
post-learning V1 activities obtained from behaving rodents. Figure 10 shows the cycle transformation of
3 randomly selected neurons. Visually, G and F were able to reconstruct x̄rec = F (G(xrec)) and ȳrec =
G(F (yrec)), and that the two generators were not simply passing through xrec and yrec in an intermediate step
to translate ŷrec = G(xrec) and x̂rec = F (yrec). To better analyze the transformation performance, we first
compared the translated fluorescence signals against the recorded data in the test set. The models achieved
cycle-consistent losses of MAE(Xrec, F (G(Xrec))) = 0.0733 and MAE(Yrec, G(F (Yrec))) = 0.0737, as well as
identity losses for MAE(Yrec, G(Yrec)) = 0.0101 and MAE(Yrec, G(Yrec)) = 0.0069, which are significantly better

13

Under review as submission to TMLR

Figure 9: Forward and backward cycle steps of neurons 37, 69, and 98 (top, middle, and bottom of the
population) from a randomly selected test segment. G learns to perturb the initial part of the traces (i.e.
from red solid box to red dotted box) and F learns to reconstruct masked out regions in the traces (i.e. from
green dotted box to green solid box). We expect the traces in the green solid box to resemble signals in the
yellow solid box and the yellow dotted box in the green dotted box. Example transformation on the entire
population is available in Figure F.1.

than the baseline MAE(Xrec, Yrec) = 0.3674, indicating that G and F were not simply passing through the
data. In addition, the low identity loss suggests that the generators can correctly identify whether or not the
given input is already in their respective target distributions, hence performing no operation. Table 4 reports
the cycle-consistent and identity loss with different neuron ordering methods. Again, as demonstrated in
Section 3.2, 1D-AGResNet performed significantly worse than 2D convolutional-based models where it cannot
take advantage of the spatial information from the calcium responses. In all cases, the model trained with
neurons ordered by AE reconstruction error is the most performant, and ordering neurons in any meaningful
way brings measurable improvements.

Since we lack paired data in the in vivo recordings, we cannot directly compare Xrec with X̂rec = F (Yrec)
nor Yrec with Ŷrec = G(Xrec), in contrast to the augmented dataset in Section 3.2. In order to verify the two
intermediate transformations Ŷrec and X̂rec are indeed reasonable, we computed and compared a set of spike
train statistics: (a) pairwise correlation, (b) firing rate and (c) pairwise van Rossum distance. We expected
that the distribution of the translated data resembles the recorded data. We can therefore measure the KL
divergence for each neuron to quantify the transformation performance. Table 5 summarizes the average
KL divergence of the 3 spike statistics in different distribution combinations, the distribution comparison
for each statistic are available in Section H. The firing rate distributions of X̂rec and Ŷrec closely matched
the distributions of Xrec and Yrec, with average KL divergence of 1.1648 and 1.0697, respectively. Similarly,
we can compute the pairwise correlation of each neuron with respect to the population and compare the
distribution between translated and recorded data. Xrec |X̂rec and Y | Ŷrec achieved an average KL divergence
value of 0.0479 and 0.0493 in the pairwise correlation comparison. Note that both were significantly better
than the baseline identity model.

We expected that each neuronal activity in X̂rec should resemble a corresponding response in X. We,
therefore, computed the van Rossum distance between X and X̂rec for each neuron across 200 test samples,
which can be represented in the form of a heatmap. We observed a clear diagonal line of low-intensity values

14

Under review as submission to TMLR

Table 3: Test performance (in MAE) in the augmented dataset: (a) identity, ResNet and AGResNet generators
trained with LSGAN objective; (b) AGResNet trained with different objectives; and (c) neurons ordered
by original annotation, firing rate, pairwise correlation and autoencoder reconstruction loss. 1D-AGResNet,
which disregards the neuron spatial structure, is used as a baseline. Best (lowest) values are marked in bold.

| Xaug − F (Yaug) | | Xaug − F (G(Xaug)) | | Yaug − G(Xaug) | | Yaug − G(F (Yaug)) |

(a) LSGAN objective against different model architectures
identity 0.4234 ± 0.0172 0 0.4234 ± 0.0172 0
ResNet 0.1617 ± 0.0071 0.1173 ± 0.0043 0.3743 ± 0.0391 0.1247 ± 0.0067

AGResNet 0.1508 ± 0.0089 0.1107 ± 0.0051 0.2520 ± 0.0262 0.1467 ± 0.0084

(b) AGResNet architecture against different objectives
GAN 0.1611 ± 0.0063 0.0948 ± 0.0069 0.2513 ± 0.0350 0.1491 ± 0.0050

LSGAN 0.1508 ± 0.0089 0.1107 ± 0.0051 0.2520 ± 0.0262 0.1467 ± 0.0084
WGANGP 0.2381 ± 0.0123 0.1600 ± 0.0098 0.3186 ± 0.0096 0.1960 ± 0.0093
DRAGAN 0.3832 ± 0.0115 0.0434 ± 0.0021 0.4012 ± 0.0207 0.0568 ± 0.0027

(c) AGResNet and LSGAN objective against different neuron ordering
1D-AGResNet 0.2724 ± 0.0101 0.1878 ± 0.0115 0.3151 ± 0.0445 0.1655 ± 0.0115

original 0.1508 ± 0.0089 0.1107 ± 0.0051 0.2520 ± 0.0262 0.1467 ± 0.0084
firing rate 0.1578 ± 0.0079 0.0722 ± 0.0044 0.1304 ± 0.0306 0.0842 ± 0.0036
correlation 0.1556 ± 0.0044 0.0852 ± 0.0042 0.1369 ± 0.0209 0.0930 ± 0.0034

autoencoder 0.1433 ± 0.0083 0.0639 ± 0.0032 0.1227 ± 0.0135 0.0671 ± 0.0030

Table 4: Cycle-consistent and identity loss in the test set, where neurons were ordered by 1) original an-
notation, 2) firing rate 3) pairwise correlation, 4) AE reconstruction loss and 5) 1D variant of AGResNet
(1D-AGResNet) where all spatial information of the neurons is disregarded. The AGResNet architecture was
used for G and F and was optimized with LSGAN objectives. The lowest loss in each category is marked in
bold. For reference, |X − Y | = 0.3674 ± 0.0236 in the test set.

Order | Xrec − F (G(Xrec)) | | Xrec − F (Xrec) | | Yrec − G(F (Yrec)) | | Yrec − G(Yrec) |

1D-AGResNet 0.1806 ± 0.0077 0.1502 ± 0.0064 0.1811 ± 0.0163 0.1463 ± 0.0149
original 0.0874 ± 0.0037 0.0123 ± 0.0015 0.0766 ± 0.0025 0.0101 ± 0.0010

firing rate 0.0760 ± 0.0030 0.0108 ± 0.0013 0.0752 ± 0.0028 0.0070 ± 0.0005
correlation 0.0778 ± 0.0028 0.0111 ± 0.0012 0.0757 ± 0.0024 0.0089 ± 0.0022

autoencoder 0.0733 ± 0.0025 0.0101 ± 0.0012 0.0737 ± 0.0027 0.0069 ± 0.0007

in the heatmaps for most neurons (e.g. Figure H.3 and H.4 for G and F). To summarize the spike similarity
results, we also compared KL divergence of the pairwise van Rossum distance distributions, which yielded
divergence values of 0.2387 and 0.3031 for Xrec | X̂rec and Y | Ŷrec. The spike statistics indicated that the
generators can indeed learn the transformation from pre-learning and post-learning activities, and vice-versa,
closely matching the first and second-order statistics of the recorded data. We additionally fitted the models
on recordings from the other mice and obtained similar results, which are shown in Section I, J and K.

In the previous section, we were able to identify and interpret the learned features in a relatively straight-
forward manner due to the systematic augmentation we introduced into the data. However, visualizing and
interpreting the attention maps on pre- and post-learning data is more challenging as there are no obvious
patterns in the inputs to anticipate. Nevertheless, we expected a higher level of activities in the V1 neurons
when the mouse was about to enter or was inside of the reward zone, where the grating pattern on the virtual
walls turned blank. Subsequently, the models should learn meaningful features from responses surrounding
the reward zones. We first visualized the sigmoid masks in AGResNet. Figure 11 shows the learned attention
masks of G and F superimposed on the latent inputs. When the neurons were ordered, either by firing rate
or autoencoder, we observed that the generators allocate more attention toward neurons that rank higher.

15

Under review as submission to TMLR

(a) Forward cycle: Xrec → Y → Xrec

(b) Backward cycle: Yrec → Xrec → Yrec

Figure 10: (a) forward and (b) backward cycle of neuron 37, 69 and 98 from a randomly selected test
sample. Note that, unlike the synthetic dataset, the traces presented here are not unpaired. Hence, we
cannot directly compare xrec with F (yrec) nor y with G(x). The transformation of the entire population is
available in Figure G.1.

Figure 11: Attention masks AG1 and AG2 from generator G with (Left column) neurons sorted by AE
reconstruction error and (Right column) no neuron ordering. The histogram to the right of each panel
indicates the spatial attention intensity learned by the attention module. When the responses were ordered,
a higher level of attention toward the neurons at the top (i.e. those with lower reconstruction loss) is very
prominent across all attention modules, in contrast to attention distribution was uniform across neurons
when neurons were not ordered. The same behavior is observed in generator F , shown in Figure G.2.

This suggests that by grouping neurons in a meaningful manner, the convolutional layers in the generators
can extract relevant features more effectively as compared to when neurons were randomly ordered. The
spike analysis showed that ordering neurons in a structured manner does indeed yield better results across the
board. In most cases, ordering the neurons according to the reconstruction error achieved the best results.

16

Under review as submission to TMLR

Table 5: The average KL divergence between recorded and translated distributions in (a) pairwise correlation,
(b) firing rate, and (c) pairwise van Rossum distance. We repeated the same experiments with different
neuron ordering methods, in addition, we included an identity model as a baseline. Entries with the lowest
value are marked in bold.

KL(Xrec, F (Yrec)) KL(Xrec, F (G(Xrec))) KL(Yrec, G(Xrec)) KL(Yrec, G(F (Yrec)))

(a) pairwise correlation

identity 0.0875 ± 0.0549 0 0.0821 ± 0.0471 0
1D-AGResNet 0.2027 ± 0.1040 0.4715 ± 0.2051 0.1901 ± 0.1003 0.4149 ± 0.2194

original 0.0552 ± 0.0419 0.0754 ± 0.0353 0.0583 ± 0.0553 0.0174 ± 0.0110
firing rate 0.0507 ± 0.0358 0.0266 ± 0.0146 0.0504 ± 0.0438 0.0267 ± 0.0176
correlation 0.0539 ± 0.0329 0.0339 ± 0.0176 0.0534 ± 0.0474 0.0205 ± 0.0133

autoencoder 0.0479 ± 0.0372 0.0329 ± 0.0163 0.0493 ± 0.0448 0.0283 ± 0.0206
(b) firing rate

identity 8.0705 ± 6.5500 0 7.7781 ± 6.7338 0
1D-AGResNet 3.5688 ± 3.8895 7.9101 ± 5.3517 3.0572 ± 3.1114 8.3185 ± 5.5950

original 1.5401 ± 1.2491 2.0442 ± 2.0936 1.8527 ± 1.3563 1.4697 ± 1.1412
firing rate 1.3402 ± 1.0450 1.2658 ± 1.0784 1.6994 ± 1.4170 1.4152 ± 1.2221
correlation 1.4006 ± 1.1079 1.5450 ± 1.0786 1.4088 ± 1.0828 1.4674 ± 1.3505

autoencoder 1.1648 ± 0.7934 1.4022 ± 1.2734 1.0697 ± 0.7689 1.2705 ± 1.1148
(c) pairwise van Rossum distance

identity 0.5510 ± 0.2960 0 0.3053 ± 0.1211 0
1D-AGResNet 0.3613 ± 0.1597 0.8045 ± 0.1846 0.3764 ± 0.1565 1.3897 ± 0.8256

original 0.2790 ± 0.2186 0.1878 ± 0.0477 0.3216 ± 0.1352 0.1581 ± 0.0664
firing rate 0.2539 ± 0.1708 0.1003 ± 0.0514 0.3080 ± 0.1173 0.1536 ± 0.0663
correlation 0.2629 ± 0.1877 0.1905 ± 0.0485 0.2953 ± 0.1230 0.1797 ± 0.0696

autoencoder 0.2387 ± 0.1488 0.1041 ± 0.0376 0.3031 ± 0.1138 0.1328 ± 0.0592

We then inspected the activation maps of the discriminators, shown in Figure 12. Similar to DX in the
synthetic dataset, we observed regions of high attention surrounding the reward zones in both DX and
DY . To better visualize the relationship between the area of focus learned by the model and the virtual
corridor, we accumulated the per-neuron activation values over the virtual position (160cm) and result in
the normalized positional activation maps shown in Figure 13. Effectively, these maps should represent the
average attention learned by the models w.r.t. the visual location of the animal. The only objective the
discriminators had was to distinguish if a given sample was from a particular distribution, and thus the
discriminators could have learned trivial features. Instead, DX focused on a specific group of neurons at 120-
150cm, which coincides with the end of the reward zone. Moreover, DY learned to focus on a broader group
of neurons with activation patterns that were also in alignment with the reward zone. Likewise, we could
extract these positional attention maps for G and F following the same procedure, where we monitored the
change in gradient in the last residual block RB9. Similar to the discriminators, both generators focused on
responses towards the middle and end of the reward zone, with G concentrated on a very small subset of
neurons. This suggests that to learn the transformation from post- to pre-learning responses, the activities
the mouse exhibit as it approaches the reward zone were deemed more important by the networks.

3.3.1 Decoding performance

The positional attention maps highlighted very localized neurons in the responses with respect to the virtual
position. To investigate our hypothesis that these neurons are more influential in the visual experiment and,
subsequently, important for learning, we evaluated the decoding performance (i.e. position and velocity)
with different subsets of neurons: (1) all neurons, (2) top-30 neurons, (3) rest of the neurons, and (4) 30
randomly selected neurons (see Section 2.4). Since G and F input Xrec and Yrec respectively, the extracted

17

Under review as submission to TMLR

Figure 12: Activation maps of (Left) DX(xrec) and (Right) DY (yrec) overlaid on their respective inputs.
Without providing any trial-relevant information to the models, the discriminators were able to pick up
information related to the reward zones (yellow and orange vertical dotted lines). Neurons in AE order.

Figure 13: Positional activation maps of the discriminators and generators with respect to the virtual
position. Overall, the models were focusing on a subset responses surrounding the reward zone (yellow and
orange dotted lines) in their discrimination and transformation processes. Neurons in AE error.

positional activation maps represent different recording sessions. We therefore separately computed the top-
30 neurons to decode behavior variables from Day 1 and Day 4 of the recording. Note that we are interested
in the relative change in performance when providing different combinations of neurons, rather than the
overall decoding accuracy. Figure 14 shows the decoding results on the two behavioral variables from Day 1
and Day 4. Overall, we observed a substantial drop in performance when the top-30 neurons were removed.
In addition, the models trained with the top-30 neurons outperformed the models with 30 randomly selected
neurons, except when decoding velocity in Day 1 recordings. However, for Day 1 velocity decoding, all
decoders performed poorly. This shows that our framework identified neurons that are relevant for the task.

Figure 14: The decoding performance (R2) of (a) virtual position and (b) velocity on Mouse 1 recordings
when provided with: (1) all neurons, (2) top-30 neurons, (3) rest of the neurons and (4) 30 random neurons.
The decoding accuracy values are listed in Table L.1.

18

Under review as submission to TMLR

4 Discussion

We demonstrated that the CycleGAN (Zhu et al., 2017) framework is a capable data-driven method to
model the unknown transformation between pre- and post-learning neuronal responses. We evaluated our
methods using two synthetic datasets (Section 3.1 and Section 3.2), with known ground-truth statistics and
transformation, then on V1 recordings obtained from behaving animals (Section 3.3). With self-attention
and feature-importance visualization methods, we were able to identify characteristics that the networks
deemed important in their translation and discrimination process, and hence improved the interpretability
of the framework. Finally, we introduced a novel and simple to implement neuron ordering method enabling
more effective learning in convolutional-based networks.

Intriguingly, without providing trial information in the training process, the networks self-identified activities
surrounding the reward zone in the VR experiment to be highly influential. This result aligns with our
understanding from previous studies where responses in the visual cortex are shaped by the change in visual
cues Pakan et al. (2018); Henschke et al. (2020). Moreover, the behavior decoding result showed that a
subset of neurons, self-identified by the generators, achieved performance on par with when all neurons
were provided, and performed significantly better than randomly selected neurons (see Section 3.3.1). This
demonstrates the effectiveness of our method to self-identify neurons that are relevant to the task in contrast
to previous works in identifying neuron contribution in decoding accuracy which requires manual iteration
over neurons (Montijn et al., 2014). Interestingly, when analyzing the firing rate and pairwise correlation of
this subset of neurons, we did not notice any significant distinction in their statistics as compared to the rest of
the population, suggesting that the models have learned features that cannot be easily captured or identified.

Previous work in understanding or capturing the neuronal learning mechanism largely relied on linear mod-
els (Cunningham & Byron, 2014; Williams et al., 2018b; Sani et al., 2021) and non-linear latent-variable
models (Pandarinath et al., 2018; Gao et al., 2016). To the best of our knowledge, this is the first work that
applies an unsupervised learning method to learn the transformation in pre- to post-learning responses di-
rectly. In contrast to the aforementioned methods, our method is fully data-driven and, thus, does not re-
quire strong assumptions about the data or the task. Animal experiments are becoming increasingly large-
scale and complex, in no small part due to the advancement of in vivo imaging technologies (e.g. Neu-
ropixels (Steinmetz et al., 2021)). The data-driven nature of our CycleGAN framework makes it highly suit-
able and complementary for analyzing these latest datasets.

4.1 Limitations

The fully data-driven property of the proposed framework also comes with a number of limitations. First
and foremost, as with most DNNs, this framework requires a significant amount of data, across the number
of trials, the duration of each trial, and the number of neurons. For instance, we experimented with using
fewer neurons, such as W = 4 or W = 8, and there was a significant decrease in performance.

Another notable constraint in our method is the fundamental one-to-one mapping limitation in the CycleGAN
framework. The generators learn a deterministic mapping between the two domains and only associate each
input with a single output. However, most cross-domain relationships consist of one-to-many or many-to-
many mappings. More recently proposed methods, such as Augmented CycleGAN (Almahairi et al., 2018),
aim to address such fundamental limitations by introducing auxiliary noise to the two distributions, and are
thus able to generate outputs with variations. Nevertheless, these methods are most effective when trained
in a semi-supervised manner which is not possible with our unpaired neural activity.

Lastly, a significant portion of the neuronal activity validation in Section 3.3 was performed in spike trains
inferred from the recorded and generated calcium responses using Cascade (Rupprecht et al., 2021), which is
a recently introduced method that has outperformed the existing model-based algorithms. However, reliable
spike inference from calcium signals remains an active area of research (Theis et al., 2016). For instance,
Vanwalleghem et al. (2020) demonstrated that spiking activities could be missed due to the implicit non-
negativity assumption in calcium imaging data which exists in many deconvolution algorithms, including
Cascade. Nonetheless, Cascade was used to deconvolve calcium signals for all datasets and thus all inferred
spike trains were subject to the same bias.

19

Under review as submission to TMLR

4.2 Conclusion

As deep unsupervised methods have become more expressive and explainable, and neuronal activities in
different learning phases from behaving animals have become more readily available, there is potential for
novel insights into fundamental learning mechanisms. Future directions include sorting neurons in 2D space,
as they were recorded, such that the model can take advantage of vertical and horizontal spatial information.

References
Amjad Almahairi, Sai Rajeshwar, Alessandro Sordoni, Philip Bachman, and Aaron Courville. Augmented

cyclegan: Learning many-to-many mappings from unpaired data. In International Conference on Machine
Learning, pp. 195–204. PMLR, 2018.

André Araujo, Wade Norris, and Jack Sim. Computing receptive fields of convolutional neural networks.
Distill, 2019. doi: 10.23915/distill.00021. https://distill.pub/2019/computing-receptive-fields.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research, 13(2), 2012.

Chensi Cao, Feng Liu, Hai Tan, Deshou Song, Wenjie Shu, Weizhong Li, Yiming Zhou, Xiaochen Bo, and
Zhi Xie. Deep learning and its applications in biomedicine. Genomics, proteomics & bioinformatics, 16
(1):17–32, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

John P Cunningham and M Yu Byron. Dimensionality reduction for large-scale neural recordings. Nature
neuroscience, 17(11):1500–1509, 2014.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural population
models through nonlinear embeddings. Advances in neural information processing systems, 29:163–171,
2016.

Aidan N Gomez, Sicong Huang, Ivan Zhang, Bryan M Li, Muhammad Osama, and Lukasz Kaiser. Unsu-
pervised cipher cracking using discrete gans. arXiv preprint arXiv:1801.04883, 2018.

Lovedeep Gondara. Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE
16th international conference on data mining workshops (ICDMW), pp. 241–246. IEEE, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing
systems, 27, 2014.

Benjamin F Grewe, Dominik Langer, Hansjörg Kasper, Björn M Kampa, and Fritjof Helmchen. High-speed
in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature methods,
7(5):399–405, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016b.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

20

Under review as submission to TMLR

Julia U Henschke, Evelyn Dylda, Danai Katsanevaki, Nathalie Dupuy, Stephen P Currie, Theoklitos
Amvrosiadis, Janelle MP Pakan, and Nathalie L Rochefort. Reward association enhances stimulus-specific
representations in primary visual cortex. Current Biology, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolu-
tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4700–4708, 2017.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134, 2017.

Sander W Keemink, Scott C Lowe, Janelle MP Pakan, Evelyn Dylda, Mark CW Van Rossum, and Nathalie L
Rochefort. Fissa: A neuropil decontamination toolbox for calcium imaging signals. Scientific reports, 8
(1):1–12, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of gans. arXiv
preprint arXiv:1705.07215, 2017.

Bryan M Li, Theoklitos Amvrosiadis, Nathalie Rochefort, and Arno Onken. Calciumgan: A generative
adversarial network model for synthesising realistic calcium imaging data of neuronal populations. arXiv
preprint arXiv:2009.02707, 2020.

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural networks:
analysis, applications, and prospects. IEEE Transactions on Neural Networks and Learning Systems, 2021.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2794–2802, 2017.

Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał Warchoł.
Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminformatics, 12(1):1–18,
2020.

Manuel Molano-Mazon, Arno Onken, Eugenio Piasini*, and Stefano Panzeri*. Synthesizing realistic neural
population activity patterns using generative adversarial networks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=r1VVsebAZ.

Jorrit S Montijn, Martin Vinck, and Cyriel MA Pennartz. Population coding in mouse visual cortex: re-
sponse reliability and dissociability of stimulus tuning and noise correlation. Frontiers in computational
neuroscience, 8:58, 2014.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku
Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net: Learning where to
look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Janelle MP Pakan, Stephen P Currie, Lukas Fischer, and Nathalie L Rochefort. The impact of visual cues,
reward, and motor feedback on the representation of behaviorally relevant spatial locations in primary
visual cortex. Cell reports, 24(10):2521–2528, 2018.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky, Jonathan C
Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg, et al. Inferring single-
trial neural population dynamics using sequential auto-encoders. Nature methods, pp. 1, 2018.

Francesco Piccialli, Vittorio Di Somma, Fabio Giampaolo, Salvatore Cuomo, and Giancarlo Fortino. A
survey on deep learning in medicine: Why, how and when? Information Fusion, 66:111–137, 2021.

21

https://openreview.net/forum?id=r1VVsebAZ

Under review as submission to TMLR

Luke Yuri Prince, Shahab Bakhtiari, Colleen J Gillon, and Blake Aaron Richards. Ca{lfads}: latent factor
analysis of dynamical systems in calcium imaging data, 2021. URL https://openreview.net/forum?id=
J5LS3YJH7Zi.

Poornima Ramesh, Mohamad Atayi, and Jakob H. Macke. Adversarial training of neural encoding models
on population spike trains. 2019 Conference on Cognitive Computational Neuroscience, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted interven-
tion, pp. 234–241. Springer, 2015.

MCW van Rossum. A novel spike distance. Neural computation, 13(4):751–763, 2001.

Peter Rupprecht, Stefano Carta, Adrian Hoffmann, Mayumi Echizen, Antonin Blot, Alex C Kwan, Yang
Dan, Sonja B Hofer, Kazuo Kitamura, Fritjof Helmchen, et al. A database and deep learning toolbox for
noise-optimized, generalized spike inference from calcium imaging. Nature Neuroscience, pp. 1–14, 2021.

Virginia Rutten, Alberto Bernacchia, Maneesh Sahani, and Guillaume Hennequin. Non-reversible gaussian
processes for identifying latent dynamical structure in neural data. Advances in Neural Information
Processing Systems, 2020.

Omid G Sani, Hamidreza Abbaspourazad, Yan T Wong, Bijan Pesaran, and Maryam M Shanechi. Modeling
behaviorally relevant neural dynamics enabled by preferential subspace identification. Nature Neuroscience,
24(1):140–149, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.

Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius Bauza,
Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, et al. Neuropixels 2.0: A miniaturized high-
density probe for stable, long-term brain recordings. Science, 372(6539), 2021.

Lucas Theis, Philipp Berens, Emmanouil Froudarakis, Jacob Reimer, Miroslav Román Rosón, Tom Baden,
Thomas Euler, Andreas S Tolias, and Matthias Bethge. Benchmarking spike rate inference in population
calcium imaging. Neuron, 90(3):471–482, 2016.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-based representation
learning. arXiv preprint arXiv:1812.05069, 2018.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Gilles Vanwalleghem, Lena Constantin, and Ethan K Scott. Calcium imaging and the curse of negativity.
Frontiers in neural circuits, 14, 2020.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neurocomputing,
184:232–242, 2016.

Alex H. Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I. Ryu, Krishna V. Shenoy, Mark
Schnitzer, Tamara G. Kolda, and Surya Ganguli. Unsupervised discovery of demixed, low-dimensional
neural dynamics across multiple timescales through tensor component analysis. Neuron, 98(6):1099–
1115.e8, 2018a. ISSN 0896-6273. doi: https://doi.org/10.1016/j.neuron.2018.05.015. URL https://www.
sciencedirect.com/science/article/pii/S0896627318303878.

Alex H Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I Ryu, Krishna V Shenoy, Mark
Schnitzer, Tamara G Kolda, and Surya Ganguli. Unsupervised discovery of demixed, low-dimensional
neural dynamics across multiple timescales through tensor component analysis. Neuron, 98(6):1099–1115,
2018b.

22

https://openreview.net/forum?id=J5LS3YJH7Zi
https://openreview.net/forum?id=J5LS3YJH7Zi
https://www.sciencedirect.com/science/article/pii/S0896627318303878
https://www.sciencedirect.com/science/article/pii/S0896627318303878

Under review as submission to TMLR

Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V Shenoy, and Maneesh
Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. Journal of neurophysiology, 102(1):614–635, 2009.

Ryad Zemouri, Noureddine Zerhouni, and Daniel Racoceanu. Deep learning in the biomedical applications:
Recent and future status. Applied Sciences, 9(8):1526, 2019.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232, 2017.

23

Under review as submission to TMLR

A Appendix

Table A.1: List of notations and their descriptions used in this manuscript.

Term Color Description

N total number of segments.
H the duration (in time-steps) of each segment.
W the number of neurons.

X, Y Two unpaired data distributions.
G, F generators that learn the mapping of X → Y and Y → X.

DX , DY Discriminators that learn to distinguish if samples are of distribution
X and Y , respectively.

x, y Sample from X and Y .
x̂, ŷ the intermediate transformation output x̂ = G(x) and ŷ = F (y).
x̄, ȳ the cycle transformation output x̄ = F (ŷ) and ȳ = F (x̂).

Xsim First group of simulated neurons.
Ysim Second group of simulated neurons.

Φ The handcrafted augmentation function to mask out the lower left corner of the
population.

Xaug V1 neuron recordings obtained from the 1st day of the VR experiment.
Yaug Augmented Xaug using the transformation function Φ.

Xrec V1 neuron recordings obtained from the 1st day (i.e. pre-learning) of the VR
experiment.

Yrec V1 neuron recordings obtained from the 4th day (i.e. post-learning) of the VR
experiment.

Start of reward zone.
End of reward zone.

CNN Convolution neural network.
RNN Recurrent neural network.

AE The autoencoder used to pre-sort neuron spatial order.
ResNet The ResNet-like generator architecture with level-wise residual

connection (Ronneberger et al., 2015).
USi, DSi The ith down-sampling and up-sampling block in ResNet.

RBi The ith residual block in ResNet.
AGResNet The proposed ResNet generator architecture with Additive Attention Gate

module (Oktay et al., 2018).
AGi The ith Additive Attention Gate module (layer) in AGResNet.

1D-AGResNet AGResNet using 1D convolutional layers.

MAE Mean absolute error.
MSE Mean squared error.

NRMSE Normalized root mean squared error: NRMSE(a, b) =
√

MSE(a.b)
max(b)−min(b)

SC Cosine similarity.
R2 The coefficient of determination or R-squared.

24

Under review as submission to TMLR

B CycleGAN

(a)

cycle consistent loss

(b)

Figure B.1: Illustration of (a) the data flow and (b) the cycle-consistent loss in a forward cycle X → Y → X.
G and F are generators that learn the transformation of X → Y and Y → X respectively. We first sample
x ∼ X, then apply transformation G to obtain ŷ = G(x). To ensure ŷ resemble distribution Y , we train
discriminator DY to distinguish generated samples from real samples. However, even if ŷ is of distribution
Y , we cannot verify that ŷ is the direct correspondent of x. Hence, we apply transformation F which convert
x̄ = G(ŷ) back to domain X. If both F and G are reasonable transformations, then the cycle-consistency
|x − x̄| should be minimal. The backward cycle Y → X → X is a mirrored but opposite operation that run
concurrently with the forward cycle. Illustration re-created from Figure 3 in Zhu et al. (2017).

Table B.1: The hyper-parameters used for each objective formulation. αG and αD denote the learning rates
of the generators and discriminators. λ GP is the gradient penalty coefficient for WGANGP and DRAGAN
and c is the Gaussian variance hyper-parameter in DRAGAN. To make it compatible with the training
framework in WGANGP, we added the option to train the discriminator nD steps for every generator update.

Hyper-parameters GAN LSGAN WGANGP DRAGAN

Filters 32
Kernel size 4

Reduction factor 2
Activation LReLU

Normalization InstanceNorm
Spatial Dropout 0.25

Weight Initialization random normal N (0, 0.02)
λ cycle 10

λ identity 5
λ GP N/A N/A 10 10

c N/A N/A N/A 10
nD discriminators update 1 1 5 1

αG 0.0001
αD 0.0004

Distance Function mean absolute error

25

Under review as submission to TMLR

C Mouse information

The trial information of Mouse 2 to 4 in the VR experiment (see Section 2.6).

Table C.1: Mouse 2 performance in the experiment where 59 V1 neurons were monitored across 5 days of
training.

Day Duration Num. trials Avg. trial duration Licks Rewards

1 897.84s 61 14.72s 1038 75
2 892.29s 107 8.34s 1572 115
3 898.20s 196 4.58s 2330 204
4 897.07s 199 4.51s 1338 304
5 895.48s 122 7.34s 1069 157

Table C.2: Mouse 3 performance in the experiment where 21 V1 neurons were monitored across 5 days of
training.

Day Duration Num. trials Avg. trial duration Licks Rewards

1 895.19s 68 13.16s 919 98
2 897.11s 76 11.80s 1369 86
3 898.85s 131 6.86s 1146 173
4 895.78s 177 5.06s 1065 302
5 898.56s 190 4.73s 2334 196

Table C.3: Mouse 4 performance in the experiment where 32 V1 neurons were monitored across 5 days of
training.

Day Duration Num. trials Avg. trial duration Licks Rewards

1 895.06s 147 6.09s 1239 192
2 898.54s 300 3.00s 1024 487
3 895.91s 215 4.17s 1982 220
4 896.83s 227 3.95s 2493 230
5 897.88s 299 3.00s 1750 303

26

Under review as submission to TMLR

D Neuron ordering

Figure D.1: Neuron ordering based on (Left) original annotation, (Right) autoencoder reconstruction loss.
The original order was based on how visible the neuron was in the calcium image, hence not sorted in a
particular manner. We proposed to train an autoencoder that learns to reconstruct X and Y jointly, and
sort neurons based on the average reconstruction error on the validation set (see Section 2.5).

Table D.1: Mouse 1 neuron ordering based on (a) original annotation, (b) firing rate, (c) average pairwise
correlation, and (d) autoencoder reconstruction loss.

Method Order
(a) N/A 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102

(b) Firing rate 18, 14, 12, 30, 8, 15, 36, 4, 21, 19, 3, 7, 43, 33, 20, 42, 13, 6, 11, 39, 2, 22, 75, 28, 55,
100, 31, 62, 10, 67, 63, 54, 17, 40, 52, 46, 99, 88, 61, 77, 57, 34, 85, 41, 27, 98, 84, 47,
65, 73, 5, 1, 44, 101, 58, 80, 16, 29, 87, 9, 26, 83, 92, 74, 24, 45, 49, 23, 97, 48, 68, 60,
71, 76, 59, 53, 70, 89, 25, 93, 32, 56, 66, 81, 72, 94, 38, 64, 79, 82, 50, 51, 96, 90, 37,
86, 95, 91, 102, 69, 35, 78

(c) Correlation 36, 27, 46, 28, 39, 30, 42, 20, 92, 10, 18, 11, 67, 14, 4, 33, 19, 77, 75, 13, 24, 99, 8, 43,
65, 101, 63, 7, 25, 44, 12, 76, 80, 9, 47, 3, 34, 71, 87, 52, 22, 1, 85, 61, 84, 29, 45, 31,
93, 100, 5, 58, 57, 17, 74, 21, 96, 55, 82, 91, 2, 48, 6, 56, 83, 62, 49, 16, 26, 81, 97, 53,
73, 94, 89, 59, 40, 95, 23, 32, 54, 66, 98, 72, 35, 88, 15, 41, 50, 60, 90, 70, 78, 68, 69,
86, 38, 51, 64, 79, 37, 102

(d) Autoencoder 89, 59, 8, 4, 18, 52, 37, 35, 99, 81, 44, 97, 83, 22, 87, 93, 90, 91, 69, 10, 100, 21, 96, 46,
39, 3, 25, 36, 53, 20, 86, 95, 38, 101, 50, 51, 78, 11, 64, 58, 92, 82, 84, 54, 66, 5, 62, 32,
72, 9, 61, 71, 73, 24, 23, 55, 68, 60, 17, 13, 1, 65, 27, 56, 102, 29, 40, 41, 94, 33, 26, 12,
49, 88, 16, 80, 34, 76, 70, 28, 2, 42, 77, 98, 63, 45, 48, 14, 43, 85, 7, 74, 6, 57, 31, 30,
19, 47, 15, 67, 75, 79

27

Under review as submission to TMLR

E Simulation data

Figure E.1: The top panels show the calcium-like traces of all 128 neurons from xsim ∼ Xsim and ysim ∼ Ysim,
and the bottom panels show the same population with neuron ordered shuffled, which are then feed into the
unsupervised learning framework. The shuffling process is added to increase the difficulties for the generators
to learn the transformation as the responses are less structured. TURBO color-map is used to improve visibility.

28

Under review as submission to TMLR

F Augmented data

Figure F.1: The (Left column) forward and (Right column) backward cycle of the entire neuron population
from a randomly selected trial, using the AGResNet architecture and trained with LSGAN objectives. G
learns the augmentation function Φ (described in Section 2.7.2) which mask out the lower left corner of
input xaug, whereas F learns to recover the masked regions from unpaired data. TURBO color-map is used to
improve visibility.

29

Under review as submission to TMLR

G Recorded data

Figure G.1: The (Left column) forward and (Right column) backward cycle of the entire population from a
randomly selected segment xrec ∼ Xrec and yrec ∼ Yrec. The model was trained with AGResNet generators
using the LSGAN objective on the recorded dataset and neurons were in AE order. TURBO color-map is used
to improve visibility.

Figure G.2: Attention masks AG1 and AG2 from generator F with (Left column) neurons sorted by AE
reconstruction error and (Right column) no neuron ordering. The histogram to the right of each panel
indicates the spatial attention intensity learned by the attention module.

30

Under review as submission to TMLR

H Mouse 1 spike analysis

Figure H.1: Spike statistics comparison between Xrec and X̂rec = F (Yrec) of (Top row) pairwise correlation
from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom
row) van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of
each metric and Table 5 shows the mean and standard deviation of the KL divergence comparisons. Note,
neurons were ordered by autoencoder reconstruction loss and the ground-truth Xrec is in gray color.

31

Under review as submission to TMLR

Figure H.2: Spike statistics comparison between Xrec and X̄rec = F (G(Xrec)) of (Top row) pairwise corre-
lation from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bot-
tom row) van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence
of each metric and Table 5 shows the mean and standard deviation of the KL divergence comparisons. Note,
neurons were ordered by autoencoder reconstruction loss and the ground-truth Xrec is in gray color.

32

Under review as submission to TMLR

Figure H.3: Spike statistics comparison between Yrec and Ŷrec = G(Xrec) of (Top row) pairwise correlation
from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom
row) van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of
each metric and Table 5 shows the mean and standard deviation of the KL divergence comparisons. Note,
neurons were ordered by autoencoder reconstruction loss and the ground-truth Yrec is in gray color.

33

Under review as submission to TMLR

Figure H.4: Spike statistics comparison between Yrec and Ȳrec = F (G(Yrec)) of (Top row) pairwise correlation
from 2 randomly selected samples, (Middle row) firing rate of 2 randomly selected neurons and (Bottom
row) van Rossum distance of 2 randomly selected segments. The 3rd column shows the KL divergence of
each metric and Table 5 shows the mean and standard deviation of the KL divergence comparisons. Note,
neurons were ordered by autoencoder reconstruction loss and the ground-truth Yrec is in gray color.

34

Under review as submission to TMLR

I Mouse 2 results

Table I.1: Cycle-consistent and identity loss of AGResNet on Mouse 2 recordings, where neurons were ordered
by 1) original annotation, 2) firing rate and 3) autoencoder reconstruction loss. For reference, | X − Y | =
0.6057 ± 0.1146 in the test set. The lowest loss in each category is marked in bold.

Order |X − F (G(X))| |X − F (X)| |Y − G(F (Y))| |Y − G(Y)|

none 0.5875 ± 0.1050 0.1292 ± 0.0168 0.4416 ± 0.0763 0.0923 ± 0.0064
firing rate 0.5794 ± 0.1055 0.1276 ± 0.0152 0.4396 ± 0.0793 0.0894 ± 0.0048

autoencoder 0.5692 ± 0.1008 0.1030 ± 0.0099 0.4378 ± 0.0769 0.0101 ± 0.0018

Table I.2: The average KL divergence between generated and recorded distributions of Mouse 2 in (a)
pairwise correlation, (b) firing rate, and (c) population pairwise van Rossum distance. We compare AGResNet
results with different neuron ordering including 1) original annotation, 2) firing rate and 3) autoencoder
reconstruction loss. Note that we added the identity model (first row of each sub-table) as a baseline where
we should obtain perfect cycle reconstruction. Entries with the lowest value are marked in bold.

KL(X, F (Y)) KL(X, F (G(X))) KL(Y, G(X)) KL(Y, G(F (Y)))

(a) pairwise correlation

Identity 0.6528 ± 0.4980 0 0.4583 ± 0.4366 0
N/A 0.5523 ± 0.4251 0.1617 ± 0.0715 0.1212 ± 0.0833 0.0499 ± 0.0266

firing rate 0.5639 ± 0.4679 0.1951 ± 0.1031 0.1126 ± 0.0831 0.0399 ± 0.0231
autoencoder 0.5209 ± 0.5554 0.0582 ± 0.0361 0.1231 ± 0.0988 0.0352 ± 0.0228

(b) firing rate

Identity 8.3096 ± 6.1580 0 5.5783 ± 5.8451 0
N/A 1.2881 ± 1.1147 2.5786 ± 2.7222 1.5782 ± 1.2217 1.6722 ± 1.3286

firing rate 1.2181 ± 0.9909 2.4912 ± 2.5037 1.3656 ± 1.1475 1.1767 ± 1.0625
autoencoder 0.8087 ± 0.5764 1.1326 ± 1.3149 1.2521 ± 0.9649 1.0592 ± 1.0722

(c) pairwise van Rossum distance

Identity 1.3894 ± 2.0529 0 1.1240 ± 1.5159 0
N/A 1.3392 ± 1.6653 0.5782 ± 0.9743 0.6043 ± 0.5250 0.2497 ± 0.2443

firing rate 1.2464 ± 1.7505 0.5946 ± 0.9352 0.5638 ± 0.4181 0.1977 ± 0.1234
autoencoder 0.6946 ± 0.5687 0.1996 ± 0.3232 0.5287 ± 0.3897 0.1775 ± 0.0959

35

Under review as submission to TMLR

J Mouse 3 results

Table J.1: Cycle-consistent and identity loss of AGResNet on Mouse 3 recordings, where neurons were
ordered by 1) original annotation, 2) firing rate and 3) autoencoder reconstruction loss. For reference,
| X − Y | = 0.4764 ± 0.1520 in the test set. The lowest loss in each category is marked in bold.

Order |X − F (G(X))| |X − F (X)| |Y − G(F (Y))| |Y − G(Y)|

none 0.2684 ± 0.0290 0.0656 ± 0.0037 0.3229 ± 0.0476 0.0796 ± 0.0047
firing rate 0.2679 ± 0.0309 0.0585 ± 0.0034 0.3192 ± 0.0477 0.0777 ± 0.0043

autoencoder 0.2677 ± 0.0282 0.0554 ± 0.0023 0.3199 ± 0.0487 0.0672 ± 0.0034

Table J.2: The average KL divergence between generated and recorded distributions of Mouse 3 in (a)
pairwise correlation, (b) firing rate, and (c) population pairwise van Rossum distance. We compare AGResNet
results with different neuron ordering including 1) original annotation, 2) firing rate and 3) autoencoder
reconstruction loss. Note that we added the identity model (first row of each sub-table) as a baseline
comparison and should obtain perfect cycle reconstruction. Entries with the lowest value are marked in bold.

KL(X, F (Y)) KL(X, F (G(X))) KL(Y, G(X)) KL(Y, G(F (Y)))

(a) pairwise correlation

Identity 1.0188 ± 0.5731 0 0.7363 ± 0.3732 0
N/A 0.5361 ± 0.2817 0.5678 ± 0.3145 0.6975 ± 0.2202 0.7381 ± 0.2977

firing rate 0.5021 ± 0.2596 0.5184 ± 0.2536 0.6281 ± 0.2830 0.6616 ± 0.2850
autoencoder 0.5140 ± 0.2538 0.4751 ± 0.2421 0.6137 ± 0.2997 0.4625 ± 0.2443

(b) firing rate

Identity 12.2077 ± 7.3556 0 12.4075 ± 7.3156 0
N/A 1.0164 ± 0.7129 1.8203 ± 1.9280 1.2904 ± 0.9448 1.4786 ± 1.4374

firing rate 0.9371 ± 0.6735 1.7893 ± 2.5419 1.0712 ± 0.7793 1.2805 ± 1.5136
autoencoder 0.8936 ± 0.5655 1.1152 ± 0.6797 1.2114 ± 0.7281 0.6928 ± 0.4643

(c) pairwise van Rossum distance

Identity 4.2704 ± 2.0834 0 4.9623 ± 1.4393 0
N/A 3.0412 ± 1.8467 2.0246 ± 1.3422 4.6059 ± 2.0664 3.0293 ± 1.5854

firing rate 2.9009 ± 1.7587 1.6458 ± 1.2375 4.1910 ± 1.7950 2.8613 ± 1.7788
autoencoder 2.8383 ± 1.5942 1.4747 ± 1.1150 3.9709 ± 1.7732 1.4767 ± 1.0195

36

Under review as submission to TMLR

K Mouse 4 results

Table K.1: Cycle-consistent and identity loss of AGResNet on Mouse 4 recordings, where neurons were
ordered by 1) original annotation, 2) firing rate, and 3) autoencoder reconstruction loss. For reference,
| X − Y | = 0.4383 ± 0.2354 in the test set. The lowest loss in each category is marked in bold.

Order |X − F (G(X))| |X − F (X)| |Y − G(F (Y))| |Y − G(Y)|

none 0.2538 ± 0.0399 0.0443 ± 0.0015 0.2403 ± 0.0395 0.0808 ± 0.0061
firing rate 0.2511 ± 0.0389 0.0376 ± 0.0015 0.2388 ± 0.0406 0.0764 ± 0.0067

autoencoder 0.2489 ± 0.0381 0.0382 ± 0.0012 0.2367 ± 0.0396 0.0764 ± 0.0053

Table K.2: The average KL divergence between generated and recorded distributions of Mouse 4 in (a)
pairwise correlation, (b) firing rate and (c) population pairwise van Rossum distance. We compare AGResNet
results with different neuron ordering including 1) original annotation, 2) firing rate and 3) autoencoder
reconstruction loss. Note that we added the identity model (first row of each sub-table) as a baseline
comparison and should obtain perfect cycle reconstruction. Entries with the lowest value are marked in bold.

KL(X, F (Y)) KL(X, F (G(X))) KL(Y, G(X)) KL(Y, G(F (Y)))

(a) pairwise correlation

Identity 0.3724 ± 0.2169 0 0.5124 ± 0.3238 0
N/A 0.2849 ± 0.1552 0.1735 ± 0.0918 0.3536 ± 0.2541 0.5750 ± 0.2883

firing rate 0.2482 ± 0.1502 0.1478 ± 0.0848 0.3482 ± 0.2561 0.5471 ± 0.2577
autoencoder 0.2096 ± 0.1155 0.1587 ± 0.0867 0.3460 ± 0.2568 0.4795 ± 0.2457

(b) firing rate

Identity 5.8031 ± 4.8030 0 5.1383 ± 5.4684 0
N/A 1.3062 ± 1.0097 0.6034 ± 0.6294 1.4253 ± 1.5599 2.9196 ± 3.1077

firing rate 1.0818 ± 0.9274 0.5480 ± 0.5043 1.2120 ± 1.2971 2.8206 ± 2.7266
autoencoder 1.0564 ± 1.1415 0.5474 ± 0.5223 1.1570 ± 1.0830 2.1015 ± 2.2399

(c) pairwise van Rossum distance

Identity 2.2670 ± 1.2707 0 2.8134 ± 1.5536 0
N/A 1.8698 ± 1.1525 0.5625 ± 0.4399 2.4011 ± 1.4879 3.3849 ± 1.7608

firing rate 1.5416 ± 0.9327 0.3931 ± 0.2821 2.1379 ± 1.4338 3.3865 ± 1.9320
autoencoder 1.3246 ± 0.8537 0.4578 ± 0.3639 2.2134 ± 1.3838 2.6537 ± 1.6526

37

Under review as submission to TMLR

L Decoding performance

Table L.1: The decoding performances (R2) in (a) virtual position and (b) velocity on Mouse 1 recordings
from Day 1 and Day 4 of the VR experiment. We trained RNN regression models on the calcium responses of
(1) all 102 neurons, (2) top-30 neurons, (3) the rest of the neurons, and (4) 30 randomly selected neurons. We
fit the regression models 20 times using different random seeds and compute the p-value between (2) and (4).
As the GradCAM activation map from G and F are extracted with respect to inputs Xrec and Yrec, and thus
we selected the (2) top-30 neurons for Day 1 and Day 4 separately, each according to the positional activation
maps from the two generators (see Figure 13). The best result for each decoding task is shown in bold.

(1) all (2) top-30 (3) rest (4) random-30 p-value

(a) Virtual position

Day 1 0.8721 ± 0.0883 0.8123 ± 0.1255 0.7597 ± 0.1494 0.5947 ± 0.1300 6.0858 × 10−6 (****)
Day 4 0.8555 ± 0.0698 0.7912 ± 0.0551 0.7657 ± 0.0676 0.6736 ± 0.0479 2.3413 × 10−8 (****)

(b) Velocity

Day 1 0.2225 ± 0.0533 0.1900 ± 0.0387 0.1894 ± 0.0802 0.1778 ± 0.0879 0.5827 (n.s.)
Day 4 0.5786 ± 0.0461 0.3053 ± 0.0600 0.4728 ± 0.0915 0.1320 ± 0.0455 3.1032 × 10−12 (****)

38

	Introduction
	Methods
	CycleGAN
	Model pipeline
	Networks architecture
	Decoding analysis
	Neuron ordering
	Recorded data
	Synthetic data
	Simulated data
	Augmented data

	Results
	Simulated data
	Augmented data
	Recorded data
	Decoding performance

	Discussion
	Limitations
	Conclusion

	Appendix
	CycleGAN
	Mouse information
	Neuron ordering
	Simulation data
	Augmented data
	Recorded data
	Mouse 1 spike analysis
	Mouse 2 results
	Mouse 3 results
	Mouse 4 results
	Decoding performance

