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Abstract

Text retrieval is often formulated as mapping001
the query and the target items (e.g., passages)002
to the same vector space and finding the item003
whose embedding is closest to that of the query.004
In this paper, we explore a generative approach005
as an alternative, where we use an encoder-006
decoder model to memorize the target corpus007
in a generative manner and then finetune it on008
query-to-passage generation. As GENRE (Cao009
et al., 2021) has shown that entities can be re-010
trieved in a generative way, our work can be011
considered as its generalization to longer text.012
We show that it consistently achieves compara-013
ble performance to traditional bi-encoder re-014
trieval on diverse datasets and is especially015
strong at retrieving highly structured items,016
such as reasoning chains and graph relations,017
while demonstrating superior GPU memory018
and time complexity. We also conjecture that019
generative retrieval is complementary to tradi-020
tional retrieval, as we find that an ensemble of021
both outperforms homogeneous ensembles.022

1 Introduction023

Document or passage retrieval is often formulated024

as the task of encoding both the query and the re-025

trieval sequences to a common vector space and026

then finding the sequences whose embedding is027

the closest to that of the query. This bi-encoder028

approach for retrieval is often considered as de029

facto standard, where heavy computations such as030

obtaining the dense embeddings of the retrieval se-031

quences in the corpus can be done offline, and one032

can search over a large number of items with low033

latency through the nearest neighbor search (NNS)034

or maximum inner product search (MIPS) (Chen035

et al., 2017; Karpukhin et al.; Lewis et al., 2020;036

Chen et al., 2020; Wu et al., 2020; Xiong et al.,037

2021; Roller et al., 2021).038

Recently, Cao et al. (2021) have proposed039

GENRE, which formulates entity retrieval task as040

generating the entity text in a generative manner041

with the query as the input to an encoder-decoder 042

model. Such generative formulation has several 043

advantages over traditional bi-encoder approaches: 044

it can cross-encode the input and the output (re- 045

trieval sequence) efficiently without information 046

loss while using a smaller storage footprint, and it 047

only needs the prefix tree constructed by corpus set, 048

which is not dependent on the model parameters 049

and is much faster to build. However, they apply 050

generative retrieval to only entities whose length is 051

around three words on average. 052

In this work, we explore the generalization of 053

generative retrieval (Cao et al., 2021) to (1) longer 054

and diverse types of retrieval sequences, including 055

highly structured forms, and (2) tasks that require 056

an arbitrary number of retrieval iterations (retrieval 057

steps). Our proposed generative retriever modi- 058

fied to adapt to long sequences is called Gener- 059

ative Retrieval for Long Sequences (GRLS). In 060

order to make generative retrieval suitable for long- 061

sequence multi-step retrieval, we propose an ef- 062

ficient constrained beam search that reduces the 063

search time complexity of potential next tokens 064

list from O(h), where h is the height of the prefix 065

tree, to O(1). We also propose retrieval corpus 066

memorization which learns the target corpus using 067

the standard language modeling objective function 068

before finetuning on the target retrieval task for the 069

model to be fully aware of what it needs to retrieve 070

in a generative manner. 071

We experiment on six retrieval datasets under 072

three settings: single-step, fixed multi-step, and dy- 073

namic multi-step. Single-hop datasets such as Nat- 074

uralQuestions (Kwiatkowski et al., 2019) fall in a075

single-step setting. In fixed multi-step, the number 076

of items to retrieve is given as an oracle, whereas 077

in dynamic multi-step, the model also needs to de- 078

termine when to stop retrieving the next item. The 079

main findings of our paper are: 080

• Generative retrieval can be effective for not 081

only short sequences with the single-step set- 082
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(b) Generative Retrieval for Long Sequences (GRLS)

Figure 1: The overall process of bi-encoder (BE) and Generative Retrieval for Long Sequences (GRLS). Given a
query, BE retrieves the retrieval sequence most relevant to the query by performing MIPS over the corpus index,
and GRLS generates the most relevant sequence inf the corpus by referring to the prefix tree. We make the prefix
tree more efficient by using the previously retrieved tokens as the key and the potential next tokens as the value
of the prefix tree, reducing the search time complexity from O(h) to O(1) (dictionary table of (b)). GRLS is also
modified to be applied to various retrieval tasks, including the retrieval of lengthy sequences and multi-step retrieval.
To let the model learn in advance what information would be at the end of the sequence to generate, GRLS uses
retrieval corpus memorization before training on target retrieval tasks.

ting but also for long sequences with the multi-083

step setting.084

• Generative retrieval especially shows strong085

performance on retrieval sequences seen dur-086

ing training and for retrieving multiple highly087

structured retrieval sequences.088

• Generative retrieval and bi-encoder retrieval089

are often complementary to each other, as an090

ensemble of them outperforms homogeneous091

ensembles.092

Given that GRLS can have better GPU memory093

and time efficiency than bi-encoder retrieval, these094

findings suggest that generative retrieval has the095

potential to be a practical alternative for retrieving096

diverse types of sequences.097

2 Related Work098

Traditional text retrieval has focused on sparse099

term-based retrieval that uses bag-of-words rep-100

resentations of the texts to measure the relevance101

between the texts in the corpus and the query, such102

as TF-IDF and BM25 (Robertson, 2008). Sparse103

feature vectors are often handled via inverted index104

by looking up the items with common hot dimen-105

sions.106

Neural information retrievals utilize neural mod-107

els to perform information retrieval, where a bi-108

encoder form is commonly used for large-scale re-109

trieval. It maps queries and sequences in the corpus110

to shared vector space using encoders (Karpukhin111

et al.; Xiong et al., 2021). Bi-encoder retrievers can 112

store the dense embedding vectors of the corpus of- 113

fline and retrieve relevant texts through maximum 114

inner product search (MIPS) or nearest neighbor 115

search. However, they have several limitations: 116

they suffer from information loss when condensing 117

the text into a fixed-size vector, need to renew the 118

stored embeddings when parameter changes, and 119

the latency of performing exact MIPS, which is 120

a linear-time search and the storage footprint for 121

storing the embedding vector become nontrivial as 122

the corpus increases. 123

Various studies have been conducted to im- 124

prove the search time efficiency of dense retrieval. 125

Sublinear-time nearest neighbor search has been 126

studied to reduce the latency of performing the ex- 127

act MIPS. In metric space (L1, L2), Locality Sensi- 128

tive Hashing (LSH) (Gionis et al., 1999) is a classic 129

search algorithm that hashes the nearby vectors into 130

the same cell. Asymmetric LSH (aLSH) (Shrivas- 131

tava and Li, 2014) apply LSH to non-metric space 132

such as inner product space by transforming MIPS 133

into minimizing L2 distance with a trick of increas- 134

ing the vector dimension by one. Yet, applying 135

these approximate search methods still requires 136

time for adopting the ad-hoc process and additional 137

memory (Malkov and Yashunin, 2018). 138

Cao et al. (2021) first propose a generative re- 139

trieval model, GENRE (Generative Entity RE- 140

trieval), which is free from the aforementioned 141

limitations of bi-encoder retrieval. It achieves com- 142
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parable or higher performance on entity retrieval143

tasks than bi-encoder models. To ensure that all144

generated retrieval sequences are from the corpus,145

they perform constrained decoding, which masks146

out the tokens that do not form any of the texts in147

the corpus at each time step during inference.148

With the autoregressive formulation, a genera-149

tive retriever cross-encodes the input and output150

efficiently, capturing the relation between the two151

without information loss. When given the same152

corpus, a bi-encoder retriever has to store all dense153

embeddings of the corpus while generative retrieval154

only requires storage for prefix tree to perform con-155

strained decoding, which takes up a smaller storage156

footprint (Cao et al., 2021). Moreover, while bi-157

encoder retrieval needs to renew all embedding158

vectors when the model parameter changes, which159

often takes long, generative retrieval uses a prefix160

tree that is not only faster to build but also built161

only once for a corpus set (thus does not depend162

on the model parameters).163

The main difference of our work from that of164

Cao et al. (2021) is that we generalize the prob-165

lem setting of generative retrieval to longer and di-166

verse types of retrieval sequences (including highly167

structured forms) and tasks that require an arbi-168

trary number of retrieval steps. It is both nontrivial169

and under-explored to study whether generative170

retrieval can be well-adopted to general retrieval171

tasks; this serves as the motivation of our paper.172

3 Generative Retrieval for Long173

Sequences174

GRLS (Figure 1b) formulates retrieval tasks as175

text generation. In training step, the objective is176

to maximize score(q, p) which is the probability177

of the parameters θ to generate the length L re-178

trieval sequence p that consists of target tokens yi,179

i = 1, · · · ,L in a generative manner: score(q, p) =180

Pθ (p|q) = ∏
L
i=1 Pθ (yi|y<i,q). Here, the query q is181

the input to the encoder of the encoder-decoder182

model, and the ground-truth target tokens of pre-183

vious iterations y<i are given as the input to the184

decoder following the teacher forcing approach185

(Sutskever et al., 2011).186

In the inference step, as shown in Figure 1, to187

generate the second token, Barker, it finds the po-188

tential next tokens ([Barker, Miller]) by searching189

through the prefix tree with the previously gener-190

ated tokens. We mask out tokens that are not in the191

potential next tokens and find the token with the192

What are The Ready Set and Cell? 
The Ready Set : Jordan Mark 
Witzigreuter … with Hopeless 

Records. Cell (American band) : 
Cell were a New York-based band 

…to Geffen.

Output 1

Retrieval Step 1

The Ready Set : Jordan Mark 
Witzigreuter … with Hopeless 

Records.

Cell (American band) : Cell were a 
New York-based band … to Geffen. …

Output 2

Retrieval Step 2

Output 3

Retrieval Step 3

Input 1 Input 2 Input 3

Generative Retrieval for Long Sequences (GRLS)

What are The Ready Set and Cell? 
The Ready Set : Jordan Mark 
Witzigreuter … with Hopeless 

Records.

What are The Ready Set and Cell?

Figure 2: Multi-step retrieval process of GRLS. To
retrieve a k-th step sequence, previously retrieved se-
quences (1,2, ..,k − 1-th step) are concatenated to a
query and used as new input. In the example above,
when a query “What was The Ready Set and Cell?” is
given in the first retrieval step, the model predicts the
output about Ready Set and appends it to the query to
use it as the second retrieval step input. The passage
about Cell is retrieved in the second step and appended
to the input, etc. Special tokens are omitted in the above
example because of the space limit.

maximum score from unmasked tokens, which in 193

this example is Barker. Finally, when it retrieves 194

the <END> token, the generation ends, and the 195

generated output is the retrieval sequence of the 196

query. 197

Previous work (Cao et al., 2021) is limited to 198

retrieving short sequences such as entities in a 199

single-step setting. In this section, we describe our 200

approach for generalizing it to multi-step setting 201

(Section 3.1) and longer sequences through more 202

efficient constrained beam search (Section 3.2) and 203

pre-finetuning memorization of the retrieval target 204

corpus (Section 3.3). We name our model as GRLS 205

(Generative Retrieval for Long Sequences). 206

3.1 Multi-Step Generative Retrieval 207

In this work, we generalize generative retrieval 208

to cover not only single-step retrieval (Cao et al., 209

2021) but also multi-step retrieval (Figure 2). In 210

single-step retrieval tasks, sequences can be re- 211

trieved by only conditioning on the input, whereas 212

in multi-step retrieval tasks, additional condition- 213

ing on the previously retrieved sequences is nec- 214

essary to retrieve the next retrieval sequence (Ap- 215

pendix A.1, A.2). For the additional conditioning, 216

we modify the aforementioned objective function 217

of Pθ (p|q); the model is trained to generate the to- 218

kens y(t)i of the ground truth text to retrieve p(t) at 219
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retrieval step t = 1, · · · ,T , given the query q to the220

encoder and all of the generated tokens up to the221

previous step, y(<t)
<i as the input to the decoder.222

score(q, p(1), · · · , p(T )) =
T

∏
t=1

Pθ (p(t)|p(<t),q)

=
T

∏
t=1

L(t)

∏
i=1

Pθ (y
(t)
i |y(<t)

<i ,q)

223

Note that T = 1 for single-step retrieval.224

At the inference step of multi-step retrieval, we225

generate the retrieval sequences with a beam size226

≥ 1. Retrieval sequence (p(t)) with the highest227

score is retrieved and is added to the end of the de-228

coder input. The process continues until a special229

token DONE is generated, which means the gener-230

ation process also decides when to stop retrieving231

more items (dynamic multi-step). For better com-232

parison with some of previous work (Yang et al.,233

2018; Saha et al., 2021; Xiong et al., 2021), we234

also consider fixed multi-step, where the number of235

items to retrieve is fixed for the entire task.236

3.2 Efficient Constrained Beam Search237

At the inference step, we use constrained beam238

search proposed in Cao et al. (2021), which is a239

modified beam search (Sutskever et al., 2014) al-240

gorithm that masks out tokens that form the texts241

that do not exist in the corpus. The purpose of con-242

strained beam search is to ensure that all retrieval243

sequences are from the given corpus. Specifically,244

a prefix tree is built by aggregating tokenization re-245

sults of text in the corpus (the rightmost component246

in Figure 1). Tokens that create strings that are not247

a sub-string of any text in the corpus are masked248

out, and only the next top-k tokens from the un-249

masked and thus valid set of tokens are passed to250

the model as the potential next tokens list.251

As the texts in the corpus have become longer252

sequences, the height of the prefix tree (h), which253

is the maximum length of retrieval sequences in254

the corpus, becomes very long. Therefore, the255

search time complexity of finding the potential next256

tokens (O(h)) become nontrivial. By flattening257

all the paths into a separate key and the potential258

next tokens list as the corresponding values, the259

search time complexity reduces to O(1), showing260

an average of 56% inference time reduction on261

HotpotQA.1. Details are in Appendix A.3.262

1We call this using the same term, prefix tree, for the rest
of the paper

3.3 Retrieval Corpus Memorization 263

Since generative retrieval generates sequences in a 264

uni-directional way (left to right), the models can- 265

not know the information at the end of a sequence 266

in advance. This may negatively affect the per- 267

formance, especially when the length of the texts 268

(sequences) in the corpus gets longer. To solve the 269

issue, we perform retrieval corpus memorization 270

before training on the target retrieval task. 271

During the process, encoder-decoder model is 272

trained on texts in the corpus using the standard 273

language modeling objective function: when a cor- 274

pus C with texts p (p ∈ C) is given, the model 275

learns to maximize the language modeling proba- 276

bility Pθ (p) = ∏
L
i=1 Pθ (yi|y<i) for all p in C. This 277

can help the models recognize the contents to 278

generate at the later part of the text beforehand 279

and improve the performance in certain cases as 280

shown in Section 5. To make the input similar to 281

that of the real task, which maximizes Pθ (p|q) = 282

∏
L
i=1 Pθ (yi|y<i,q) such that q is input to the en- 283

coder, the front part of the text to generate serves 284

as the encoder input when maximizing Pθ (p). Rel- 285

evant details are in Appendix A.3. 286

4 Experimental Setup 287

We describe the overall experimental setup in the 288

following section. In Section 4.1, we show a brief 289

explanation of the six datasets we use and the set- 290

ting for training and inference. In Section 4.2, we 291

explain the bi-encoder retrieval models we use to 292

compare the performance with GRLS. In Section 293

4.3, we describe the metric to evaluate the perfor- 294

mance. We explain the hyperparameter setting of 295

the model in Appendix A.4. 296

4.1 Datasets 297

We use six datasets with various characteristics: dif- 298

ferent number of hops, unseen rate, corpus size, av- 299

erage retrieval steps, and granularity. Table 1 shows 300

the overall statistics and the features of the datasets. 301

Below are brief descriptions of each dataset. Ap- 302

pendix A.2 and A.5 show examples and detailed 303

description on the train and test settings of each 304

dataset. 305

Natural Questions (NQ) Kwiatkowski et al. 306

(2019) propose a single-hop open domain question 307

answering dataset, where the questions are mined 308

from real google search queries, and the answers 309
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Table 1: Overview of the six datasets. Seq Len column shows
the average number of retrieval sequence tokens. Step column
shows the average number of retrieval steps for a query in the test
set. Unseen column shows the rate of test queries consisting of
only the retrieval sequences unseen during the training process.
Details of the datasets are in Section 4.1

Dataset Corpus (MB) Seq Len Step Unseen

NQ 13,252 160.8 1 55.8%a

HotpotQA 1,595 78.6 2 18.9%

EntailBank 0.7 12.5 4.6 2.7%
StratgyQA 7.0 13.1 2.7 98.2%

Explagraphs-Open 0.5 9.6 4.5 95.5%
RuleTaker-Open 0.7 13.1 - 0.0%b

aFor the overlap calculation, we only use the subset of test
dataset where gold evidence is provided (6515 out of 8757 test
datasets).

bWe calculate the rate with prediction result (retrieval se-
quences) since there is no gold retrieval sequences.

are passages of Wikipedia articles2.310

HotpotQA Yang et al. (2018) propose an open311

domain multi-hop question answering dataset,312

which requires seeing multiple Wikipedia passages313

through logical reasoning or sequential processing.314

The number of retrieval sequences is fixed to two.315

Entailment TreeBank (EntailBank) Dalvi et al.316

(2021) propose a reasoning tree construction task317

where it forms a tree with the hypothesis as the318

root node and evidence sentences are leaf nodes.319

We experiment on the leaf node retrieval of Task3:320

retrieval of leaf nodes (sentence) from the given321

corpus given a question and an answer as the input.322

We call the dataset EntailBank in short.323

StrategyQA Geva et al. (2021) propose a multi-324

hop open-domain question answering dataset325

where the reasoning steps are implicit in the ques-326

tion, and thus relevant strategies are required to327

answer the question. Given a question, the model328

retrieves the evidence sentences from the corpus.329

RuleTaker-Open Clark et al. (2021) propose a330

synthetic rule-based dataset to measure the model’s331

reasoning ability over the rules expressed in natural332

language. Based on the released dataset, we create333

a new task, RuleTaker-Open, to make the task close334

to a real-world setting. Given a query, the model335

retrieves nodes of the graph, which are sentences336

from the corpus, and the nodes are connected in337

order to construct a graph.338

2We add title in front of each passage for NQ and Hotpot
corpus (Karpukhin et al.; Izacard and Grave, 2021)

Explagraphs-Open Saha et al. (2021) propose a 339

generative and structured commonsense-reasoning 340

task. We reformulate the task to open-domain re- 341

trieval setting and name it Explagraphs-Open, con- 342

sidering a single path (subject-relation-object) as a 343

retrieval sequence. 344

4.2 Bi-Encoder Retrieval Models 345

For each dataset, we compare the results with bi- 346

encoder retrieval models as the baselines. For NQ 347

and HotpotQA datasets, we use DPR and MDR, 348

respectively, which are widely used bi-encoder 349

retrieval models for the corresponding dataset. 350

For the rest of the datasets, we compare with 351

Sentence-T5 (ST5), a bi-encoder retrieval model 352

using T5 (Raffel et al., 2020). 353

DPR Karpukhin et al. is a simple bi-encoder 354

retriever trained with in-batch negatives and a few 355

hard negatives selected with BM25. 356

MDR Xiong et al. (2021) propose an iterative 357

bi-encoder retrieval model, MDR, which extends 358

DPR to a multi-step setting. 359

ST5 ST5 is a encoder-decoder model (Ni et al., 360

2021)3 that uses the first decoder output as the 361

sequence embedding. It serves as the base archi- 362

tecture of our baseline bi-encoder to compare the 363

performance with GRLS using the same number of 364

parameters. 365

Baseline Bi-Encoder Retriever (BE) In order 366

to compare the multi-step generative retrieval to 367

a bi-encoder retrieval, we create a simple coun- 368

terpart such that the bi-encoder retrieval can be 369

as well adapted to fixed multi-step and dynamic 370

multi-step retrieval tasks. For fixed multi-step re- 371

trieval, we train the bi-encoder (BE) to maximize 372

Pθ (p(t)|p(<t),q) like GRLS, but by concatenating 373

the query q and the retrieval sequences of the pre- 374

vious steps p(<t) to make the input to the query 375

encoder at step t like in MDR (Xiong et al., 2021). 376

For dynamic multi-step retrieval, we add the spe- 377

cial single-token text DONE to the corpus as done 378

in GRLS. When training the model, one extra re- 379

trieval step is added at the end as well; at the point 380

when the retriever retrieves all the target texts, the 381

model has to retrieve DONE text using MIPS. At 382

inference, the model retrieves texts until it retrieves 383

the special token or the number of retrieval reaches 384

the predefined maximum retrieval step. Details are 385

in Appendix A.8. 386

3We use ST5-EncDec from Ni et al. (2021)
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Table 2: Retrieval sequence recall rate (R@5) of both single-
step (s-*) and multi-step (m-*) method on test set. BE is the
result of ST5. The bold text shows the best score and the
underline text shows the second best score of the dataset.

Model EntailTree StrategyQA Explagraphs-Open

s-BE 36.0 56.6 40.8
m-BE 31.5 37.4 27.0

s-GRLS 44.8 43.0 27.3
s-GRLS + mem 44.1 45.0 27.0
m-GRLS 53.6 44.9 32.9
m-GRLS + mem 54.3 45.5 32.4

Table 3: Retrieval sequence F1 score of dynamic multi-step
retrieval on test set. For scores marked with *, we use metric
in Appendix A.6 instead of F1 since there is no ground truth
evidence set. We fix the maximum retrieval step to 204. Miss-
ing DONE shows the missing rate of retrieving the DONE
token before the maximum retrieval step. The bold text shows
the best F1 score and lowest Miss DONE rate.

Dataset Model F1 Missing DONE

EntailTree
BI 16.9 5.6%
GRLS 52.5 2.4%
GRLS + mem 52.2 2.7%

StrategyQA
BI 36.5 39.0%
GRLS 46.6 23.2%
GRLS + mem 47.1 22.4%

Explagraphs-Open
BI 25.4 28.2%
GRLS 41.5 5.0%
GRLS + mem 41.3 0.3%

RuleTaker-Open
BI 17.0* 39.0%
GRLS 51.0* 24.5%
GRLS + mem 65.5* 23.0%

4.3 Evaluation Metric387

In a fixed-step setting, for NQ and HotpotQA,388

we follow the evaluation metric of the bi-encoder389

model we compare: answer recall (Karpukhin390

et al.) and retrieval sequence recall (Xiong et al.,391

2021) respectively. For multi-hop datasets with392

varying numbers of ground truth retrieval steps393

(Explagraphs-Open, EntailBank, and StrategyQA),394

we first calculate the retrieval sequence recall rate395

of each query and average over the number of396

queries (Dalvi et al., 2021; Saha et al., 2021). Fur-397

thermore, in a dynamic multi-step retrieval setting,398

since the number of predicted retrieval sequences399

varies, we measure the retrieval sequence F1 score.400

For RuleTaker-Open, we newly define an evalua-401

tion metric (Appendix A.6) that measures the graph402

construction success rate since we do not have the403

ground truth retrieval sequences information.404

5 Experimental Results 405

The main contribution of this work is that we gen- 406

eralize the generative retrieval proposed by Cao 407

et al. (2021) to longer retrieval sequences (rea- 408

soning path, sentence, passage) and various tasks 409

(single-step, fixed multi-step, dynamic multi-step). 410

Section 5.1 explores when GRLS performs well. 411

In Section 5.2, we analyze whether Generative Re- 412

trieval for Long Sequences (GRLS) and bi-encoder 413

retriever have different characteristics and show 414

that a simple ensemble method can often boost the 415

performance. Lastly, Section 5.3 shows the effi- 416

ciency of GRLS compared to bi-encoder retrieval. 417

5.1 When does generative retrieval perform 418

well? 419

Table 2 shows the retrieval sequence recall rate 420

of bi-encoder (BE) and GRLS variants on three 421

fixed multi-hop retrieval datasets where the task 422

is sentence or reasoning path retrieval.5 Retriever 423

variants of single-step and multi-step retrieval are 424

tested with or without corpus memorization. In 425

summary, the results show that GRLS often out- 426

performs bi-encoder retrievers when the ratio of 427

retrieval sequences unseen during training is low, 428

the number of retrieval steps is high, and dynamic 429

multi-step retrieval is required. 430

Effect of Unseen Rate The unseen rate indicates 431

the rate of queries in the test set, which requires 432

the retrieval of the sequences never seen during 433

training as the ground truth target. Therefore, the 434

datasets with high unseen rates can be considered 435

similar to a zero-shot retrieval setting. The degree 436

of unseen rate in Table 1 and the performance of BE 437

and GRLS in Table 2 shows GRLS can outperform 438

the bi-encoder retriever when the unseen rate is low, 439

which implies that it is crucial for GRLS to pretrain 440

on the retrieval targets (also see Appendix A.9 and 441

A.10 for analysis on EntailBank). 442

Single- vs. Multi-Step Table 2 also shows that 443

GRLS consistently performs better when applied 444

with a multi-step approach rather than a single-step 445

approach, while the trend is opposite for the case 446

of BE. It is worth noting that the multi-step ap- 447

proach goes through multiple iterations of retrieval 448

by appending the previous output to the current 449

input. Unlike bi-encoder retrieval, which suffers 450

5RuleTaker-Open is excluded because recall cannot be cal-
culated as the dataset lacks ground-truth sequence to retrieve
at each retrieval step.
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from information loss by condensing the texts into451

a fixed-size vector (Luan et al., 2021), generative452

retrieval can efficiently cross-encode the input and453

output. We, therefore, assume that when there is454

high connectivity between the input and the out-455

put or between the outputs, GRLS may show high456

performance by capturing the relation between the457

inputs from multiple steps.458

Single-Step BE Analysis The fact that the best459

models for StrategyQA and Explagraphs-Open460

(multi-hop datasets) are single-step BE is counter-461

intuitive. Therefore, we perform a manual analysis462

of the datasets. Appendix A.11 shows that about463

2/3 of the randomly sampled queries from Strate-464

gyQA and Explagraphs-Open can be answered by465

looking at only the query (similar to comparison466

type questions rather than bridge type questions in467

HotpotQA). 6 Moreover, as the unseen rates of the468

two datasets are very high (near 100%), the effect469

of error propagation from multi-step iterative re-470

trieval could have been destructive, even offsetting471

the benefits from the iterative approach.472

Dynamic Multi-Step Retrieval As described473

in Section 3.1, dynamic multi-step retrieval has474

several benefits. The results in Table 3 show475

that GRLS is good at capturing where to stop re-476

trieval with fewer cases of missing the DONE token477

(which decides the point to stop the retrieval) and a478

higher F1 score than BE on EntailTree, StrategyQA,479

and Explagraphs-Open. Also, on RuleTaker-Open,480

where the task is constructing a reasoning graph,481

the success rate7 of GRLS on constructing the rea-482

soning graph outperforms BE by a large margin.483

HotpotQA and NQ We further test whether the484

advantages of generative retrieval generalize to pas-485

sage retrieval tasks: HotpotQA and NQ (Table 5486

and 6). First, the recall of multi-step GRLS is much487

higher than single-step GRLS on HotpotQA8. In488

addition, the performance of best GRLS models is489

comparable to MDR- and DPR-random in both NQ490

6Details of comparison and bridge type questions are in
Appendix A.5. StrategyQA has rationale types where a multi-
step method is not necessary, and Explagraphs-Open, though
the structure of evidence sentences is a reasoning graph as in
RuleTaker-Open, has various topics which the evidence texts
could be retrieved by the topic of the query itself without the
previous retrieval texts.

7F1 cannot be calculated on RuleTaker-Open because the
ground-truth retrieval sequence is not known at each step.

8The effectiveness of multi-step on HotpotQA can be seen
from the large gap of performance between DPR (single-step)
and MDR (multi-step expansion of DPR).

Table 4: BE-BE is a homogeneous ensemble model between
two single-step BE and GRLS-GRLS is a homogeneous en-
semble model between two multi-step GRLS. BE-GRLS is
an ensemble model of two different approaches: single-step
bi-encoder and multi-step GRLS. We score the retrieval se-
quence recall rate (R@5) on test set.

Model EntailBank StrategyQA Explagraphs-Open

GRLS-GRLS 54.6 47.3 33.1
BE-BE 38.5 58.4 42.2
GRLS-BE 53.5 61.3 42.8

Table 5: Retrieval sequence recall rate of HotpotQA official
full-wiki dev set. Scores except for GRLS and GRLS +* are
from Table 3 of Xiong et al. (2021). s-* indicates single-step
and and m-* indicates multi-step. MDR- indicates a variant
of MDR without linked negatives, memory bank, and shared
encoder.

Method Top-2 Top-10 Top-20

DPR 25.2 45.4 52.1
MDR- 59.9 70.6 73.1
MDR 65.9 77.5 80.2

s-GRLS 11.3 23.5 29.5
s-GRLS + mem 10.2 22.9 26.6
m-GRLS 57.7 68.8 73.9
m-GRLS + mem 55.0 65.3 71.4

Table 6: Answer recall rate of NQ dev set. All models
are single-step retrievers. Scores of DPR-* and DPR are
from Table 3 of Karpukhin et al.. DPR-* is the score without
in-batch training and * is the method of finding 7 negative
sentences.

Method Top-5 Top-20 Top-100

DPR-Random 47.0 64.3 77.8
DPR-BM25 50.0 63.3 74.8
DPR-GOLD 42.6 63.1 78.3
DPR 65.8 78.0 84.9

GRLS 46.5 60.0 70.2
GRLS + mem 46.5 61.3 70.4

and HotpotQA. Note that MDR and DPR, which 491

are different in that they are trained with hard neg- 492

ative samples, significantly outperform GRLS. Un- 493

like bi-encoder retrieval, it is not obvious how hard 494

negative samples should be used during training for 495

generative retrieval and is thus an important future 496

direction to close the gap. 497

Effect of Corpus Memorization We analyze 498

whether corpus memorization is helpful for per- 499

formance. We find that memorization is constantly 500

helpful in NQ (Table 6) and StrategyQA (Table 2, 501

3), while the gain is inconsistent in other datasets. 502

Note that NQ is a single-hop dataset, and although 503

StrategyQA is a multi-hop dataset, a single-step ap- 504

proach is sufficient to perform well on the dataset 505

7



as described in “Single-Step BE Analysis”.9 We506

hypothesize that corpus memorization is more ef-507

fective on these single-step datasets than multi-step508

ones because the training objective function for509

memorization is not consistent with the multi-step510

setting. That is, the memorization objective func-511

tion Pθ (p) = ∏
L
i=1 Pθ (yi|y<i) resembles the single-512

step retrieval training objective function of maxi-513

mizing score(q, p) =Pθ (p|q) rather than that of the514

multi-step retrieval, score(q, p(1), · · · , p(T )), which515

goes through multiple retrieval steps. We leave the516

exploration of a better memorization strategy for517

multi-step retrieval as a future work.518

5.2 Do GRLS and BE behave differently?519

By analyzing the result of the GRLS and BE, it can520

be seen that the sequences that the two models re-521

trieve have different characteristics. First, we com-522

pare the top-2 prediction of GRLS and MDR (bi-523

encoder retriever) on HotpotQA. Appendix A.12524

shows that MDR mostly gets wrong by failing to525

retrieve the second hop target even though the first526

hop prediction is correct, whereas GRLS mostly527

gets wrong when the first-hop target is not explic-528

itly expressed in the query. Second, on RuleTaker-529

Open (Appendix A.6), GRLS shows a higher suc-530

cess rate with a more complex and diverse rea-531

soning graph, suggesting that GRLS is strong at532

retrieving highly structured items such as reasoning533

chains and graph relations.534

From the observation that GRLS and BE retrieve535

sequences with different aspects, we compare the536

performance of ensembles of the two models. We537

use a simple ensemble method of considering the538

retrieved sequences from two ensembles models539

one-by-one, starting from the sequence retrieved540

at the top. We use this simple iterative prediction541

aggregation method because BE and GRLS have542

different scoring methods.10543

Figure 7 in Appendix A.13 shows that BE and544

GRLS tend to retrieve different sequences. Table545

9Although Explagraphs-Open can also be tackled with a
single-step approach, it still has more multi-hop characteristics
than StrategyQA. For example, comparing the relative perfor-
mance difference of multi and single-step GRLS in Table 2,
it is about 20% on EntailBank and Explagraphs-Open, while
only 1% on StrategyQA.

10BE uses the inner product between two dense embeddings,
and GRLS uses the aggregation of generation probabilities.
While a more sophisticated method such as using a re-ranker,
calibration, or interpolation of the two model predictions can
be used when the scoring method is different (Seo et al., 2019;
Cheng et al., 2021), we use a simple ensemble method. This
is to eliminate the effect of another model or hyperparameter
choice from the analysis.

4 shows that when BE and GRLS are ensembled, 546

in most cases, it results in better performance than 547

the ensembles of the same type of models (homo- 548

geneous ensembles). Appendix A.14 further shows 549

that the gap between different retrieval types (bi- 550

encoder retrieval and generative retrieval) is gener- 551

ally larger than the gap between different retrieval 552

steps (single and multi-step retrieval). In summary, 553

bi-encoder retrieval and generative retrieval can be 554

complementary to the other, as the ensemble of the 555

two is often more advantageous than a homoge- 556

neous ensemble. 557

5.3 Efficiency of GRLS 558

We compare two bi-encoder retrievers (ST5, MDR) 559

and GRLS on their time complexity and GPU mem- 560

ory usage. For offline computation, bi-encoder 561

retrievers (BE) need to create a large index of em- 562

beddings and store it in GPU, whereas GRLS only 563

needs to build a prefix tree. This gives generative 564

retrieval both time and GPU memory efficiency 565

advantage; GRLS with optimization is about 100 566

times faster and uses 79.5% less GPU memory than 567

ST5 (FP32) with the same number of parameters. 568

During inference time, GRLS can be time- 569

inefficient if it has to generate every word in the 570

retrieval target text. In practice, however, one can 571

stop generation as soon as the partially generated 572

text can uniquely identify the target text. By lever- 573

aging this optimization, GRLS with greedy search 574

is able to achieve 40% inference time reduction 575

with respect to ST5 (FP32) with the same number 576

of parameters. Note that in the absence of the opti- 577

mization process, GRLS is 24.6 times slower than 578

ST5, signifying the importance of early stopping. 579

6 Conclusion 580

We show that generative retrieval, which has been 581

originally proposed for retrieving short sequences 582

such as entities, can also be considered for retriev- 583

ing longer sequences. We particularly find that 584

generative retrieval can have an advantage over 585

bi-encoder in certain situations, such as retrieving 586

structured information (e.g., reasoning chains or 587

graphs) and retrieving an arbitrary number of items. 588

Given that generative retrieval inherently has GPU 589

memory and speed benefits, it can be a practical 590

alternative for general retrieval tasks in the future. 591
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A Appendix733

A.1 Multi-Step Retrieval Examples734

There are many cases where multi-step retrieval is735

necessary for multi-hop datasets because one out-736

put affects the selection of the subsequent output.737

For the first example of Table 8, to find the answer,738

we first need to look at what music Die Rhöner739

Säuwäntzt played and then find where the music740

originated from. Similarly, for the second example741

of Table 8, to find the answer, we need to find who742

was starred in Gunmen from Laredo and then find743

who narrated the Frontier.744

A.2 Dataset Examples745

Examples of each dataset (input and output forms)746

are in Table 9.747

Algorithm 1 Constrained Beam Search

Require: retriever, input query q and prefix tree T , which is a
hash where the key is a token_id and the value is the subtree
taking the corresponding token_id (key) as the root
retrieval_sequence := An empty list to store the token ids
of the sequence to retrieve
next_token_id := NULL

while next_token_id is not <END> and
retrieval_sequence.length < max_length do

token_prob_list := retriever (q, retrieval_sequence)

// O(h)
for all token_id in retrieval_sequence do

T := T [token_id]
end for

potential_next_token_ids := T .keys
potential_next_token_prob_list := filter(

token_prob_list, potential_next_token_ids)
next_token_id := argmax(

potential_next_token_prob_list)
retrieval_sequence.append(next_token_id)

end while

return retrieval_sequence

Algorithm 2 Efficient Constrained Beam Search

Require: retriever, input query q and efficient prefix tree T,
which is a hash where the key is a list of token_ids and the
value is a list of potential next tokens
retrieval_sequence := An empty list to store the token ids
of the sequence to retrieve
next_token_id := NULL

while next_token_id is not <END> and
retrieval_sequence.length < max_length do

token_prob_list := retriever (q, retrieval_sequence)

// O(1)
if retrieval_sequence.length = 0 then

potential_next_token_ids := [T.root]
else

potential_next_token_ids
:= T[retrieval_sequence]

end if

potential_next_token_prob_list := filter(
token_prob_list, potential_next_token_ids)

next_token_id := argmax(
potential_next_token_prob_list)

retrieval_sequence.append(next_token_id)
end while

return retrieval_sequence

A.3 Details of GRLS 748

Constrained Beam Search We use a T5-large 749

tokenizer from huggingface (Wolf et al., 2020) 750

when constructing prefix tree. By using efficient 751

constrained beam search, it shows an average 752

of 56% efficiency on inference time, but only a 753

16% increase in offline time complexity due to 754
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Table 7: Single-Step and Multi-Step Examples on EntailBank, Explagraphs-Open, and StrategyQA. The bold texts
in multi-step examples show parts where it cannot be retrieved by single-step retrieval.

Step Dataset Input Output

Single-Step

EntailBank
Which energy source is considered nonrenewable? fos-
sil fuel

fossil fuels are a nonrenewable resource, fossil fuels
are a nonrenewable resource, an energy source is a kind
of resource

StrategyQA Is Freya a combination of Athena and Aphrodite?
Athena was the Greek goddess of war, Aphrodite was
the Greek goddess of love, Freya was the Norse goddess
of war, love, and fertility

Explagraphs-Open
belief: Entrapment shouldn’t be legalized since it puts
people into false situations. argument: Entrapment is
really a trick

entrapment is trick, trick is false situations, trick not
capable of be legalized

Multi-Step

EntailBank
Which of these is a way the people of Virginia can help
restore a natural ecosystem? Plant native plants

planting native plants has a positive impact on an
ecosystem, to restore means to return to a better state,
better means good, good means positive, helping
something has a positive impact on that something

StrategyQA
Was the first Vice President of the United States an
Ottoman descendant?

The first Vice President of the United States was John
Adams, The Ottomans were a Turkic group that con-
quered Constantinople in 1453, John Adams was de-
scended from English Puritansy

Explagraphs-Open
belief: Racial profiling is biased against anyone who
isn’t white. argument: Racial profiling is not an accept-
able way to codify people as criminals.

racial profiling; is a; prejudiced, prejudiced; synonym
of; biased, prejudiced; has context; who isn’t white,
racial profiling; is not a; acceptable

Table 8: Cases where multi-step retrieval is necessary.

Input Output

Where did the form of music played by Die
Rhöner Säuwäntzt originate?

Output 1

<TITLE> Skiffle </TITLE> Skiffle is a music genre with jazz, blues, folk and American
folk influences, usually using a combination of manufactured and homemade or improvised
instruments. Originating as a term in the United States in the first half of the 20th century,
it became popular again in the UK in the 1950s, where it was associated with artists such as
Lonnie Donegan, The Vipers Skiffle Group, Ken Colyer and Chas McDevitt. Skiffle played a
major part in beginning the careers of later eminent jazz, pop, blues, folk and rock musicians
and has been seen as a critical stepping stone to the second British folk revival, blues boom and
British Invasion of the US popular music scene.

Output 2

<TITLE> Die Rhöner Säuwäntzt </TITLE> Die Rhöner Säuwäntzt are a Skiffle-Bluesband
from Eichenzell-Lütter in Hessen, Germany. The line-up consists of Martin Caba, Christoph
Günther and Christoph Leipold playing Skiffle-Blues with lyrics based on Rhön Mountains
dialect and other Hessian dialects varieties. The expression "Säuwäntzt" means pork belly and
refers also to untidy or unruly children and youth.

Gunmen from Laredo starred which narrator
of "Frontier"?

Output1

<TITLE> Walter Coy </TITLE> Walter Darwin Coy (January 31, 1909 – December 11, 1974)
was an American stage, radio, film, and, principally, television actor, originally from Great Falls,
Montana. He was best known for narrating the NBC western anthology series, "Frontier",
which aired early Sunday evenings in the 1955–1956 season.

Output2

<TITLE> Gunmen from Laredo </TITLE> Gunmen from Laredo is a 1959 American western
film produced and directed by Wallace MacDonald, which stars Robert Knapp, Maureen Hingert,
and Walter Coy.

its overhead of splitting all paths into separate keys.755

756

Multi-Step Retrieval Method We add special757

tokens <QUESTION> and </QUESTION> at758

the front and the end of the input query. When 759

adding the output sequence at the end of the 760

input from the second multi-step retrieval step, 761

special tokens <EVIDENCE> and </EVIDENCE> 762
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Table 9: Dataset examples

Task Input Output

Single-Hop
Paragraph Retrieval

(NQ)

who was the comic book series amar chitra katha cre-
ated

<TITLE> Amar Chitra Katha </TITLE> Amar Chitra
Katha Amar Chitra Katha (ACK, ""Immortal Capti-
vating (or Picture) Stories"") is one of India’s largest
selling comic book series, with more than 100 million
copies sold in 20 Indian languages. Founded in 1967,
the imprint has more than 400 titles that retell stories
from the great Indian epics, mythology, history, folk-
lore, and fables in a comic book format. It was created
by Anant Pai, and published by India Book House. In
2007, the imprint and all its titles were acquired by
a new venture called ACK Media. On 17 September
2008, a new website by ACK-media was launched

Multi-Hop
Paragraph Retrieval

(HotpotQA)

Step 1 Input (a query) Step 1 output (evidence passage)

<QUESTION> The Oberoi family is part of a hotel
company that has a head office in what city? </QUES-
TION>

<TITLE> Oberoi family </TITLE> The Oberoi family
is an Indian family that is famous for its involvement
in hotels, namely through The Oberoi Group.

Step 2 Input (a query with previous output) Step 2 Output (evidence passage)

<QUESTION> The Oberoi family is part of a hotel
company that has a head office in what city? </QUES-
TION> <EVIDENCE> <TITLE> Oberoi family </TI-
TLE> The Oberoi family is an Indian family that is
famous for its involvement in hotels, namely through
The Oberoi Group. </EVIDENCE>

<TITLE> The Oberoi Group </TITLE> The Oberoi
Group is a hotel company with its head office in Delhi.
Founded in 1934, the company owns and/or operates
30+ luxury hotels and two river cruise ships in six
countries, primarily under its Oberoi Hotels & Resorts
and Trident Hotels brands.

Multi-Hop
Sentence Retrieval
(EntailmentBank,

StrategyQA)

Step 1 Input (a query) Step 1 output (evidence sentence)

<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION>

A dentist is a surgeon who specializes in dentistry, the
diagnosis, prevention, and treatment of diseases and
conditions of the oral cavity

Step 2 Input (a query + Step 1 Output) Step 2 Output (evidence sentence)

<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION> <EVIDENCE> A dentist is a
surgeon who specializes in dentistry, the diagnosis, pre-
vention, and treatment of diseases and conditions of the
oral cavity </EVIDENCE>

Technological problems are typically handled by IT
professionals

Step 3 Input (a query + Step 1 & Step 2 Output) Step 3 Output (evidence sentence)

<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION> <EVIDENCE> A dentist is a
surgeon who specializes in dentistry, the diagnosis, pre-
vention, and treatment of diseases and conditions of the
oral cavity </EVIDENCE> <EVIDENCE> Technolog-
ical problems are typically handled by IT professionals
</EVIDENCE>

Bluetooth is not a physical entity

Multi-Hop
Reasoning Path Retrieval

(RuleTakers,
Explagraphs)

Step 1 Input (a query) Step 1 output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </QUESTION>

marriage; created by; love

Step 2 Input (a query + Step 1 Output) Step 2 Output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </QUESTION> <EVIDENCE> marriage;
created by; love </EVIDENCE>

love; causes; health and happiness

Step 3 Input (a query + Step 1 & Step 2 Output) Step 3 Output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </QUESTION> <EVIDENCE> marriage;
created by; love </EVIDENCE> <EVIDENCE> love;
causes; health and happiness </EVIDENCE>

health and happiness; used for; family unit
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are added at the front and the end of the output763

sequence. (Wang et al., 2021)764

765

Retrieval Corpus Memorization Step For the766

path retrieval task (RuleTaker-Open, Explagraph-767

Open), the subject and the relation are given, and768

the model generates the object and for the sen-769

tence and paragraph retrieval task (NQ, HotpotQA,770

EntailBank, StrategyQA), the first 70% of the sen-771

tence is given as input, and the model generates the772

rest.773

A.4 Experimental Setup Details774

We train both ST5 and GRLS using pre-trained775

T5-large checkpoint from Wolf et al. (2020) as the776

initial checkpoint. We use the same hyperparam-777

eter setting when training GRLS and ST5 model778

for a fair comparison. We observe that hyperpa-779

rameter change does not change the tendency of780

results after experimenting over a combination of781

settings used in previous models (Karpukhin et al.;782

Ni et al., 2021; Raffel et al., 2020). Also, we use783

different hyperparameters for different tasks: re-784

trieval corpus memorization and retrieval. For all785

experiments, we use 8 32GB V100 GPUs.786

Retrieval Corpus Memorization The retrieval787

corpus memorization step aims to show GRLS a788

corpus it will retrieve and save it implicitly before789

the retrieval step. We keep the learning rate to 1e-5,790

which is relatively low than the retrieval step, to791

maintain the linguistic ability the model learned792

during pre-training (Jang et al., 2022). We train the793

model from T5 pre-trained checkpoint for every794

dataset using Adafactor with a constant learning795

rate of 1e-5 with batch size 240 till the maximum796

of 3 epochs.797

Increasing the retrieval corpus memorization798

epoch does not always lead to higher performance.799

This is because as the model is trained on a800

new dataset, catastrophic forgetting of previously801

learned parts occurs (Kirkpatrick et al., 2017), and802

in this case, language ability of the model learned803

during the pre-training step. To prevent the fol-804

lowing process from occurring, we follow Jang805

et al. (2022) and reduce the learning rate to 1e-5806

and could observe that using the retrieval corpus807

memorization step of about epoch 3 as the initial808

checkpoint leads to the largest improvement on809

reasoning task.810

Retrieval Step The retrieval step aims to re- 811

trieve the gold item from a large-scale corpus. For 812

datasets where the retrieval corpus memorization 813

step help improve performance (NQ, StrategyQA, 814

RuleTaker-Open, and Explagraphs-Open), we use 815

the checkpoint from the retrieval corpus memoriza- 816

tion step. For the rest of the datasets, we use the 817

T5 pre-trained checkpoint as the initial checkpoint. 818

For both ST5 and GRLS, we train using Adafactor 819

with a learning rate 1e-4 with a linear warm-up for 820

the first 10% of training and then linear decay with 821

batch size 120 till maximum 30 epochs. 822

A.5 Dataset Details 823

Natural Questions (NQ) Kwiatkowski et al. 824

(2019) propose a single-hop open domain ques- 825

tion answering dataset where the questions are 826

mined from real google search queries, and the 827

answers are passages of Wikipedia articles. We use 828

the train/dev/test split and Wikipedia dump from 829

Karpukhin et al.. A single-hop dataset requires a 830

single piece of text evidence to answer the ques- 831

tion. When the input query is given, it retrieves the 832

evidence paragraph from the corpus. 833

HotpotQA Yang et al. (2018) propose an open 834

domain multi-hop question answering dataset, 835

which requires aggregating multiple Wikipedia pas- 836

sages through logical reasoning or sequential pro- 837

cessing. The number of retrieval sequences is 838

fixed to two. HotpotQA consists of two types of 839

questions: comparison and bridge. Comparison 840

questions, a rationale/evidence type of multi-hop 841

dataset, do not necessitate iterative retrieval since 842

the two entities can be retrieved by the query itself. 843

However, bridge questions consist of evidence in 844

the reasoning chain from where it has to retrieve 845

the second step based on the first one. We use the 846

official Wikipedia dump provided by Yang et al. 847

(2018), use 2% of the official train dataset as a dev 848

set, and report the scores on the official dev set. 849

Entailment TreeBank (EntailBank) Dalvi et al. 850

(2021) propose a reasoning tree construction task 851

where it forms a tree with a hypothesis as the root 852

node and evidence sentences are leaf nodes. The 853

dataset has three settings, and among them, we ex- 854

periment on Task3, an open setting. Task3 consists 855

of two steps; the first is to select a leaf node from 856

the corpus set when given a question and an an- 857

swer, and the second is to construct a reasoning 858

tree through the selected leaf node. We perform 859

the first step, the leaf node retrieval. Since the leaf 860
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node and the root node are not directly connected,861

there is a less tight connection between the input862

query and gold outputs than other datasets. We863

experiment on the first step of Task3 (leaf node864

retrieval). As in the paper, we use both Entail-865

Bank and WorldTreeV2 (Xie et al., 2020) datasets866

when training a retrieval model. We compare the re-867

sults with ST5 since there is no released bi-encoder868

model, and as in the paper, we use both EntailBank869

and WorldTreeV2 (Xie et al., 2020) datasets when870

training a retrieval model.871

StrategyQA Geva et al. (2021) propose a multi-872

hop open-domain question answering dataset873

where the reasoning steps are implicit in the ques-874

tion and need some strategy to answer the question.875

When given a question, the model retrieves the ev-876

idence sentences from the corpus. Since only the877

train dataset contains evidence annotation, we split878

it into 75/5/20 (%) and used it as a train/val/test set,879

respectively. Also, based on the given corpus, we880

split the given paragraph-level corpus to sentence881

level using NLTK (Bird et al., 2009) to match the882

granularity of the evidence and add the annotated883

evidence sentences to the corpus.884

RuleTaker-Open Clark et al. (2021) propose a885

synthetic rule-based dataset to measure the model’s886

reasoning ability over the rules expressed in natural887

language. Based on the released dataset, we create888

a new task, RuleTaker-Open, to make the task close889

to a real-world setting. Given a query, the model890

retrieves nodes of the graph, which is a sentence891

from the corpus, and the nodes are connected in or-892

der to construct a graph. Details of the construction893

method are described in Appendix A.6.894

Explagraphs-Open Saha et al. (2021) propose a895

generative and structured commonsense-reasoning896

task. When given a belief and an argument, a897

model predicts whether the argument supports or898

counters the belief and generates (retrieves) a rea-899

soning graph to explain the prediction. While the900

original dataset needs generation on constructing901

the reasoning graph, which is limited to genera-902

tive model only, we expand the task to an open-903

domain retrieval setting to compare with the bi-904

encoder models by constructing the corpus and905

name it Explagraphs-Open. We consider a single906

path (subject-relation-object) as a retrieval unit and907

construct the corpus by dumping all the possible908

paths provided from the dataset.909

A.6 RuleTaker-Open 910

RuleTaker dataset is a synthetic rule-based dataset 911

used to measure the model ability on reasoning 912

over rules (Clark et al., 2021; Tafjord et al., 913

2021; Saha et al., 2020). Given a small corpus 914

of textual facts and rules, the model has to 915

answer the question, retrieve, and construct the 916

graph-structured proofs. As in Tafjord et al. (2021), 917

we use the maximum depth dataset D5 for training. 918

To evaluate the model performance in the open- 919

setting, i.e., Task3 in Dalvi et al. (2021), we 920

newly construct a large corpus and divide the 921

train/dev/test dataset by the unique query set from 922

the original D5 dataset. 923

924

Dataset Construction We dump all the facts 925

and rules from the original D5 train/dev/test 926

datasets to construct the corpus and collect 1621 927

unique queries, which we split into 1300/121/200. 928

We remove cases with NAF and FAIL cases 929

for rule-based evaluation, remove graphs with 930

less than two nodes to ensure that the fact from 931

the corpus itself could not be the proof, and 932

remove graphs with more than ten nodes to fit 933

in the maximum length of T5 model. Also, we 934

added DONE at the end of graph construction for 935

dynamic stopping as in Section 3.1. 936

937

Evaluation Metric In RuleTaker-Open, there are 938

various possible answer graphs for a query, un- 939

like the previous RuleTaker dataset. Therefore, to 940

check whether the prediction graph is correct, a 941

new evaluation metric is necessary. Since each tex- 942

tual sentence can be divided into a simple format, 943

subject-relation-object, when considering the con- 944

structed method (Clark et al., 2021), we evaluate 945

the result by a new rule-based method. 946

We check whether the constructed graph is well- 947

constructed by four steps. 948

• Node Num Error: The number of evidence 949

should be larger than 2. 950

• Start Node Error: First word (subject) should 951

be the same. 952

• End Node Error: Last word (object) should 953

be the same. 954

• Missing Edge Error: There should be no miss- 955

ing edge. 956

Table 10 shows the rate on each constraint for both 957

the bi-encoder model and GRLS. Each error in the 958
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Table 10: Error rate for each error type in RuleTaker-
Open. Results are from 200 test sets.

Error Rate (%) GRLS ST5

Node Num Error 0.5 5
Start Node Error 9.5 0
End Node Error 20 28
Missing Edge Error 19 50
Success 51 17

table corresponds to the item on top with the same959

name .960

Missing Edge Error is evaluated by Algorithm 3;961

when given a prediction graph (P), we divide the962

sentences into rules and facts and check for the963

missing edge in the prediction order. When the964

algorithm returns True, the graph is considered to965

have no missing edge.966

Algorithm 3 Finding the missing edge

Require: Input Corpus P
T := An empty list to append or remove facts
from P

for all sentence s ∈ P do
if s is a rule then

divide s to assumptions A and result r
for all assumption a ∈ A do

if a in T then
T .remove(a)

else
return False ▷ Missing edge

end if
end for
T .append(r)

else
T .append(s)

end if
end for

if T is empty then
return True ▷ No missing edge

else
return False ▷ Missing edge

end if

Predicted reasoning graph of GRLS and Bi-967

encoder retrieval (ST5) are in Appendix A.7968

A.7 RuleTaker-Open Prediction Results969

The prediction result from the model, predicted970

corpus (P), is in the gray box, and the final node is971

colored in yellow. The Missing nodes are colored 972

in red, and the leftover nodes are colored in blue. 973

If there is a red or blue node, it means that it failed 974

to construct the reasoning graph. We show two 975

examples for each retrieval method and success and 976

failure cases (missing edge error case) in Figure 3, 977

4, 5, and 6. 978

Predicted Corpus (P):

1. The cat is kind
2. The cat is kind
3. If something is kind then it chases the cat
4. If something chases the cat then it is young.
5. If something is kind and young then it is cold.
6. If something is cold then it visits the dog.

1 3 4

6

2

5

(a) Example1

Predicted Corpus (P):

1. The lion is young.
2. If something is young then it eats the lion.
3. If something eats the lion then it is kind.
4. The lion is young.
5. If something is young then it eats the lion.
6. If something eats the lion then it likes the lion.
7. If something is kind and it likes the lion then the lion eats the cow.
8. If something eats the cow then it eats the rabbit.

4

1 2 3

8

5 6

7

(b) Example2

Figure 3: Success Examples of GRLS

A.8 Details of Bi-Encoder Retrieval Models 979

(ST5) 980

We use ST5 model (Ni et al., 2021) as the archi- 981

tecture of the bi-encoder baseline to compare the 982

performance with GRLS using the same number of 983

parameters. The input text is fed into T5-encoder, 984

and the first decoder output of the T5-decoder is 985

taken as the sentence embedding. We follow the 986

implementation details in Ni et al. (2021) except 987

for two settings: (1) When calculating the similar- 988

ity, instead of using cosine similarity, we use the 989

inner product as in Karpukhin et al. since cosine 990

similarity shows a low recall rate during multi-step 991
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Predicted Corpus (P):

1. The mouse is cold.
2. The mouse is cold.
3. The mouse is cold.
4. If something is cold then it eats the dog.
5. If something is cold and it eats the tiger then the tiger is kind.
6. If something is cold and kind then it is red.
7. If something is red then it sees the mouse.
8. If something sees the mouse then the mouse is green.
9. If something is green then it sees the squirrel.

43

5

76 8 9

2

1

It eats the tiger

(a) Example1: Leftover node (blue) and missing nodes (red)

Predicted Corpus (P):

1. The bear is kind.
2. The bear is kind.
3. If something is kind then it chases the bear.
4. If something chases the bear then it is big.
5. If something is kind and big then it is rough.
6. If something is rough then it likes the bald eagle.
7. If something likes the bald eagle then it likes the tiger.
8. If something likes the tiger then it likes the lion.
9. If something likes the bear and it likes the bald eagle then it is round.

10. If something is round then it likes the bear.

2 3 4

6

1

5 7 8

9 10

(b) Example2: Leftover node (blue)

Figure 4: Failure Examples of GRLS

(iterative) training. (2) We change the hyperparam-992

eters for a fair comparison with GRLS.993

A.9 EntailBank with Different Unseen Rates994

To check how the performance changes when un-995

seen rate changes inside the same dataset, we create996

a subset of the EntailBank dataset with different997

unseen rates by using the subset of the training998

dataset (reducing the number of graphs in the train-999

ing dataset to 1,313). To check whether the results1000

are general, we create two different datasets with1001

high and low unseen rates, an average of 32.4%1002

and 8.6%, respectively. Specific numbers of unseen1003

rates and the performance of recall rate (R@5) are1004

in Table 11. We observe that GRLS consistently1005

outperforms the bi-encoder model for the tasks with1006

a low unseen rate, whereas the bi-encoder retrieval1007

performs better for the tasks with a high unseen1008

rate.1009

Predicted Corpus (P):

1. The rabbit is blue.
2. If something is blue then it sees the rabbit.
3. If something sees the rabbit then it is big.

1 2 3

(a) Example1

Predicted Corpus (P):

1. The rabbit is big.
2. If someone is big then they need the rabbit.
3. If someone needs the rabbit then they are big.
4. If someone is big then they like the rabbit.
5. If they like the rabbit then the rabbit is kind.
6. If someone is kind then they visit the rabbit.

1 2 3 4 5 6

(b) Example2

Figure 5: Success Examples of Bi-encoder (ST5) Re-
trieval

A.10 Retrieval Sequence Recall Rate on Seen 1010

and Unseen Subsets 1011

We analyze the recall rates of the best GRLS on 1012

unseen and seen subsets. Table 12 shows the per- 1013

formance on seen subset is consistently higher than 1014

that on the unseen subset. 1015

A.11 Ratio of Single-Step-Solvable Questions 1016

We conduct a manual analysis on the ratio of ques- 1017

tions that are answerable by single-step retrieval 1018

in multi-hop datasets, which are questions that can 1019

be answered considering only the question without 1020

other retrieval sequences. In other words, they are 1021

Table 11: The table shows the Evidence Recall score
(R@5) of GRLS and BE on EntailBank subset with
different unseen rate. Unseen column shows the rate
of queries with unseen retrieval sequences over total
number of queries. GRLS shows high performance for
tasks with high unseen rate (High 1 and High 2) and low
performance for tasks with low unseen ratio (Low 1 and
Low 2)

Task Unseen Rate GRLS BE

High 1 33.8% 23.2 30.6
High 2 30.9% 25.8 35.4
Low 1 8.2% 33.0 42.5
Low 2 9.0% 31.2 26.1
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Predicted Corpus (P):

1. The mouse eats the rabbit.
2. The rabbit eats the mouse.
3. If something eats the mouse then it visits the rabbit.
4. If something visits the rabbit then it eats the rabbit.
5. If something visits the mouse and it eats the rabbit then the 

rabbit is cold.
6. If something is cold then it eats the rabbit.
7. If something visits the rabbit and it eats the rabbit then the 

rabbit is kind.
8. If something is kind then it eats the mouse.

1

2 3 4 5 6 7 8

Something visits 
the mouse

Something visits 
the rabbit

(a) Example1: Leftover node (blue) and missing nodes (red)

Predicted Corpus (P):

1. The mouse chases the dog.
2. If the mouse chases the dog then the mouse is red.
3. If the mouse is red then the mouse visits the tiger.
4. If something visits the tiger then the tiger chases the mouse.
5. If something chases the tiger and the tiger chases the mouse 

then it sees the mouse.
6. If something sees the mouse then it sees the dog.
7. If something sees the dog then it chases the mouse.

1 2 3 4 5 6 7

Something 
chases the tiger

(b) Example2: missing node (red)

Figure 6: Failure Examples of Bi-encoder (ST5) Re-
trieval

Table 12: Retrieval sequence recall rate (R@k) of GRLS
for each dataset divided by seen queries and unseen
queries. We use the model with the highest score for
each dataset. K is 2 for HotpotQA and 5 for the other
datasets.

Dataset Seen Unseen

EntailBank 54.9 34.4
StrategyQA 59.3 43.8

Explagraphs-Open 42.2 32.5

HotpotQA 70.0 24.7
NQ 83.6 13.7

similar to comparison type questions rather than1022

bridge type questions in HotpotQA.1023

The analysis is done on randomly sampled 301024

questions from test datasets of EntailBank, Strat-1025

egyQA, and Explagraphs-Open datasets. Table1026

13 shows that StrategyQA and Explagraph-Open1027

have a high rate of single-step-solvable questions,1028

Table 13: Rate of single-step-solvable and multi-step-
solvable questions from randomly sampled 30 questions
on EntailBank, StrategyQA, Explagraphs-Open.

Single-Step-Solvable Multi-Step-Solvable

EntailBank 40.0 60.0
StrategyQA 70.0 30.0

Explagraphs-Open 76.7 23.3

and EntailBank shows a low rate. In Table 7, we 1029

show examples of single-step and multi-step input 1030

and output on EntailBank, Explagraphs-Open, and 1031

StrategyQA. 1032

A.12 Manual Analysis on HotpotQA 1033

We conduct manual analysis on HotpotQA by com- 1034

paring the top-2 prediction result of the GRLS and 1035

MDR, a bi-encoder retriever. From the two ques- 1036

tion categories in HotpotQA (bridge and compar- 1037

ison questions), we manually inspect 30 sampled 1038

examples where one model is fit while the other 1039

model is wrong in Appendix A.12. MDR mostly 1040

got wrong by missing the second hop item though 1041

it got the first hop correct and GRLS was wrong for 1042

cases where the first-hop item is not written explic- 1043

itly in the query but by sharing a specific part of a 1044

sentence. When the item is written explicitly in the 1045

query, GRLS tend to get it correct, which shares 1046

with the result that GRLS shows a higher score on 1047

comparison questions than MDR. We suggest this 1048

result is because GRLS can directly cross-encode 1049

between the input and the output without any infor- 1050

mation loss. 1051

To be specific, we divide the error case into four: 1052

(1) When the first-hop retrieval item is not written 1053

explicitly in the query but by sharing a specific part 1054

of a sentence. 1055

(2) Though it is written explicitly in the query, it 1056

retrieves the wrong document by giving attention 1057

to an irrelevant part of the query. 1058

(3) Detail of the title is wrong (i.e., when the gold 1059

document has title Do you Love Me (Not That I Can 1060

Dance), the model retrieves a document with the 1061

title Do you Love Me (2NE1 song) instead; when 1062

do you love me is in a query, the model misses to 1063

correctly understand the details.) 1064

(4) The retriever got the first hop correct but failed 1065

to retrieve the second hop item correctly. 1066

When comparing the number of models matched in 1067

the bridge question with each error case, among the 1068

four cases, MDR is often wrong in the second (1.3 1069

times) and fourth cases (2.2 times), and the GRLS 1070
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Figure 7: Pairwise prediction similarity ratio over two dif-
ferent models: multi-step generative retrieval (GRLS) and
single-step bi-encoder retrieval (BE) over three datasets. The
dark color indicates there is a higher similarity between the
predictions of the two models and is calculated by retrieval
sequence recall rate. The same model with different numbers
is trained with the same model but different seeds. We can see
that the same models with different seeds have darker colors
(higher similarity) compared to the ones with different models.
GRLS 1 and BE 1 are models trained with seed 101 and GRLS
2 and BE 2 are models trained with seed 42.

is most often wrong in the first case (6 times) along1071

with the third case (2.8 times)11.1072

A.13 Pairwise Prediction Similarity Between1073

BE and GRLS1074

Figure 7 shows the pairwise predictions similarity1075

ratio between two models among two single-step1076

BE and two multi-step GRLS trained with different1077

random seeds. The result demonstrates that BE and1078

GRLS tend to retrieve different retrieval sequences.1079
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Figure 8: Pairwise prediction similarity ratio over four
different models: multi-step GRLS (m-GR), single-step
GRLS (s-GR), multi-step BE (m-BE), and single-step
BE (s-BE). Dark color indicates high similarity between
the two model predictions. The similarity is calculated
based on retrieval sequence recall rate.

A.14 Pairwise Prediction Similarity Between1080

Four Models1081

In this section, we compare the similarity between1082

the four models: multi-step GRLS, single-step1083

GRLS, multi-step BE, and single-step BE. Fig-1084

ure 8 shows how similar the four models are1085

on three datasets: EntailBank, StrategyQA, and1086

11the value in parentheses shows the ratio of the error rate
compared to the other model

Explagraphs-Open. Darker color indicates a high 1087

similarity between the prediction results of the 1088

paired two models. 1089

For all three datasets, multi-step GRLS (m-GR) and 1090

single-step BE (s-BE) show low similarity, which 1091

indicates that the two models capture different as- 1092

pects for the same query, which further shows im- 1093

provement by a simple ensemble method. Also, 1094

Explagraphs-Open shows high similarity over the 1095

four models compared to other datasets. 1096
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