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Abstract001

Lexical substitution, a fundamental task in nat-002
ural language processing, aims to replace tar-003
get words with semantically equivalent or syn-004
onymous substitutes while preserving origi-005
nal sentence meaning. Although extensively006
explored, existing methods exhibit two ma-007
jor limitations: 1) inadequate investigation of008
embedding representations when target word009
contain subwords, and 2) excessive hyperpa-010
rameters and computational complexity from011
multi-metric evaluation in candidate ranking.012
To address these issues, we propose LexSub-013
Dis, which constructs more MLM-compatible014
substitution mechanisms by averaging subword015
embeddings of target words and combining016
them with synonym embeddings. Moreover,017
we pioneer the introduction of discriminator018
models to assess semantic impacts of substitu-019
tions. Experimental results demonstrate that020
LexSubDis significantly reduces hyperparam-021
eters while achieving state-of-the-art perfor-022
mance under unsupervised learning on CoInCo023
dataset’s ootm metric, offering novel insights024
and solutions for lexical substitution research.025

1 Introduction026

The lexical substitution task (McCarthy and Nav-027

igli, 2007) generates context-preserving candidate028

words for target terms, with applications spanning029

data augmentation (Morris et al., 2020), adversarial030

example generation (Jin et al., 2020), query opti-031

mization or rewriting (Jones et al., 2006), and word032

sense induction (Amrami and Goldberg, 2018).033

The lexical substitution task comprises two034

phases: candidate generation and ranking, with035

core challenges in semantic preservation. Early ap-036

proaches primarily leveraged pre-built resources037

(WordNet (Miller, 1995), PPDB (Ganitkevitch038

et al., 2013)) and statistical features (co-occurrence039

frequency, TF-IDF (Babych and Hartley, 2004)) for040

candidate extraction. Recent advancements driven041

by large language models have revolutionized this042

domain: Encoder-based architectures like BERT 043

(Devlin et al., 2019) employ masked language mod- 044

eling for context-aware substitution, while decoder- 045

based models such as GPT (Radford et al., 2018) 046

utilize autoregressive generation. Methodological 047

innovations include a partial-mask dropout strategy 048

(Zhou et al., 2019) that outperforms a conventional 049

full-mask approach, and hybrid ranking mecha- 050

nisms combining MLM/LM probabilities with em- 051

bedding similarities (Arefyev et al., 2020). Com- 052

parative studies demonstrate XLNet (Yang et al., 053

2019) with embedding fusion achieves optimal per- 054

formance through probability-based candidate sort- 055

ing, surpassing context2vec (Melamud et al., 2016), 056

ELMo (Peters et al., 2018), and RoBERTa (Liu 057

et al., 2019). Notably, prompt-enhanced GPT-2 058

(Radford et al., 2019) training (Shi et al., 2024) 059

significantly outperforms supervised baselines like 060

GeneSis (Lacerra et al., 2021b) on the LS07 (Mc- 061

Carthy and Navigli, 2007) benchmark. 062

Regarding the input-output processing of tar- 063

get words, Arefyev et al. (2020) compared the 064

MASK strategy with retaining original word (keep), 065

finding the latter achieved better performance. 066

Michalopoulos et al. (2022) employed mix-up tech- 067

nology, differing from traditional dropout (Zhou 068

et al., 2019), by computing weighted averages be- 069

tween initial word embeddings of target words and 070

their WordNet synonym embeddings, applying this 071

operation only to the first subword when targets 072

are split into multiple subwords. These methods 073

inadequately explore the impact of subword-level 074

segmentation of target words, and uniformly adopt 075

the first subword representation at target positions 076

as the holistic word representation. Additionally, 077

existing approaches for candidate ranking focus 078

on semantic changes in modified sentences, prob- 079

abilistic similarity between candidates and target 080

words, and comprehensive effects of substitutions 081

on other words in the original sentence. These eval- 082

uation dimensions rely on combinations of multiple 083
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weighted parameters, posing significant challenges084

for hyperparameter fine-tuning.085

For the above two points, our work focuses on086

the choice of model processing methods on input087

and output and proposes a new candidate word088

evaluation method.089

The main contributions of the paper were as fol-090

lows:091

• A new candidate rank method was proposed092

to improve the evaluation method. With fewer093

hyperparameters, this method achieves an im-094

provement in the ootm metric on the CoInCo095

dataset.096

• The problem of the selection of the target097

word position of the MLM model was ex-098

plored, including the selection of output and099

input.100

2 Related Work101

Lexical substitution aims to optimize the repre-102

sentation of text by using context-adapted word103

substitution while maintaining the same semantics.104

Current research focuses on two main directions:105

one is the construction and optimization of word106

substitution datasets, and the other is the innovative107

application of deep learning models in this task.108

2.1 Lexical Substitution Resources109

LST The Lexical Substitution Task (LST) dataset110

is SemEval 2007 Task 10 (McCarthy and Navigli,111

2007). It encompasses 2,010 sentences with 201112

target words, each appearing in 10 distinct con-113

texts. The lexical coverage spans across nouns,114

verbs, adjectives, and adverbs, ensuring a diverse115

representation of grammatical categories. Annota-116

tion was conducted by five native English speakers,117

who collectively generated replacement terms for118

the target words.119

CoInCo Concepts-In-Context (CoInCo) (Kremer120

et al., 2014) is a large-scale "all-words" lexical121

substitution resource designed to analyze word122

meaning in context. Unlike traditional "lexical123

sample" datasets (e.g., SemEval), which focus on124

isolated target words, this corpus annotates all con-125

tent words in continuous text, providing a realistic126

distribution of lexical usage across contexts. It cov-127

ers some 35K tokens of running text in which all128

15.5K content words were labeled with at least 6129

Synonyms using crowdsourcing methods. Annota- 130

tors were able to see the whole sentence as well as 131

two sentences of discourse context. 132

To address the data scarcity issue in lexical sub- 133

stitution tasks, the crowd-sourced TWSI dataset 134

(Biemann, 2012) serves as a representative human- 135

annotated resource, covering 1,012 high-frequency 136

English nouns with 145,000 annotated sentences. 137

For large-scale applications, AlaSca (Lacerra et al., 138

2021a) employed an automated pipeline for super- 139

vised data generation, while GENESIS (Lacerra 140

et al., 2021b) leveraged a generative seq2seq model 141

(Sutskever et al., 2014) to create contextualized ex- 142

amples, both demonstrating high validity in human 143

evaluations. 144

2.2 Lexical Substitution Approaches 145

We will introduce the lexical substitution task from 146

three perspectives: lexical generation models, lexi- 147

cal substitution methods, and lexical ranking. 148

Model Architecture The lexical substitution task 149

is constrained by the scarcity of large-scale anno- 150

tated data, limiting the application of supervised 151

models. Existing approaches primarily fall into 152

three categories (Lacerra et al., 2021a): knowledge- 153

driven models leverage structured lexical resources 154

like WordNet to extract synonyms; vector-space 155

models compute candidate similarity through word 156

embeddings (Melamud et al., 2016; Garí Soler 157

et al., 2019; Peters et al., 2018); Transformer-based 158

models (Vaswani et al., 2017), as an evolutionary 159

extension of vector-space paradigms, employ pre- 160

trained architectures to generate deep contextual 161

representations. Current research integrates these 162

three paradigms, forming supervised and unsuper- 163

vised methodological frameworks. 164

Substitution Methods The generation of lexical 165

substitution can be divided into unsupervised and 166

supervised. Unsupervised approaches do not re- 167

quire annotated data and mainly generate candidate 168

words through pretrained models. For example, 169

Zhou et al. (2019) proposed to incorporate BERT 170

and a random masking mechanism in embeddings 171

to enhance diversity. Supervised methods rely 172

on annotated data to train models. Early studies 173

(Szarvas et al., 2013a,b; Hintz and Biemann, 2016) 174

transformed the lexical substitution task into a 175

feature-based ranking problem through supervised 176

learning frameworks. Subsequent work Qiang et al. 177

(2023) designed a 6-layer Transformer encoder- 178

decoder, outperforming pretrained model baselines, 179
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and Shi et al. (2024) constructed a prompt frame-180

work based on GPT that significantly outperforms181

the generative baseline GeneSis (Lacerra et al.,182

2021b) on the LS07 dataset.183

Ranking Mechanisms Candidate word ranking184

emphasizes overall sentence semantics and lexical185

correlations. Roller and Erk (2016) used expo-186

nential dot-product normalization to obtain prob-187

ability values. Arefyev et al. (2020) ranked can-188

didate words based on the predicted probabilities189

output by the model at the target position. Zhou190

et al. (2019) calculated the cosine similarity of191

token contextual representations before and after192

replacement, combining these with self-attention193

mechanism scores via weighted fusion to evalu-194

ate sentence-representation similarity after lexi-195

cal replacement. Qiang et al. (2023) incorporated196

the text-generation evaluation metric BARTScore197

(Yuan et al., 2021), which assessed the semantic198

similarity of sentences with the replacement word199

embedded, replacing traditional word-embedding200

similarity methods.201

3 LexSubDis Framework202

We propose a lexical substitution task framework203

named LexSubDis (Figure 1), which consists of204

two parts: candidate generation and evaluation. In205

the candidate generation stage, we combine the206

Xlnet model (+embs) (Arefyev et al., 2020) with207

WordNet (Miller, 1995) to generate synonyms for208

the target word. In the evaluation stage, we rank209

the candidate words based on three types of scores.210

Notably, we introduce a discriminator model for211

the first time to score the candidates, aiming to212

assess their overall suitability.213

3.1 Candidate Generator214

In addition to generating candidate words based215

on model dictionaries, incorporating external re-216

sources can enhance performance. For example,217

Faruqui et al. (2015) integrated word vectors with218

information from semantic lexicons (WordNet)219

to enhance the semantic quality of word vectors.220

Michalopoulos et al. (2022) effectively improved221

candidate generation quality by integrating syn-222

onym sets of target words with multi-dimensional223

scoring metrics. Seneviratne et al. (2022) further224

incorporated WordNet-based definitions of target225

words and semantic similarity between sentences226

generated with substitute words into the candi-227

date evaluation framework, providing more refined228

quantitative criteria for substitution effectiveness. 229

Different from the above work, We selected syn- 230

onyms matching the target word’s part-of-speech 231

(POS), combining them with model-generated 232

words through the following protocol: the top 10 233

probability-ranked words from the model’s out- 234

put were supplemented with up to 10 WordNet 235

synonyms. When synonyms for the target word 236

numbered fewer than 10, the deficit was filled by 237

sequentially selecting from the model’s next 10 238

highest-probability candidates. This methodology 239

thereby ensured 20 candidate words per target lexi- 240

cal item. 241

3.2 Quality Discriminator 242

We employ the ELECTRA (Clark et al., 2020) 243

model as a discriminator for candidate words. 244

This model introduces novel pre-training tasks and 245

frameworks by transforming the traditional genera- 246

tive Masked Language Model (MLM) pre-training 247

task into a discriminative Replaced Token Detec- 248

tion (RTD) task, which focuses on determining 249

whether the current token has been replaced by 250

a language model. With fewer parameters and 251

reduced data requirements, ELECTRA achieves 252

comparable performance to the then SOTA model 253

RoBERTa (Liu et al., 2019) while consuming only 254

a quarter of its computational resources. Specifi- 255

cally, by replacing partial tokens in original sen- 256

tences with contextually plausible alternatives, the 257

model’s objective becomes distinguishing replaced 258

tokens from original ones. 259

3.3 Input-Output Strategies 260

Traditional word embedding models such as 261

Word2Vec (Mikolov et al., 2013) fail to generate ef- 262

fective vector representations for out-of-vocabulary 263

(OOV) words not present in the training data. Fast- 264

Text (Joulin et al., 2016) pioneered the decomposi- 265

tion of words into subword units and constructed 266

word representations by summing subword vectors. 267

Previous studies typically defaulted to applying 268

strategies at target position, yet insufficient atten- 269

tion has been paid to cases where the target word 270

is split into multiple subwords. 271

Input-Side Strategies In the context of input pro- 272

cessing strategies, Michalopoulos et al. (2022) com- 273

pared approaches including keep, mask, dropout, 274

Gaussian noise, and mix-up, revealing that optimal 275

model performance is achieved when the original 276

embedding of the target word is combined with the 277
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Figure 1: Schematic diagram of LexSubDis model architecture: Core components and WordNet-based potential
synonym expansion module (optional).

average embedding of its synonyms. Specifically,278

the keep strategy (Arefyev et al., 2020) directly279

inputs the target word’s original embedding into280

the model; the mask strategy replaces the entire281

target word with a mask token; the dropout strat-282

egy (Zhou et al., 2019) randomly zeros out specific283

dimensions of the target word’s embedding vector284

with a predefined probability to improve general-285

ization; the Gauss strategy injects Gaussian noise286

into the target word’s embedding; and the mix-up287

strategy synthesizes new inputs by blending embed-288

dings of the target word and its synonyms. Notably,289

these strategies are applied only to the first subword290

in the split subword sequence of the target word. To291

address this limitation, we propose a novel method:292

when a target word is segmented into multiple sub-293

words, we unify its subword embeddings into a294

single-position representation, thereby mitigating295

the bias caused by processing only the initial sub-296

word.297

Output-Side Strategies When a target word is298

split into multiple subwords, existing methods typ-299

ically default to selecting the contextual represen-300

tation of the first subword as the candidate rep-301

resentation, leveraging the bidirectional encoder302

architecture’s inherent ability to capture contex-303

tual information. Building on this, we explore five304

subword fusion strategies: First (directly using the305

first subword’s contextual representation), Pooling306

(Min/Max/Mean Pooling), Linear Weighting, and307

Exponential Weighting. The first subword repre-308

sentation remains conventional due to its compu-309

tational simplicity. Pooling operations, originally310

from computer vision and later adapted to NLP (Bo-311

janowski et al., 2017), aggregate subword contex-312

tual features: mean pooling averages all subword313

representations element-wise, max pooling selects 314

dimension-wise maxima to emphasize salient fea- 315

tures, and min pooling extracts minima to capture 316

common characteristics. Linear and Exponential 317

Weighting further model semantic distinctions be- 318

tween subwords. Both methods compute the target 319

representation as (Eq. (1)): 320

htarget =

k∑
i=1

wi · hi with
k∑

i=1

wi = 1 (1) 321

where hi ∈ Rd denotes the contextual representa- 322

tion of the i -th subword, k is the subword count, 323

and weights wi follow either linear or exponential 324

allocation rules. 325

3.4 Lexical Substitutes Ranking 326

We propose three scores to evaluate candidate word 327

quality. During assessment, it was observed that 328

both the overall sentence semantics and inter-word 329

interactions should be considered. 330

Model Prediction Score In pretrained language 331

Models, when predicting the vocabulary at a target 332

position, the token ID with the highest probability 333

is selected as the prediction for that target posi- 334

tion. This maximum posterior probability-based 335

selection method ensures that the model always 336

chooses the most likely token in the given context, 337

thereby achieving semantic completion for the tar- 338

get positions. On this basis, Arefyev et al. (2019, 339

2020) formalized candidate modeling as C=(L,R), 340

where T represents the target word, L and R denote 341

left/right context respectively. The task aims to 342

maximize the probability of substitute s given con- 343

text C and target word T. According to Bayesian 344
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rules, the formula is expressed as (Eq. (2)):345

P (s | C, T ) = P (C, T | s)P (s)

P (C, T )
(2)346

In our experiments, we use P (s | C, T ) as the347

scoring function of the substitute model Sp for can-348

didate words.349

When constructing the candidate word set, we350

employ the top-10 words (Vijayakumar et al., 2016;351

Fan et al., 2018) with the highest predicted proba-352

bilities from the model as the base candidates, sup-353

plemented by 10 synonyms of the target word from354

WordNet. Since external resources lack probability355

scores generated by the model, we uniformly as-356

sign the fifth-highest probability value predicted by357

the model to these supplementary words. Empirical358

evidence shows that the top-5 strategy has been val-359

idated in multiple studies as an optimal choice for360

balancing prediction accuracy and computational361

efficiency. The fill-mask pipeline in Hugging Face362

Transformers returns the top-5 predictions by de-363

fault1.364

Sentence Similarity Score Given an original sen-365

tence s containing a target word xi, we generate an366

updated sentence s′ by replacing the target word367

with a candidate substitute. The updated sentence368

can be represented as:369

s′ = (x1, . . . , x
′
i, . . .)370

For each candidate substitute, we compute a371

sentence-level semantic similarity score between372

the original sentence s and the updated sentence373

s′ using Sentence-BERT (Reimers and Gurevych,374

2019). Specifically, we obtain the sentence em-375

beddings SBERT(s) and SBERT(s′), and calculate376

their cosine similarity as follows:377

Ss = cos(SBERT(s),SBERT(s′))378

This score measures the degree to which the seman-379

tic meaning of the sentence is preserved after the380

substitution.381

RTD Score In the Electra model (Clark et al.,382

2020), the output of the Discriminator is the un-383

normalized logits, which are converted into the384

probability that each token is a replaced word by385

applying the sigmoid function. Specifically, let the386

logit for the i-th token in the original sentence be387

1https://huggingface.co/docs/transformers

zi. After applying the sigmoid function, we obtain 388

the corresponding probability: 389

pi = σ(zi) 390

Similarly, for the sentence after candidate word 391

replacement, the probability for the i-th token is 392

given by: 393

p∗i = σ(z∗i ) 394

where σ(·) denotes the sigmoid function. To eval- 395

uate the impact of replacing the target word with 396

a candidate word on the overall sentence, we com- 397

pute the average of the absolute differences be- 398

tween the probabilities of corresponding token po- 399

sitions in the original and modified sentences. The 400

metric, denoted as Sr, is defined as: 401

Sr =
1

N

N∑
i=1

|pi − p∗i | (3) 402

where N represents the total number of tokens in 403

the sentence. This metric is analogous to the Mean 404

Absolute Error (MAE) and quantifies the overall 405

effect of the replacement on the model’s output. 406

In summary, the calculation formula for the can- 407

didate words is shown in (Eq. (4)) : 408

Ssrp = α · Ss + β · ((1− Sr) + Sp) (4) 409

where α and β are hyperparameters. Noted that 410

Sr represents the token substitution error between 411

the original and new sentences, with a value range 412

of [0, 1], where smaller values indicate lower er- 413

ror. To intuitively quantify the scores of candidate 414

words, we perform a transformation by taking the 415

difference from 1 (i.e., 1− Sr). 416

4 Experiments 417

4.1 Datasets In Experiments 418

To better compare with prior work, we adopt two 419

highly representative lexical substitution datasets: 420

the SemEval 2007 dataset (McCarthy and Nav- 421

igli, 2007) (abbreviated as LS07) and the CoInCo 422

dataset (Kremer et al., 2014) (abbreviated as LS14). 423

Both datasets contain original sentences, original 424

word indices, original word lemmas, gold substitute 425

words, gold substitute weights, and original word 426

parts of speech, where the parts of speech cover 427

adverbs, nouns, verbs, and adjectives. Notably, 428

gold substitutes may include multi-word phrases. 429

As LS07 contains 8 entries missing gold substi- 430

tutes, these were filtered out. The weights assigned 431

5

https://huggingface.co/docs/transformers


Method best bestm oot ootm P@1 P@3
LS07

Bert with dropout (Zhou et al., 2019) 20.30 34.20 55.40 68.40 51.10 -
XLNet+embs (Arefyev et al., 2020) 21.32 37.80 55.04 73.90 50.56 36.29
LexSubCon (Michalopoulos et al., 2022) 21.10 35.50 51.30 68.60 51.70 -
CILex3 (Seneviratne et al., 2022) 23.31 40.98 56.32 74.88 55.96 38.50
LexSubDisc* 20.46 35.85 55.34 74.12 48.23 34.65
LexSubDisc 20.55 35.99 55.97 73.84 48.48 36.21

COINCO

Bert with dropout 14.50 33.90 45.90 69.90 56.30 -
XLNet+embs 15.09 33.02 45.06 71.85 52.57 39.67
LexSubCon 14.00 29.70 38.00 59.20 50.50 -
CILex3 16.39 35.80 46.87 72.98 57.25 42.49
LexSubDisc* 14.24 32.68 44.75 73.09 51.37 38.84
LexSubDisc 14.35 33.01 46.50 74.66 51.75 41.20

Table 1: Results of the best implementation of our approach and previous unsupervised models for the LS07 and
CoInCo datasets. Note: * indicates the incorporation of WordNet synonym expansion during candidate generation.
Best values are bolded.

to each gold substitute reflect their selection fre-432

quency by annotators. In preliminary studies, to433

compute the Generalised Average Precision (GAP)434

metric (Kishida, 2005), the candidate substitution435

sets were constructed based on WordNet in pre-436

vious work (Roller and Erk, 2016; Szarvas et al.,437

2013a), which included not only synonyms from438

target word synsets but also semantically similar439

words and words with entailment relationships.440

4.2 Experimental Setup441

We adopted the measurement metrics proposed442

in (McCarthy and Navigli, 2007), including best,443

bestm, out of ten (oot), and ootm. The best metric444

validates the optimal accuracy of model-generated445

substitutes, while the oot metric evaluates the cov-446

erage degree of candidate substitutes against gold447

substitutes. The suffix "m" denotes mode: if no448

unique maximum-weight substitute (i.e., no mode)449

exists in the gold substitutes where one weight sig-450

nificantly exceeds others, the corresponding data451

entry is excluded from the statistical calculation2.452

Note that the best and oot metrics are used to eval-453

uate the top-1 and top-10 prediction performance454

of the model (Shi et al., 2024). To contrast with455

(Arefyev et al., 2020; Seneviratne et al., 2022), we456

computed the precision rates for the top-1 and top-3457

predictions (P@1 and P@3), and further calculated458

the recall rate for the top-10 predictions (R@10).459

2The scoring measures are as described in the
document at http://nlp.cs.swarthmore.edu/semeval/
tasks/task10/task10documentation.pdf.

Given the demonstrated versatility of BERT 460

model in short-text processing tasks, the BERT- 461

Large, Cased model was designated as the base- 462

line for comparative analysis of input-output strate- 463

gies. Building upon the methodology estab- 464

lished in (Arefyev et al., 2020) with augmenta- 465

tion from the WordNet lexical database, candi- 466

date substitutions were generated through XLNet- 467

Large, Cased model. These modified sentences 468

were subsequently processed by the ELECTRA- 469

Large-Discriminator to capture errors. Inter- 470

sentence semantic divergence was quantified using 471

the all-roberta-large-v1 variant of SentenceBERT 472

(Reimers and Gurevych, 2019). Out-of-vocabulary 473

tokens were handled via subword embedding av- 474

eraging, with unmapped subword units assigned 475

zero-valued vectors. 476

In this study, the batch size was set to 50, with 477

each data point selecting the top 20 words by prob- 478

ability, and each target word corresponding to up 479

to 10 synonyms. For the input strategy, we adopted 480

a dropout rate of 0.3 consistent with (Zhou et al., 481

2019), set the standard deviation of Gaussian noise 482

to 0.01, and configured the mix-up parameter as 483

0.25 following (Michalopoulos et al., 2022). Ad- 484

ditionally, the initial input vector incorporates em- 485

beddings of up to 10 synonyms only. In terms of 486

the output strategy, a linear weighting method was 487

used to gradually decrease weights from 1.0 to 0.5, 488

alongside an exponential weighting method with 489

an exponential decay rate of 0.9. For candidate 490

word score calculation, α and β were set to 0.7 and 491

6
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0.3 respectively, both within the range [0, 1] and492

summing to 1.493

4.3 Model Comparison494

This study primarily compares recent work on lexi-495

cal substitution tasks using unsupervised learning.496

Our experiments are built upon the foundation of497

(Arefyev et al., 2020), similarly implemented on498

the XLNet framework while incorporating target499

word embeddings and their approximate embed-500

dings in the model (+embs). For target word in-501

put processing, we adopted five strategies from502

(Michalopoulos et al., 2022). Instead of simply503

replacing the first subword embedding of target504

words, we first averaged the subwords of target505

words before applying these five strategies. We con-506

ducted experimental comparisons between these507

two processing approaches (see Section 4.4). Re-508

garding the incorporation of WordNet synonyms,509

Michalopoulos et al. (2022) selected 30 synonyms,510

whereas we chose only 10 as supplementary to511

avoid introducing excessive noise.512

After completing the experimental setup, we513

analyzed and compared the results (see Table 1).514

Our model achieved optimal performance on the515

ootm metric of the CoInCo dataset. Experiments516

revealed that on the CoInCo dataset with larger517

data volume and target words containing more518

subwords, LexSubDis outperformed LexSubCon519

across all metrics and surpassed XLNet+embs in520

top-3 and top-10 candidate metrics. However, for521

the top-1 metric (i.e., determining whether the522

highest-scoring candidate appears in gold-standard523

substitutions), this method underperformed com-524

pared to direct model-generated candidate ranking525

approaches. We conducted ablation experiments to526

investigate this (see Table 4). Additionally, incorpo-527

rating WordNet synonyms of target words affected528

model performance across metrics. Data shows529

that synonym incorporation only slightly outper-530

formed non-synonym scenarios on the ootm metric531

of LS07.532

4.4 Input-Side Strategies Evaluation533

We evaluate five strategies based on the BERT534

model using the CoInCo dataset. For target word535

processing, we test two approaches: one exclu-536

sively applied to the first subword position of the537

target token (Michalopoulos et al., 2022), and the538

other operating on the averaged embeddings of539

subword units. Experimental results (see Table 2)540

demonstrate that the mix-up strategy incorporating541

Stra. bestm oot ootm P@1 P@3
Mix. 25.1 36.5 60.0 43.8 32.9

24.5 36.0 59.2 42.9 32.2
Keep 24.5 36.7 61.3 43.1 32.7

24.3 36.4 60.8 42.6 32.4
Drop. 24.1 36.4 60.8 42.5 32.3

23.9 36.0 60.1 42.0 30.0
Gaus. 24.5 36.7 61.2 43.1 32.7

24.3 36.4 60.8 42.6 32.4
Mask 14.2 26.0 43.1 26.7 20.8

13.7 25.1 41.5 25.6 19.9
Table 2: Comparison of different subword-to-word
strategies on Lexical Substitution performance. Each
strategy is evaluated in two ways: the first row applies
average pooling over subwords, and the second uses the
first subword only. Best values are bolded.

synonym representations achieves optimal perfor- 542

mance on the P@1 and P@3 metric. Furthermore, 543

the subword-averaged processing approach consis- 544

tently outperforms the first-position-only method 545

across all strategies. 546

4.5 Output-Side Strategies Evaluation 547

Previous lexical substitution research did not in- 548

corporate subword information, always assuming 549

that the context representation of a target word was 550

given by the position of its first subword. We exper- 551

imented with six subword context representation 552

strategies (see Table 3 for details). To compare with 553

(Arefyev et al., 2020), we evaluated them using 554

precision, recall, and GAP (Generalized Average 555

Precision) metrics. The results indicate that the per- 556

formance differences across the strategies are not 557

significant, but methods that comprehensively uti- 558

lize subword information (such as weighted averag- 559

ing of subword vectors) show a slight improvement 560

in overall performance compared to the baseline 561

method that only uses the first subword. 562

4.6 Ablation Study 563

To thoroughly evaluate the impact of synonyms and 564

the three scoring metrics, this study employs the 565

XLNet (+embs) model (Yang et al., 2019; Arefyev 566

et al., 2020) to generate 20 candidate words, which 567

are then combined with 10 synonyms extracted 568

from WordNet. The combination of candidate 569

words and synonyms follows the method described 570

in Section 3.1, with experimental results presented 571

in Table 4. Based on this experimental frame- 572

work, our findings reveal that: The introduction 573

of synonyms leads to decreased accuracy in can- 574

7



Stra. P@1 P@3 R@10 GAP
LS07

1st. 38.04 27.75 39.62 54.44
Min 37.79 27.55 39.29 54.35
Max 37.94 27.71 39.56 54.44
Mean 37.97 27.66 39.48 54.42
Lin. 38.12 27.75 39.58 54.46
Exp. 38.09 27.73 39.60 54.46

COINCO

1st. 43.02 32.91 29.01 50.64
Min. 43.04 32.66 28.79 50.42
Max 43.33 33.25 29.31 50.64
Mean 43.61 33.31 29.37 50.67
Lin. 43.02 32.91 29.09 50.64
Exp. 42.78 32.70 28.91 50.59

Table 3: Performance of the six subword context repre-
sentation strategies on the LS07 and CoInCo datasets.
Best values are bolded.

Meth. best bestm oot ootm P@1
LS07

Sp 20.1 35.3 54.6 72.3 47.3
S∗
p 20.0 35.2 49.5 68.1 47.1

Ss 13.6 22.4 51.6 68.6 33.0
S∗
s 11.5 18.5 52.8 70.8 27.6

Sr 12.7 19.7 51.5 67.3 33.6
S∗
r 10.4 15.9 49.7 66.2 27.2

Ssr 16.8 28.0 53.9 70.9 41.3
S∗
sr 14.0 23.7 54.2 72.5 33.7

Ssrp 20.6 36.0 56.0 73.8 48.5
S∗
srp 20.5 35.9 55.3 74.1 48.2

COINCO

Sp 14.0 32.2 45.4 73.4 50.7
S∗
p 14.0 32.0 40.7 68.7 50.6

Ss 9.7 20.2 43.4 69.7 37.5
S∗
s 7.2 14.7 43.0 69.9 28.5

Sr 8.3 15.8 40.5 63.5 35.6
S∗
r 6.0 11.6 38.1 61.7 26.1

Ssr 11.7 24.8 44.7 71.0 45.2
S∗
sr 8.5 18.0 43.6 70.5 33.4

Ssrp 14.4 33.0 46.5 74.7 51.8
S∗
srp 14.2 32.7 44.8 73.1 51.4

Table 4: Note: * indicates the incorporation of Word-
Net synonym expansion during candidate generation.
Sp, Sr, and Ss denote the Model Prediction Score, RTD
Score, and Sentence Similarity Score, respectively; Ssrp

represents the combined score integrating all three met-
rics. Best values are bolded.

didate ranking under both top-1 and top-3 metrics. 575

Sp plays a crucial role in candidate ranking as it 576

effectively integrates contextual information of tar- 577

get words, while Sr and Ss respectively focus on 578

assessing the global impacts of substituted words 579

on semantic integrity and syntactic structure. Ex- 580

perimental results show that the synergistic com- 581

bination of these three scoring mechanisms yields 582

optimal candidate ranking performance. 583

5 Conclusion 584

This study first conducts an in-depth investigation 585

into the input and output processing mechanisms 586

for target words. On the input side, by integrat- 587

ing the subword embedding representations of the 588

target word, the method not only facilitates the in- 589

corporation of synonym information but also effec- 590

tively reduces the computational complexity during 591

candidate word evaluation. On the output side, aver- 592

aging the contextual embeddings of the subwords 593

corresponding to the target word enables the ac- 594

quisition of more robust semantic representations. 595

Moreover, this study is the first to apply a discrim- 596

inator model trained through the Replaced Token 597

Detection (RTD) task to candidate word ranking. 598

Compared to existing approaches, this method of- 599

fers lower computational costs and better adaptabil- 600

ity to the lexical substitution task. 601

Limitations 602

In this study, we have not explored methods for 603

generating synonym phrases, but have only com- 604

bined external resources with the model’s vocab- 605

ulary for candidate word generation. Meanwhile, 606

we solely employed unsupervised learning meth- 607

ods without implementing specific fine-tuning op- 608

timizations for the lexical substitution task. For 609

the model’s top− k sampling strategy, we simply 610

fix the value of k without dynamically adjusting it 611

based on the probability differences among the can- 612

didate tokens. As limitations of the current work, 613

we plan to further investigate the application poten- 614

tial of autoregressive models in lexical substitution 615

tasks in subsequent studies, and attempt to integrate 616

multiple natural language processing models and 617

technical approaches to address related issues more 618

systematically. 619
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