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Abstract

Lexical substitution, a fundamental task in nat-
ural language processing, aims to replace tar-
get words with semantically equivalent or syn-
onymous substitutes while preserving origi-
nal sentence meaning. Although extensively
explored, existing methods exhibit two ma-
jor limitations: 1) inadequate investigation of
embedding representations when target word
contain subwords, and 2) excessive hyperpa-
rameters and computational complexity from
multi-metric evaluation in candidate ranking.
To address these issues, we propose LexSub-
Dis, which constructs more MLM-compatible
substitution mechanisms by averaging subword
embeddings of target words and combining
them with synonym embeddings. Moreover,
we pioneer the introduction of discriminator
models to assess semantic impacts of substitu-
tions. Experimental results demonstrate that
LexSubDis significantly reduces hyperparam-
eters while achieving state-of-the-art perfor-
mance under unsupervised learning on ColnCo
dataset’s ootm metric, offering novel insights
and solutions for lexical substitution research.

1 Introduction

The lexical substitution task (McCarthy and Nav-
igli, 2007) generates context-preserving candidate
words for target terms, with applications spanning
data augmentation (Morris et al., 2020), adversarial
example generation (Jin et al., 2020), query opti-
mization or rewriting (Jones et al., 2006), and word
sense induction (Amrami and Goldberg, 2018).
The lexical substitution task comprises two
phases: candidate generation and ranking, with
core challenges in semantic preservation. Early ap-
proaches primarily leveraged pre-built resources
(WordNet (Miller, 1995), PPDB (Ganitkevitch
et al., 2013)) and statistical features (co-occurrence
frequency, TF-IDF (Babych and Hartley, 2004)) for
candidate extraction. Recent advancements driven
by large language models have revolutionized this

domain: Encoder-based architectures like BERT
(Devlin et al., 2019) employ masked language mod-
eling for context-aware substitution, while decoder-
based models such as GPT (Radford et al., 2018)
utilize autoregressive generation. Methodological
innovations include a partial-mask dropout strategy
(Zhou et al., 2019) that outperforms a conventional
full-mask approach, and hybrid ranking mecha-
nisms combining MLM/LM probabilities with em-
bedding similarities (Arefyev et al., 2020). Com-
parative studies demonstrate XLLNet (Yang et al.,
2019) with embedding fusion achieves optimal per-
formance through probability-based candidate sort-
ing, surpassing context2vec (Melamud et al., 2016),
ELMo (Peters et al., 2018), and RoBERTa (Liu
et al., 2019). Notably, prompt-enhanced GPT-2
(Radford et al., 2019) training (Shi et al., 2024)
significantly outperforms supervised baselines like
GeneSis (Lacerra et al., 2021b) on the LS07 (Mc-
Carthy and Navigli, 2007) benchmark.

Regarding the input-output processing of tar-
get words, Arefyev et al. (2020) compared the
MASK strategy with retaining original word (keep),
finding the latter achieved better performance.
Michalopoulos et al. (2022) employed mix-up tech-
nology, differing from traditional dropout (Zhou
et al., 2019), by computing weighted averages be-
tween initial word embeddings of target words and
their WordNet synonym embeddings, applying this
operation only to the first subword when targets
are split into multiple subwords. These methods
inadequately explore the impact of subword-level
segmentation of target words, and uniformly adopt
the first subword representation at target positions
as the holistic word representation. Additionally,
existing approaches for candidate ranking focus
on semantic changes in modified sentences, prob-
abilistic similarity between candidates and target
words, and comprehensive effects of substitutions
on other words in the original sentence. These eval-
uation dimensions rely on combinations of multiple



weighted parameters, posing significant challenges
for hyperparameter fine-tuning.

For the above two points, our work focuses on
the choice of model processing methods on input
and output and proposes a new candidate word
evaluation method.

The main contributions of the paper were as fol-
lows:

* A new candidate rank method was proposed
to improve the evaluation method. With fewer
hyperparameters, this method achieves an im-
provement in the ootm metric on the ColnCo
dataset.

* The problem of the selection of the target
word position of the MLM model was ex-
plored, including the selection of output and
input.

2 Related Work

Lexical substitution aims to optimize the repre-
sentation of text by using context-adapted word
substitution while maintaining the same semantics.
Current research focuses on two main directions:
one is the construction and optimization of word
substitution datasets, and the other is the innovative
application of deep learning models in this task.

2.1 Lexical Substitution Resources

LST The Lexical Substitution Task (LST) dataset
is SemEval 2007 Task 10 (McCarthy and Navigli,
2007). It encompasses 2,010 sentences with 201
target words, each appearing in 10 distinct con-
texts. The lexical coverage spans across nouns,
verbs, adjectives, and adverbs, ensuring a diverse
representation of grammatical categories. Annota-
tion was conducted by five native English speakers,
who collectively generated replacement terms for
the target words.

CoInCo Concepts-In-Context (ColnCo) (Kremer
et al., 2014) is a large-scale "all-words" lexical
substitution resource designed to analyze word
meaning in context. Unlike traditional "lexical
sample" datasets (e.g., SemEval), which focus on
isolated target words, this corpus annotates all con-
tent words in continuous text, providing a realistic
distribution of lexical usage across contexts. It cov-
ers some 35K tokens of running text in which all
15.5K content words were labeled with at least 6

Synonyms using crowdsourcing methods. Annota-
tors were able to see the whole sentence as well as
two sentences of discourse context.

To address the data scarcity issue in lexical sub-
stitution tasks, the crowd-sourced TWSI dataset
(Biemann, 2012) serves as a representative human-
annotated resource, covering 1,012 high-frequency
English nouns with 145,000 annotated sentences.
For large-scale applications, AlaSca (Lacerra et al.,
2021a) employed an automated pipeline for super-
vised data generation, while GENESIS (Lacerra
etal., 2021b) leveraged a generative seq2seq model
(Sutskever et al., 2014) to create contextualized ex-
amples, both demonstrating high validity in human
evaluations.

2.2 Lexical Substitution Approaches

We will introduce the lexical substitution task from
three perspectives: lexical generation models, lexi-
cal substitution methods, and lexical ranking.

Model Architecture The lexical substitution task
is constrained by the scarcity of large-scale anno-
tated data, limiting the application of supervised
models. Existing approaches primarily fall into
three categories (Lacerra et al., 2021a): knowledge-
driven models leverage structured lexical resources
like WordNet to extract synonyms; vector-space
models compute candidate similarity through word
embeddings (Melamud et al., 2016; Gari Soler
et al., 2019; Peters et al., 2018); Transformer-based
models (Vaswani et al., 2017), as an evolutionary
extension of vector-space paradigms, employ pre-
trained architectures to generate deep contextual
representations. Current research integrates these
three paradigms, forming supervised and unsuper-
vised methodological frameworks.

Substitution Methods The generation of lexical
substitution can be divided into unsupervised and
supervised. Unsupervised approaches do not re-
quire annotated data and mainly generate candidate
words through pretrained models. For example,
Zhou et al. (2019) proposed to incorporate BERT
and a random masking mechanism in embeddings
to enhance diversity. Supervised methods rely
on annotated data to train models. Early studies
(Szarvas et al., 2013a,b; Hintz and Biemann, 2016)
transformed the lexical substitution task into a
feature-based ranking problem through supervised
learning frameworks. Subsequent work Qiang et al.
(2023) designed a 6-layer Transformer encoder-
decoder, outperforming pretrained model baselines,



and Shi et al. (2024) constructed a prompt frame-
work based on GPT that significantly outperforms
the generative baseline GeneSis (Lacerra et al.,
2021b) on the LS07 dataset.

Ranking Mechanisms Candidate word ranking
emphasizes overall sentence semantics and lexical
correlations. Roller and Erk (2016) used expo-
nential dot-product normalization to obtain prob-
ability values. Arefyev et al. (2020) ranked can-
didate words based on the predicted probabilities
output by the model at the target position. Zhou
et al. (2019) calculated the cosine similarity of
token contextual representations before and after
replacement, combining these with self-attention
mechanism scores via weighted fusion to evalu-
ate sentence-representation similarity after lexi-
cal replacement. Qiang et al. (2023) incorporated
the text-generation evaluation metric BARTScore
(Yuan et al., 2021), which assessed the semantic
similarity of sentences with the replacement word
embedded, replacing traditional word-embedding
similarity methods.

3 LexSubDis Framework

We propose a lexical substitution task framework
named LexSubDis (Figure 1), which consists of
two parts: candidate generation and evaluation. In
the candidate generation stage, we combine the
Xlnet model (+embs) (Arefyev et al., 2020) with
WordNet (Miller, 1995) to generate synonyms for
the target word. In the evaluation stage, we rank
the candidate words based on three types of scores.
Notably, we introduce a discriminator model for
the first time to score the candidates, aiming to
assess their overall suitability.

3.1 Candidate Generator

In addition to generating candidate words based
on model dictionaries, incorporating external re-
sources can enhance performance. For example,
Faruqui et al. (2015) integrated word vectors with
information from semantic lexicons (WordNet)
to enhance the semantic quality of word vectors.
Michalopoulos et al. (2022) effectively improved
candidate generation quality by integrating syn-
onym sets of target words with multi-dimensional
scoring metrics. Seneviratne et al. (2022) further
incorporated WordNet-based definitions of target
words and semantic similarity between sentences
generated with substitute words into the candi-
date evaluation framework, providing more refined

quantitative criteria for substitution effectiveness.

Different from the above work, We selected syn-
onyms matching the target word’s part-of-speech
(POS), combining them with model-generated
words through the following protocol: the top 10
probability-ranked words from the model’s out-
put were supplemented with up to 10 WordNet
synonyms. When synonyms for the target word
numbered fewer than 10, the deficit was filled by
sequentially selecting from the model’s next 10
highest-probability candidates. This methodology
thereby ensured 20 candidate words per target lexi-
cal item.

3.2 Quality Discriminator

We employ the ELECTRA (Clark et al., 2020)
model as a discriminator for candidate words.
This model introduces novel pre-training tasks and
frameworks by transforming the traditional genera-
tive Masked Language Model (MLM) pre-training
task into a discriminative Replaced Token Detec-
tion (RTD) task, which focuses on determining
whether the current token has been replaced by
a language model. With fewer parameters and
reduced data requirements, ELECTRA achieves
comparable performance to the then SOTA model
RoBERTa (Liu et al., 2019) while consuming only
a quarter of its computational resources. Specifi-
cally, by replacing partial tokens in original sen-
tences with contextually plausible alternatives, the
model’s objective becomes distinguishing replaced
tokens from original ones.

3.3 Input-Output Strategies

Traditional word embedding models such as
Word2Vec (Mikolov et al., 2013) fail to generate ef-
fective vector representations for out-of-vocabulary
(OOV) words not present in the training data. Fast-
Text (Joulin et al., 2016) pioneered the decomposi-
tion of words into subword units and constructed
word representations by summing subword vectors.
Previous studies typically defaulted to applying
strategies at target position, yet insufficient atten-
tion has been paid to cases where the target word
is split into multiple subwords.

Input-Side Strategies In the context of input pro-
cessing strategies, Michalopoulos et al. (2022) com-
pared approaches including keep, mask, dropout,
Gaussian noise, and mix-up, revealing that optimal
model performance is achieved when the original
embedding of the target word is combined with the
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Figure 1: Schematic diagram of LexSubDis model architecture: Core components and WordNet-based potential

synonym expansion module (optional).

average embedding of its synonyms. Specifically,
the keep strategy (Arefyev et al., 2020) directly
inputs the target word’s original embedding into
the model; the mask strategy replaces the entire
target word with a mask token; the dropout strat-
egy (Zhou et al., 2019) randomly zeros out specific
dimensions of the target word’s embedding vector
with a predefined probability to improve general-
ization; the Gauss strategy injects Gaussian noise
into the target word’s embedding; and the mix-up
strategy synthesizes new inputs by blending embed-
dings of the target word and its synonyms. Notably,
these strategies are applied only to the first subword
in the split subword sequence of the target word. To
address this limitation, we propose a novel method:
when a target word is segmented into multiple sub-
words, we unify its subword embeddings into a
single-position representation, thereby mitigating
the bias caused by processing only the initial sub-
word.

Output-Side Strategies When a target word is
split into multiple subwords, existing methods typ-
ically default to selecting the contextual represen-
tation of the first subword as the candidate rep-
resentation, leveraging the bidirectional encoder
architecture’s inherent ability to capture contex-
tual information. Building on this, we explore five
subword fusion strategies: First (directly using the
first subword’s contextual representation), Pooling
(Min/Max/Mean Pooling), Linear Weighting, and
Exponential Weighting. The first subword repre-
sentation remains conventional due to its compu-
tational simplicity. Pooling operations, originally
from computer vision and later adapted to NLP (Bo-
janowski et al., 2017), aggregate subword contex-
tual features: mean pooling averages all subword

representations element-wise, max pooling selects
dimension-wise maxima to emphasize salient fea-
tures, and min pooling extracts minima to capture
common characteristics. Linear and Exponential
Weighting further model semantic distinctions be-
tween subwords. Both methods compute the target
representation as (Eq. (1)):

k k
htarget = Z Wy + hi with Z w; =1 (1)
i=1 i=1

where h; € R? denotes the contextual representa-
tion of the 7 -th subword, & is the subword count,
and weights w; follow either linear or exponential
allocation rules.

3.4 Lexical Substitutes Ranking

We propose three scores to evaluate candidate word
quality. During assessment, it was observed that
both the overall sentence semantics and inter-word
interactions should be considered.

Model Prediction Score In pretrained language
Models, when predicting the vocabulary at a target
position, the token ID with the highest probability
is selected as the prediction for that target posi-
tion. This maximum posterior probability-based
selection method ensures that the model always
chooses the most likely token in the given context,
thereby achieving semantic completion for the tar-
get positions. On this basis, Arefyev et al. (2019,
2020) formalized candidate modeling as C=(L,R),
where T represents the target word, L and R denote
left/right context respectively. The task aims to
maximize the probability of substitute s given con-
text C and target word T. According to Bayesian



rules, the formula is expressed as (Eq. (2)):

P(C, T | s)P(s)
P(C,T)

In our experiments, we use P(s | C,T) as the
scoring function of the substitute model .S, for can-
didate words.

When constructing the candidate word set, we
employ the top-10 words (Vijayakumar et al., 2016;
Fan et al., 2018) with the highest predicted proba-
bilities from the model as the base candidates, sup-
plemented by 10 synonyms of the target word from
WordNet. Since external resources lack probability
scores generated by the model, we uniformly as-
sign the fifth-highest probability value predicted by
the model to these supplementary words. Empirical
evidence shows that the top-5 strategy has been val-
idated in multiple studies as an optimal choice for
balancing prediction accuracy and computational
efficiency. The fill-mask pipeline in Hugging Face
Transformers returns the top-5 predictions by de-
fault'.

Sentence Similarity Score Given an original sen-
tence s containing a target word x;, we generate an
updated sentence s’ by replacing the target word
with a candidate substitute. The updated sentence
can be represented as:
s =(x1,...,25,...)

For each candidate substitute, we compute a
sentence-level semantic similarity score between
the original sentence s and the updated sentence
s’ using Sentence-BERT (Reimers and Gurevych,
2019). Specifically, we obtain the sentence em-
beddings SBERT(s) and SBERT(s’), and calculate
their cosine similarity as follows:

Ss = cos(SBERT(s), SBERT(s'))

This score measures the degree to which the seman-
tic meaning of the sentence is preserved after the
substitution.

RTD Score In the Electra model (Clark et al.,
2020), the output of the Discriminator is the un-
normalized logits, which are converted into the
probability that each token is a replaced word by
applying the sigmoid function. Specifically, let the
logit for the i-th token in the original sentence be

"https://huggingface.co/docs/transformers

z;. After applying the sigmoid function, we obtain
the corresponding probability:

pi = 0(2)

Similarly, for the sentence after candidate word
replacement, the probability for the i-th token is
given by:

p; = o(%)

where o(-) denotes the sigmoid function. To eval-
uate the impact of replacing the target word with
a candidate word on the overall sentence, we com-
pute the average of the absolute differences be-
tween the probabilities of corresponding token po-
sitions in the original and modified sentences. The
metric, denoted as Sr, is defined as:

1 N
serZ;\pipﬂ 3)

where N represents the total number of tokens in
the sentence. This metric is analogous to the Mean
Absolute Error (MAE) and quantifies the overall
effect of the replacement on the model’s output.

In summary, the calculation formula for the can-
didate words is shown in (Eq. (4)) :

Ssrp:a'ss+/6'((1_ST)+Sp) (4)

where o and (8 are hyperparameters. Noted that
S, represents the token substitution error between
the original and new sentences, with a value range
of [0, 1], where smaller values indicate lower er-
ror. To intuitively quantify the scores of candidate
words, we perform a transformation by taking the
difference from 1 (i.e., 1 — S,).

4 Experiments

4.1 Datasets In Experiments

To better compare with prior work, we adopt two
highly representative lexical substitution datasets:
the SemEval 2007 dataset (McCarthy and Nav-
igli, 2007) (abbreviated as LS07) and the ColnCo
dataset (Kremer et al., 2014) (abbreviated as LS14).
Both datasets contain original sentences, original
word indices, original word lemmas, gold substitute
words, gold substitute weights, and original word
parts of speech, where the parts of speech cover
adverbs, nouns, verbs, and adjectives. Notably,
gold substitutes may include multi-word phrases.
As LS07 contains 8 entries missing gold substi-
tutes, these were filtered out. The weights assigned
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Method best bestm oot ootm P@1 P@3
LS07
Bert with dropout (Zhou et al., 2019) 20.30 3420 5540 6840 51.10 -
XLNet+embs (Arefyev et al., 2020) 21.32 37.80 55.04 7390 5056 36.29
LexSubCon (Michalopoulos et al., 2022) 21.10 35.50 51.30 68.60 51.70 -
CILex3 (Seneviratne et al., 2022) 2331 4098 5632 74.88 5596 38.50
LexSubDisc* 2046 35.85 5534 74.12 4823 34.65
LexSubDisc 20.55 3599 5597 73.84 4848 36.21
CoINnCo
Bert with dropout 1450 3390 4590 69.90 56.30 -
XLNet+embs 15.09 33.02 4506 71.85 5257 39.67
LexSubCon 14.00 29.70 38.00 59.20 50.50 -
CILex3 16.39 3580 46.87 7298 57.25 42.49
LexSubDisc* 1424 3268 44775 73.09 5137 38.84
LexSubDisc 1435 33.01 4650 74.66 51.75 41.20

Table 1: Results of the best implementation of our approach and previous unsupervised models for the LS07 and
ColnCo datasets. Note: * indicates the incorporation of WordNet synonym expansion during candidate generation.

Best values are bolded.

to each gold substitute reflect their selection fre-
quency by annotators. In preliminary studies, to
compute the Generalised Average Precision (GAP)
metric (Kishida, 2005), the candidate substitution
sets were constructed based on WordNet in pre-
vious work (Roller and Erk, 2016; Szarvas et al.,
2013a), which included not only synonyms from
target word synsets but also semantically similar
words and words with entailment relationships.

4.2 Experimental Setup

We adopted the measurement metrics proposed
in (McCarthy and Navigli, 2007), including best,
bestm, out of ten (oot), and ootm. The best metric
validates the optimal accuracy of model-generated
substitutes, while the oot metric evaluates the cov-
erage degree of candidate substitutes against gold
substitutes. The suffix "m" denotes mode: if no
unique maximum-weight substitute (i.e., no mode)
exists in the gold substitutes where one weight sig-
nificantly exceeds others, the corresponding data
entry is excluded from the statistical calculation?.
Note that the best and oot metrics are used to eval-
uate the top-1 and top-10 prediction performance
of the model (Shi et al., 2024). To contrast with
(Arefyev et al., 2020; Seneviratne et al., 2022), we
computed the precision rates for the top-1 and top-3
predictions (P@1 and P@3), and further calculated
the recall rate for the top-10 predictions (R@10).

>The scoring measures are as described in the
document at http://nlp.cs.swarthmore.edu/semeval/
tasks/task10/task1@documentation.pdf.

Given the demonstrated versatility of BERT
model in short-text processing tasks, the BERT-
Large, Cased model was designated as the base-
line for comparative analysis of input-output strate-
gies. Building upon the methodology estab-
lished in (Arefyev et al., 2020) with augmenta-
tion from the WordNet lexical database, candi-
date substitutions were generated through XL Net-
Large, Cased model. These modified sentences
were subsequently processed by the ELECTRA-
Large-Discriminator to capture errors. Inter-
sentence semantic divergence was quantified using
the all-roberta-large-v1 variant of SentenceBERT
(Reimers and Gurevych, 2019). Out-of-vocabulary
tokens were handled via subword embedding av-
eraging, with unmapped subword units assigned
zero-valued vectors.

In this study, the batch size was set to 50, with
each data point selecting the top 20 words by prob-
ability, and each target word corresponding to up
to 10 synonyms. For the input strategy, we adopted
a dropout rate of 0.3 consistent with (Zhou et al.,
2019), set the standard deviation of Gaussian noise
to 0.01, and configured the mix-up parameter as
0.25 following (Michalopoulos et al., 2022). Ad-
ditionally, the initial input vector incorporates em-
beddings of up to 10 synonyms only. In terms of
the output strategy, a linear weighting method was
used to gradually decrease weights from 1.0 to 0.5,
alongside an exponential weighting method with
an exponential decay rate of 0.9. For candidate
word score calculation, « and 3 were set to 0.7 and
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0.3 respectively, both within the range [0, 1] and
summing to 1.

4.3 Model Comparison

This study primarily compares recent work on lexi-
cal substitution tasks using unsupervised learning.
Our experiments are built upon the foundation of
(Arefyev et al., 2020), similarly implemented on
the XL Net framework while incorporating target
word embeddings and their approximate embed-
dings in the model (+embs). For target word in-
put processing, we adopted five strategies from
(Michalopoulos et al., 2022). Instead of simply
replacing the first subword embedding of target
words, we first averaged the subwords of target
words before applying these five strategies. We con-
ducted experimental comparisons between these
two processing approaches (see Section 4.4). Re-
garding the incorporation of WordNet synonyms,
Michalopoulos et al. (2022) selected 30 synonyms,
whereas we chose only 10 as supplementary to
avoid introducing excessive noise.

After completing the experimental setup, we
analyzed and compared the results (see Table 1).
Our model achieved optimal performance on the
ootm metric of the CoInCo dataset. Experiments
revealed that on the ColnCo dataset with larger
data volume and target words containing more
subwords, LexSubDis outperformed LexSubCon
across all metrics and surpassed XLNet+embs in
top-3 and top-10 candidate metrics. However, for
the top-1 metric (i.e., determining whether the
highest-scoring candidate appears in gold-standard
substitutions), this method underperformed com-
pared to direct model-generated candidate ranking
approaches. We conducted ablation experiments to
investigate this (see Table 4). Additionally, incorpo-
rating WordNet synonyms of target words affected
model performance across metrics. Data shows
that synonym incorporation only slightly outper-
formed non-synonym scenarios on the ootm metric
of LSO07.

4.4 Input-Side Strategies Evaluation

We evaluate five strategies based on the BERT
model using the ColnCo dataset. For target word
processing, we test two approaches: one exclu-
sively applied to the first subword position of the
target token (Michalopoulos et al., 2022), and the
other operating on the averaged embeddings of
subword units. Experimental results (see Table 2)
demonstrate that the mix-up strategy incorporating

Stra. bestm oot ootm P@1 P@3
Mix. 251 36,5 60.0 438 329
245 360 592 429 322
Keep 245 367 613 43.1 327
243 364 608 426 324
Drop. 24.1 364 608 425 323
239 360 60.1 420 30.0
Gaus. 245 367 612 431 327
243 364 608 426 324
Mask 142 260 43.1 26.7 20.8
137 251 415 256 199

Table 2: Comparison of different subword-to-word
strategies on Lexical Substitution performance. Each
strategy is evaluated in two ways: the first row applies
average pooling over subwords, and the second uses the
first subword only. Best values are bolded.

synonym representations achieves optimal perfor-
mance on the P@1 and P@3 metric. Furthermore,
the subword-averaged processing approach consis-
tently outperforms the first-position-only method
across all strategies.

4.5 Output-Side Strategies Evaluation

Previous lexical substitution research did not in-
corporate subword information, always assuming
that the context representation of a target word was
given by the position of its first subword. We exper-
imented with six subword context representation
strategies (see Table 3 for details). To compare with
(Arefyev et al., 2020), we evaluated them using
precision, recall, and GAP (Generalized Average
Precision) metrics. The results indicate that the per-
formance differences across the strategies are not
significant, but methods that comprehensively uti-
lize subword information (such as weighted averag-
ing of subword vectors) show a slight improvement
in overall performance compared to the baseline
method that only uses the first subword.

4.6 Ablation Study

To thoroughly evaluate the impact of synonyms and
the three scoring metrics, this study employs the
XLNet (+embs) model (Yang et al., 2019; Arefyev
et al., 2020) to generate 20 candidate words, which
are then combined with 10 synonyms extracted
from WordNet. The combination of candidate
words and synonyms follows the method described
in Section 3.1, with experimental results presented
in Table 4. Based on this experimental frame-
work, our findings reveal that: The introduction
of synonyms leads to decreased accuracy in can-



Stra. P@1 P@3 R@10 GAP
LS07
Ist. 38.04 27.75 39.62 54.44
Min  37.79 27.55 3929 54.35
Max 3794 2771 3956 54.44
Mean 3797 27.66 3948 54.42
Lin. 38.12 27.75 3958 54.46
Exp. 38.09 27.73 39.60 54.46
CoINCo
1st. 43.02 3291 29.01 50.64
Min. 43.04 32.66 2879 50.42
Max 43.33 3325 2931 50.64
Mean 43.61 33.31 29.37 50.67
Lin. 43.02 3291 29.09 50.64
Exp. 4278 3270 2891 50.59

Table 3: Performance of the six subword context repre-
sentation strategies on the LS07 and CoInCo datasets.
Best values are bolded.

Meth. best bestm oot ootm P@1
LS07

Sp 20.1 353 546 723 473
S, 20.0 352 495 68.1 47.1
S 136 224 51.6 68.6 330
S 11.5 185 528 170.8 276
Sy 127 197 515 673 336
Sy 104 159 49.7 662 272

Sy 168 280 539 709 413
St 14.0 237 542 725 337

" Sep 206 360 560 738 485
Serp 20.5 359 553 741 482

CoInCo

Sp 140 322 454 1734 507
S, 14.0 320 407 687 506
S 9.7 202 434 69.7 375
S 7.2 147 430 699 285
S 8.3 15.8 405 635 356
Sk 6.0 11.6 38.1 61.7 26.1

Sy 117 248 447 710 452
Sz, 8.5 18.0 436 70.5 334

" Sep 144 330 465 747 518
Serp 142 327 448 73.1 514

Table 4: Note: * indicates the incorporation of Word-
Net synonym expansion during candidate generation.
Sp, Sr, and S, denote the Model Prediction Score, RTD
Score, and Sentence Similarity Score, respectively; Sy
represents the combined score integrating all three met-
rics. Best values are bolded.

didate ranking under both top-1 and top-3 metrics.
Sy, plays a crucial role in candidate ranking as it
effectively integrates contextual information of tar-
get words, while S, and S, respectively focus on
assessing the global impacts of substituted words
on semantic integrity and syntactic structure. Ex-
perimental results show that the synergistic com-
bination of these three scoring mechanisms yields
optimal candidate ranking performance.

5 Conclusion

This study first conducts an in-depth investigation
into the input and output processing mechanisms
for target words. On the input side, by integrat-
ing the subword embedding representations of the
target word, the method not only facilitates the in-
corporation of synonym information but also effec-
tively reduces the computational complexity during
candidate word evaluation. On the output side, aver-
aging the contextual embeddings of the subwords
corresponding to the target word enables the ac-
quisition of more robust semantic representations.
Moreover, this study is the first to apply a discrim-
inator model trained through the Replaced Token
Detection (RTD) task to candidate word ranking.
Compared to existing approaches, this method of-
fers lower computational costs and better adaptabil-
ity to the lexical substitution task.

Limitations

In this study, we have not explored methods for
generating synonym phrases, but have only com-
bined external resources with the model’s vocab-
ulary for candidate word generation. Meanwhile,
we solely employed unsupervised learning meth-
ods without implementing specific fine-tuning op-
timizations for the lexical substitution task. For
the model’s top — k sampling strategy, we simply
fix the value of k without dynamically adjusting it
based on the probability differences among the can-
didate tokens. As limitations of the current work,
we plan to further investigate the application poten-
tial of autoregressive models in lexical substitution
tasks in subsequent studies, and attempt to integrate
multiple natural language processing models and
technical approaches to address related issues more
systematically.
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