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Abstract

Transferring knowledge from a source domain to a target domain in the absence of source
data constitutes a formidable obstacle within the field of source-free domain adaptation,
often termed hypothesis adaptation. Conventional methodologies have depended on a ro-
bustly trained (strong) source hypothesis to encapsulate the knowledge pertinent to the
source domain. However, this strong hypothesis is prone to overfitting the source domain,
resulting in diminished generalization performance when applied to the target domain. To
mitigate this issue, we advocate for the augmentation of transferable source knowledge via
the integration of multiple (weak) source models that are underfitting. Furthermore, we
propose a novel architectural framework, designated as the Hierarchical Feature Ensem-
ble (HiFE) framework for Few-Shot Hypotheses Adaptation, which amalgamates features
from both the strong and intentionally underfit source models. Empirical evidence from
our experiments indicates that these weaker models, while not optimal within the source
domain context, contribute to an enhanced generalization capacity of the resultant model
for the target domain. Moreover, the HiFE framework we introduce demonstrates superior
performance, surpassing other leading baselines across a spectrum of few-shot hypothesis
adaptation scenarios.
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†Corresponding author.
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Figure 1: Different approaches to improve the performance of Few-shot Hypothesis Adaptation (FHA). (a)
Conventional FHA. (b) Enhancing target performance by increasing the number of target samples. (c)
Typical ensemble approaches to improve target performance by increasing the number of source domains.
(d) Improving target performance under resource constraints with only one source domain and a limited
number of target samples by generating multiple source hypotheses from the given source domain.

1 Introduction

Domain adaptation (DA) (Ben-David et al., 2010) refers to the study of leveraging labeled data in a source
domain (SD) to obtain a predicted model for a given target domain (TD) where labels are insufficient or
unavailable. Conventional DA methods (Ahmed et al., 2021; Jiang et al., 2021; Kang et al., 2019; Sukhija
et al., 2016; Wang et al., 2019) pose a potential risk of exposing private information caused by accessing
the source data. To mitigate this concern, recent studies have introduced source-free DA, also referred to
as hypothesis adaptation (HA) (Liang et al., 2020; Li et al., 2020; Yang et al., 2021; Yi et al., 2023), which
leverages a source model to encode the knowledge from the SD rather than the source data. Recently, few-
shot HA (FHA) (Chi et al., 2021; Yazdanpanah & Moradi, 2022), which operates effectively in scenarios with
limited labeled data from the TD, has emerged as an appealing approach to address data scarcity (Figure
1 (a)). To improve the FHA performance, recent approaches have attempted to increase the size of target
samples via data labeling or generation (Figure 1 (b)) or gather multiple source domains to generate more
source hypotheses (Figure 1 (c) (Ahmed et al., 2021; Shu et al., 2022; Li et al., 2024)).

However, the abovementioned approaches require additional effort to label the target data or to collect
hypotheses from different source domains. Moreover, these approaches rely on best-performing strong source
models from the SD, which may overfit the SD and subsequently perform worse on the TD after adaptation.
This overfitting issue has been demonstrated by a pilot experiment in which models with varying accuracies
from the digit dataset SVHN were adapted to the target task Mnist using a straightforward fine-tuning
approach (details are provided in Appendix A). In this experiment, under-fitted weak source models may
exhibit superior performance compared to the strong model after adaptation (Figure 4). This indicates that
some weak hypotheses, although suboptimal for the SD, may contain underlying knowledge
that could be beneficial for the TD. Inspired by this experiment, we propose addressing the FHA
problem by generating multiple source hypotheses with varying source accuracies from a single SD (Figure 1
(d)). Notably, the routine training of source models naturally produces a series of weak intermediate models
that are often overlooked and discarded. These models are easily obtainable, as reaching out to the source
provider to acquire additional weak models incurs minimal additional cost.

A new problem: FHAW. Thus, we propose to study a new problem called few-shot hypotheses adaptation
with weak models (FHAW). Unlike previous single-source FHA approaches (Chi et al., 2021; Liang et al., 2020)
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that depend on a single strong hypothesis, FHAW aims to leverage multiple source hypotheses with varying
degrees of accuracy from a single SD to enhance the diversity of source models. While some researchers
have advocated for utilizing multi-source hypotheses for HA (Ahmed et al., 2021; Shu et al., 2022; Li et al.,
2024), these ensemble methods typically rely on multiple models originating from different source domains,
each contributing its best-performing hypothesis to the ensemble (Figure 1 (b)). This approach becomes
ineffective when dealing with weak hypotheses that have low source accuracies. FHAW addresses a more
challenging scenario where access to multiple source domains is not feasible, offering a new perspective on
tackling FHA challenges.

A viable approach to solve FHAW. To mitigate the potential negative transfer arising from weak source
models and extract valuable source knowledge for the target task, we have developed a new and efficient
framework called the Hierarchical Feature Ensemble framework (HiFE) to address FHAW, as illustrated in
Figure 2. The HiFE method employs hierarchical ensemble techniques to enhance the representativeness
of intermediate features. It utilizes weighted residual units (WRU) to aggregate features induced by the
source hypotheses, as illustrated in Figure 2 (b). WRU merges similar features with skip connections to
reduce the risk of forgetting the source knowledge, alleviating the overfitting problem when fine-tuning
with few-shot samples. Furthermore, we incorporate feature decorrelation learning (DeCL) by integrating a
correlation penalty term into the standard classification loss, thereby enhancing the diversity of intermediate
features (refer to Figure 2 (c)). Comprehensive results indicate that HiFE delivers state-of-the-art (SOTA)
performance across various domain adaptation tasks.

Main contributions. Our contributions are three-fold:

• To the best of our knowledge, this is the initial investigation into the FHAW problem. FHAW holds
practical relevance in numerous private data-based scenarios, as source providers are inclined to offer
"redundant" weak models instead of disclosing sensitive datasets. Our work introduces a fresh perspective
to encode the source knowledge in the absence of the source data.

• We propose a new framework to aggregate all source hypotheses at the feature level to address the FHAW
problem. We are the first to apply a hierarchical ensemble at the feature level in hypotheses adaptation.
We effectively alleviate the over-fitting problem by the design of WRU and improve the generalization of
the final hypothesis by incorporating feature DeCL loss under the few-shot setting.

• The comprehensive evaluation of the proposed HiFE methodology, conducted over an array of benchmark
datasets—including Mnist, SVHN, USPS, CIFAR-10, STL-10, Amazon, DSLR, Webcam, and VisDA-C-
has established that our approach achieves performance on par with or exceeding current SOTA methods
in various FHA tasks. Notably, as detailed in Table 2, the HiFE method surpasses the SOTA by an
average accuracy of 4.3% in the digit dataset task USPS → Mnist. Similarly, in the task of adapting
DSLR to Webcam datasets, as shown in Table 3, HiFE outperforms the SOTA by 3.6% in accuracy.

2 Related Work

This section presents a brief overview of the literature about traditional domain adaptation, hypothesis
adaptation, multi-hypotheses adaptation, and ensemble methods for hypothesis adaptation.

Domain adaptation (DA). Traditional DA is a subfield of machine learning that focuses on learning a
hypothesis for a TD when labeled data is insufficient or unavailable by leveraging labeled data from an SD.
Numerous DA methods have been proposed for various tasks such as object classification (Liang et al., 2018),
object detection (Hsu et al., 2020), and semantic segmentation (Zou et al., 2018). Existing approaches for
DA can mainly be categorized into two classes: feature-based DA and instance-based DA. The former aims
to learn a domain-invariant representation by minimizing the domain discrepancy in a shared space (Kang
et al., 2019; Long et al., 2017). For example, Gradually Vanishing Bridge (Cui et al., 2020) uses bi-directional
generation to learn domain-invariant representations. The latter minimizes the discrepancy by re-weighting
the source samples for better training. Despite the success achieved by these methods, they require access to
source data during the learning process, which incurs significant costs in terms of data transfer and storage
as well as risks related to personal information leakage.
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Hypothesis adaptation (HA). Researchers have started exploring source-free domain adaptation (SFDA),
namely HA, to mitigate the issues arising from accessing source data. Early works addressed the problem
by fine-tuning the source hypothesis on the target data (Girshick et al., 2014). However, recent studies
have delved into unsupervised DA to investigate the limitations of this straightforward strategy (Ding et al.,
2022; Liang et al., 2020; Yang et al., 2022; Yi et al., 2023). Among these methods, SHOT (Liang et al.,
2020) proposes a representation learning framework to update the feature extractor through information
maximization and self-supervised pseudo-labeling loss. In this framework, pseudo-labels of the target data
are refined using the nearest centroids. Similarly, (Yi et al., 2023) views SFDA as the problem of learning with
label noise and suggests exploiting the early-time training phenomenon to tackle the issue of pseudo-labels.
Notably, these methods rely on large amount of unlabeled data from the TD to purify the pseudo-labels. On
the other hand, TOHAN (Chi et al., 2021) is the first study to explore the HA under a few-shot setting. It
proposes generating an intermediate domain that is compatible with the TD to facilitate transfer learning.
Many previous works rely on a strong source hypothesis for adaptation, which may not always be the most
suitable one for adapting to a specific TD.

Multi-hypotheses adaptation (MHA). MHA extends the HA paradigm by integrating knowledge from
source hypotheses from multiple domains. To tackle this, model selection methods (Nguyen et al., 2020; You
et al., 2021) have been developed to estimate the transferability of each pre-trained hypothesis. However,
the single selected hypothesis may not be able to carry the rich knowledge encapsulated in all of the source
hypotheses. Thus, some researchers have turned to parameter ensemble methods (Ahmed et al., 2021; Rusu
et al., 2016; Shu et al., 2022; Li et al., 2024). Yet, these approaches often require significant amounts
of unlabeled target data to be effective, making them less tenable in the FHA setting. Moreover, these
approaches operate under the assumption that each source hypothesis is a strong one from the corresponding
SD, rendering them ineffective when presented with weak hypotheses. Besides, these approaches require
accessing multiple source domains related to the TD, which is often not feasible. Our research focuses on a
more practical and challenging scenario: only one SD is available.

Ensemble methods for HA. Ensemble methods are prominent research in machine learning (Dietterich,
2000; Dong et al., 2020; Sagi & Rokach, 2018; Eilers et al., 2022). These methods have demonstrated
that combining multiple hypotheses is advantageous over a single hypothesis in classification and regression
problems. However, traditional ensemble methods rely on weighted voting for the final decision and lack the
capability of representation learning (Cao et al., 2012). Thus, some researchers have proposed feature-level
ensembling. Studies have demonstrated the effectiveness of hierarchical feature representation in improving
classification accuracy (Cai et al., 2018; Su et al., 2009). In the area of FHA, research on developing
hierarchical feature-level ensemble methods to derive a comprehensive knowledge representation of all source
hypotheses has been limited.

3 Few-Shot Hypotheses Adaptation with Weak Models

3.1 Problem Definition

We address the problem of few-shot hypotheses adaptation with weak models, where several pre-trained
source hypotheses, including one strong and some weak hypotheses, are given. Let X ⊂ Rd be an input
space and Y := {1, . . . , C} be the label space, where C is the number of classes. To formalize the problem
clearly, some definitions are presented as follows.
Definition 1. (Expected and empirical risk). Given a data distribution P over X ×Y, let H = {h : X → Y}
be the hypothesis space and h ∈ H with the parameter θ ∈ Θ, then the expected and empirical risks are
defined as

L(θ) = E(x,y)∼P [ℓ(θ, x, y)],

L̂(θ, D) = 1
n

n∑
i=1

(ℓ(θ, xi, yi)),

where ℓ is a proper loss function and D = {(xi, yi)}n
i=1 ∼ P n denotes the i.i.d. n observations.
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Definition 2. (Strong Hypothesis). Given a set of hypotheses Ĥ = {hm}M
m=1 from domain S and a validation

set Dval, where m is the hypothesis ID and M is the number of hypothesis, a hypothesis hs ∈ Ĥ is called a
strong hypothesis if ∀h ∈ Ĥ, L̂(θhs , Dval) ≤ L̂(θh, Dval).
Definition 3. (Weak Hypothesis). Given a set of hypotheses Ĥ = {hm}M

m=1 from domain S and a validation
set Dval, where m is the hypothesis ID and M is the number of hypothesis, a hypothesis hw ∈ Ĥ is called a
weak hypothesis if ∃h ∈ Ĥ, L̂(θh, Dval) < L̂(θhw , Dval).

Problem 1. (Few-Shot Hypotheses Adaptation with Weak Models (FHAW)). Given a set of hypotheses
Ĥ with a strong hypothesis hs and M weak hypotheses {hm

w }M
m=1 trained on the SD PS(X, Y ), nt target

labeled data Dt = {(xi
t, yi

t)}
nt
i=1 that i.i.d. drawn from PT (X, Y ) with nt ≪ ns and PS(X, Y ) ̸= PT (X, Y ),

FHAW is to learn a target hypothesis ht : X → Y with hs, {hm
w }M

m=1 and Dt to minimize the expected risk
on the TD.

Comparison with FHA. FHA involves the use of a strong hypothesis derived from the SD. However, such
a hypothesis is prone to over-fitting on the SD, and their generalizability towards the TD can be limited.
To address this challenge, we introduce FHAW by leveraging multiple weak hypotheses to facilitate more
effective adaptation. These weak hypotheses can be easily obtained by saving model snapshots during the
training of the strong source model with minimal additional cost.

3.2 Addressing FHAW in Principle

We will present a theoretical view based on the PAC-Bayesian framework (Germain et al., 2009; McAllester,
1999; Masegosa, 2020) to demonstrate why we propose to incorporate multiple weak hypotheses for FHA and
why our HiFE framework works. In the PAC-Bayesian framework, each hypothesis hθ has prior knowledge
of the hypothesis space Θ, and this prior distribution π is updated to a posterior distribution ρ after
feeding samples D to hθ. In FHAW, multiple models {hθi

}M
i=1 are given with θi ∈ Θi, θ = {θi}M

i=1 and
ρ(θ) =

∏M
i=1 ρi(θi). For a given sample (x, y), we apply the cross-entropy loss ℓ(θ, x, y) = − log p(y|x, θ). A

bound theorem proposed by Deng et al.for the model ensemble is restated below, and some other previous
related theorems are shown in Appendix C.
Theorem 1. (Model ensemble error bound (Deng et al., 2023)). Given a data distribution P over X × Y,
a set of model parameters {Θi}M

i=1 with associated prior {πi}M
i=1, where πi is defined over Θi with πi(θi) ∼

N (0, σ2I), a δ ∈ (0, 1], a real number c > 0, and ρi(θi) is a Dirac-delta distribution centered around θ
′

i with
ρi(θi) = δθ

′
i
(θi), then we have that the Eρ(θ)(L(θ)) is upper bounded by

1
M

M∑
i=1

(
L̂(θ

′
i , D) +

1
2cnσ2 ∥ θi ∥2 +

di

2cn
log(2πσ2)

)
− V̂(ρ(θ), D) +

ϵ

cnL
,

where V̂(ρ(θ), D) is the empirical version of a variance term V(ρ(θ)), which is defined as

Eρ(θ)E(x,y)∼P

[
1

2Mmaxθp(y|x, θ)2

M∑
i=1

(
p(y|x, θi) −

1
M

M∑
k=1

p(y|x, θk)

)2]
,

and ϵ is defined as

log
Eπ(θ)ED∼P n

[
e

cn
(∑M

i=1
(L(θi)−L̂(θi,D))−M(V(θ)−V̂(θ,D))

)]
δ

.

In Theorem 1, the variance term V̂(ρ(θ), D) measures the diversity of all models (Masegosa, 2020). If there
exists an input sample x such that hθi

(x) ̸= hθj
(x), then we have V̂(ρ(θ), D) > 0. Therefore, in the setting

of FHAW, adding weak hypotheses increases the diversity of the source models and provides opportunities
to decrease this error bound. Minimizing the first term of the error bound in Theorem 1 is equivalent to
finding θ = {θi}M

i=1 by minθ

∑M
i=1

(
L̂(θi, D) + λ1 ∥ θi ∥2 +λ2di

)
/M , where di is the dimension of θi and λ1,

λ2 > 0 are hyper-parameters. Based on this formula, we propose a hierarchical feature ensemble module to
reduce the dimensionality of features.
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Figure 2: The architecture of HiFE framework. Each source hypothesis consists of a feature encoder and a
classifier. We train a model with a hierarchical feature ensemble module to merge features from all source
encoders. In this module, features are grouped according to the cosine similarity, and WRU merges the
grouped features to generate new features for the next layer. Each WRU leverages skip connections to avoid
over-fitting. Besides, we apply the decorrelation learning (DeCL) strategy by adding a correction penalty
term to the loss function to encourage feature diversity. The target classifier ct, initializing with the average
of all the source classifiers, is fixed during the training. Only the parameters of the strong encoder gs and
the hierarchical feature ensemble module are updated.

4 Few-shot Hypotheses Adaptation via Hierarchical Feature Ensemble

To aggregate knowledge from both strong and weak source hypotheses, we introduce the HiFE framework,
depicted in Figure 2. HiFE hierarchically merges features induced by all the source hypotheses. We assume
each source hypothesis has been embedded with its specific discriminative knowledge about the SD. Hence,
during the aggregation, we use a feature de-correction learning module, making the features as mutually
independent as possible at each level to increase the representative power of the intermediate features. We
describe the design insights of HiFE in Section 4.1 and Section 4.2.

4.1 Hierarchical Feature Ensemble

Ensemble learning is widely recognized as an effective approach for combining multiple learning methods
and improving overall performance (Beven & Binley, 1992; Kuczera & Parent, 1998). While ensemble
methods have been utilized for HA in past research (Ahmed et al., 2021), ensemble learning at the feature
representation level has received relatively less attention. However, prior research has shown that hierarchical
feature representations can significantly enhance classification accuracy. We propose a hierarchical feature
ensemble-based approach for FHAW to leverage such benefits. Specifically, our method involves merging
source features that contain knowledge of the SD using a hierarchical feature ensemble module before feeding
them to the final classifier.

To simplify the feature extraction process with the source hypotheses, we follow (Motiian et al., 2017) and
(Ahmed et al., 2021) to decompose each hypothesis h into two modules: a feature encoder g : X → Rd and a
classifier c : Rd → RC , where d denotes the dimension of the output feature. Thus, we have h(x) = c(g(x)),

6



Published in Transactions on Machine Learning Research (09/2024)

i.e., h = c ◦ g. In our problem setting, source hypotheses are decomposed to cs ◦ gs and {cm
w ◦ gm

w }M
m=1.

Features induced by gs, {gm
w }M

m=1 are fed into the feature ensemble module. Let xi
l denote the i-th feature

at layer l (l ∈ {0, 1, ..., L}) and {xi
0}N0

i=1 be the N0 input features. The hierarchical feature ensemble module
aims to aggregate all these features into one single feature x1

L through a hierarchical method so that x1
L

contains as much source knowledge as possible. To this end, we must tackle two questions: 1) which features
to merge and 2) how to merge the chosen features.

1) Which features to merge? According to the Gestalt principles of psychology (Koffka, 2013), humans tend
to group similar information during cognitive processing. Taking inspiration from this, we utilize feature
similarity as a metric to group similar input features together from the previous layer for the purpose of
merging. Given a set of Nl features, we first create a similarity matrix S ∈ RNl×Nl , where Si,j = cos(xi

l, xj
l )

is the cosine similarity of features xi
l and xj

l . Next, we repeatedly choose two or more features with the
highest similarity and merge them into a new feature for the next layer. The merging is done only between
features from the previous layer. Such a hierarchical merge process repeats layer by layer until only one
output feature is left.

2) How to merge features? In the FHA setting, the small sample size problem limits the feasibility of
maintaining adequate validation sets to assess performance before testing unknown samples. Without such
validation sets, optimizing the model could cause over-fitting to the limited target data, leading to a local
optimum and performance degradation (Goodfellow et al., 2014; Kirkpatrick et al., 2017). To address this
issue, we propose the Weighted Residual Unit (WRU), adding the “shortcut connections” of the input features
to the block output after feature merging (see Figure 2 (b)). The shortcut connections allow the upper
layer’s features to be directly sent to the next layer, maintaining the source knowledge during adaptation
and alleviating the over-fitting problem. Within each WRU, the input features {fi}K

i=1 are concatenated and
fed into a fully connected (FC) layer, where K is the number of input features. The output of the FC layer
is denoted as FC({fi}K

i=1, WFC) with WFC be the learnable parameters of this layer. Unlike the shortcut
connections that perform identity mapping in ResNet (He et al., 2016), we perform a weighted element-wise
addition of {fi}K

i=1 and FC({fi}K
i=1, WFC) to balance the influence of different input features induced by the

source hypotheses. The function of WRU can be formalized as follows.

WRU({fi}K
i=1) = α0 · FC({fi}K

i=1, WFC) +
K∑

i=1
αi · fi, (1)

where {αi}K
i=0 are the learnable weights. We add the batch normalization and ReLu layers after the weighted

sum for better performance. If the dimension of fi is not equal to that of the output of FC, we can make
a linear projection of fi by extending αi to a square matrice Wi to match the dimension. The application
of WRU allows us to preserve some source knowledge and learn new information from the target samples
simultaneously.

In our approach, we follow the aforementioned principle to determine which features to merge and then use
the WRU to merge the features based on the first batch of input data. Once we pass the first batch of input
data, the merging network is built. This merging network then remains fixed, and all subsequent samples
share the same merging network. Such a setting ensures stable fine-tuning on target samples.

4.2 Decorrelation Learning

It has been commonly agreed that diversity is a success factor of ensemble algorithms. Different opinions from
multiple classifiers are expected to reduce the generalization error. Traditional decorrelation learning (DeCL)
methods encourage diversity explicitly by adding a correlation penalty term to the final error function (Liu
& Yao, 1999; Shi et al., 2018; Wang et al., 2010). When it comes to feature ensemble, learning the features
with good discriminative power is also essential for various high-level vision tasks (Wen et al., 2016; Cheng
et al., 2018). To promote the learning of features widely distributed across the feature space and embed
various forms of source knowledge, we apply DeCL in the feature space to encourage independence between
features in each layer. In this regard, we introduce a cosine similarity penalty to decrease feature correlation
and encourage feature diversity (see Figure 2 (c)). Specifically, we calculate the pairwise square values of
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cosine similarities for all features in the same layer and sum them up from all layers. The corresponding
feature DeCL loss is defined as

LDeCL =
L∑

l=1

Nl−1∑
i=1

Nl∑
j=i+1

cos(xi
l, xj

l )2, (2)

where Nl is the number of features at layer l and cos(xi
l, xj

l ) = (xi
l · xj

l )/(∥xi
l∥ · ∥xj

l ∥). Furthermore, to
enable the adaptation of the ensemble network to the TD, we incorporate the knowledge of TD by fitting
the network to the labeled target data. To accomplish this, we adopt the standard cross-entropy loss, which
is defined as follows,

LCLS = E(xt,yt)∼PT
[CE(ct(A(xt)), yt)], (3)

where CE(·) denotes the cross-entropy loss and A(xt) refers to the output of the feature ensemble module
when fed xt to the source encoders. To summarize, we train the ensemble network using joint supervision
that combines the target supervised loss (Equation (3)) and a feature DeCL penalty term (Equation (2))
with a hyper-parameter β to trade off the two aspects (Equation (4)). The target supervised loss guides the
network in learning the knowledge from the target samples, while the feature DeCL loss promotes mutual
independence amongst features in each layer, thereby increasing the feature diversity and preserving the
distinct discriminative knowledge of each source hypothesis.

L(β) = (1 − β) · LCLS + β · LDeCL. (4)

5 Experiments

5.1 Experimental Setup

Datasets. We conduct experiments on various standard DA benchmarks to evaluate our approach1

Digits. We choose three-digit datasets, i.e., Mnist (M), USPS (U), and SVHN (S) for our experiments.
Following (Motiian et al., 2017; Chi et al., 2021), we experiment with different numbers of target samples
from 1 to 7 per class.

Office. We use three domains of the office datasets (Saenko et al., 2010): Amazon (A), DSLR (D), and Web-
cam (W). Each domain contains 31 object classes in the office environment. We conduct several experiments
with different numbers of target samples per class ranging from 1 to 5.

Image classification. We use two image classification benchmarks CIFAR-10 (CF) (Krizhevsky, 2009) and
STL-10 (ST) (Coates et al., 2011). Each benchmark consists of 10 classes of objects, and nine classes are
overlapped. We remove the non-overlapped classes (“monkey” and “frog”) and reduce the tasks to a 9-class
classification problem following the procedure in (Shu et al., 2018). As the two domains are more complex
than digits, we increase the number of target samples to 15 and 20 for each class.

VisDA-C. VisDA-C (Peng et al., 2017) is a demanding large-scale benchmark designed primarily for the
12-class synthesis-to-real object recognition task. The source domain comprises 152,000 synthetic images
created by rendering 3D models from different angles and with different lighting conditions, whereas the
target domain includes 72,000 real object images sourced from Microsoft COCO. We randomly choose 10%
of the target data set (7200 images) as the testing set. Since the domain gap between the synthesis and
real-object images is large, we experiment on a larger number (10, 30, and 50) of the target samples.

Baseline methods. In the context of the novel FHAW problem setting, we establish our baseline compar-
isons by adapting and refining several established approaches in the field. We conducted a comprehensive
evaluation against four existing methods for HA and their respective variations. Initially, SHOT (Liang et al.,
2020), a hypothesis transfer learning framework tailored for unsupervised HA, served as a foundation. In our

1The full code is available at https://github.com/yfZhong/HIFE.git.
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study, we preserved its model adaptation module, tweaking it to leverage labeled target data to support su-
pervised HA, aligning it seamlessly with our experimental setup. The performance outcomes from employing
solely the strong hypothesis with SHOT are denoted as SHOT-strong. The subsequent contender, TOHAN
(Chi et al., 2021), specifically tackles the FHA challenge. Both SHOT and TOHAN are engineered to adapt
a singular hypothesis to the TD independently. To evaluate against our multi-hypotheses adaptation ap-
proach, we extended these methods to SHOT-ens and TOHAN-ens by employing a straightforward ensemble
technique, following the methodology outlined in (Ahmed et al., 2021). Furthermore, we included the models
DECISION (Ahmed et al., 2021) and Bi-ATEN (Li et al., 2024), specifically designed for multi-source-free
unsupervised HA, to contrast with our single-source multi-model HA strategy.

Network architecture. For digit recognition tasks, we employ the same architectures utilized in SHOT
(Liang et al., 2020), namely using the LeNet-5 (LeCun et al., 1998) for Mnist, USPS, and a modified version
of LeNet for the slightly more complex SVHN dataset. For the image classification tasks, we adopt ResNet-
18, ResNet-50, and ResNet-101 ((He et al., 2016)) as the backbones for the CIFAR-10/STL-10, office, and
VisDA-C datasets, respectively.

Source hypotheses preparation. We train a single optimal hypothesis as a strong source hypothesis for
each SD and save seven intermediate snapshots as weak source hypotheses with varying accuracy levels.
To acquire the hypotheses with different source accuracies, we first set an accuracy range [accmin, accs],
where accmin is a preset value around at 40-60% and accs is an estimation of the accuracy of the strong
hypothesis. Then, we split this range into several uniform intervals and save one model snapshot at each
interval to get weak hypotheses for each SD. The source data can be discarded after getting all the required
source hypotheses. Section 5.1 shows the source models generated with the source dataset Mnist and their
corresponding accuracy ranges. We generate 12 source models {hi|12

i=1}. According to our definition in
Section 3, the first 11 models {hi|11

i=1} are weak source hypotheses, while the last one h12 is the strong
hypothesis. Among these models, we used {hi|12

i=5} (8 models) in the experiments shown in Table 2 and
Table 8, while all models are prepared for ablation studies. The process of training the target ensemble
hypothesis with HiFE is detailed in Appendix B.

MI AC MI AC MI AC MI AC

h1 [40, 45) h4 [55, 60) h7 [70, 75) h10 [85, 90)
h2 [45, 50) h5 [60, 65) h8 [75, 80) h11 [90, 95)
h3 [50, 55) h6 [65, 70) h9 [80, 85) h12 [95, 100)

Table 1: An example demonstrating the generation of source hypotheses using the Mnist dataset. We first set
an accuracy range of [40%, 100%]. This range is then divided into 12 uniform intervals. During training on
the Mnist training set, we save one model snapshot at each interval to obtain the corresponding hypotheses.

5.2 Result Analysis

Results of digit classification tasks. We evaluate the effectiveness of our approach on six closed-set
adaptation tasks for digit classification. These tasks are by pairwise combinations of the three domains
S, M , and U . We report the results of three tasks in Table 2 (more results can be found in Appendix
D). Firstly, as shown in Table 2, there exist some weak hypotheses that can perform better than the strong
hypothesis after adaptation (see the comparison of SHOT-best and SHOT-strong), supporting our motivation
of adopting the weak hypotheses. Moreover, incorporating the weak hypotheses allows our proposed HiFE to
outperform SHOT-strong. For instance, compared with the average accuracy of SHOT-strong (77.3%), HiFE
leads to higher average accuracy (88.7%) in the task S → M . Additionally, despite some weak hypotheses
with bad adaptation performance (see SHOT-worst), HiFE can largely avoid the severe negative transfer and
achieve the best performance than previous ensemble approaches. For example, HiFE outperforms the SOTA
(TOHAN-ens) by 4.3% in the average accuracy of U → M task. Notably, we can observe that our approach
not only maintains competitive accuracy but also decreases the standard deviation (std) of accuracy across
different target samples. This reduction in std is paramount as it indicates a more consistent and reliable
performance of our HiFE.

Results of office object classification tasks. We show the results of three closet-set adaptation tasks
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Tasks Hypothesis Method Number of Target Data per Class Avg
Number 1 2 3 4 5 6 7

U → M

Single
SHOT-worst 42.1±1.2 44.3±0.8 49.9±1.0 48.4±1.6 50.7±0.6 50.9±1.1 50.9±0.8 48.2
SHOT-best 92.1±1.5 93.4±1.2 93.7±0.9 93.6±1.0 93.7±1.5 93.5±0.8 94.0±0.6 93.4

SHOT-strong 89.8±1.1 90.3±1.3 92.0±1.5 91.3±1.6 92.0±0.7 92.0±0.8 91.9±0.5 91.3

Multiple
SHOT-ens 86.8±1.6 88.5±1.8 90.0±2.1 89.5±2.3 90.5±1.9 90.6±1.0 90.8±1.3 89.5

TOHAN-ens 87.3±1.8 89.7±1.6 90.1±1.6 90.5±1.4 91.2±1.5 92.5±0.9 93.5±0.7 90.7
DECISION 88.7±2.3 88.8±1.8 89.6±2.4 89.8±2.1 90.3±1.7 90.2±1.3 90.5±1.1 89.7
Bi-ATEN 89.5±1.1 90.9±1.2 91.5±0.8 91.1±0.4 92.1±1.2 92.5±2.3 90.5±2.6 91.2

HiFE (ours) 92.7±0.8 94.9±0.2 95.0±0.4 95.2±0.6 95.4±0.5 95.4±0.7 96.1±0.3 95.0

S → M

Single
SHOT-worst 40.9±1.0 45.1±1.2 50.9±1.1 51.6±0.9 51.7±1.1 51.8±0.8 51.9±0.8 49.1
SHOT-best 74.8±1.4 75.1±1.2 79.8±1.3 79.1±0.9 80.6±1.1 79.8±0.5 79.1±0.6 78.3

SHOT-strong 74.5±2.0 73.5±1.1 78.7±1.8 78.2±1.5 78.8±1.3 78.6±0.9 78.7±0.8 77.3

Multiple
SHOT-ens 75.6±2.2 74.9±1.2 81.2±2.6 81.5±1.4 82.0±1.3 81.6±1.0 81.7±1.5 79.8

TOHAN-ens 79.0±1.9 85.9±2.1 87.5±1.6 89.5±1.1 90.1±1.4 90.6±1.2 91.1±0.9 87.7
DECISION 71.9±1.3 72.1±2.1 72.5±2.0 73.4±1.5 75.0±1.2 76.7±1.5 79.2±1.0 74.4
Bi-ATEN 75.1±1.7 77.2±1.1 77.1±2.3 79.7±2.5 80.1±2.9 82.5±1.9 83.1±1.6 79.3

HiFE (ours) 79.2±2.1 85.7±2.0 88.1±1.0 90.3±0.9 92.2±0.7 92.5±0.9 92.8±1.0 88.7

U → S

Single
SHOT-worst 15.8±2.1 14.8±1.9 14.7±0.9 14.3±1.5 14.3±1.7 14.0±0.9 14.4±0.5 14.6
SHOT-best 32.6±1.1 32.4±1.6 34.5±1.2 37.3±2.0 38.4±0.8 40.6±0.6 40.5±0.7 36.6

SHOT-strong 32.6±1.1 32.3±1.7 34.3±1.6 37.0±1.3 38.2±0.9 40.2±0.8 40.4±0.9 36.4

Multiple
SHOT-ens 33.3±2.1 32.1±1.8 34.1±1.9 36.5±1.2 38.1±1.4 39.9±0.9 40.4±0.9 36.3

TOHAN-ens 31.7±1.8 31.0±1.4 35.8±1.3 36.9±0.9 40.5±0.6 42.6±0.8 43.1±0.7 37.4
DECISION 30.3±2.1 30.5±2.0 31.2±1.8 31.5±1.9 32.0±1.2 32.1±1.3 32.4±0.9 31.4
Bi-ATEN 31.5±1.5 30.9±1.9 33.5±1.7 33.1±1.8 35.3±1.6 35.3±0.8 37.1±1.4 33.8

HiFE (ours) 33.0±2.0 32.9±1.2 37.5±0.8 39.8±0.8 40.1±1.0 42.7±1.1 43.3±0.9 39.5

Table 2: Classification accuracy±standard deviation (%) on three adaptation tasks of digit datasets. M, U,
and S refer to MNIST, USPS, and SVHN, respectively. The suffixes -best and -worst refer to the best and
worst results after adapting each single source hypothesis. The suffixes -strong and -ens refer to the result
of adapting the strong hypothesis and the ensemble of all hypotheses, respectively. Results of SHOT (Liang
et al., 2020), TOHAN (Chi et al., 2021), DECISION (Ahmed et al., 2021), Bi-ATEN (Li et al., 2024), and
our HiFE are presented. The highest accuracy is marked in bold.

with office datasets in Table 3 (more results can be found in Appendix E). The proposed HiFE consistently
improves the adaptation performance, boosting the average accuracy from 60.1% to 64.2% in task W → A.
While HiFE is designed to adapt source models from a single SD to a TD, our approach also works effectively
when the source models come from multiple domains (see Appendix F). In addition, HiFE also outperforms
the SOTA in the partial FHA scenario (as shown in Appendix G).

Results of image classification tasks. For image classification, we evaluate our approach on two adap-
tation tasks, CF → ST and ST → CF . As shown in Table 4, we achieve 1.3% average improvement over
the SOTA ensemble approaches in the CF → ST task.

Results of VisDA-C object classification tasks. Table Section 5.2 presents the results of the synthesis-
to-real adaptation task using the large-scale VisDA-C dataset. When the number of target samples is limited
to 10 per class, SHOT-best achieves a significantly higher accuracy (74.8%) compared to SHOT-strong
(70.8%). This observation supports our hypothesis that certain weak hypotheses can outperform strong
hypotheses after adaptation. As the number of target samples increases to 50 per class, the performance
gap between SHOT-strong and SHOT-best narrows, suggesting that the dependency on the source model
diminishes with more target data. A detailed comparison of HiFE with previous methods reveals that HiFE
excels, particularly when fewer samples are available. For example, when the number of target samples per
class is 10, HIFE (76.1%) outperforms the SOTA methods Bi-ATEN and TOHAN (72.5%) by 3.6%. This
finding indicates that HiFE effectively leverages weak hypotheses to enhance adaptation accuracy under
conditions of data scarcity.
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Tasks Hypothesis Methods Number of Target Data per Class Average
Number 1 2 3 4 5

A → D Multiple
SHOT-ens 76.5±1.9 78.6±1.5 78.7±1.7 80.1±0.9 81.2±1.2 79.0

TOHAN-ens 78.5±1.6 79.5±1.3 83.2±0.9 85.1±1.1 87.1±1.1 82.7
DECISION 79.2±1.5 80.2±2.2 80.8±1.2 81.5±2.0 83.5±1.3 81.0
Bi-ATEN 79.1±1.2 81.6±1.4 81.5±0.9 82.1±1.5 84.1±2.1 81.7

HiFE (ours) 79.2±1.0 84.3±0.4 85.7±1.0 86.2±0.9 89.2±0.8 85.0

D → A Multiple
SHOT-ens 56.8±2.0 58.0±1.9 59.2±1.7 61.8±0.5 62.5±0.9 59.7

TOHAN-ens 58.1±1.3 60.8±1.2 63.1±1.9 63.8±0.8 64.1±0.9 62.0
DECISION 54.1±1.6 54.2±2.5 56.1±2.1 57.4±0.9 58.5±0.7 56.1
Bi-ATEN 55.2±1.3 57.1±2.1 60.3±0.9 61.5±1.1 62.5±1.8 59.3

HiFE (ours) 61.8±1.0 64.7±0.7 67.2±0.6 66.8±1.0 67.5±0.9 65.6

W → A Multiple
SHOT-ens 55.1±1.2 58.2±1.6 59.9±1.4 60.8±1.1 61.2±1.1 59.0

TOHAN-ens 56.5±1.0 60.1±0.9 60.4±1.2 61.2±0.8 62.5±0.7 60.1
DECISION 54.1±2.1 54.9±1.8 55.6±1.6 56.5±1.2 58.1±1.2 55.8
Bi-ATEN 56.2±1.9 58.4±1.6 58.9±2.2 61.5±1.3 61.7±1.1 59.3

HiFE (ours) 62.5±2.5 65.1±1.5 64.4±1.2 64.3±0.9 64.8±0.8 64.2

Table 3: Classification accuracy±standard deviation (%) on three adaptation tasks of office datasets. A, D,
and W are abbreviations of Amazon, DSLR, and Webcam. The suffix -ens refers to the result of the ensemble
of all adapted hypotheses. Results of SHOT (Liang et al., 2020), TOHAN (Chi et al., 2021), DECISION
(Ahmed et al., 2021), Bi-ATEN (Li et al., 2024), and our HiFE are presented. The bold value represents the
highest accuracy.

Tasks Methods Number of Target Data per Class Average
15 20

CF → ST

SHOT-ens 70.3±0.4 70.5±0.6 70.4
TOHAN-ens 67.5±0.6 69.8±0.5 68.7
DECISION 70.4±0.4 70.6±0.6 70.5
Bi-ATEN 70.7±0.3 70.9±0.5 70.8

HiFE (ours) 71.6±0.4 71.9±0.3 71.8

ST → CF

SHOT-ens 53.1±0.6 53.5±0.5 53.3
TOHAN-ens 52.5±0.6 52.6±0.8 52.6
DECISION 54.2±0.5 54.5±0.6 54.4
Bi-ATEN 53.7±0.4 54.6±0.4 54.1

HiFE (ours) 55.0±0.3 55.3±0.3 55.2

Table 4: Classification Accuracy±standard deviation (%) on two tasks between CIFAR-10 (CF) and STL-10
(ST).

5.3 Ablation Studies

Ablation study on the feature DeCL loss. We study the advantage of our training loss by incorporating
feature DeCL loss LDeCL in Equation (4) with different β values ranging from 0 to 1.0 with the digit datasets.
In this context, β = 0 corresponds to training the network using only the supervised loss LCLS, while β = 1
corresponds to training the network using only the feature DeCL loss LDeCL. As shown in Table 6, our
optimal results generally occur at β = 0.1, which yields an average improvement of 1.4% compared to the
result obtained when no feature DeCL loss is used (β = 0). Notably, even when the model is trained solely
using the feature DeCL loss LDeCL (β = 1.0), it still achieves an average improvement of 10.9% compared
to the accuracy before the adaptation (WA), demonstrating the effectiveness of the feature DeCL loss.

We also visualize the correlation matrices of the features after the merge at the first layer of the task U → M
when β = 0.1. As depicted in Figure 3, as the training progresses, the feature DeCL loss guides the decrease
of most of the correlation values between the four features, thereby increasing feature diversity.

Ablation study on the number of weak hypotheses. We conduct an ablation study to analyze the
impact of the number of weak hypotheses on the final performance, providing insights into choosing a proper
number of weak hypotheses to balance the cost and performance. We do this experiment in an adaptation
task from domain Mnist to USPS. We select varying numbers (from 2 to 6) of source hypotheses from the
models provided in Section 5.1 and make sure the accuracy range of each group of source models is the
same. For each experiment, the selected weak hypotheses started from h5 and ended with h11, ensuring the
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Tasks Hypothesis Methods Number of Target Data per Class Average
Number 10 30 50

Synthesis → Real

Single
SHOT-worst 70.8±1.2 76.1±1.3 80.4±0.6 75.8
SHOT-best 74.8±0.8 78.8±1.1 81.3± 0.8 78.3

SHOT-strong 70.8±1.3 77.7±1.7 81.1±0.4 76.5

Multiple
SHOT-ens 72.1± 77.1± 80.9± 76.7

TOHAN-ens 72.5±1.5 77.7±1.2 81.5±0.9 77.2
DECISION 71.2±2.1 76.5±1.9 79.8±1.1 75.8
Bi-ATEN 72.5±2.0 77.7±1.9 81.5±0.8 77.2

HiFE (ours) 76.1±1.1 80.3±0.8 82.1±0.7 79.5

Table 5: Classification Accuracy±standard deviation (%) on the adaptation task from VisDA-C synthesis
data to real object data.

Tasks The Value of β WA
0 0.1 0.2 0.3 0.5 0.7 0.9 1.0

S → M 93.2 94.0 93.9 93.2 92.3 90.0 86.4 77.0 67.1
S → U 94.5 95.6 95.6 94.1 92.8 91.2 88.7 82.3 78.2
M → S 52.2 54.2 54.3 53.2 52.8 52.7 52.1 46.0 23.2
M → U 96.1 97.1 96.8 96.3 96.1 95.1 94.6 91.2 70.5
U → S 44.5 46.2 44.5 42.5 40.1 39.6 39.1 33.2 26.2
U → M 94.9 95.9 95.3 95.1 94.6 92.9 91.3 89.9 88.5
Average 79.2 80.6 80.1 79.1 78.1 76.9 75.4 69.9 59

Table 6: Ablation study on the feature decrrelation learning loss balance parameter β in Equation (4). M,
U, and S are abbreviations of MNIST, USPS, and SVHN. WA indicates the accuracy of the model without
the adaptation. The bold value represents the highest accuracy (%).

selected accuracy range was [60, 95). The results are presented in Exp1−1 ∼ Exp1−5 of Table 7. As shown
in Table 7, when the number of weak hypotheses is less than 3, the average accuracy (94.2% in Exp1−1)
is lower than that when the number of weak hypotheses is greater than 3. Moreover, the average accuracy
remains consistent when the number of weak hypotheses exceeds 3 (see the comparison of the result of
Exp1−3 ∼ Exp1−5).

Ablation study on the accuracy range of weak hypotheses. To investigate the impact of the accuracy
range of weak hypotheses on the final performance, we leverage the source models presented in Section 5.1
and do the digit adaptation task from Mnist to USPS using source models with varying accuracy ranges.
We conducted experiments from Exp2−1 to Exp2−4 as outlined in Table 7. Our results indicate that as
the accuracy range increases, the performance after adaptation improves. It is important to note that weak
source models with an accuracy lower than 55% may harm the final performance. Our comparison of Exp2−1
and Exp2−5 revealed that using weak hypotheses with such low accuracy resulted in worse performance than

(a) e = 0 (b) e = 1
3 Emax (c) e = 2

3 Emax (d) e = Emax

Figure 3: The correlation matrixes of the features after the merge at the first layer on digit task U → M
when the β value is set to 0.1. (a) ∼ (d) shows the results over different training stages with e, Emax being the
current and maximum number of epochs. As the training continues, we observe that most of the correlation
values between the four features in this layer decrease (the darker the color, the lower the corresponding
correlation value).

12



Published in Transactions on Machine Learning Research (09/2024)

Exp ID HN Weak Hypothesis Weak Hypothesis Indices FN LN UH Number of Target Data per Class Average
Accuracy Range 1 3 5 7

Exp1−1 2 [60, 95) h5, h11 2 3 h12 92.0±1.2 94.6±0.7 94.5±0.5 95.6±0.5 94.2
Exp1−2 3 [60, 95) h5, h8, h11 2 3 h12 92.3±1.0 94.8±0.6 95.7±0.7 96.1±0.7 94.7
Exp1−3 4 [60, 95) h5, h7, h9, h11 2 3 h12 92.7±1.1 95.2±0.6 96.1±0.5 96.7±0.2 95.2
Exp1−4 5 [60, 95) h5, h7, h8, h9, h11 2 3 h12 92.6±1.0 95.3±0.7 96.0±0.5 96.6±0.4 95.1
Exp1−5 6 [60, 95) h5, h6, h7, h8, h9, h11 2 3 h12 92.8±0.9 95.1±0.5 96.2±0.7 96.8±0.5 95.2

Exp2−1 3 [40, 55) h1, h2, h3 2 3 h12 91.1±0.7 93.8±0.6 94.5±0.8 95.2±0.8 93.7
Exp2−2 3 [55, 70) h4, h5, h6 2 3 h12 91.5±0.7 94.1±0.6 95.3±0.6 96.0±0.8 94.2
Exp2−3 3 [70, 85) h7, h8, h9 2 3 h12 92.2±0.6 94.7±0.8 95.7±0.8 96.7±0.6 94.8
Exp2−4 3 [80, 95) h9, h10, h11 2 3 h12 92.4±0.8 94.8±0.4 96.1±0.8 96.7±0.6 95.0
Exp2−5 0 - - 1 1 h12 91.5±0.6 94.2±0.6 94.2±0.9 95.5±0.7 93.9

Exp3−1 7 [60, 95) h5∼11 2 4 h12 93.0±1.4 95.3±0.5 96.0±0.3 96.7±0.3 95.3
Exp3−2 7 [60, 95) h5∼11 4 3 h12 93.2±1.1 94.9±0.6 96.2±0.5 96.6±0.4 95.2
Exp3−3 7 [60, 95) h5∼11 8 1 h12 92.3±1.2 93.1±1.0 95.4±0.8 95.6±0.5 94.1
Exp3−4 7 [60, 95) h5∼11 / 1 h12 92.1±1.0 92.5±0.9 94.8±0.6 95.1±0.7 93.6

Exp4−1 8 [60, 95) h5∼11 2 8 h12 93.0±0.9 95.3±0.5 96.0±0.3 96.7±0.3 95.3
Exp4−2 8 [60, 95) h5∼11 2 8 h11,12 93.2±0.7 95.6±0.7 95.8±0.8 96.9±0.5 95.4
Exp4−3 8 [60, 95) h5∼11 2 8 h10∼12 92.5±0.6 95.1±0.7 95.4±0.5 96.1±0.4 94.8
Exp4−4 8 [60, 95) h5∼11 2 8 h5∼12 91.0±0.8 93.1±0.6 93.8±0.6 94.1±0.3 93.0
Exp4−5 8 [60, 95) h5∼11 2 8 h5∼10 88.1±0.9 89.1±0.8 89.5± 1.1 89.7±0.7 89.1

Table 7: Classification accuracy±standard deviation (%) on digit adaptation task Mnist → USPS with
varying parameters including the number of weak hypotheses (HN), the accuracy ranges of the weak hy-
potheses, the number of input features to each WRU (FN), the layer number (LN) in the hierarchical feature
ensemble module and the updated hypotheses during fine-tuning (UH). h12 is the strong hypothesis.

adaptation without weak hypotheses. To summarize, our approach, HiFE, performs well when incorporating
a larger number of weak hypotheses, provided that these hypotheses are not of very low accuracy. In our
experiments, we selected 7 weak hypotheses as our base setting to balance performance and computational
cost. In practical applications, the selection of weak hypotheses can be guided by the available computational
resources and the performance of each weak hypothesis on the SD.

Ablation study on the hierarchical layer number. To investigate the impact of the layer number in the
ensemble module on the final performance, we have experimented with varying numbers of input features fed
into WRU, which subsequently alters the number of merge layers within the hierarchical feature ensemble
module. we conducted experiments from Exp3−1 to Exp3−4, modifying the number of input features for
each WRU. The results are presented in Table 7. Notably, in Exp3−4, we utilized a simple weighted feature
sum to merge all source features rather than using HEFM with WRU for feature aggregation. When we set
the number of input features for each WRU to 2 or 4, with the corresponding layer number in the ensemble
module to be 4 and 3, respectively, the adaptation average accuracy is similar. However, when the number
of input features for each WRU increases to 8, we apply one WRU to merge the eight source encoders at
once, and the adaptation average accuracy decreases to 94.1%.

Ablation study on the updated hypotheses. In our HiFE approach, we aggregate multiple hypotheses.
During the fine-tuning stage, we fix all the weak hypotheses and only update the parameters in the strong
hypotheses. We conducted experiments from Exp4−1 to Exp4−4, modifying which hypotheses are updated
during the fine-tuning stage. Exp4−1 is our default setting, where only the last strong hypothesis h12 is
updated and it achieves good performance. When we update all the weak and strong hypotheses together
(Exp4−3), or only update all the weak hypotheses (Exp4−4), the performance deteriorates. Notably, when
we update the last two models h11 and h12 (Exp4−2), we achieve the best performance. This is because h12
tends to overfit to the SD while h11 is better suited for the TD (see the comparison of the result of adaptation
of h11 (SHOT-best) and h12 (SHOT-strong) of task M → U in Table 8 in Appendix Sec D). In practice, the
few-shot target samples are insufficient to guide the fine-tuning of both weak and strong hypotheses together.
Additionally, it is unrealistic to determine which source hypothesis is best for the target domain beforehand.
Therefore, the most suitable approach is to only update the final strong hypotheses while keeping all other
weak hypotheses unchanged among the source encoders. By designing and updating the hierarchical feature
ensemble module, we can merge all these models to obtain the best final model.
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6 Limitations and Future Work

HiFE leverages multiple source hypotheses with varying accuracy levels from the SD to improve the per-
formance of models in the TD. By exploiting the diversity of source models, HiFE has the potential to
enhance the generalization capabilities of the adapted models. However, the additional hypotheses result in
increased model transfer and storage costs. Moreover, the increase in the number of parameters of the target
model leads to higher computational costs. Nonetheless, we argue that the benefits of leveraging multiple
source models with different strengths outweigh the costs associated with processing additional hypotheses,
particularly when source data is absent for transfer. With the growing need to address privacy concerns and
mitigate data-sharing challenges in real-world applications, opting for weak models simplifies collaboration
between source providers and users.

For future research, it would be beneficial to investigate methods for generating weak hypotheses with higher
diversity. Although the current experiments obtained weak hypotheses in the same run as generating the
final strong hypotheses for simplicity, there is potential for improvement by obtaining weak hypotheses
through different random seeds, hyperparameter choices, or training on different subsets of the source data.
By increasing the diversity of weak hypotheses, we could obtain better performance after adaptation and
further improve the effectiveness of the proposed approach.

7 Conclusion

In this paper, we investigate the potential of utilizing weak source hypotheses for domain adaptation and
introduce a new problem setting termed “few-shot hypotheses adaptation with weak models”. To tackle
this problem, we design a new framework called HiFE, which leverages an array of readily available weak
hypotheses to improve the adaptation performance of a strong source hypothesis. As a result, HiFE signifi-
cantly mitigates the occurrence of over-fitting under the few-shot setting and achieves the SOTA performance
across various adaptation tasks. This research introduces an innovative perspective for addressing the FHA
problem in scenarios where the source data is inaccessible and the target data is limited. Additionally, this
research shed light on the use of a weak source model to boost the practical application of transfer learning
in scenarios where data privacy concerns are on the rise.
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Supplementary Material for “HiFE: Hierarchical Feature Ensemble Framework for
Few-shot Hypotheses Adaptation”

We organize the appendix as follows:

• In A, we provide a pilot study on the FHA process from SVHN to Mnist data.

• In B, we provide some implementation details of the experiments.

• In C, we provide a brief overview of the related theorems that support the proposed approach and
highlight their relevance to the work presented in the paper.

• In D, we present additional results of experiments on digit datasets to supplement and reinforce the
findings discussed in the main text.

• In E, we provide more results of the experiments on office datasets.

• In F, we apply HiFE to a multi-source multi-model adaptation scenario and analyze the performance.

• In G, we extend HiFE to a partial few-shot hypothesis adaptation scenario, exposing the model’s ver-
satility and potential for future applications.

• In H, we provide some analyses on the model complexity.

A Pilot Study on the FHA Process From SVHN to Mnist.

The strong source model may overfit the SD and perform worse on the TD after the adaptation. To justify
our assumption, we empirically design an experimental task that adapts source models with varying source
accuracies from the digit dataset SVHN to the target dataset Mnist. Figure 4 shows that the weak source
hypotheses (e.g., Model-4 [source acc=76.0%]) could perform better than the strong source models (e.g.,
Model-1 [source acc = 92.2%]) on the TD, indicating that weak hypotheses can generalize better on the TD.

B Implementation Details

Training target hypotheses with HiFE. As we mentioned in the manuscript Section 5, we generate
12 source models {hi|12

i=1}. Among these models, we used {hi|12
i=5} (8 models) in the experiments shown in

Section 5.2. In our HiFE, we set the number of input features for each WRU to two, leading to a four-layer
feature ensemble structure.

The network uses the PyTorch framework on a PC with four NVIDIA 2080ti GPUs. We trained the source
hypothesis using a stochastic gradient descent (SGD) optimizer with a momentum value of 0.5 with the
learning rate initialized to 1e-2 and decreased to 1e-5 step by step. During the adaptation, we adopt SGD
with Nesterov momentum (Ruder, 2016) with a momentum value of 0.9. Following (Liang et al., 2020),
we insert a batch normalization layer and a weight normalization layer before the end of each encoder and
classifier, respectively.

C Review of the Theorems

In this section, we present a brief overview of the related theorems of Theorem 1, which is derived under the
PAC-Bayes framework (McAllester, 1999). The PAC-Bayes theory provides data-dependent generalization
bounds over the generalization error Eρ(θ)(L(θ) of a model with parameter θ under i.i.d. data. In recent
years, a PAC-Bayes bound (Germain et al., 2009) has been widely adopted because it can apply to general
unbounded losses (e.g., log-loss). We restate here this PAC-Bayes bound as follows:
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Figure 4: This figure depicts the FHA process from SVHN to Mnist. Four source models were generated
using the training data from SVHN and fine-tuned with different quantities of samples from Mnist. The
y-axis indicates the performance rank after adaptation, with the highest accuracy in the TD ranked first.
Model-4, despite having the lowest source accuracy (76%), exhibits notably superior performance on the TD
compared to Model-1, which has the highest source accuracy (92.9%).

Theorem 2. (PAC-Bayes bounds (Germain et al., 2009; Masegosa, 2020; McAllester, 1999)). Given a
data distribution P over X × Y, a hypothesis space Θ, a prior distribution π over Θ, for any δ ∈ (0, 1] and
λ > 0, with probability at least 1 − δ over samples D ∼ P n, we have for all posterior ρ,

Eρ(θ)(L(θ) ≤ Eρ(θ)[L̂(θ, D)] +
1
λ

[DKL(ρ ∥ π) + ln
1
δ

+ ΨP,π(λ, n)],

where ΨP,π(λ, n) = lnEπ(θ)ED∼P n [eλ(L(θ)−L̂(θ,D))].

Based on the second-order Jensen inequalities ((Needham, 1993)), the second-order oracle bound with tighter
PAC-Bayes bounds is derived. (Deng et al., 2023) further extends this theory to ensemble models as shown
in Theorem 3. (Deng et al., 2023) also shows a second-order PAC-Bayesian bound over the performance of
the posterior predictive distribution of the averaging ensemble model, which is shown in Theorem 4.
Theorem 3. (Second-order oracle bound ((Deng et al., 2023; Masegosa, 2020; Needham, 1993))). Given
a data distribution P , a set of model parameters {θi}M

i=1, for any distribution {ρi}M
i=1 over {Θi}M

i=1 satisfies
that

Eρ(θ)(L(θ) ≤ 1
M

M∑
i=1

Eρi(θ)[L(θ)] − V(ρ(θ)),

where θi ∈ Θi, θ = {θi}M
i=1 and ρ(θ) =

∏M
i=1 ρi(θi) and V(ρ(θ)) is a variance term defined as

V(ρ(θ)) = Eρ(θ)E(x,y)∼P

[
1

2Mmaxθp(y|x, θ)2

M∑
i=1

(
p(y|x, θi) −

1
M

M∑
k=1

p(y|x, θk)

)2]
.

Lemma 1. For any distribution {ρi}M
i=1 over {Θi}M

i=1, the Second-order Jensen bound of Theorem 3 can be
expressed as follows (Deng et al., 2023) ,

1
M

M∑
i=1

Eρi(θi)[L(θi)] − V(ρ(θ)) = Eρ(θ)L2(θ),
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where

L2(θ) = E(x,y)∼P

 1
M

M∑
i=1

log(y|x, θi) −

(
p(y|x, θ) − 1

M

∑M
i=1 p(y|x, θk)

)2

2maxθp(y|x, θ)2


 .

Theorem 4. (Model ensemble error bound ((Deng et al., 2023))). Given a data distribution P over X ×Y,
a set of model parameters {Θi}M

i=1 and associated prior {πi}M
i=1, where πi is defined over Θi, a δ ∈ (0, 1],

and a real number c > 0, with probability at least 1 − δ over samples D ∼ P n, we have for all posterior
{ρi}M

i=1 over {Θi}M
i=1,

Eρ(θ)(L(θ) ≤ 1
M

M∑
i=1

(
Eρi(θi)[L̂(θ

′

i, D)] + DKL(ρi ∥ πi)
cn

)
− V̂(ρ(θ), D) + ϵ

cnL
,

where V̂(ρ(θ), D) is the empirical version of a variance term V(ρ(θ)) and ϵ is defined as

ϵ(P, π, c, n, δ) = logEπ(θ)ED∼P n

[
e

cn
(∑M

i=1(L(θi)−L̂(θi,D))−M(V(θ)−V̂(θ,D))
)]

+ log1
δ

.

Lemma 2. If there exists an input sample x ∈ PX such that hθi
(x) ̸= hθj

(x), we then have V(ρ(θ)) > 0
((Deng et al., 2023)).

Our method proposes to add multiple weak hypotheses for training, thereby improving the diversity of the
source model. From the above theorem, our approach intends to look for a tighter upper bound of the
expected loss.

To further analyze the term DKL(ρi ∥ πi) in Theorem 4 when providing n training samples from the target
domain, we assume θi ∈ Rdi , πi(θi) ∼ N (0, σ2I), and ρi(θi) is a Dirac-delta distribution centered around θ

′

i

with ρi(θi) = δθ
′
i
(θi), ∀i ∈ [M ], then we have

Eρi(θi)[L̂(θi, D)] = Eδ
θ

′
i

(θi)[L̂(θi, D)] =
∫

δθ
′
i
L̂(θi, D)dθi = L̂(θ

′

i, D),

and

DKL(ρi ∥ πi) =
∫

δθ
′
i
log

δθ
′
i
(θi)

π(θi)
dθi = −logπθ

′

i = di

2 log(2πσ2) + 1
2σ2 ∥ π

′

i ∥2 .

Hence, the equation in Theorem 4 can be updated to

Eρ(θ)(L(θ) ≤ 1
M

M∑
i=1

(
L̂(θ

′

i, D) + 1
2cnσ2 ∥ θi ∥2 + di

2cn
log(2πσ2)

)
− V̂(ρ(θ), D) + ϵ

cnL
.

This error bound is what we showed in Theorem 1 in the manuscript.

D More Results on Digit Datasets

We evaluate our approach on six closed-set adaptation tasks on digit datasets. We report the results of
M → S, S → U , and M → U in Table 8. Our HiFE achieves 3.7%, 2.1%, and 2.3% average improvement
over the SOTA on these three tasks, respectively.
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Tasks Hypothesis Methods Number of Target Data per Class Average
Number 1 2 3 4 5 6 7

M → S

Single
SHOT-worst 16.3±1.7 15.1±1.5 16.6±1.1 17.3±1.2 16.7±2.1 16.8±1.9 17.5±0.9 16.6
SHOT-best 28.2±1.2 33.5±1.8 35.3±2.1 36.9±2.3 43.0±0.9 47.2±2.1 50.1±1.5 39.2

SHOT-strong 28.0±1.7 33.0±1.5 35.0±1.3 36.2±2.0 39.0±1.8 47.0±0.8 50.0±0.7 38.3

Multiple
SHOT-ens 28.2±1.8 29.9±1.6 33.4±1.4 34.2±1.2 34.6±1.3 35.7±0.9 37.3±0.8 33.3

TOHAN-ens 30.2±1.2 41.0±1.5 41.1±1.3 41.4±0.9 42.8±1.1 43.1±1.2 45.5±1.1 40.1
DECISION 24.2±0.9 26.9±1.6 27.6±1.1 29.4±1.3 30.9±0.5 33.2±0.8 35.3±0.9 29.6
Bi-ATEN 28.5±0.9 31.1±1.2 32.1±0.8 35.5±1.7 38.1±1.5 38.5±1.9 39.1±1.4 34.7

HiFE (ours) 30.4±1.4 40.8±1.1 43.5±1.2 45.7±0.5 46.9±1.9 48.8±1.2 50.3±0.9 43.8

S → U

Single
SHOT-worst 44.4±1.4 45.5±1.1 51.2±0.9 50.3±1.5 50.8±1.9 50.8±0.7 50.6±0.6 49.1
SHOT-best 82.9±0.8 81.4±0.7 88.3±1.2 86.9±1.8 87.5±0.8 87.1±0.7 88.1±0.6 86.0

SHOT-strong 81.1±1.6 80.8±1.4 85.2±0.9 85.3±1.1 85.2±1.8 85.0±1.7 85.1±0.5 84.0

Multiple
SHOT-ens 80.8±2.1 81.8±1.6 84.6±1.3 86.1±1.1 86.5±0.9 86.2± 0.5 87.5±0.4 84.8

TOHAN-ens 86.1±1.0 89.1±1.5 90.0±0.8 91.5±0.2 92.8±0.5 93.4±1.1 92.5±1.2 90.8
DECISION 73.5±1.2 73.7±1.0 76.2±0.8 78.5±0.8 79.7±0.5 80.1±0.7 82.1±1.0 77.7
Bi-ATEN 75.5±2.1 78.1±1.6 78.9±1.4 83.2±3.0 84.1±2.3 88.2±1.8 88.9±1.5 82.4

HiFE (ours) 86.1±1.6 90.6±0.4 93.0±1.2 94.0±0.8 95.0±0.6 96.0±0.2 95.9±0.5 92.9

M → U

Single
SHOT-worst 54.0±2.3 54.1±1.7 58.3±1.2 58.2±1.6 58.6±0.7 58.8±1.5 58.5±1.5 57.2
SHOT-best 92.2±2.3 94.2±2.3 94.6±1.8 94.7±1.5 94.7±1.8 94.7±1.6 94.9±1.2 94.3

SHOT-strong 92.0±2.4 94.1±2.0 94.5±1.9 94.3±1.6 94.3±1.5 94.6±1.6 94.2±0.9 94.0

Multiple
SHOT-ens 86.3±1.1 86.8±1.5 88.8±1.8 88.1±1.6 88.2±0.4 88.0±0.8 88.0±0.6 87.7

TOHAN-ens 88.4±1.8 92.8±1.5 93.5±1.6 92.8±0.9 93.5±0.6 94.8±0.8 95.1±0.5 93.0
DECISION 82.9±2.3 82.9±1.0 83.3±1.5 84.2±1.8 85.5±1.3 84.6± 0.9 85.1±0.8 84.1
Bi-ATEN 81.5±1.6 84.1±2.3 85.6±1.8 88.1±1.5 87.9±0.9 89.7±0.7 91.4±1.6 86.9

HiFE (ours) 93.0±0.9 94.0±1.2 95.3±0.5 95.5±0.8 96.0±0.3 96.3±0.2 96.7±0.3 95.3

Table 8: Classification accuracy±standard deviation (%) on two adaptation tasks of digit datasets. M, U,
and S refer to Mnist, USPS, and SVHN, respectively. The suffixes of -best and -worst refer to the best and
worst results after adapting each single source hypothesis. The suffixes -strong and -ens refer to the result
after adapting the strong hypothesis and the ensemble of all adapted hypotheses, respectively. Results of
SHOT (Liang et al., 2020), TOHAN (Chi et al., 2021), DECISION (Ahmed et al., 2021), Bi-ATEN (Li et al.,
2024), and our HiFE are presented. The highest accuracy is marked in bold.

E More Results on Office Datasets

The complete results of the closest-set adaptation tasks with office datasets are presented in Table 9. Our
analysis reveals that HiFE outperforms SHOT-strong, indicating that incorporating weak hypotheses can lead
to improved performance. Regarding multi-hypotheses adaptation results, HiFE achieved average accuracy
improvements of 4.1% and 3.6% over the SOTA on W → A and D → A tasks, respectively. These results
demonstrate that HiFE can circumvent the potentially severe negative transfer induced by weak source
hypotheses (as observed in the SHOT-worst result) and outperform previous model ensemble approaches.

F Experiments on Multi-domain Multi-hypotheses Adaptation Scenario

In our manuscript, HiFE is designed for adapting source models from one single source domain to a target
domain. Individuals may wonder whether HiFE still works if the source models come from multiple domains.
To answer this question, we do experiments on office datasets (Amazon (A), DSLR (D), Webcam (W)). We
train one strong and seven weak hypotheses for each domain in our single-source multi-model adaptation
experiment. To adopt models from multiple domains, we randomly choose one strong and seven weak hy-
potheses among the 16 hypotheses from domains D and W and adapt them to A. As shown in Table 10,
HiFE outperforms the SOTA with 4.4% average improvement in this multi-domain and multi-model adap-
tation task. Moreover, compared with the single-source domain adaptation tasks D → A and W → A, HiFE
achieves 1.0% and 2.4% improvement on the multi-source domain adaptation task D, W → A, respectively.
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Tasks Hypothesis Methods Number of Target Data per Class Average
Number 1 2 3 4 5

A → D

Single
SHOT-worst 42.6±2.5 45.6±1.8 45.3±2.3 46.4±1.5 46.8±0.9 45.3
SHOT-best 78.1±1.8 78.6±1.7 79.0±2.1 80.0±1.8 81.2±0.8 79.4

SHOT-strong 74.0±2.1 76.6±1.5 77.4±1.9 76.2±0.9 81.0±1.2 77.1

Multiple

SHOT-ens 76.5±1.9 78.6±1.5 78.7±1.7 80.1±0.9 81.2±1.2 79.0
TOHAN-ens 78.5±1.6 79.5±1.3 83.2±0.9 85.1±1.1 87.1±1.1 82.7
DECISION 79.2±1.5 80.2±2.2 80.8±1.2 81.5±2.0 83.5±1.3 81.0
Bi-ATEN 79.1±1.2 81.6±1.4 81.5±0.9 82.1±1.5 84.1±2.1 81.7

HiFE (ours) 79.2±1.0 84.3±0.4 85.7±1.0 86.2±0.9 89.2±0.8 85.0

D → A

Single
SHOT-worst 17.4±1.9 18.8±2.1 20.3±1.0 20.1±1.5 22.3±0.7 19.8
SHOT-best 60.2±1.6 62.8±2.0 63.3±0.8 66.8±2.0 66.3±1.1 63.9

SHOT-strong 60.1±0.9 62.5±1.5 63.1±1.2 63.2±2.1 64.1±2.0 62.6

Multiple

SHOT-ens 56.8±2.0 58.0±1.9 59.2±1.7 61.8±0.5 62.5±0.9 59.7
TOHAN-ens 58.1±1.3 60.8±1.2 63.1±1.9 63.8±0.8 64.1±0.9 62.0
DECISION 54.1±1.6 54.2±2.5 56.1±2.1 57.4±0.9 58.5±0.7 56.1
Bi-ATEN 55.2±1.3 57.1±2.1 60.3±0.9 61.5±1.1 62.5±1.8 59.3

HiFE (ours) 61.8±1.0 64.7±0.7 67.2±0.6 66.8±1.0 67.5±0.9 65.6

A → W

Single
SHOT-worst 48.1±2.1 48.5±1.9 48.8±1.5 49.1±1.1 49.6±0.5 48.8
SHOT-best 77.3±1.8 77.9±1.2 77.9±1.5 78.9±0.9 79.5±0.5 78.3

SHOT-strong 76.2±0.9 76.2±0.5 75.7±1.9 75.2±1.2 75.2±0.9 75.7

Multiple

SHOT-ens 77.6±1.1 78.3±0.9 78.5±1.3 79.5±1.7 81.1±1.0 79.0
TOHAN-ens 82.5±1.2 88.3±2.1 88.9±1.0 87.1±1.1 88.9±0.6 87.1
DECISION 82.2±1.1 82.8±2.1 83.6±2.0 84.1±0.9 85.6±0.4 83.7
Bi-ATEN 81.5±1.7 83.5±1.9 85.2±1.1 87.1±0.9 88.5±1.3 85.2

HiFE (ours) 84.2±1.3 88.0±0.6 88.9±0.6 90.2±0.5 90.3±0.7 88.4

W → A

Single
SHOT-worst 31.9±1.0 32.1±2.1 31.8±1.6 32.1±1.1 33.0±0.9 32.2
SHOT-best 61.9±0.8 62.0±1.2 61.7±1.1 61.9±0.7 63.1±1.8 62.1

SHOT-strong 60.9±1.5 60.9±1.1 61.6±1.3 61.8±0.9 62.1±0.8 61.5

Multiple

SHOT-ens 55.1±1.2 58.2±1.6 59.9±1.4 60.8±1.1 61.2±1.1 59.0
TOHAN-ens 56.5±1.0 60.1±0.9 60.4±1.2 61.2±0.8 62.5±0.7 60.1
DECISION 54.1±2.1 54.9±1.8 55.6±1.6 56.5±1.2 58.1±1.2 55.8
Bi-ATEN 56.2±1.9 58.4±1.6 58.9±2.2 61.5±1.3 61.7±1.1 59.3

HiFE (ours) 62.5±2.5 65.1±1.5 64.4±1.2 64.3±0.9 64.8±0.8 64.2

D → W

Single
SHOT-worst 48.8±1.7 48.5±1.2 48.8±1.2 49.3±1.5 51.2±0.8 49.3
SHOT-best 78.4±1.6 81.1±1.4 81.8±1.1 82.3±1.2 83.2±1.0 81.4

SHOT-strong 76.2±1.9 76.2±1.6 75.7±1.1 75.2±0.9 80.1±0.8 76.7

Multiple

SHOT-ens 79.3±1.5 80.1±1.1 80.2±1.0 82.1±1.1 83.8±0.7 81.1
TOHAN-ens 93.1±1.2 96.5±0.9 97.1±0.7 97.5±1.2 97.7±1.0 96.4
DECISION 95.6±1.2 95.3±1.0 95.3±0.8 95.3±1.0 95.6±1.2 95.4
Bi-ATEN 95.2±1.9 96.1±1.7 96.5±0.9 97.1±1.1 97.7±1.3 96.5

HiFE (ours) 96.6±0.6 97.3±0.7 97.7±0.5 97.5±0.4 98.0±0.6 97.4

W → D

Single
SHOT-worst 60.9±1.2 57.8±1.1 55.9±1.1 55.5±0.9 53.9±0.8 56.8
SHOT-best 98.6±1.3 98.6±1.5 98.4±1.2 99.6±0.8 99.6±1.8 99.0

SHOT-strong 98.6±0.5 98.6±0.4 98.2±0.5 98.8±0.3 99.6±0.9 98.8

Multiple

SHOT-ens 99.2±0.4 99.2±0.3 99.3±0.4 99.5±0.3 99.2±0.3 99.3
TOHAN-ens 99.2±0.2 99.4±0.3 99.3±0.2 99.4±0.4 99.5±0.2 99.4
DECISION 99.5±0.6 98.9±0.6 99.3±0.3 99.2±0.4 99.2±0.1 99.2
Bi-ATEN 99.4±0.6 99.6±0.4 99.4±0.6 99.3±0.3 99.6±0.4 99.5

HiFE (ours) 99.5±0.6 99.6±0.1 99.6±0.1 99.6±0.3 99.9±0.2 99.6

Table 9: Classification accuracy±standard deviation(%) on six adaptation tasks of office datasets. A, D, and
W are abbreviations of Amazon, DSLR, and Webcam. The suffixes of -best and -worst refer to the best and
worst results after adapting each single source hypothesis. The suffixes -strong and -ens refer to the result
after adapting the strong hypothesis and the ensemble of all adapted hypotheses, respectively. Results of
SHOT (Liang et al., 2020), TOHAN (Chi et al., 2021), DECISION (Ahmed et al., 2021) and our HiFE are
presented. The highest accuracy is marked in bold.

23



Published in Transactions on Machine Learning Research (09/2024)

Tasks Methods Number of Target Data per Class Average
1 2 3 4 5

D, W → A

SHOT-ens 52.8±1.2 53.4±1.3 55.7±2.1 59.1±1.8 60.9±1.2 56.4
TOHAN-ens 57.1±1.4 61.7±1.2 63.2±1.1 64.1±0.9 65.1±0.8 62.2
DECISION 53.3±1.7 54.1±2.2 55.2±2.1 55.9±1.6 57.1±1.2 55.1
Bi-ATEN 55.4±1.3 55.3±2.1 58.7±1.6 60.1±1.7 62.5±1.5 58.4

HiFE (ours) 63.2±0.5 65.5±0.6 67.8±0.6 68.1±0.7 68.3±0.4 66.6
D → A HiFE (ours) 61.8±1.0 64.7±0.7 67.2±0.6 66.8±1.0 67.5±0.9 65.6
W → A HiFE (ours) 62.5±2.5 65.1±1.5 64.4±1.2 64.3±0.9 64.8±0.8 64.2

Table 10: Classification accuracy±standard deviation (%) on multi-domain multi-hypotheses adaptation
task from the office dataset DSLR (D), Webcam(A) to Amazon (A). SHOT-ens (Liang et al., 2020), TOHAN-
ens (Chi et al., 2021) refers to the result of the ensemble of all corresponding adapted source hypotheses.
The highest accuracy (%) is marked in bold. We also list the results of single-source adaptation tasks D → A
and W → A of HiFE for further comparison.

G HiFE for Partial Few-Shot Hypothesis Adaptation

We extend HiFE to a partial few-shot hypothesis adaptation scenario. The office dataset contains three
domains, including Amazon (A), DSLR (D), and Webcam (W), with each domain containing images of 31
object categories. We use images from the first 17 classes as the target domain and images from all 31 classes
as the source domain. In this way, we obtain six partial domain adaptation tasks. HiFE is also better than
the SOTA in the partial few-shot hypothesis adaptation scenario (see details in Table 11).

Tasks Methods Number of Target Data per Class Average
1 2 3 4 5

A → D

SHOT-ens 82.5±2.2 82.8±1.9 83.0±1.1 84.6±1.6 87.0±1.0 84.0
TOHAN-ens 83.6±2.1 83.6±2.0 89.2±1.8 91.1±1.3 90.7±1.6 87.6
DECISION 83.0±2.5 83.3±2.1 84.7±1.6 86.3±1.9 87.0±1.2 84.9
HiFE (ours) 89.0±2.1 89.6±1.3 89.2±2.2 89.7±1.4 91.8±1.1 89.9

D → A

SHOT-ens 61.0±1.3 63.4±2.1 62.8±1.6 67.7±1.2 68.1±2.1 64.7
TOHAN-ens 64.2±2.1 66.5±1.5 71.0±1.4 70.6±0.9 69.6±1.1 68.4
DECISION 58.7±1.4 58.4±1.7 59.7±2.0 61.1±1.3 61.0±1.9 59.8
HiFE (ours) 65.3±2.0 77.0±1.5 76.9±1.1 76.2±0.8 77.4±2.1 74.6

W → A

SHOT-ens 55.9±2.0 59±1.8 60.0±1.6 64.2±0.9 65±1.2 60.8
TOHAN-ens 59.4±0.7 60.3±0.8 62.1±1.9 64.2±1.3 70.6±1.4 63.3
DECISION 54.5±1.2 55.9±1.9 58.0±3.0 60.0±2.2 63.6±2.0 58.4
HiFE (ours) 67.1±1.8 72.0±1.0 71.3±2.1 71.9±2.1 72.2±0.9 70.9

Table 11: Classification accuracies (%) on six partial few-shot hypotheses adaptation tasks of office datasets.
A, D, and W are abbreviations of Amazon, DSLR, and Webcam. Results of SHOT (Liang et al., 2020),
TOHAN (Chi et al., 2021), DECISION (Ahmed et al., 2021) and our HiFE are presented. The bold value
represents the highest accuracy (%).

H Complexity Analysis

We compare the time complexity and parameter size of our framework HiFE, a single model, and the
ensemble of all models using DECISION in Table 12. The experiments are conducted using the digit
dataset for the SVHN to Mnist task with a LeNet model backbone. The batch size, the number of target
samples per class, and the number of pre-trained models are set to 128, 7, and 8, respectively. HiFE,
being a multi-hypotheses adaptation approach, incurs additional computational costs compared to the single
model baseline. Specifically, the cost is approximately 8 times higher, corresponding to the number of pre-
trained models. While HiFE has only slightly more parameters than the ensemble method DECISION, it
is significantly more efficient in its usage. Overall, HiFE strikes a better balance between performance and
efficiency for multi-hypotheses adaptation.
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Model Acc (%) Params (M) Memory (M) Speed (samples/s)

LeNet (Single) 46.2 ∼ 82.2 2.1 16 142201
DECISION (Multiple) 83.5 16.1 128 17851
HiFE(our) (Multiple) 89.2 16.6 131 17758

Table 12: Performance and complexity of HiFE, ensemble method DECISION and the LeNet models.
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