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Abstract

Text retrieval is often formulated as mapping
the query and the target items (e.g., passages)
to the same vector space and finding the item
whose embedding is closest to that of the query.
In this paper, we explore a generative approach
as an alternative, where we use an encoder-
decoder model to memorize the target corpus
in a generative manner and then finetune it on
query-to-passage generation. As GENRE (Cao
et al., 2021) has shown that entities can be re-
trieved in a generative way, our work can be
considered as its generalization to longer text.
We show that it consistently achieves compara-
ble performance to traditional bi-encoder re-
trieval on diverse datasets and is especially
strong at retrieving highly structured items,
such as reasoning chains and graph relations,
while demonstrating superior GPU memory
and time complexity. We also conjecture that
generative retrieval is complementary to tradi-
tional retrieval, as we find that an ensemble of
both outperforms homogeneous ensembles.

1 Introduction

Document or passage retrieval is often formulated
as the task of encoding both the query and the re-
trieval sequences to a common vector space and
then finding the sequences whose embedding is
the closest to that of the query. This bi-encoder
approach for retrieval is often considered as de
facto standard, where heavy computations such as
obtaining the dense embeddings of the retrieval se-
quences in the corpus can be done offline, and one
can search over a large number of items with low
latency through the nearest neighbor search (NNS)
or maximum inner product search (MIPS) (Chen
et al., 2017; Karpukhin et al.; Lewis et al., 2020;
Chen et al., 2020; Wu et al., 2020; Xiong et al.,
2021; Roller et al., 2021).

Recently, Cao et al. (2021) have proposed
GENRE, which formulates entity retrieval task as
generating the entity text in a generative manner

with the query as the input to an encoder-decoder
model. Such generative formulation has several
advantages over traditional bi-encoder approaches:
it can cross-encode the input and the output (re-
trieval sequence) efficiently without information
loss while using a smaller storage footprint, and it
only needs the prefix tree constructed by corpus set,
which is not dependent on the model parameters
and is much faster to build. However, they apply
generative retrieval to only entities whose length is
around three words on average.

In this work, we explore the generalization of
generative retrieval (Cao et al., 2021) to (1) longer
and diverse types of retrieval sequences, including
highly structured forms, and (2) tasks that require
an arbitrary number of retrieval iterations (retrieval
steps). Our proposed generative retriever modi-
fied to adapt to long sequences is called Gener-
ative Retrieval for Long Sequences (GRLS). In
order to make generative retrieval suitable for long-
sequence multi-step retrieval, we propose an ef-
ficient constrained beam search that reduces the
search time complexity of potential next tokens
list from O(h), where & is the height of the prefix
tree, to O(1). We also propose retrieval corpus
memorization which learns the target corpus using
the standard language modeling objective function
before finetuning on the target retrieval task for the
model to be fully aware of what it needs to retrieve
in a generative manner.

We experiment on six retrieval datasets under
three settings: single-step, fixed multi-step, and dy-
namic multi-step. Single-hop datasets such as Nat-
ural
single-step setting. In fixed multi-step, the number
of items to retrieve is given as an oracle, whereas
in dynamic multi-step, the model also needs to de-
termine when to stop retrieving the next item. The
main findings of our paper are:

* Generative retrieval can be effective for not
only short sequences with the single-step set-
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Figure 1: The overall process of bi-encoder (BE) and Generative Retrieval for Long Sequences (GRLS). Given a
query, BE retrieves the retrieval sequence most relevant to the query by performing MIPS over the corpus index,
and GRLS generates the most relevant sequence inf the corpus by referring to the prefix tree. We make the prefix
tree more efficient by using the previously retrieved tokens as the key and the potential next tokens as the value
of the prefix tree, reducing the search time complexity from O(h) to O(1) (dictionary table of (b)). GRLS is also
modified to be applied to various retrieval tasks, including the retrieval of lengthy sequences and multi-step retrieval.
To let the model learn in advance what information would be at the end of the sequence to generate, GRLS uses
retrieval corpus memorization before training on target retrieval tasks.

ting but also for long sequences with the multi-
step setting.

* Generative retrieval especially shows strong
performance on retrieval sequences seen dur-
ing training and for retrieving multiple highly
structured retrieval sequences.

* Generative retrieval and bi-encoder retrieval
are often complementary to each other, as an
ensemble of them outperforms homogeneous
ensembles.

Given that GRLS can have better GPU memory
and time efficiency than bi-encoder retrieval, these
findings suggest that generative retrieval has the
potential to be a practical alternative for retrieving
diverse types of sequences.

2 Related Work

Traditional text retrieval has focused on sparse
term-based retrieval that uses bag-of-words rep-
resentations of the texts to measure the relevance
between the texts in the corpus and the query, such
as TF-IDF and BM25 (Robertson, 2008). Sparse
feature vectors are often handled via inverted index
by looking up the items with common hot dimen-
sions.

Neural information retrievals utilize neural mod-
els to perform information retrieval, where a bi-
encoder form is commonly used for large-scale re-
trieval. It maps queries and sequences in the corpus
to shared vector space using encoders (Karpukhin

et al.; Xiong et al., 2021). Bi-encoder retrievers can
store the dense embedding vectors of the corpus of-
fline and retrieve relevant texts through maximum
inner product search (MIPS) or nearest neighbor
search. However, they have several limitations:
they suffer from information loss when condensing
the text into a fixed-size vector, need to renew the
stored embeddings when parameter changes, and
the latency of performing exact MIPS, which is
a linear-time search and the storage footprint for
storing the embedding vector become nontrivial as
the corpus increases.

Various studies have been conducted to im-
prove the search time efficiency of dense retrieval.
Sublinear-time nearest neighbor search has been
studied to reduce the latency of performing the ex-
act MIPS. In metric space (L1, L2), Locality Sensi-
tive Hashing (LSH) (Gionis et al., 1999) is a classic
search algorithm that hashes the nearby vectors into
the same cell. Asymmetric LSH (aLSH) (Shrivas-
tava and Li, 2014) apply LSH to non-metric space
such as inner product space by transforming MIPS
into minimizing L2 distance with a trick of increas-
ing the vector dimension by one. Yet, applying
these approximate search methods still requires
time for adopting the ad-hoc process and additional
memory (Malkov and Yashunin, 2018).

Cao et al. (2021) first propose a generative re-
trieval model, GENRE (Generative Entity RE-
trieval), which is free from the aforementioned
limitations of bi-encoder retrieval. It achieves com-



parable or higher performance on entity retrieval
tasks than bi-encoder models. To ensure that all
generated retrieval sequences are from the corpus,
they perform constrained decoding, which masks
out the tokens that do not form any of the texts in
the corpus at each time step during inference.

With the autoregressive formulation, a genera-
tive retriever cross-encodes the input and output
efficiently, capturing the relation between the two
without information loss. When given the same
corpus, a bi-encoder retriever has to store all dense
embeddings of the corpus while generative retrieval
only requires storage for prefix tree to perform con-
strained decoding, which takes up a smaller storage
footprint (Cao et al., 2021). Moreover, while bi-
encoder retrieval needs to renew all embedding
vectors when the model parameter changes, which
often takes long, generative retrieval uses a prefix
tree that is not only faster to build but also built
only once for a corpus set (thus does not depend
on the model parameters).

The main difference of our work from that of
Cao et al. (2021) is that we generalize the prob-
lem setting of generative retrieval to longer and di-
verse types of retrieval sequences (including highly
structured forms) and tasks that require an arbi-
trary number of retrieval steps. It is both nontrivial
and under-explored to study whether generative
retrieval can be well-adopted to general retrieval
tasks; this serves as the motivation of our paper.

3 Generative Retrieval for Long
Sequences

GRLS (Figure 1b) formulates retrieval tasks as
text generation. In training step, the objective is
to maximize score(q, p) which is the probability
of the parameters 0 to generate the length L re-
trieval sequence p that consists of target tokens y;,
i =1,---,Lin a generative manner: score(q,p) =
Py(plq) = IT-, Po(vily<i,q). Here, the query g is
the input to the encoder of the encoder-decoder
model, and the ground-truth target tokens of pre-
vious iterations y.; are given as the input to the
decoder following the teacher forcing approach
(Sutskever et al., 2011).

In the inference step, as shown in Figure 1, to
generate the second token, Barker, it finds the po-
tential next tokens ([Barker, Miller]) by searching
through the prefix tree with the previously gener-
ated tokens. We mask out tokens that are not in the
potential next tokens and find the token with the
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Figure 2: Multi-step retrieval process of GRLS. To
retrieve a k-th step sequence, previously retrieved se-
quences (1,2,..,k — 1-th step) are concatenated to a
query and used as new input. In the example above,
when a query “What was The Ready Set and Cell?” is
given in the first retrieval step, the model predicts the
output about Ready Set and appends it to the query to
use it as the second retrieval step input. The passage
about Cell is retrieved in the second step and appended
to the input, etc. Special tokens are omitted in the above
example because of the space limit.

maximum score from unmasked tokens, which in
this example is Barker. Finally, when it retrieves
the <END> token, the generation ends, and the
generated output is the retrieval sequence of the
query.

Previous work (Cao et al., 2021) is limited to
retrieving short sequences such as entities in a
single-step setting. In this section, we describe our
approach for generalizing it to multi-step setting
(Section 3.1) and longer sequences through more
efficient constrained beam search (Section 3.2) and
pre-finetuning memorization of the retrieval target
corpus (Section 3.3). We name our model as GRLS
(Generative Retrieval for Long Sequences).

3.1 Multi-Step Generative Retrieval

In this work, we generalize generative retrieval
to cover not only single-step retrieval (Cao et al.,
2021) but also multi-step retrieval (Figure 2). In
single-step retrieval tasks, sequences can be re-
trieved by only conditioning on the input, whereas
in multi-step retrieval tasks, additional condition-
ing on the previously retrieved sequences is nec-
essary to retrieve the next retrieval sequence (Ap-
pendix A.1, A.2). For the additional conditioning,
we modify the aforementioned objective function
of Py(p|q); the model is trained to generate the to-

kens yl@ of the ground truth text to retrieve p(t ) at
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Note that 7' = 1 for single-step retrieval.

At the inference step of multi-step retrieval, we
generate the retrieval sequences with a beam size
> 1. Retrieval sequence ( p(’)) with the highest
score is retrieved and is added to the end of the de-
coder input. The process continues until a special
token DONE is generated, which means the gener-
ation process also decides when to stop retrieving
more items (dynamic multi-step). For better com-
parison with some of previous work (Yang et al.,
2018; Saha et al., 2021; Xiong et al., 2021), we
also consider fixed multi-step, where the number of
items to retrieve is fixed for the entire task.

3.2 Efficient Constrained Beam Search

At the inference step, we use constrained beam
search proposed in Cao et al. (2021), which is a
modified beam search (Sutskever et al., 2014) al-
gorithm that masks out tokens that form the texts
that do not exist in the corpus. The purpose of con-
strained beam search is to ensure that all retrieval
sequences are from the given corpus. Specifically,
a prefix tree is built by aggregating tokenization re-
sults of text in the corpus (the rightmost component
in Figure 1). Tokens that create strings that are not
a sub-string of any text in the corpus are masked
out, and only the next top-k tokens from the un-
masked and thus valid set of tokens are passed to
the model as the potential next tokens list.

As the texts in the corpus have become longer
sequences, the height of the prefix tree (&), which
is the maximum length of retrieval sequences in
the corpus, becomes very long. Therefore, the
search time complexity of finding the potential next
tokens (O(h)) become nontrivial. By flattening
all the paths into a separate key and the potential
next tokens list as the corresponding values, the
search time complexity reduces to O(1), showing
an average of 56% inference time reduction on
HotpotQA.!. Details are in Appendix A.3.

I'We call this using the same term, prefix tree, for the rest
of the paper

3.3 Retrieval Corpus Memorization

Since generative retrieval generates sequences in a
uni-directional way (left to right), the models can-
not know the information at the end of a sequence
in advance. This may negatively affect the per-
formance, especially when the length of the texts
(sequences) in the corpus gets longer. To solve the
issue, we perform retrieval corpus memorization
before training on the target retrieval task.

During the process, encoder-decoder model is
trained on texts in the corpus using the standard
language modeling objective function: when a cor-
pus C with texts p (p € C) is given, the model
learns to maximize the language modeling proba-
bility Py(p) = [T-, Po(yi|y<;) for all p in C. This
can help the models recognize the contents to
generate at the later part of the text beforehand
and improve the performance in certain cases as
shown in Section 5. To make the input similar to
that of the real task, which maximizes Py(p|q) =
1%, Po(yily<i,q) such that g is input to the en-
coder, the front part of the text to generate serves
as the encoder input when maximizing Py(p). Rel-
evant details are in Appendix A.3.

4 Experimental Setup

We describe the overall experimental setup in the
following section. In Section 4.1, we show a brief
explanation of the six datasets we use and the set-
ting for training and inference. In Section 4.2, we
explain the bi-encoder retrieval models we use to
compare the performance with GRLS. In Section
4.3, we describe the metric to evaluate the perfor-
mance. We explain the hyperparameter setting of
the model in Appendix A .4.

4.1 Datasets

We use six datasets with various characteristics: dif-
ferent number of hops, unseen rate, corpus size, av-
erage retrieval steps, and granularity. Table 1 shows
the overall statistics and the features of the datasets.
Below are brief descriptions of each dataset. Ap-
pendix A.2 and A.5 show examples and detailed
description on the train and test settings of each
dataset.

Natural Questions (NQ) Kwiatkowski et al.
(2019) propose a single-hop open domain question
answering dataset, where the questions are mined
from real google search queries, and the answers



Table 1: Overview of the six datasets. Seq Len column shows
the average number of retrieval sequence tokens. Step column
shows the average number of retrieval steps for a query in the test
set. Unseen column shows the rate of test queries consisting of
only the retrieval sequences unseen during the training process.
Details of the datasets are in Section 4.1

Dataset Corpus (MB) SeqLen Step Unseen

NQ 13,252 160.8 1 55.8%"
HotpotQA 1,595 78.6 2 18.9%
EntailBank 0.7 12.5 4.6 2.7%
StratgyQA 7.0 13.1 2.7 98.2%
Explagraphs-Open 0.5 9.6 4.5 95.5%
RuleTaker-Open 0.7 13.1 - 0.0%"

“For the overlap calculation, we only use the subset of test
dataset where gold evidence is provided (6515 out of 8757 test
datasets).

bWe calculate the rate with prediction result (retrieval se-
quences) since there is no gold retrieval sequences.

are passages of Wikipedia articles?.

HotpotQA Yang et al. (2018) propose an open
domain multi-hop question answering dataset,
which requires seeing multiple Wikipedia passages
through logical reasoning or sequential processing.
The number of retrieval sequences is fixed to two.

Entailment TreeBank (EntailBank) Dalvi et al.
(2021) propose a reasoning tree construction task
where it forms a tree with the hypothesis as the
root node and evidence sentences are leaf nodes.
We experiment on the leaf node retrieval of Task3:
retrieval of leaf nodes (sentence) from the given
corpus given a question and an answer as the input.
We call the dataset EntailBank in short.

StrategyQA Geva et al. (2021) propose a multi-
hop open-domain question answering dataset
where the reasoning steps are implicit in the ques-
tion, and thus relevant strategies are required to
answer the question. Given a question, the model
retrieves the evidence sentences from the corpus.

RuleTaker-Open Clark et al. (2021) propose a
synthetic rule-based dataset to measure the model’s
reasoning ability over the rules expressed in natural
language. Based on the released dataset, we create
anew task, RuleTaker-Open, to make the task close
to a real-world setting. Given a query, the model
retrieves nodes of the graph, which are sentences
from the corpus, and the nodes are connected in
order to construct a graph.

2We add title in front of each passage for NQ and Hotpot
corpus (Karpukhin et al.; Izacard and Grave, 2021)

Explagraphs-Open Saha et al. (2021) propose a
generative and structured commonsense-reasoning
task. We reformulate the task to open-domain re-
trieval setting and name it Explagraphs-Open, con-
sidering a single path (subject-relation-object) as a
retrieval sequence.

4.2 Bi-Encoder Retrieval Models

For each dataset, we compare the results with bi-
encoder retrieval models as the baselines. For NQ
and HotpotQA datasets, we use DPR and MDR,
respectively, which are widely used bi-encoder
retrieval models for the corresponding dataset.
For the rest of the datasets, we compare with
Sentence-T5 (STS), a bi-encoder retrieval model
using TS (Raffel et al., 2020).

DPR Karpukhin et al. is a simple bi-encoder
retriever trained with in-batch negatives and a few
hard negatives selected with BM25.

MDR Xiong et al. (2021) propose an iterative
bi-encoder retrieval model, MDR, which extends
DPR to a multi-step setting.

ST5 ST5 is a encoder-decoder model (Ni et al.,
2021)° that uses the first decoder output as the
sequence embedding. It serves as the base archi-
tecture of our baseline bi-encoder to compare the
performance with GRLS using the same number of
parameters.

Baseline Bi-Encoder Retriever (BE) In order
to compare the multi-step generative retrieval to
a bi-encoder retrieval, we create a simple coun-
terpart such that the bi-encoder retrieval can be
as well adapted to fixed multi-step and dynamic
multi-step retrieval tasks. For fixed multi-step re-
trieval, we train the bi-encoder (BE) to maximize
Py(p"|p'<"),q) like GRLS, but by concatenating
the query ¢ and the retrieval sequences of the pre-
vious steps p(<*) to make the input to the query
encoder at step ¢ like in MDR (Xiong et al., 2021).
For dynamic multi-step retrieval, we add the spe-
cial single-token text DONE to the corpus as done
in GRLS. When training the model, one extra re-
trieval step is added at the end as well; at the point
when the retriever retrieves all the target texts, the
model has to retrieve DONE text using MIPS. At
inference, the model retrieves texts until it retrieves
the special token or the number of retrieval reaches
the predefined maximum retrieval step. Details are
in Appendix A.8.

3We use ST5-EncDec from Ni et al. (2021)



Table 2: Retrieval sequence recall rate (R@5) of both single-
step (s-*) and multi-step (m-*) method on test set. BE is the
result of ST5. The bold text shows the best score and the
underline text shows the second best score of the dataset.

Model EntailTree  StrategyQA  Explagraphs-Open
s-BE 36.0 56.6 40.8
m-BE 31.5 37.4 27.0
s-GRLS 44.8 43.0 27.3
s-GRLS + mem 44.1 45.0 27.0
m-GRLS 53.6 449 329
m-GRLS + mem 54.3 45.5 324

Table 3: Retrieval sequence F1 score of dynamic multi-step
retrieval on test set. For scores marked with *, we use metric
in Appendix A.6 instead of F1 since there is no ground truth
evidence set. We fix the maximum retrieval step to 20*. Miss-
ing DONE shows the missing rate of retrieving the DONE
token before the maximum retrieval step. The bold text shows
the best F1 score and lowest Miss DONE rate.

Dataset Model F1 Missing DONE
BI 16.9 5.6%
EntailTree GRLS 52.5 2.4%
GRLS + mem 52.2 2.7%
BI 36.5 39.0%
StrategyQA GRLS 46.6 23.2%
GRLS + mem 47.1 22.4%
BI 25.4 28.2%
Explagraphs-Open ~ GRLS 41.5 5.0%
GRLS + mem 41.3 0.3%
BI 17.0% 39.0%
RuleTaker-Open GRLS 51.0% 24.5%
GRLS + mem 65.5* 23.0%

4.3 Evaluation Metric

In a fixed-step setting, for NQ and HotpotQA,
we follow the evaluation metric of the bi-encoder
model we compare: answer recall (Karpukhin
et al.) and retrieval sequence recall (Xiong et al.,
2021) respectively. For multi-hop datasets with
varying numbers of ground truth retrieval steps
(Explagraphs-Open, EntailBank, and StrategyQA),
we first calculate the retrieval sequence recall rate
of each query and average over the number of
queries (Dalvi et al., 2021; Saha et al., 2021). Fur-
thermore, in a dynamic multi-step retrieval setting,
since the number of predicted retrieval sequences
varies, we measure the retrieval sequence F1 score.
For RuleTaker-Open, we newly define an evalua-
tion metric (Appendix A.6) that measures the graph
construction success rate since we do not have the
ground truth retrieval sequences information.

S Experimental Results

The main contribution of this work is that we gen-
eralize the generative retrieval proposed by Cao
et al. (2021) to longer retrieval sequences (rea-
soning path, sentence, passage) and various tasks
(single-step, fixed multi-step, dynamic multi-step).
Section 5.1 explores when GRLS performs well.
In Section 5.2, we analyze whether Generative Re-
trieval for Long Sequences (GRLS) and bi-encoder
retriever have different characteristics and show
that a simple ensemble method can often boost the
performance. Lastly, Section 5.3 shows the effi-
ciency of GRLS compared to bi-encoder retrieval.

5.1 When does generative retrieval perform
well?

Table 2 shows the retrieval sequence recall rate
of bi-encoder (BE) and GRLS variants on three
fixed multi-hop retrieval datasets where the task
is sentence or reasoning path retrieval.’ Retriever
variants of single-step and multi-step retrieval are
tested with or without corpus memorization. In
summary, the results show that GRLS often out-
performs bi-encoder retrievers when the ratio of
retrieval sequences unseen during training is low,
the number of retrieval steps is high, and dynamic
multi-step retrieval is required.

Effect of Unseen Rate The unseen rate indicates
the rate of queries in the test set, which requires
the retrieval of the sequences never seen during
training as the ground truth target. Therefore, the
datasets with high unseen rates can be considered
similar to a zero-shot retrieval setting. The degree
of unseen rate in Table 1 and the performance of BE
and GRLS in Table 2 shows GRLS can outperform
the bi-encoder retriever when the unseen rate is low,
which implies that it is crucial for GRLS to pretrain
on the retrieval targets (also see Appendix A.9 and
A.10 for analysis on EntailBank).

Single- vs. Multi-Step Table 2 also shows that
GRLS consistently performs better when applied
with a multi-step approach rather than a single-step
approach, while the trend is opposite for the case
of BE. It is worth noting that the multi-step ap-
proach goes through multiple iterations of retrieval
by appending the previous output to the current
input. Unlike bi-encoder retrieval, which suffers

SRuleTaker-Open is excluded because recall cannot be cal-
culated as the dataset lacks ground-truth sequence to retrieve
at each retrieval step.



from information loss by condensing the texts into
a fixed-size vector (Luan et al., 2021), generative
retrieval can efficiently cross-encode the input and
output. We, therefore, assume that when there is
high connectivity between the input and the out-
put or between the outputs, GRLS may show high
performance by capturing the relation between the
inputs from multiple steps.

Single-Step BE Analysis The fact that the best
models for StrategyQA and Explagraphs-Open
(multi-hop datasets) are single-step BE is counter-
intuitive. Therefore, we perform a manual analysis
of the datasets. Appendix A.11 shows that about
2/3 of the randomly sampled queries from Strate-
gyQA and Explagraphs-Open can be answered by
looking at only the query (similar to comparison
type questions rather than bridge type questions in
HotpotQA). 6 Moreover, as the unseen rates of the
two datasets are very high (near 100%), the effect
of error propagation from multi-step iterative re-
trieval could have been destructive, even offsetting
the benefits from the iterative approach.

Dynamic Multi-Step Retrieval As described
in Section 3.1, dynamic multi-step retrieval has
several benefits. The results in Table 3 show
that GRLS is good at capturing where to stop re-
trieval with fewer cases of missing the DONE token
(which decides the point to stop the retrieval) and a
higher F1 score than BE on EntailTree, StrategyQA,
and Explagraphs-Open. Also, on RuleTaker-Open,
where the task is constructing a reasoning graph,
the success rate’ of GRLS on constructing the rea-
soning graph outperforms BE by a large margin.

HotpotQA and NQ We further test whether the
advantages of generative retrieval generalize to pas-
sage retrieval tasks: HotpotQA and NQ (Table 5
and 6). First, the recall of multi-step GRLS is much
higher than single-step GRLS on HotpotQAS. In
addition, the performance of best GRLS models is
comparable to MDR- and DPR-random in both NQ

“Details of comparison and bridge type questions are in
Appendix A.5. StrategyQA has rationale types where a multi-
step method is not necessary, and Explagraphs-Open, though
the structure of evidence sentences is a reasoning graph as in
RuleTaker-Open, has various topics which the evidence texts
could be retrieved by the topic of the query itself without the
previous retrieval texts.

7F1 cannot be calculated on RuleTaker-Open because the
ground-truth retrieval sequence is not known at each step.

8The effectiveness of multi-step on HotpotQA can be seen
from the large gap of performance between DPR (single-step)
and MDR (multi-step expansion of DPR).

Table 4: BE-BE is a homogeneous ensemble model between
two single-step BE and GRLS-GRLS is a homogeneous en-
semble model between two multi-step GRLS. BE-GRLS is
an ensemble model of two different approaches: single-step
bi-encoder and multi-step GRLS. We score the retrieval se-
quence recall rate (R@5) on test set.

Model EntailBank  StrategyQA  Explagraphs-Open
GRLS-GRLS 54.6 47.3 33.1
BE-BE 38.5 58.4 422
GRLS-BE 53.5 61.3 42.8

Table 5: Retrieval sequence recall rate of HotpotQA official
full-wiki dev set. Scores except for GRLS and GRLS +* are
from Table 3 of Xiong et al. (2021). s-* indicates single-step
and and m-* indicates multi-step. MDR- indicates a variant
of MDR without linked negatives, memory bank, and shared
encoder.

Method Top-2  Top-10  Top-20
DPR 25.2 454 52.1
MDR- 59.9 70.6 73.1
MDR 65.9 71.5 80.2
s-GRLS 11.3 23.5 29.5
s-GRLS + mem 10.2 22.9 26.6
m-GRLS 57.7 68.8 73.9
m-GRLS + mem 55.0 65.3 71.4

Table 6: Answer recall rate of NQ dev set. All models
are single-step retrievers. Scores of DPR-* and DPR are
from Table 3 of Karpukhin et al.. DPR-* is the score without
in-batch training and * is the method of finding 7 negative
sentences.

Method Top-5 Top-20  Top-100
DPR-Random 47.0 64.3 77.8
DPR-BM25 50.0 63.3 74.8
DPR-GOLD 42.6 63.1 78.3
DPR 65.8 78.0 84.9
GRLS 46.5 60.0 70.2
GRLS + mem 46.5 61.3 70.4

and HotpotQA. Note that MDR and DPR, which
are different in that they are trained with hard neg-
ative samples, significantly outperform GRLS. Un-
like bi-encoder retrieval, it is not obvious how hard
negative samples should be used during training for
generative retrieval and is thus an important future
direction to close the gap.

Effect of Corpus Memorization We analyze
whether corpus memorization is helpful for per-
formance. We find that memorization is constantly
helpful in NQ (Table 6) and StrategyQA (Table 2,
3), while the gain is inconsistent in other datasets.
Note that NQ is a single-hop dataset, and although
StrategyQA is a multi-hop dataset, a single-step ap-
proach is sufficient to perform well on the dataset



as described in “Single-Step BE Analysis”.” We
hypothesize that corpus memorization is more ef-
fective on these single-step datasets than multi-step
ones because the training objective function for
memorization is not consistent with the multi-step
setting. That is, the memorization objective func-
tion Py(p) = [T~ Po(vi|y~;) resembles the single-
step retrieval training objective function of maxi-
mizing score(q, p) = Py (p|q) rather than that of the
multi-step retrieval, score(g, p(!),---, pT)), which
goes through multiple retrieval steps. We leave the
exploration of a better memorization strategy for
multi-step retrieval as a future work.

5.2 Do GRLS and BE behave differently?

By analyzing the result of the GRLS and BE, it can
be seen that the sequences that the two models re-
trieve have different characteristics. First, we com-
pare the top-2 prediction of GRLS and MDR (bi-
encoder retriever) on HotpotQA. Appendix A.12
shows that MDR mostly gets wrong by failing to
retrieve the second hop target even though the first
hop prediction is correct, whereas GRLS mostly
gets wrong when the first-hop target is not explic-
itly expressed in the query. Second, on RuleTaker-
Open (Appendix A.6), GRLS shows a higher suc-
cess rate with a more complex and diverse rea-
soning graph, suggesting that GRLS is strong at
retrieving highly structured items such as reasoning
chains and graph relations.

From the observation that GRLS and BE retrieve
sequences with different aspects, we compare the
performance of ensembles of the two models. We
use a simple ensemble method of considering the
retrieved sequences from two ensembles models
one-by-one, starting from the sequence retrieved
at the top. We use this simple iterative prediction
aggregation method because BE and GRLS have
different scoring methods.'?

Figure 7 in Appendix A.13 shows that BE and
GRLS tend to retrieve different sequences. Table

9 Although Explagraphs-Open can also be tackled with a
single-step approach, it still has more multi-hop characteristics
than StrategyQA. For example, comparing the relative perfor-
mance difference of multi and single-step GRLS in Table 2,
it is about 20% on EntailBank and Explagraphs-Open, while
only 1% on StrategyQA.

10BE uses the inner product between two dense embeddings,
and GRLS uses the aggregation of generation probabilities.
While a more sophisticated method such as using a re-ranker,
calibration, or interpolation of the two model predictions can
be used when the scoring method is different (Seo et al., 2019;
Cheng et al., 2021), we use a simple ensemble method. This

is to eliminate the effect of another model or hyperparameter
choice from the analysis.

4 shows that when BE and GRLS are ensembled,
in most cases, it results in better performance than
the ensembles of the same type of models (homo-
geneous ensembles). Appendix A.14 further shows
that the gap between different retrieval types (bi-
encoder retrieval and generative retrieval) is gener-
ally larger than the gap between different retrieval
steps (single and multi-step retrieval). In summary,
bi-encoder retrieval and generative retrieval can be
complementary to the other, as the ensemble of the
two is often more advantageous than a homoge-
neous ensemble.

5.3 Efficiency of GRLS

We compare two bi-encoder retrievers (STS, MDR)
and GRLS on their time complexity and GPU mem-
ory usage. For offline computation, bi-encoder
retrievers (BE) need to create a large index of em-
beddings and store it in GPU, whereas GRLS only
needs to build a prefix tree. This gives generative
retrieval both time and GPU memory efficiency
advantage; GRLS with optimization is about 100
times faster and uses 79.5% less GPU memory than
ST5 (FP32) with the same number of parameters.

During inference time, GRLS can be time-
inefficient if it has to generate every word in the
retrieval target text. In practice, however, one can
stop generation as soon as the partially generated
text can uniquely identify the target text. By lever-
aging this optimization, GRLS with greedy search
is able to achieve 40% inference time reduction
with respect to STS (FP32) with the same number
of parameters. Note that in the absence of the opti-
mization process, GRLS is 24.6 times slower than
STS, signifying the importance of early stopping.

6 Conclusion

We show that generative retrieval, which has been
originally proposed for retrieving short sequences
such as entities, can also be considered for retriev-
ing longer sequences. We particularly find that
generative retrieval can have an advantage over
bi-encoder in certain situations, such as retrieving
structured information (e.g., reasoning chains or
graphs) and retrieving an arbitrary number of items.
Given that generative retrieval inherently has GPU
memory and speed benefits, it can be a practical
alternative for general retrieval tasks in the future.



References

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In ICLR.

Dangqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL.

Qianglong Chen, Feng Ji, Haiqing Chen, and Yin Zhang.
2020. Improving commonsense question answer-
ing by graph-based iterative retrieval over multiple
knowledge sources. In COLING.

Hao Cheng, Yelong Shen, Xiaodong Liu, Pengcheng He,
Weizhu Chen, and Jianfeng Gao. 2021. Unitedqa: A
hybrid approach for open domain question answering.
In ACL-IJCNLP.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2021.
Transformers as soft reasoners over language. In
IJCAL

Bhavana Dalvi, Peter Alexander Jansen, Oyvind
Tafjord, Zhengnan Xie, Hannah Smith, Leighanna
Pipatanangkura, and Peter Clark. 2021. Explaining
answers with entailment trees. In EMNLP.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. TACL.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al.
1999. Similarity search in high dimensions via hash-
ing. In Vidb.

Gautier Izacard and Edouard Grave. 2021. Leveraging
passage retrieval with generative models for open
domain question answering. In EACL.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun KIM, Stanley Jungkyu
Choi, and Minjoon Seo. 2022. Towards continual
knowledge learning of language models. In /CLR.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. Dense passage retrieval for open-
domain question answering. In EMNLP.

James Kirkpatrick, Razvan Pascanu, Neil C. Rabi-
nowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc V. Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. TACL.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In NeurIPS.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. TACL.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. /IEEE
transactions on pattern analysis and machine intelli-
gence.

Jianmo Ni, Gustavo Herndndez Abrego, Noah Constant,
Ji Ma, Keith B Hall, Daniel Cer, and Yinfei Yang.
2021. Sentence-t5: Scalable sentence encoders from
pre-trained text-to-text models. CoRR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR.

Stephen Robertson. 2008. On the history of evaluation
in ir. Journal of Information Science.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric Michael Smith, Y.-Lan Boureau,
and Jason Weston. 2021. Recipes for building an
open-domain chatbot. In FACL.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation
for interpretable reasoning over rules. In EMNLP.

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mo-
hit Bansal. 2021. Explagraphs: An explanation graph
generation task for structured commonsense reason-
ing. In EMNLP.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-time open-domain question answering with
dense-sparse phrase index. In ACL.

Anshumali Shrivastava and Ping Li. 2014. Asymmetric
Ish (alsh) for sublinear time maximum inner product
search (mips). In NeurIPS.

Ilya Sutskever, James Martens, and Geoffrey E. Hinton.
2011. Generating text with recurrent neural networks.
In ICML.



Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NeurlPS.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and ab-
ductive statements over natural language. In Findings
of the ACL-IJCNLP.

Cunxiang Wang, Pai Liu, and Yue Zhang. 2021. Can
generative pre-trained language models serve as
knowledge bases for closed-book qa? In ACL-
IJCNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2020. Transformers: State-of-the-
art natural language processing. In EMNLP.

Ledell Yu Wu, Fabio Petroni, Martin Josifoski, Sebas-
tian Riedel, and Luke Zettlemoyer. 2020. Scalable
zero-shot entity linking with dense entity retrieval.
In EMNLP.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. Worldtree v2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In LREC.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. 2021. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In ICLR.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP.

A Appendix

A.1 Multi-Step Retrieval Examples

There are many cases where multi-step retrieval is
necessary for multi-hop datasets because one out-
put affects the selection of the subsequent output.
For the first example of Table 8, to find the answer,
we first need to look at what music Die Rhoner
Sduwiintzt played and then find where the music
originated from. Similarly, for the second example
of Table 8, to find the answer, we need to find who
was starred in Gunmen from Laredo and then find
who narrated the Frontier.

A.2 Dataset Examples

Examples of each dataset (input and output forms)
are in Table 9.
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Algorithm 1 Constrained Beam Search

Require: retriever, input query ¢ and prefix tree 7', which is a
hash where the key is a token_id and the value is the subtree
taking the corresponding token_id (key) as the root
retrieval_sequence := An empty list to store the token ids
of the sequence to retrieve
next_token_id := NULL

while next_token_id is not <END> and
retrieval_sequence. length < max_length do
token_prob_list := retriever (q, retrieval_sequence)

/1 O(h)

for all token_id in retrieval_sequence do
T = T[token_id]

end for

potential_next_token_ids := T".keys
potential_next_token_prob_list := filter(
token_prob_list, potential_next_token_ids)
next_token_id := argmax(
potential_next_token_prob_list)
retrieval _sequence.append(next_token_id)
end while

return retrieval_sequence

Algorithm 2 Efficient Constrained Beam Search

Require: retriever, input query g and efficient prefix tree T,
which is a hash where the key is a list of token_ids and the
value is a list of potential next tokens
retrieval _sequence := An empty list to store the token ids
of the sequence to retrieve
next_token_id := NULL

while next_token_id is not <END> and
retrieval _sequence.length < max_length do
token_prob_list := retriever (q, retrieval_sequence)

/10(1)
if retrieval_sequence.length = 0 then
potential_next_token_ids := [T.root]
else
potential_next_token_ids
:= Tretrieval _sequence]
end if

potential_next_token_prob_list := filter(
token_prob_list, potential_next_token_ids)
next_token_id := argmax(
potential_next_token_prob_list)
retrieval _sequence.append(next_token_id)
end while

return retrieval_sequence

A.3 Details of GRLS

Constrained Beam Search We use a T5-large
tokenizer from huggingface (Wolf et al., 2020)
when constructing prefix tree. By using efficient
constrained beam search, it shows an average
of 56% efficiency on inference time, but only a
16% increase in offline time complexity due to



Table 7: Single-Step and Multi-Step Examples on EntailBank, Explagraphs-Open, and StrategyQA. The bold texts
in multi-step examples show parts where it cannot be retrieved by single-step retrieval.

Step Dataset Input Output
. . . fossil fuels are a nonrenewable resource, fossil fuels
. Which energy source is considered nonrenewable? fos- . .
EntailBank i1 fuel are a nonrenewable resource, an energy source is a kind
sil fue!
of resource

Single-Step Athena was the Greek goddess of war, Aphrodite was
StrategyQA Is Freya a combination of Athena and Aphrodite? the Greek goddess of love, Freya was the Norse goddess

of war, love, and fertility

belief: Entrapment shouldn’t be legalized since it puts
Explagraphs-Open  people into false situations. argument: Entrapment is

really a trick

entrapment is trick, trick is false situations, trick not
capable of be legalized

Which of these is a way the people of Virginia can help

planting native plants has a positive impact on an
ecosystem, to restore means to return to a better state,

EntailBank
fratban restore a natural ecosystem? Plant native plants better means good, good means positive, helping
something has a positive impact on that something
Multi-Step The first Vice President of the United States was John
StrategyQA Was the first Vice President of the United States an ~ Adams, The Ottomans were a Turkic group that con-
rate .
24 Ottoman descendant? quered Constantinople in 1453, John Adams was de-
scended from English Puritansy
belief: Racial profiling is biased against anyone who  racial profiling; is a; prejudiced, prejudiced; synonym
Explagraphs-Open  isn’t white. argument: Racial profiling is not an accept-  of; biased, prejudiced; has context; who isn’t white,
able way to codify people as criminals. racial profiling; is not a; acceptable
Table 8: Cases where multi-step retrieval is necessary.
Input Output
Output 1

Where did the form of music played by Die
Rhoner Sauwiintzt originate?

<TITLE> Skiffle </TITLE> Skiffle is a music genre with jazz, blues, folk and American
folk influences, usually using a combination of manufactured and homemade or improvised
instruments. Originating as a term in the United States in the first half of the 20th century,
it became popular again in the UK in the 1950s, where it was associated with artists such as
Lonnie Donegan, The Vipers Skiffle Group, Ken Colyer and Chas McDevitt. Skiffle played a
major part in beginning the careers of later eminent jazz, pop, blues, folk and rock musicians
and has been seen as a critical stepping stone to the second British folk revival, blues boom and
British Invasion of the US popular music scene.

Output 2

<TITLE> Die Rhéner Sduwintzt </TITLE> Die Rhoner Sduwintzt are a Skiffle-Bluesband
from Eichenzell-Liitter in Hessen, Germany. The line-up consists of Martin Caba, Christoph
Giinther and Christoph Leipold playing Skiffle-Blues with lyrics based on Rhon Mountains
dialect and other Hessian dialects varieties. The expression "Sduwintzt" means pork belly and
refers also to untidy or unruly children and youth.

Gunmen from Laredo starred which narrator
of "Frontier"?

Outputl

<TITLE> Walter Coy </TITLE> Walter Darwin Coy (January 31, 1909 — December 11, 1974)
was an American stage, radio, film, and, principally, television actor, originally from Great Falls,
Montana. He was best known for narrating the NBC western anthology series, ''Frontier",
which aired early Sunday evenings in the 1955-1956 season.

Output2

<TITLE> Gunmen from Laredo </TITLE> Gunmen from Laredo is a 1959 American western
film produced and directed by Wallace MacDonald, which stars Robert Knapp, Maureen Hingert,
and Walter Coy.

its overhead of splitting all paths into separate keys.

Multi-Step Retrieval Method We add special

the front and the end of the input query. When
adding the output sequence at the end of the
input from the second multi-step retrieval step,
special tokens <EVIDENCE> and </EVIDENCE>

tokens <QUESTION> and </QUESTION> at
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Table 9: Dataset examples

Task Input Output
<TITLE> Amar Chitra Katha </TITLE> Amar Chitra
Katha Amar Chitra Katha (ACK, ""Immortal Capti-
vating (or Picture) Stories"") is one of India’s largest
selling comic book series, with more than 100 million

Sinele-H copies sold in 20 Indian languages. Founded in 1967,
ingle-

e Op, who was the comic book series amar chitra katha cre-  the imprint has more than 400 titles that retell stories

Paragraph Retrieval . . .

(NQ) ated from the great Indian epics, mythology, history, folk-
lore, and fables in a comic book format. It was created
by Anant Pai, and published by India Book House. In
2007, the imprint and all its titles were acquired by
a new venture called ACK Media. On 17 September
2008, a new website by ACK-media was launched

Step 1 Input (a query) Step 1 output (evidence passage)
<QUESTION> The Oberoi family is part of a hotel =~ <TITLE> Oberoi family </TITLE> The Oberoi family
company that has a head office in what city? </QUES- is an Indian family that is famous for its involvement
Multi-Hop TION> in hotels, namely through The Oberoi Group.
Paragraph Retrieval Step 2 Input (a query with previous output) Step 2 Output (evidence passage)
(HotpotQA)
<QUESTION> The Oberoi family is part of a hotel =~ <TITLE> The Oberoi Group </TITLE> The Oberoi
company that has a head office in what city? </QUES-  Group is a hotel company with its head office in Delhi.
TION> <EVIDENCE> <TITLE> Oberoi family </TI-  Founded in 1934, the company owns and/or operates
TLE> The Oberoi family is an Indian family that is 30+ luxury hotels and two river cruise ships in six
famous for its involvement in hotels, namely through  countries, primarily under its Oberoi Hotels & Resorts
The Oberoi Group. </EVIDENCE> and Trident Hotels brands.
Step 1 Input (a query) Step 1 output (evidence sentence)
A dentistis a s ho specializes in dentistry, th
<QUESTION> Does a dentist treat Bluetooth prob- . et 15. na surge‘on WHO SPECIATIZES 1 (.en sy, the
diagnosis, prevention, and treatment of diseases and
lems? </QUESTION> .. .
conditions of the oral cavity
Step 2 Input (a query + Step 1 Output) Step 2 Output (evidence sentence)
Multi-Hop <QUESTION> Does a dentist treat Bluetooth prob-
. 1 ? < ESTION> <EVIDENCE> A ist i
Sentence Retrieval ems? </QUES .O, R A CE> X dentl.st sa Technological problems are typically handled by IT
i k surgeon who specializes in dentistry, the diagnosis, pre- .
(EntailmentBank, . . e professionals
StrategyQA) vention, and treatment of diseases and conditions of the
oral cavity </EVIDENCE>
Step 3 Input (a query + Step 1 & Step 2 Output) Step 3 Output (evidence sentence)
<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION> <EVIDENCE> A dentist is a
surgeon who specializes in dentistry, the diagnosis, pre-
vention, and treatment of diseases and conditions of the ~ Bluetooth is not a physical entity
oral cavity </EVIDENCE> <EVIDENCE> Technolog-
ical problems are typically handled by IT professionals
</EVIDENCE>
Step 1 Input (a query) Step 1 output (evidence sentence)
<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and  marriage; created by; love
happiness. </QUESTION>
Step 2 Input (a query + Step 1 Output) Step 2 Output (evidence sentence)
Multi-Hop <QUESTION> belif: marriage is the best for a family
Reasoning Path Retrieval R . . . .
e Tuk unit. argument: Marriage is a predictor of health and love: causes: health and happiness
(RuleTakers, happiness. </QUESTION> <EVIDENCE> marriage; ; causes; ppiness
Explagraphs)

created by; love </EVIDENCE>

Step 3 Input (a query + Step 1 & Step 2 Output)

Step 3 Output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </QUESTION> <EVIDENCE> marriage;
created by; love </EVIDENCE> <EVIDENCE> love;
causes; health and happiness </EVIDENCE>

health and happiness; used for; family unit

12



are added at the front and the end of the output
sequence. (Wang et al., 2021)

Retrieval Corpus Memorization Step For the
path retrieval task (RuleTaker-Open, Explagraph-
Open), the subject and the relation are given, and
the model generates the object and for the sen-
tence and paragraph retrieval task (NQ, HotpotQA,
EntailBank, StrategyQA), the first 70% of the sen-
tence is given as input, and the model generates the
rest.

A.4 Experimental Setup Details

We train both ST5 and GRLS using pre-trained
T5-large checkpoint from Wolf et al. (2020) as the
initial checkpoint. We use the same hyperparam-
eter setting when training GRLS and ST5 model
for a fair comparison. We observe that hyperpa-
rameter change does not change the tendency of
results after experimenting over a combination of
settings used in previous models (Karpukhin et al.;
Ni et al., 2021; Raffel et al., 2020). Also, we use
different hyperparameters for different tasks: re-
trieval corpus memorization and retrieval. For all
experiments, we use 8 32GB V100 GPUs.

Retrieval Corpus Memorization The retrieval
corpus memorization step aims to show GRLS a
corpus it will retrieve and save it implicitly before
the retrieval step. We keep the learning rate to le-5,
which is relatively low than the retrieval step, to
maintain the linguistic ability the model learned
during pre-training (Jang et al., 2022). We train the
model from T5 pre-trained checkpoint for every
dataset using Adafactor with a constant learning
rate of le-5 with batch size 240 till the maximum
of 3 epochs.

Increasing the retrieval corpus memorization
epoch does not always lead to higher performance.
This is because as the model is trained on a
new dataset, catastrophic forgetting of previously
learned parts occurs (Kirkpatrick et al., 2017), and
in this case, language ability of the model learned
during the pre-training step. To prevent the fol-
lowing process from occurring, we follow Jang
et al. (2022) and reduce the learning rate to le-5
and could observe that using the retrieval corpus
memorization step of about epoch 3 as the initial
checkpoint leads to the largest improvement on
reasoning task.
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Retrieval Step The retrieval step aims to re-
trieve the gold item from a large-scale corpus. For
datasets where the retrieval corpus memorization
step help improve performance (NQ, StrategyQA,
RuleTaker-Open, and Explagraphs-Open), we use
the checkpoint from the retrieval corpus memoriza-
tion step. For the rest of the datasets, we use the
TS5 pre-trained checkpoint as the initial checkpoint.
For both ST5 and GRLS, we train using Adafactor
with a learning rate 1e-4 with a linear warm-up for
the first 10% of training and then linear decay with
batch size 120 till maximum 30 epochs.

A.5 Dataset Details

Natural Questions (NQ) Kwiatkowski et al.
(2019) propose a single-hop open domain ques-
tion answering dataset where the questions are
mined from real google search queries, and the
answers are passages of Wikipedia articles. We use
the train/dev/test split and Wikipedia dump from
Karpukhin et al.. A single-hop dataset requires a
single piece of text evidence to answer the ques-
tion. When the input query is given, it retrieves the
evidence paragraph from the corpus.

HotpotQA Yang et al. (2018) propose an open
domain multi-hop question answering dataset,
which requires aggregating multiple Wikipedia pas-
sages through logical reasoning or sequential pro-
cessing. The number of retrieval sequences is
fixed to two. HotpotQA consists of two types of
questions: comparison and bridge. Comparison
questions, a rationale/evidence type of multi-hop
dataset, do not necessitate iterative retrieval since
the two entities can be retrieved by the query itself.
However, bridge questions consist of evidence in
the reasoning chain from where it has to retrieve
the second step based on the first one. We use the
official Wikipedia dump provided by Yang et al.
(2018), use 2% of the official train dataset as a dev
set, and report the scores on the official dev set.

Entailment TreeBank (EntailBank) Dalvi et al.
(2021) propose a reasoning tree construction task
where it forms a tree with a hypothesis as the root
node and evidence sentences are leaf nodes. The
dataset has three settings, and among them, we ex-
periment on Task3, an open setting. Task3 consists
of two steps; the first is to select a leaf node from
the corpus set when given a question and an an-
swer, and the second is to construct a reasoning
tree through the selected leaf node. We perform
the first step, the leaf node retrieval. Since the leaf



node and the root node are not directly connected,
there is a less tight connection between the input
query and gold outputs than other datasets. We
experiment on the first step of Task3 (leaf node
retrieval). As in the paper, we use both Entail-
Bank and WorldTreeV2 (Xie et al., 2020) datasets
when training a retrieval model. We compare the re-
sults with ST5 since there is no released bi-encoder
model, and as in the paper, we use both EntailBank
and WorldTreeV2 (Xie et al., 2020) datasets when
training a retrieval model.

StrategyQA Geva et al. (2021) propose a multi-
hop open-domain question answering dataset
where the reasoning steps are implicit in the ques-
tion and need some strategy to answer the question.
When given a question, the model retrieves the ev-
idence sentences from the corpus. Since only the
train dataset contains evidence annotation, we split
it into 75/5/20 (%) and used it as a train/val/test set,
respectively. Also, based on the given corpus, we
split the given paragraph-level corpus to sentence
level using NLTK (Bird et al., 2009) to match the
granularity of the evidence and add the annotated
evidence sentences to the corpus.

RuleTaker-Open Clark et al. (2021) propose a
synthetic rule-based dataset to measure the model’s
reasoning ability over the rules expressed in natural
language. Based on the released dataset, we create
anew task, RuleTaker-Open, to make the task close
to a real-world setting. Given a query, the model
retrieves nodes of the graph, which is a sentence
from the corpus, and the nodes are connected in or-
der to construct a graph. Details of the construction
method are described in Appendix A.6.

Explagraphs-Open Saha et al. (2021) propose a
generative and structured commonsense-reasoning
task. When given a belief and an argument, a
model predicts whether the argument supports or
counters the belief and generates (retrieves) a rea-
soning graph to explain the prediction. While the
original dataset needs generation on constructing
the reasoning graph, which is limited to genera-
tive model only, we expand the task to an open-
domain retrieval setting to compare with the bi-
encoder models by constructing the corpus and
name it Explagraphs-Open. We consider a single
path (subject-relation-object) as a retrieval unit and
construct the corpus by dumping all the possible
paths provided from the dataset.

A.6 RuleTaker-Open

RuleTaker dataset is a synthetic rule-based dataset
used to measure the model ability on reasoning
over rules (Clark et al., 2021; Tafjord et al.,
2021; Saha et al., 2020). Given a small corpus
of textual facts and rules, the model has to
answer the question, retrieve, and construct the
graph-structured proofs. As in Tafjord et al. (2021),
we use the maximum depth dataset D5 for training.
To evaluate the model performance in the open-
setting, i.e., Task3 in Dalvi et al. (2021), we
newly construct a large corpus and divide the
train/dev/test dataset by the unique query set from
the original D5 dataset.

Dataset Construction We dump all the facts
and rules from the original D5 train/dev/test
datasets to construct the corpus and collect 1621
unique queries, which we split into 1300/121/200.
We remove cases with NAF and FAIL cases
for rule-based evaluation, remove graphs with
less than two nodes to ensure that the fact from
the corpus itself could not be the proof, and
remove graphs with more than ten nodes to fit
in the maximum length of T5 model. Also, we
added DONE at the end of graph construction for
dynamic stopping as in Section 3.1.

Evaluation Metric In RuleTaker-Open, there are
various possible answer graphs for a query, un-
like the previous RuleTaker dataset. Therefore, to
check whether the prediction graph is correct, a
new evaluation metric is necessary. Since each tex-
tual sentence can be divided into a simple format,
subject-relation-object, when considering the con-
structed method (Clark et al., 2021), we evaluate
the result by a new rule-based method.

We check whether the constructed graph is well-
constructed by four steps.

* Node Num Error: The number of evidence
should be larger than 2.

* Start Node Error: First word (subject) should
be the same.

* End Node Error: Last word (object) should
be the same.

* Missing Edge Error: There should be no miss-
ing edge.

Table 10 shows the rate on each constraint for both
the bi-encoder model and GRLS. Each error in the



Table 10: Error rate for each error type in RuleTaker-
Open. Results are from 200 test sets.

Error Rate (%) GRLS ST5
Node Num Error 0.5 5
Start Node Error 9.5 0
End Node Error 20 28
Missing Edge Error 19 50
Success 51 17

table corresponds to the item on top with the same
name .

Missing Edge Error is evaluated by Algorithm 3;
when given a prediction graph (P), we divide the
sentences into rules and facts and check for the
missing edge in the prediction order. When the
algorithm returns True, the graph is considered to
have no missing edge.

Algorithm 3 Finding the missing edge

Require: Input Corpus P
T := An empty list to append or remove facts
from P

for all sentence s € P do
if 5 is a rule then
divide s to assumptions A and result r
for all assumption a € A do
if a in T then
T remove(a)
else
return False
end if
end for
T .append(r)
else
T .append(s)
end if
end for

> Missing edge

if T is empty then
return True
else
return False
end if

> No missing edge

> Missing edge

Predicted reasoning graph of GRLS and Bi-
encoder retrieval (STS) are in Appendix A.7
A.7 RuleTaker-Open Prediction Results

The prediction result from the model, predicted
corpus (P), is in the gray box, and the final node is
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colored in yellow. The Missing nodes are colored
in red, and the leftover nodes are colored in blue.
If there is a red or blue node, it means that it failed
to construct the reasoning graph. We show two
examples for each retrieval method and success and
failure cases (missing edge error case) in Figure 3,
4,5, and 6.

Predicted Corpus (P):
1. The catis kind
2. Thecatis kind
3. If something is kind then it chases the cat
4.  If something chases the cat then it is young.
5.  If something is kind and young then it is cold.
6. If something is cold then it visits the dog.

W so

(a) Examplel

Predicted Corpus (P):

The lion is young.

If something is young then it eats the lion.

If something eats the lion then it is kind.

The lion is young.

If something is young then it eats the lion.

If something eats the lion then it likes the lion.

If something is kind and it likes the lion then the lion eats the cow.
If something eats the cow then it eats the rabbit.

o¥0%0
- @

(b) Example2
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Figure 3: Success Examples of GRLS

A.8 Details of Bi-Encoder Retrieval Models
(ST5)

We use ST5 model (Ni et al., 2021) as the archi-
tecture of the bi-encoder baseline to compare the
performance with GRLS using the same number of
parameters. The input text is fed into T5-encoder,
and the first decoder output of the T5-decoder is
taken as the sentence embedding. We follow the
implementation details in Ni et al. (2021) except
for two settings: (1) When calculating the similar-
ity, instead of using cosine similarity, we use the
inner product as in Karpukhin et al. since cosine
similarity shows a low recall rate during multi-step



Predicted Corpus (P):

The mouse is cold.

The mouse is cold.

The mouse is cold.

If something is cold then it eats the dog.

If something is cold and it eats the tiger then the tiger is kind.
If something is cold and kind then it is red.

If something is red then it sees the mouse.

If something sees the mouse then the mouse is green.

If something is green then it sees the squirrel.

@:e@ae
®-®

It eats the tiger
(a) Examplel: Leftover node (blue) and missing nodes (red)
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Predicted Corpus (P):

The bear is kind.

The bear is kind.

If something is kind then it chases the bear.

If something chases the bear then it is big.

If something is kind and big then it is rough.

If something is rough then it likes the bald eagle.

If something likes the bald eagle then it likes the tiger.

If something likes the tiger then it likes the lion.

If something likes the bear and it likes the bald eagle then it is round.
If something is round then it likes the bear.

COXPXPNOOHWN =

=
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(b) Example2: Leftover node (blue)

Figure 4: Failure Examples of GRLS

(iterative) training. (2) We change the hyperparam-
eters for a fair comparison with GRLS.

A.9 EntailBank with Different Unseen Rates

To check how the performance changes when un-
seen rate changes inside the same dataset, we create
a subset of the EntailBank dataset with different
unseen rates by using the subset of the training
dataset (reducing the number of graphs in the train-
ing dataset to 1,313). To check whether the results
are general, we create two different datasets with
high and low unseen rates, an average of 32.4%
and 8.6%, respectively. Specific numbers of unseen
rates and the performance of recall rate (R@5) are
in Table 11. We observe that GRLS consistently
outperforms the bi-encoder model for the tasks with
a low unseen rate, whereas the bi-encoder retrieval
performs better for the tasks with a high unseen
rate.
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Predicted Corpus (P):

1.  The rabbit is blue.
If something is blue then it sees the rabbit.
If something sees the rabbit then it is big.

Q20RO

(a) Examplel

3.

Predicted Corpus (P):

The rabbit is big.

If someone is big then they need the rabbit.

If someone needs the rabbit then they are big.
If someone is big then they like the rabbit.

If they like the rabbit then the rabbit is kind.

If someone is kind then they visit the rabbit.

0020202020

(b) Example2
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Figure 5: Success Examples of Bi-encoder (ST5) Re-
trieval

A.10 Retrieval Sequence Recall Rate on Seen
and Unseen Subsets

We analyze the recall rates of the best GRLS on
unseen and seen subsets. Table 12 shows the per-
formance on seen subset is consistently higher than
that on the unseen subset.

A.11 Ratio of Single-Step-Solvable Questions

We conduct a manual analysis on the ratio of ques-
tions that are answerable by single-step retrieval
in multi-hop datasets, which are questions that can
be answered considering only the question without
other retrieval sequences. In other words, they are

Table 11: The table shows the Evidence Recall score
(R@5) of GRLS and BE on EntailBank subset with
different unseen rate. Unseen column shows the rate
of queries with unseen retrieval sequences over total
number of queries. GRLS shows high performance for
tasks with high unseen rate (High 1 and High 2) and low
performance for tasks with low unseen ratio (Low 1 and
Low 2)

Task Unseen Rate  GRLS BE
High 1 33.8% 23.2 30.6
High 2 30.9% 25.8 35.4
Low 1 8.2% 33.0 425
Low 2 9.0% 31.2 26.1




Predicted Corpus (P):

The mouse eats the rabbit.

The rabbit eats the mouse.

If something eats the mouse then it visits the rabbit.

If something visits the rabbit then it eats the rabbit.

If something visits the mouse and it eats the rabbit then the
rabbit is cold.

If something is cold then it eats the rabbit.

If something visits the rabbit and it eats the rabbit then the
rabbit is kind.

8. If something is kind then it eats the mouse.

U

N
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Something visits
the mouse

Something visits
the rabbit

(a) Examplel: Leftover node (blue) and missing nodes (red)
Predicted Corpus (P):

The mouse chases the dog.

If the mouse chases the dog then the mouse is red.

If the mouse is red then the mouse visits the tiger.

If something visits the tiger then the tiger chases the mouse.
If something chases the tiger and the tiger chases the mouse
then it sees the mouse.

If something sees the mouse then it sees the dog.

If something sees the dog then it chases the mouse.

020020502020

Something
chases the tiger

e

No

(b) Example2: missing node (red)

Figure 6: Failure Examples of Bi-encoder (ST5) Re-
trieval

Table 12: Retrieval sequence recall rate (R@k) of GRLS
for each dataset divided by seen queries and unseen
queries. We use the model with the highest score for
each dataset. K is 2 for HotpotQA and 5 for the other
datasets.

Dataset Seen  Unseen
EntailBank 54.9 344
StrategyQA 59.3 43.8

Explagraphs-Open  42.2 32.5
HotpotQA 70.0 24.7
NQ 83.6 13.7

similar to comparison type questions rather than
bridge type questions in HotpotQA.

The analysis is done on randomly sampled 30
questions from test datasets of EntailBank, Strat-
egyQA, and Explagraphs-Open datasets. Table
13 shows that StrategyQA and Explagraph-Open
have a high rate of single-step-solvable questions,
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Table 13: Rate of single-step-solvable and multi-step-
solvable questions from randomly sampled 30 questions
on EntailBank, StrategyQA, Explagraphs-Open.

Single-Step-Solvable  Multi-Step-Solvable

EntailBank 40.0 60.0
StrategyQA 70.0 30.0
Explagraphs-Open 76.7 233

and EntailBank shows a low rate. In Table 7, we
show examples of single-step and multi-step input
and output on EntailBank, Explagraphs-Open, and
StrategyQA.

A.12 Manual Analysis on HotpotQA

We conduct manual analysis on HotpotQA by com-
paring the top-2 prediction result of the GRLS and
MDR, a bi-encoder retriever. From the two ques-
tion categories in HotpotQA (bridge and compar-
ison questions), we manually inspect 30 sampled
examples where one model is fit while the other
model is wrong in Appendix A.12. MDR mostly
got wrong by missing the second hop item though
it got the first hop correct and GRLS was wrong for
cases where the first-hop item is not written explic-
itly in the query but by sharing a specific part of a
sentence. When the item is written explicitly in the
query, GRLS tend to get it correct, which shares
with the result that GRLS shows a higher score on
comparison questions than MDR. We suggest this
result is because GRLS can directly cross-encode
between the input and the output without any infor-
mation loss.

To be specific, we divide the error case into four:
(1) When the first-hop retrieval item is not written
explicitly in the query but by sharing a specific part
of a sentence.

(2) Though it is written explicitly in the query, it
retrieves the wrong document by giving attention
to an irrelevant part of the query.

(3) Detail of the title is wrong (i.e., when the gold
document has title Do you Love Me (Not That I Can
Dance), the model retrieves a document with the
title Do you Love Me (2NEI song) instead; when
do you love me is in a query, the model misses to
correctly understand the details.)

(4) The retriever got the first hop correct but failed
to retrieve the second hop item correctly.

When comparing the number of models matched in
the bridge question with each error case, among the
four cases, MDR is often wrong in the second (1.3
times) and fourth cases (2.2 times), and the GRLS
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Figure 7: Pairwise prediction similarity ratio over two dif-
ferent models: multi-step generative retrieval (GRLS) and
single-step bi-encoder retrieval (BE) over three datasets. The
dark color indicates there is a higher similarity between the
predictions of the two models and is calculated by retrieval
sequence recall rate. The same model with different numbers
is trained with the same model but different seeds. We can see
that the same models with different seeds have darker colors
(higher similarity) compared to the ones with different models.
GRLS 1 and BE 1 are models trained with seed 101 and GRLS
2 and BE 2 are models trained with seed 42.

is most often wrong in the first case (6 times) along
with the third case (2.8 times)'!.

A.13 Pairwise Prediction Similarity Between
BE and GRLS

Figure 7 shows the pairwise predictions similarity
ratio between two models among two single-step
BE and two multi-step GRLS trained with different
random seeds. The result demonstrates that BE and
GRLS tend to retrieve different retrieval sequences.
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m-GR s-GR m-BE s-BE

m-GR s-GR m-BE s-BE

s-BE m-BE s-GR m-GR
s-BE m-BE s-GR m-GR
s-BE m-BE s-GR m-GR

m-GR s-GR m-BE s-BE

(a) EntailBank (b) StrategyQA (c) Explagraphs-Open

Figure 8: Pairwise prediction similarity ratio over four
different models: multi-step GRLS (m-GR), single-step
GRLS (s-GR), multi-step BE (m-BE), and single-step
BE (s-BE). Dark color indicates high similarity between
the two model predictions. The similarity is calculated
based on retrieval sequence recall rate.

A.14 Pairwise Prediction Similarity Between
Four Models

In this section, we compare the similarity between
the four models: multi-step GRLS, single-step
GRLS, multi-step BE, and single-step BE. Fig-
ure 8 shows how similar the four models are
on three datasets: EntailBank, StrategyQA, and

Ithe value in parentheses shows the ratio of the error rate
compared to the other model
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Explagraphs-Open. Darker color indicates a high
similarity between the prediction results of the
paired two models.

For all three datasets, multi-step GRLS (m-GR) and
single-step BE (s-BE) show low similarity, which
indicates that the two models capture different as-
pects for the same query, which further shows im-
provement by a simple ensemble method. Also,
Explagraphs-Open shows high similarity over the
four models compared to other datasets.



