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Abstract
How to best develop foundational models for time
series forecasting remains an important open ques-
tion. Tokenization is a crucial consideration in
this effort: what is an effective discrete vocabu-
lary for a real-valued sequential input? To address
this question, we develop WaveToken, a wavelet-
based tokenizer that allows models to learn com-
plex representations directly in the space of time-
localized frequencies. Our method first scales
and decomposes the input time series, then thresh-
olds and quantizes the wavelet coefficients, and
finally pre-trains an autoregressive model to fore-
cast coefficients for the forecast horizon. By
decomposing coarse and fine structures in the
inputs, wavelets provide an eloquent and com-
pact language for time series forecasting that
simplifies learning. Empirical results on a com-
prehensive benchmark, including 42 datasets for
both in-domain and zero-shot settings, show that
WaveToken: i) performs on par or better than
recently proposed foundation models for fore-
casting while using a much smaller vocabulary
(1024 tokens), and is competitive with modern
deep learning models trained specifically on each
dataset; ii) exhibits superior generalization capa-
bilities, achieving the best average rank across all
datasets for three complementary metrics; and iii)
easily captures complex temporal patterns of prac-
tical relevance that are challenging for other re-
cent pre-trained models, including trends, sparse
spikes, and non-stationary time series with vary-
ing frequencies evolving over time.
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1. Introduction
Time series forecasting is integral to decision-making pro-
cesses in many domains, including finance, healthcare, sup-
ply chain optimization, and climate science. Over the last
decade, the field has seen a gradual but steady adoption
of “global” deep learning models in lieu of traditional “lo-
cal” statistical models (Lara-Benı́tez et al., 2021; Benidis
et al., 2022). Recently, the success of large language models
(LLMs) on natural language and vision applications has
spurred an increasing interest for developing similar “foun-
dation models” in other fields (for example, Subramanian
et al. (2024); Golling et al. (2024); Ansari et al. (2024); Das
et al. (2023)). These efforts aim at building general-purpose
machines able to learn complex representations from vast
amounts of data and to generalize to a wide variety of tasks,
based on the premise that LLMs are general pattern rec-
ognizers (Mirchandani et al., 2023). In other words, if a
problem can be reduced to that of modeling an arbitrary
sequence of tokens defined on a discrete vocabulary, then an
autoregressive transformer might be capable of learning non-
trivial relationships via next-token prediction, regardless of
the inputs representing text or not. The sequential nature
of time series forecasting aligns seamlessly with this per-
spective, which is why several recent works have proposed
adapting transformer-based architectures into foundation
models for time series (see Appendix B for a review).

Tokenization is a crucial, albeit still understudied (Dagan
et al., 2024), component of LLMs, as it provides the vocab-
ulary on which token streams are defined and the autore-
gressive structure is learned. While transformers can, in
principle, learn arbitrary dependencies, it matters in prac-
tice whether the architecture can efficiently leverage specific
structures in the inputs. In the context of time series forecast-
ing, it is then important to answer the following question:
what is the most appropriate discrete vocabulary for a con-
tinuous (real-valued) sequential input? In other words, what
is the correct “language” for time series forecasting? As the
goal is to develop a unified model with excellent forecast-
ing performance on unseen datasets, an ideal dictionary of
tokens should be as expressive as possible while also being
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Figure 1: WaveToken-Base (199M parameters) provides excellent forecasts with very low uncertainty. Performance of
different foundation models for time series forecasting on complex patterns of practical relevance: Chronos-Base (201M),
TimesFM (200M) and Moirai-Large (311M) struggle to capture exponential trends (top row), sparse spikes (second row),
and non-stationary signals with 2 and 5 frequencies evolving over time (bottom two rows).

compact, in order to efficiently represent the extremely high
variety of non-stationary real-world time series. In addi-
tion, different “languages” can exhibit various dependency
structures: although time series have a natural “order” dic-
tated by time, one might ask whether there exists a mapping
providing a more eloquent re-ordering in a suitable space
that exposes important features and simplifies learning. Pop-
ular existing frameworks leverage temporal patches (e.g.,
Das et al. (2023)) or quantization into prescribed bins (e.g.,
(Ansari et al., 2024)) and lead to competitive performance
in standard settings. However, by simply preserving the
natural temporal dependency in the input, these approaches
tend to struggle to simultaneously capture both local and
global patterns that often represent relevant cases in practi-
cal applications (see, e.g., Figure 1).

Main contributions. In this work, we propose and ana-
lyze a tokenizer based on wavelets, which are families of
basis functions used to decompose a signal into small waves
with high resolution in both time and frequency domain
(Mallat, 2009). In particular, we develop a tailored pre- and
post-processing tokenization pipeline — WaveToken — that
allows the model to learn directly in the space of sparse
wavelet coefficients. This yields a compressed but highly
expressive vocabulary that facilitates the encoding of com-
plex non-stationary time series. In addition, it provides an
explicit multi-scale structure in the inputs, which the model
learns to exploit by effectively forecasting from coarser
to finer resolutions. We pair our wavelet-based tokenizer
with the popular T5 encoder-decoder architecture of Raffel
et al. (2020) and pre-train it on a large corpus of time series
from different domains. We evaluate WaveToken on a com-
prehensive in-domain and zero-shot benchmark made of 42
real-world datasets and compare it with traditional statistical

models, recent LLM-based forecasters, and state-of-the-art
deep learning models. Empirical results show that

i) WaveToken achieves excellent forecasting performance
and performs on-par or better than all other baselines with re-
spect to three complementary metrics, while using a smaller
vocabulary (1024 tokens) than recent foundation models for
time series.

ii) WaveToken exhibits superior generalization capabilities,
achieving the best average rank across all datasets — across
all metrics for the in-domain benchmark, and across WQL
and MASE for the zero-shot benchmark.

iii) WaveToken can easily capture complex temporal patterns
in several edge cases relevant for practical applications, such
as exponential trends, sparse spikes and signals with differ-
ent frequencies varying over time, as shown in Figure 1.

Overall, our findings not only suggest that wavelet-based
tokenization can provide a compelling language for time se-
ries forecasting with LLMs, but also position our approach
as a promising avenue for developing general-purpose,
information-efficient forecasting models.

2. Language modeling of time-localized
frequencies

In this section, we introduce a wavelet-based tokenizer that
allows the model to learn complex representations directly
in the space of time-localized frequencies. Our method first
scales and decomposes the input time series, then thresh-
olds and quantizes the wavelet coefficients, and finally it
pre-trains an autoregressive model to predict the tokenized
wavelet coefficients for the horizon window.
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Figure 2: High-level depiction of our method. (Left) WaveToken first re-scales the input time series by computing
x̃t = (xt−µ1:C)/σ1:C , then it applies the DWT and possibly thresholds the resulting detail coefficients to zero (red crosses).
Finally, wavelet coefficients are quantized to bins of optimal size given their empirical distribution, and then concatenated
(excluding the first J − 1 approximations). (Right) After pretraining on a large corpus of time series, at inference time the
model samples autoregressively from the categorical output distribution and yields coefficients at all decomposition levels,
which are pushed through the inverse tokenizer to obtain a forecast.

2.1. A brief tour of wavelets

We begin with a brief introduction to the main concepts
and terminology concerning wavelets; see Appendix A and
references therein for more details. The Wavelet transform
(WT) was introduced to address some limitations in existing
mathematical tools — namely the Fourier transform, which
implicitly assumes a signal is stationary — by employing
a quickly decaying zero-mean oscillatory function, known
as the mother wavelet, which inherently adapts its time-
frequency resolution to the signal’s characteristics. This
dual localization property, achieved through the modula-
tion of the wavelet’s scale parameter, enables the WT to
efficiently analyze non-stationary signals achieving localiza-
tion in both time and frequency domain (Daubechies, 1992;
Mallat, 2009).

We can divide wavelet families into two sets of basis func-
tions: the father wavelet, which captures low frequencies
(the approximation), and the mother wavelet, which focuses
on high frequencies (the detail). Both sets can be modulated
via scaling and translation to achieve a multi-resolution de-
composition of an arbitrary signal f(x) into the J-th lowest
approximation component combined with the J − 1 suc-
cessive details. In what follows, we obtain approximation
{ak}J and detail coefficients {dk}j , ∀k ∈ {1, . . . ,K}, j

via the maximally decimated Discrete Wavelet Transform
(DWT), where K ≈ N/2 for a signal of length N . The
DWT decomposes a signal and preserves its length (N ) by
applying a cascade of high-pass and low-pass conjugate mir-
ror filters via successive convolutions and down-sampling
operations in O(N) time.

2.2. Tokenization via wavelet decomposition

We ask the following question: given a real-valued univari-
ate time series x1:C = [x1, . . . , xC ], where C is the context
length, can we find an optimal map T : R → V that encodes
the input with a compact but expressive discrete vocabu-
lary V? To this end, we develop WaveToken, a tokenization
pipeline divided in scaling, wavelet decomposition, thresh-
olding and quantization. See Section 3.4 for an extensive
analysis of the chosen hyper-parameters.

Scaling. Re-normalizing time series is standard practice
in modern forecasting, as it brings all inputs to a common
scale and avoids numerical and optimization issues, espe-
cially for globally-learned deep learning models (Benidis
et al., 2022). Popular normalization techniques are based
on affine transformations x̃t = (xt − m)/s, with m and
s appropriately chosen. We set m = µ1:C = 1

C

∑C
t=1 xt
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and s = σ1:C =
√

1
C−1

∑C
t=1(xt − µ1:C)2, also known

as z-score scaling. By applying this transformation, we
make sure the model receives consistent time-frequency
representations.

Decomposition. We then apply the maximally decimated
DWT (Daubechies, 1992) to decompose the scaled time
series x̃1:C into its constituent time-localized frequencies
up to the J-th level, which yields approximation coefficients
{ak}J and a series of detail coefficients {dk}Jj=1, ∀k. In
addition to being faster than the FFT as mentioned in Sec-
tion A.2, this wavelet transform leads to concise representa-
tions, i.e., it tends to concentrate the majority of the signal
energy onto only a few significant wavelet coefficients while
preserving the input size — a signal of size N results in
N coefficients.1 This is especially true for time series with
sharp spikes or localized features, and is a useful property
for compression and denoising. As each coefficient group
is the outcome of convoluting a filter with the signal, the
autoregressive structure is also preserved within each group.

Thresholding. The inherently sparse representations that
the DWT induces imply that we can encode complex fea-
tures with only a few significant wavelet coefficients, while
the rest are close to zero and thus can potentially be dis-
carded without significantly addressing reconstruction qual-
ity. Several thresholding techniques, many tailored to spe-
cific applications, have been developed over the years and
are effectively used in practice (e.g., in image compres-
sion: Chang et al. (2000); Vetterli & Kovacevic (1995);
Christopoulos et al. (2000)). As the main downstream task
in this work is to pre-train a language model on a large
corpus of diverse time series datasets, any thresholding
technique must be adaptive to the underlying noise and com-
plexity level of the input, so as to retain most of the signal
energy without discarding essential information. In what
follows, we always keep the approximation coefficients un-
altered since they model the low-resolution coarse structure
of the time series, and explore the following techniques for
thresholding detail coefficients:

No-thresholding: d̄k,j = dk,j . If the chosen wavelet family
preserves signal energy (in the sense of Parseval’s theorem),
not thresholding the coefficients avoids any information loss
at this stage.

CDF-thresholding: d̄k,j = dk,j1{|dk,j | > F−1
|dj |(b

J−j+1)},
where F−1 is the (empirical) inverse-CDF of the absolute
values of the detail coefficients dj , ∀j ∈ {1, . . . , J}. A
coefficient is set to 0 if it is in the lower tail of the empirical
distribution of the details’ magnitude at the corresponding j-
th level, where the cutoff grows exponentially from coarser

1To be precise, longer filters and specific boundary conditions
to handle the signal edges might yield a slightly higher number of
coefficients (Torrence & Compo, 1998).

to finer coefficients to reflect granularity and downsampling
of the DWT.

VisuShrink (Donoho, 1995): d̄k,j = sign(dk,j)(|dk,j | − λ),
with λ = σ

√
2 logN and σ estimated from the finest detail

coefficients dk,j=1. The DWT of noisy data can be seen as
a maximum-likelihood estimate of the wavelet coefficients,
and it can be shown that this threshold reduces the expected
reconstruction error (i.e., estimator’s risk) close to the possi-
ble minimum, under certain assumptions. We explore both
the soft- and hard-thresholding variants of this method.

FDRC (Abramovich & Benjamini, 1996): see Appendix C
for details on the algorithm. By leveraging the connection
between thresholding and multiple hypotheses testing, this
procedure improves on VisuShrink by adaptively choosing
λ to control the expected proportion of incorrectly included
coefficients (similar to false discovery rate) among those
chosen for the wavelet reconstruction.

See Section 3.4 and Appendix C for results and justifications
on the chosen thresholding technique.

Quantization. At this point, the resulting coefficients
{ak}J and {d̄k}Jj=1 are still real-valued and need to be con-
verted into discrete tokens to be directly processed by lan-
guage models. Expanding upon the techniques explored by
(Ansari et al., 2024), we construct the vocabulary V by bin-
ning the raw coefficients according to their joint empirical
distribution on the training set, and choose the optimal bin
size according to the Freedman-Diaconis rule (FD) to mini-
mize the reconstruction error (Freedman & Diaconis, 1981).
In symbols, given the optimal B bin centers c1 < · · · < cB
and B − 1 edges ci < ei < ci+1 for i = 1, . . . , B − 1,
we map each wavelet coefficient w ∈ {{ak}J , {d̄k}Jj=1} to
V as follows: q(w) = i · 1{ei−1 ≤ w < ei}. We further
enrich V to be immediately compatible with language mod-
els by adding two special tokens: a PAD token that signals
missing values in the wavelet coefficients — resulting from
missing values in the time series or from padding of short
instances — and an EOS token that signals the end of the
sequence. In our context, a single shared vocabulary jointly
encodes time-localized low and high frequencies, thereby
leading to a compressed but expressive codebook.

2.3. Model training, objective function and forecasting

Given a time series context x1:C , we apply the steps detailed
in Section 2.2 and then concatenate the resulting discrete to-
kens for approximation and detail coefficients into a vector
z1:C = [aJ ,dJ , . . . ,d1], so that the model can learn and
forecast coarse-to-fine structures in a multi-scale fashion.
To minimize ad-hoc modifications to the language model,
we opt for an encoder-decoder architecture based on the T5
family (Raffel et al., 2020), which has recently been shown
to achieve excellent zero-shot performance on a compre-
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hensive benchmark (Ansari et al., 2024). Other proposed
LLM-based forecasters either reformulate the problem as
a question-answering task or use patches of the input as
tokens, and would therefore not be immediately compatible
with our wavelet-based tokenizer (see Appendix B for an
exhaustive review). For brevity, in what follows we refer
to WaveToken as being both the tokenizer and the model
paired together.

We train the model via next-token prediction by minimizing
the cross-entropy between the predicted distribution and
the categorical output distribution over the corresponding
label tokens from the horizon window zC:C+H , which are
obtained by tokenizing the ground-truth future values of the
time series, xC:C+H . Formally, the loss function for a time
series (including EOS) is

−
∑H+1

h=1

∑|V|
i=1 1{zC+h+1=i} log pθ(zC+h+1= i |z1:C+h).

While the cross-entropy loss does not induce a metric onto
the underlying vocabulary, it offers greater flexibility to
learn output distributions of arbitrary shapes. This property
lends itself well to forecasting applications, where it is often
important to capture the correct shape or pattern of the time
series without imposing structural limitations such as those
inherent in traditional loss functions like MSE and MAE
(Le Guen & Thome, 2019).

Learning an autoregressive model on concatenated groups
of wavelet coefficients might seem counter-intuitive: the
temporal structure is only preserved within each coefficient
group and is broken as the input transitions from, e.g., ap-
proximations to details. In practice, this turns out to be
surprisingly helpful as it offers the model a natural way to
break down complex sub-structures in inputs and outputs by
dividing them into a hierarchy of time-localized frequency
bands. As we will see in Section 3.3, the model easily learns
to exploit these partitions and is able to attend to the right
coefficients to improve the overall forecasting accuracy.

At inference time, the model produces sample paths over
the vocabulary via autoregressive sampling from the pre-
dicted distribution pθ(zC+h+1 | z1:C+h), h = 1, . . . ,H .
To obtain a time series forecast, we first de-quantize the
tokens by mapping them to the corresponding bin center:
q−1(i) = ci. We then apply the inverse discrete wavelet
transform (IDWT) and un-scale the reconstructed series by
multiplying it by σ1:C and adding µ1:C , as in Figure 2.

3. Experiments
3.1. Setup of empirical evaluation

Models and baselines. We pre-train WaveToken with T5
models of four sizes — Mini (19.2M), Small (44.5M), Base
(199M) and Large (705.8M) — for 200K steps on 8 A100
GPUs, and we compare their performance against i) popu-

lar task-specific models trained for each dataset separately,
namely DeepAR (Salinas et al., 2020), PatchTST (Nie et al.,
2022) and TFT (Lim et al., 2021); and ii) recently proposed
foundation models for time series forecasting — namely,
TimesFM (Das et al., 2023), Chronos Mini-Large (Ansari
et al., 2024), Moirai Base & Large (Woo et al., 2024), and
Lag-llama (Rasul et al., 2023) — which do not perform
task-specific training, but are trained only once on a large
corpus and then deployed across all evaluation datasets.
Appendix H details all the hyper-parameters for the men-
tioned baselines. A reference implementation of WaveToken
is available at https://github.com/amazon-science/
chronos-forecasting/tree/wavetoken.

Datasets and training strategy. We train and evaluate
WaveToken on the publicly available datasets comprehen-
sively collected by Ansari et al. (2024). These span a variety
of domains and exhibit diverse properties in terms of size,
frequencies and prediction lengths, and can be divided in
i) pre-training only: datasets exclusively used for training
(13 datasets); ii) in-domain: datasets employed for training,
whose validation set is also used for evaluation (Benchmark
I, 15 datasets); and iii) zero-shot: datasets used solely for
evaluation (Benchmark II, 27 datasets). See Appendix H for
detailed information about all datasets. The context length
of the sequences in each training batch is set to 512 and
the prediction length is set to 64. In addition, we adopt the
data augmentations techniques introduced by (Ansari et al.,
2024): each of the sequences is generated with probability
0.9 from a TSMixup set, which takes convex combinations
of different time series, and with probability 0.1 from a syn-
thetic dataset generated from Gaussian Processes based on
randomly combined kernels. Both of these have been shown
to be effective in domains such as time series forecasting,
where data is inherently scarce relative to standard language
modeling applications.

Evaluation tasks and metrics. For both in-domain (I) and
zero-shot (II) benchmark datasets, we use the last H obser-
vations of each time series as a held-out test set. For the long-
horizon benchmark of Appendix F, instead, we increase the
forecast length H of each time series in Benchmark II by a
factor of 2 and 3. We compute the weighted quantile loss
(WQL) to assess the quality of probabilistic forecasts on 9
uniformly-spaced quantile levels {0.1, 0.2, ..., 0.9} and the
mean absolute scaled error (MASE; Hyndman & Koehler
(2006)) to evaluate the quality of point forecasts. In addi-
tion, we compute the Visual Relative Squared Error (VRSE;
Posam et al. (2024)), which measures the relative squared
difference of the amplitudes at all frequencies between the
ground truth and the (median) forecast. This metric serves a
complementary role to avoid common pitfalls of standard
scores, which can fail to properly assess important edge
cases that would otherwise be visually obvious, as shown
in Figure 8. In order to aggregate these metrics and provide
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Figure 3: WaveToken performs on par or better than recently proposed foundation models for forecasting while using
a much smaller vocabulary, and is competitive even with modern deep learning models trained specifically on each
dataset. The plots show forecasting performance on Benchmark I (Panel A, Top) and Benchmark II (Panel B, Bottom) in
terms of WQL, MASE and VRSE. Note: Since the values of the VRSE metric for individual datasets may be close to zero,
the aggregated relative VRSE score, which is computed by taking the geometric mean, may be sensitive to these datasets.
We refer the reader to Appendix E for VRSE results on individual datasets.

fair comparisons, we compute each model’s score divided
by the score of a baseline model (here, Seasonal Naive).
These relative scores are then aggregated across all datasets
using the geometric mean. See Appendix D for more details.
All results for Chronos and WaveToken are averaged across
three different seeds.

3.2. In-Domain & Zero-Shot Benchmarks

Figure 3 summarizes the forecasting performance of all mod-
els on the in-domain datasets of Benchmark I. WaveToken
outperforms all other baselines with the exception of
Chronos-Large on WQL and MASE, and is competitive
with respect to VRSE. Considering each model size for each
metric, WaveToken achieves lower (i.e., better) scores than
Chronos 75% of the times and largely improves on other
recent LLM-based forecasters. Similarly, our method is
considerably better even than task-specific models trained

separately on each dataset. Note again that WaveToken uses
a vocabulary size of 1024, while Chronos, for example, uses
four times as much tokens with |V| = 4096. This empirical
finding confirms the well-known theoretical properties of
wavelets, which can provide compact but very expressive
representations able to condense complex structures into a
compressed codebook. Finally, on the datasets of Bench-
mark I, WaveToken achieves the best average rank across all
metrics, as shown in Figure 9.

Benchmark II focuses on the forecasting performance on
datasets that were never included in the training corpus
(for brevity, zero-shot). As shown in Figure 3, WaveToken
exhibits superior generalization capabilities which lead it
to i) outperform all other foundation models for time se-
ries across all metrics, with a 83% success rate against
Chronos models of the same size; and ii) be competitive
on WQL and MASE, and much better on VRSE, relative
to task-specific models specifically trained on each zero-
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Figure 4: Wavelet-based tokenization induces structured patterns in the cross-attention maps. Cross-attention weights
for the eighth decoder layer when forecasting the spiky data of Figure 1 (second row). Chronos-Base (left) repeats the same
patterns for all steps, while WaveToken-Base (right) shows high values at the detail coefficients corresponding to the spikes.

shot dataset. WaveToken also achieves the best average rank
across WQL and MASE on the datasets of Benchmark II,
as shown in Figure 10.

Figure 11 in Appendix F shows results on a long-horizon
benchmark constructed by increasing the forecast length H
of each dataset in Benchmark II (Zero-Shot) by a factor of
2 and 3. WaveToken outperforms other foundation models
across almost all combinations of metrics and long horizons,
the only exception beingH×3 with respect to WQL, where
TimesFM performs slightly better. Appendix E shows the
raw WQL, MASE and VRSE values for each dataset in
Benchmark I and II.

3.3. Qualitative Analysis

So far we have seen how wavelets allow a transformer-based
architecture trained on a large corpus to achieve excellent
forecasting performance especially on previously unseen
datasets, which hints at their superior generalization ca-
pabilities. It is then worth analyzing more deeply some
edge cases of practical relevance to showcase how wavelets
can efficiently capture a wide variety of complex patterns,
frequencies and local structures within a compressed rep-
resentation. Figure 1 shows examples of synthetically-
generated time series which exhibit strong trends, sharp
spikes and several frequencies evolving over time. We eval-
uate WaveToken against popular recent foundation models
for time series forecasting. Both Chronos, TimesFM and
Moirai clearly underestimate trends, struggle at isolating
sudden spikes and are not able to capture non-stationary
behaviours. On the other hand, our model is able to leverage
the different concatenated coefficient groups which repre-
sent the time-localized frequency bands, thereby providing
accurate forecasts with very low uncertainty.

This phenomenon can be further explained by looking at

patterns in the cross-attention layers of Chronos and our
model, as they use the same T5 encoder-decoder archi-
tectures. Figure 4 shows heat-maps of the cross-attention
weights in the eighth decoder layer of Chronos-Base (left)
and WaveToken-Base (right), when forecasting the sparse
spikes in the second row of Figure 1. Two main things are
worth noticing: first of all the attention map for our model
is clearly divided in four quadrants, of which the upper-
left and lower-right ones exhibit generally larger attention
values. These clearly show that, to forecast approximation
coefficients in the horizon (time-steps 0-34 on the x-axis),
the model is learning to attend more to approximation coef-
ficients in the context (time-steps 0-258 on the y-axis), and
to forecast detail coefficients in the future (time-steps 35-68
on the x-axis), the model attends more to detail coefficients
in the context (time-steps 259-516 on the y-axis). Second,
we notice an interesting pattern: the detail coefficients for
the horizon present two clear columns of larger attention
weights (time-steps 45 and 56 on the x-axis) that map to
the detail coefficients representing the spikes in the context.
In addition, other detail coefficients attend to everywhere
else in the bottom-right quadrant (corresponding to the flat
regions in time domain for the spiky data of Figure 1) ex-
cept to those same positions corresponding to spikes (see
the white horizontal lines interrupted by the vertical column
in the magnified portion). Similar patterns are present for
the approximation coefficients, albeit less defined. None of
this structures is present in the attention weights of Chronos-
Base shown in the left panel, which repeats the same patterns
for all steps and indeed fails to forecast the correct position
and intensity of the spikes in time domain.

Appendix G shows the remaining attention maps for layers
missing in Figure 4, which all show similar patterns with
varying intensities.
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Figure 5: Effect of different vocabulary sizes, wavelet families and decomposition levels on downstream forecast-
ing accuracy of WaveToken-Small. The optimal hyper-parameters were a single-level wavelet decomposition with a
Biorthogonal-2.2 family and a vocabulary size of 1024. See Section 3 for more details.

3.4. Ablation study

Figure 5 shows the effect of different vocabulary sizes,
wavelet families and decomposition levels on the forecast-
ing accuracy of WaveToken-Small trained for 200K steps
on one A100 GPU. Regarding vocabulary size, which de-
termines the precision with which tokens encode wavelet
coefficients, we observe a gradual but consistent improve-
ment until |V| = 1024, which we select as the optimal value.
For higher vocabulary sizes, WQL and MASE remain flat
or worsen on both in-domain and zero-shot benchmarks.
This phenomenon can be ascribed to the intrinsic compres-
sion properties of wavelets (Mallat, 2009): by concentrating
most of the signal energy onto a few coefficients, we can
effectively capture more information with a smaller code-
book, while a larger one would only reserve more tokens
to spurious coefficients. Note that our vocabulary is much
smaller than comparable models: Chronos for example, that
leverages the same architectures, uses |V| = 4096. As to
the many wavelet families available, the central panel of
Figure 5 shows that the Biorthogonal-2.2 basis achieves
optimal performance. This family uses two separate filters
with two vanishing moments for analysis and synthesis, a
dual structure that allows for symmetric or near-symmetric
wavelet functions that help preventing distortions near the
signal edges. This is known to be advantageous in many
applications, including image compression2. Families with
higher vanishing moments capable of capturing higher order
polynomial did not prove effective. As to the decomposition
level, we observe that first-level coefficients are sufficient to
achieve good forecasting accuracy. Albeit deeper levels pro-
vide more granular time-localized frequencies, the higher
number of groups in the concatenated coefficients make it
harder for the attention mechanism to identify the relevant
ones at each prediction step. Regarding thresholding, we

2Biorthogonal wavelets with the maximally decimated DWT
are in fact used in popular compression standards, such as JPEG-
2000 (Christopoulos et al., 2000; Usevitch, 2001).

analyze the performance of all four techniques described
in Section 2. Empirically, we observe a discrepancy in the
results obtained when training for the same number of steps
on 1 or 8 GPUs, where the latter is the final configuration
used to train the optimal models. As Figure 7 shows, in
the single-GPU setting, chosen to streamline computations
during hyper-parameter optimization, VisuShrink (Donoho,
1995) appears to be the best, a result which is then reverted
in favor of No-thresholding in the 8-GPU setting, which
increases the total number of samples processed at each
step, thereby allowing the model to learn the richer frequen-
cies preserved in the input. VisuShrink, on the other hand,
leads to smoother signals by crudely cutting off coefficients,
which eventually harms generalization. These empirical ob-
servations led us to not threshold coefficients, although we
note that thresholding is still implicitly happening during the
quantization step, which collapses small coefficients to the
bin centered at 0. This value is then used at inference time
to forecast tokens mapped to this bin. Optimal bins for the
discretization procedure — detailed in Section 2 — were
selected between the lower and upper bounds [−30, 30],
chosen empirically by scanning the training corpus.

4. Conclusion
In this work, we develop WaveToken, a tokenization pipeline
tailored to a specific goal: constructing a general-purpose
forecasting model capable of capturing a wide variety of
complex patterns while consuming as little information as
possible, thereby leading to excellent generalization perfor-
mance on unseen datasets. We leverage a recently-proposed
framework to pre-train an encoder-decoder architecture
in the context of time series (Ansari et al., 2024) and re-
purpose it to learn an autoregressive model in the space
of time-localized frequencies. The resulting wavelet-based
vocabulary is both compact — using 1024 tokens, i.e. one
quarter of Chronos — and very expressive, and leads to
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i) excellent forecasting performance with respect to all
other baselines in terms of three complementary metrics:
weighted quantile loss for probabilistic forecasts, mean ab-
solute scaled error for point forecasts, and visual relative
squared error to measure discrepancies in the frequency
content relative to the ground truth.

ii) superior generalization capabilities, with WaveToken
being the best model across all datasets in terms of average
rank — across all metrics for Benchmark I, and across
WQL and MASE for Benchmark II. In addition, our method
can easily capture complex temporal patterns in several
edge cases relevant for practical applications, as shown in
Figure 1.

As potential future directions, we foresee that exploring
techniques to automatically handle context lengths larger
than 512 in the tokenizer would allow models to capture
longer-range dependencies if needed. The DWT is in fact
a natural tool to leverage in these settings, as it can encode
long contexts without increasing the input length through
convolutions and down-sampling. Furthermore, WaveToken
exploits an autoregressive model on wavelet coefficients. As
such, it suffers from slower decoding and inference times rel-
ative to recently proposed alternatives, such as patch-based
models. Applying WaveToken to patch-based architectures
represents an interesting area for future research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Figure 6: (Left) Mother and father wavelets for the Haar and Biorthogonal-2.2 families. Note the dual structure of the
latter, which uses two filters: one for decomposition and one for reconstruction. (Right) Example of discrete wavelet
transform (DWT) applied to a time series from the traffic dataset. Red boxes highlight the coefficients that are returned by
the decomposition.

A. A brief tour of wavelets
A.1. Motivation: From the fourier transform to the wavelet transform

The Fourier Transform (FT) allows one to map a signal from the time domain to the frequency domain by computing the
signal’s projection onto a basis of complex exponentials, which represent sine and cosine functions of varying frequencies.
This process effectively decomposes the signal into its constituent frequency components. The main drawback of the Fourier
Transform is that, while having high resolution in the frequency domain, it has zero resolution in the time domain. In
other words, it cannot tell at which location in time these frequencies occur in the original signal. The Short-Time Fourier
Transform (STFT) tries to overcome this issue by splitting the original signal in different windows and applying the Fourier
Transform in each of them. Nonetheless, the fixed window immediately implies a trade-off: the smaller the size of the
window, the higher the resolution in time domain, the lower the resolution in frequency domain, and vice versa. This is
widely known as the Uncertainty Principle (Oppenheim & Schafer, 2010).

The Wavelet Transform (WT) addresses this limitation by employing a quickly decaying zero-mean oscillatory function,
known as the mother wavelet, which inherently adapts its time-frequency resolution to the signal’s characteristics. By dilating
or compressing the wavelet, its time support varies inversely with its frequency, thus providing high time resolution for
high-frequency components and high frequency resolution for low-frequency components. This dual localization property,
achieved through the modulation of the wavelet’s scale parameter, enables the WT to efficiently analyze non-stationary
signals whose spectral content evolves over time, a phenomenon often referred to as time-frequency localization (Daubechies,
1992; Mallat, 2009).

A.2. The haar wavelet and the discrete wavelet transform

Wavelet families consist of basis functions that can be divided into two primary types: the scaling function (often referred
to as the “father” wavelet), which captures the low-frequency, coarse structure of the signal (the approximation), and the
wavelet function (often referred to as the “mother” wavelet), which captures the high-frequency components (the detail) of
the signal. The “father” and “mother” wavelets give rise to “son” and “daughter” wavelets through scaling and translation.
Here, we briefly formalize these concepts in the context of the Haar wavelet (Haar, 1911), a simple yet pedagogically
significant wavelet family. For an extensive introduction to wavelets and their applications, see, for example, Mallat (2009),
Daubechies (1992) and Strang & Nguyen (1996).
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The Haar father wavelet is given by ϕ(x) = I(x ∈ [0, 1]). The corresponding son wavelet is

ϕk,j(x) = 2j/2ϕ(2jx− k) =

{
2j/2, if k

2j ≤ x ≤ k+1
2j

0, otherwise,

where k, j ∈ N. Note that ϕk,0(x) generates an orthonormal basis for functions with jumps at the integers, whose space
we denote by V0. The dilations and translations ϕk,j(x) span orthonormal spaces Vj for functions with jumps at k/2j ,
and satisfy Vj+1 ⊃ Vj ⊃ · · · ⊃ V0. With these bases, we can represent an arbitrary function f(x) in Vj+1 by taking a
component in Vj (the approximation) plus the orthogonal complement of Vj to Vj+1, which we denote by Wj (the detail).
In other words, we represent f in Vj+1 by taking its orthogonal decomposition Vj+1 = Vj ⊕Wj . The space W0 is spanned
by the mother wavelet

ψ(x) = ϕ(2x)− ϕ(2x− 1) =


1, if 0 ≤ x < 1

2

−1, if 1
2 ≤ x ≤ 1

0, otherwise
,

whose dilations and translations ψk,j = 2j/2ψ(2jx− k) form an orthonormal basis for each Wj . Putting this all together,
we can represent a function at different resolution levels by breaking down the level-j approximation component Vj to
level-(j − 1) detail and approximation components, and so on: VJ = VJ ⊕WJ = V0 ⊕W0 ⊕W1 · · ·WJ−1. A wavelet
decomposition is then a linear combination of elements in these subspaces:

f(x) =

∞∑
k=−∞

akϕk,J(x) +

J∑
j=1

∞∑
k=−∞

dk,jψk,j(x),

where only a finite number of coefficients ak and dk,j are non-zero.

How do we compute ak and dk,j in practice? The multi-resolution theory of Mallat (1989) and Meyer (1992) offers an
elegant and efficient solution: any wavelet that generates an orthonormal basis can be characterized by a conjugate mirror
filter. The mapping from a discretized signal to a sequence of wavelet coefficients is then implemented as a filter bank made
of a cascade of high-pass and low-pass filters associated with the mother and father wavelets, and is called Discrete Wavelet
Transform (DWT)3. For the Haar family, the approximation components are associated with averaging filters (low-pass),
while the detail components are associated with distance filters (high-pass). The DWT convolves these filters with the
signal and then downsamples by a factor of two to eliminate the repeated information. The result is an array of detail
coefficients {dk}j and approximation coefficients {ak}j . The latter can be further decomposed into new approximation and
detail coefficients at the next level and the process can continue recursively, resulting in a hierarchical and multi-resolution
decomposition of the signal. Figure 6 (right) shows this for a particular time series.

The DWT has a computational complexity of O(N), withN being the length of the input signal. This is due to i) the filtering
operation requiring a constant amount of work proportional to the signal length, and ii) the down-sampling operation halving
the signal at each of the log2N levels: this leads to a total amount of work equal to N(1 + 1

2 + 1
4 + · · · ), which converges

to 2N . Note that this is even faster than the FFT algorithm, which has a computational complexity of O(N logN).

B. Related Work
Tokenization in LLMs. Most tokenizers originate from the natural language processing (NLP) literature and have been
developed and studied for various domains such as math (Singh & Strouse, 2024), code (Zheng et al., 2023), and several
languages (e.g., Tolmachev et al. (2018); Alyafeai et al. (2023)). In modern LLMs, the most popular tokenizers learn a
dictionary directly on data, such as variants of Byte-Pair Encoding (BPE; Gage (1994)). Tokenization of real-valued numbers
has received particular attention due to the difficulty of finding what is the most appropriate discrete vocabulary for a
continuous input. One of the most popular methods is training a Vector Quantized-Variational AutoEncoder (VQ-VAE) (Van
Den Oord et al., 2017), which learns a dictionary of k-dimensional codewords to capture latent representations. Instead of
learning a token for each numerical value, Golkar et al. (2023) proposes a fixed scheme that allocates a dedicated embedding
vector for numerics and scales it by the number value, thereby improving efficiency and generalization. In this work, we
similarly adopt a fixed scheme, but employ a tailored wavelet decomposition that enhances the crucial spectral properties of
time series signals.

3We always refer to the decimated DWT. For a comparison with the undecimated DWT, see Mallat (2009).
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Algorithm 1 False Discovery Rate of Coefficients (FDRC)

1: For each dk,j , compute two-sided p-value pk,j = 2(1− Φ(|dk,j |/σ)) for H(k,j)
0 : dk,j = 0

2: Order pk,j such that p(1) ≤ · · · ≤ pm
3: Let i0 = argmaxi p(i) ≤ (i/m)q, with q being error-rate under H0

4: Let λi0 = σΦ−1(1− pi0/2)
5: Threshold all detail coefficients at level λi0

Wavelet-based forecasters. Several approaches have tried to embed wavelets in forecasting pipelines. An early example is
that of Papadimitriou et al. (2003), who integrate the discrete wavelet transform with ARIMA modeling to capture complex
patterns over long time periods. More recently, Zhou et al. (2022) proposed to substitute attention blocks with Fourier- and
wavelet-enhanced blocks in the transformer architecture. Within this line of work, Zhang et al. (2022) proposed to model
trend and seasonality separately with an MLP and Fourier attention, respectively. In addition, they showed that under linear
transformations, attention models in time domain, Fourier domain and wavelet domain have the same representation power.
Sasal et al. (2022) leverage a redundant wavelet transform that yields J series of coefficients (one per decomposition level),
each having the same length as the original time series. They then learn a separate transformer model for each scale. To the
best of our knowledge, WaveToken is the first application of a maximally decimated wavelet transform to build a tokenizer
tailored for time series forecasting with LLMs.

Modeling and generation of signals. Different methods in the signal processing literature propose to integrate spectral or
wavelet decomposition with deep learning architectures to enhance the capabilities of these models on a variety of tasks.
Apart from the already-mentioned VQ-VAE (Van Den Oord et al., 2017), several works exploit spectrograms and log-mel
spectra, for example, as pre-processing steps on medical or audio data (Choi et al., 2023; Purwins et al., 2019). Similarly,
audio codecs (Zeghidour et al., 2021) are emerging as a critical technique to bridge the gap between continuous waveforms
and token-based language models. As for image generation, Guth et al. (2022) proposed to speed up denoising by learning
diffusion models in the wavelets domain. Recent concurrent works by Tian et al. (2024), Mattar et al. (2024) and Zhu &
Soricut (2024) learn a transformer model on a multi-scale sequence or in the space of 2D wavelet coefficients.

Regression via classification. WaveToken converts the regression problem of forecasting into a classification problem on
the space of quantized wavelet coefficients. Apart from its use in recent works such as Ansari et al. (2024), Farebrother
et al. (2024) and Hollmann et al. (2025), this technique of performing regression via classification has been studied in prior
literature (Torgo & Gama, 1997; Stewart et al., 2023). It has also been used for time series forecasting (Yeo & Melnyk,
2019; Rabanser et al., 2020; Alexandrov et al., 2020). However, in contrast to WaveToken which operates on quantized
wavelet coefficients, all these prior works directly quantize the time series. This enables WaveToken to capture the local and
global patterns in the time series.

Foundation models for time series forecasting. Several approaches are being developed to adapt LLMs to other domains,
such as time series forecasting. Recent efforts in this direction include, e.g., Xue & Salim (2023), which converts time series
into text and re-frames the task as a question-answering problem; Gruver et al. (2024), which tokenizes real-valued data
as strings of digits and leverages models such as GPT-3 (Brown, 2020) and Llama 2 (Touvron et al., 2023); and Jin et al.
(2023), which prompts a frozen LLM with a prefix describing the task and patch embeddings of time series aligned with text
prototypes. Recently, Rasul et al. (2023); Goswami et al. (2024); Das et al. (2023); Ansari et al. (2024); Woo et al. (2024);
Talukder et al. (2024) proposed different paradigms to pre-train transformer-based architectures on a large corpus of time
series. See also Zhang et al. (2024) for a recent survey. While these works adopt domain-specific designs such as patching,
lags and time features, none of them tackles the problem by learning an autoregressive model in the expressive space of
time-localized frequencies.

C. Additional results on different thresholding techniques
Algorithm 1 outlines the FDRC thresholding method step-by-step. See Abramovich & Benjamini (1996) for more details.
During our experiments, we chose the standard q = 0.05, which corresponds to the type-I error control level of the resulting
hypotheses tests.

Figure 7 shows the effect of the different thresholding techniques detailed in Section 2.2 on the downstream forecasting
accuracy in terms of weighted quantile loss (WQL), mean absolute scaled error (MASE), and visual relative squared error
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Figure 7: Effect of the different thresholding techniques of Section 2.2 on the forecasting accuracy.

(VRSE). This ablation study complements those on vocabulary size, wavelet family and decomposition level outlines in
Section 3.4. Apart from the four thresholding techniques analyzed in this paper, several more exist in the literature for signal
processing and image compression. We leave a comprehensive analysis of these methods and a deeper study of their effect
on downstream performance to future work.

D. Evaluation metrics
Consider a collection of N time series {xi = [xi,1, . . . , xi,C+H ]}Ni=1 that include both context and horizon. In Section 3,
we evaluated WaveToken and all the other baselines with respect to three metrics, which we now describe more in detail:
weighted quantile loss (WQL), mean absolute scaled error (MASE), and visual relative squared error (VRSE)

Weighted quantile loss (WQL). We use this metric to evaluate probabilistic forecasts qαi,C+t — obtained by generating
N = 20 samples from the model for an input i — at nine quantile levels α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
WQL aggregates the standard quantile loss at level α QLα(q, x) (Koenker & Hallock, 2001) over multiple horizon steps
t = 1, . . . ,H and series i by taking a weighted average:

WQL = 1/9
∑
α

2
∑

i,t QLα(q
α
i,C+t, xi,t)∑

i,t |xi,t|
,

where 9 is the number of quantiles used.

Mean absolute scaled error (MASE). We use this metric to evaluate point forecasts x̂i = [xi,1, . . . , xi,C+H ], which we
take to be the median quantile q0.5i,C+t across N = 20 samples for probabilistic models. The MASE (Hyndman & Koehler,
2006) scales the mean absolute error by the empirical error of the seasonal naı̈ve model:

MASE(x̂i,xi) =
C − S

H

∑C+H
t=C+1 |x̂i,t − xi,t|∑C−S
t=1 |xi,t − xi,t+S |

,

where S is a seasonality parameter.

Visual relative squared error (VRSE). We use this metric to measure the frequency content of (point) forecasts relative to
the ground truth. As for MASE, we take the median forecast q0.5i,C+t as input to the metric for probabilistic models. VRSE
(Posam et al., 2024) is defined as follows:

VRSE(x̂i,xi) =

∑
f (Ax̂i

(f)−Axi
(f))2∑

f (Axi
(f))2

,
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Figure 8: Pitfall of standard evaluation metrics. RMSE and MASE fail to distinguish a poor constant forecast from a
visually much more accurate shifted forecast. By comparing the amplitudes at all frequencies, VRSE captures the difference
and assigns a lower score to the shifted forecast.
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Figure 9: WaveToken achieves best average ranks on in-domain datasets. Average rank of models on Benchmark I
(in-domain) in terms of WQL, MASE and VRSE.

where Ax(f) is the amplitude of the Fourier transform coefficient at frequency f for input x. It serves a complementary role
to WQL and MASE: by computing the discrepancy between forecasts and ground truth in the amplitudes of the Fourier
transform coefficients at all frequencies, this metric captures whether the forecast has the correct overall “shape”, instead
of looking at it point-wise. Thus, it provides a valuable alternative in cases where other metrics clearly fail, as shown in
Figure 8.

E. Additional results: Benchmarks I & II
Figures 9 and 10 report the average rank across all datasets in the corresponding benchmark (in-domain and zero-shot,
respectively) achieved by all the evaluated models. Tables 1-3 report the raw per-dataset values of all metrics for all
models on the in-domain benchmark, along with the corresponding Aggregate Relative Score and Average Rank. Similarly,
Tables 4-6 report the same values on the zero-shot benchmark. Results for WaveToken, Chronos, PatchTST, DeepAR and
TFT are averaged over three seeds.
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Figure 10: WaveToken achieves best average ranks on zero-shot datasets. Average rank of models on Benchmark II
(zero-shot) in terms of WQL, MASE and VRSE.

Table 1: Raw per-dataset values of WQL for all models on the in-domain benchmark.
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Electricity (15 Min.) 0.077 0.078 0.080 0.082 0.086 0.082 0.079 0.085 0.319 0.105 0.104 0.121 0.082 0.090 0.189 0.117
Electricity (Hourly) 0.101 0.114 0.105 0.089 0.104 0.109 0.114 0.098 0.104 0.122 0.117 0.079 0.089 0.106 0.125 0.147
Electricity (Weekly) 0.059 0.062 0.073 0.067 0.071 0.069 0.067 0.065 0.147 0.113 0.162 0.062 0.069 0.116 0.106 0.198
KDD Cup 2018 0.272 0.268 0.289 0.271 0.262 0.265 0.270 0.282 0.369 0.287 0.277 0.288 0.252 0.330 0.571 0.556
London Smart Meters 0.423 0.428 0.431 0.436 0.355 0.349 0.343 0.340 0.384 0.358 0.350 0.384 0.346 0.405 0.365 0.541
M4 (Daily) 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.043 0.023 0.023 0.021 0.023 0.023 0.023 0.028
M4 (Hourly) 0.022 0.024 0.024 0.025 0.025 0.031 0.024 0.026 0.111 0.025 0.022 0.021 0.027 0.038 0.033 0.048
M4 (Monthly) 0.101 0.103 0.103 0.103 0.100 0.099 0.098 0.098 0.153 0.102 0.100 0.087 0.095 0.101 0.097 0.146
M4 (Weekly) 0.037 0.037 0.040 0.041 0.040 0.039 0.036 0.036 0.078 0.049 0.047 0.040 0.039 0.046 0.051 0.063
Pedestrian Counts 0.187 0.204 0.237 0.236 0.227 0.219 0.210 0.195 0.262 0.273 0.259 0.233 0.257 0.229 0.261 0.319
Rideshare 0.140 0.137 0.140 0.133 0.136 0.137 0.137 0.138 0.158 0.164 0.159 0.133 0.135 0.130 0.134 0.186
Taxi (30 Min.) 0.268 0.274 0.312 0.313 0.300 0.284 0.278 0.267 0.357 0.513 0.368 0.334 0.363 0.395 0.382 0.471
Temperature-Rain 0.663 0.669 0.685 0.704 0.651 0.646 0.640 0.637 0.717 0.655 0.685 0.646 0.804 0.718 0.670 1.424
Uber TLC (Daily) 0.096 0.097 0.100 0.105 0.112 0.107 0.103 0.102 0.176 0.115 0.108 0.089 0.100 0.110 0.111 0.231
Uber TLC (Hourly) 0.153 0.153 0.155 0.161 0.158 0.157 0.154 0.160 0.176 0.176 0.166 0.153 0.167 0.176 0.179 0.299

Agg. Relative Score 0.564 0.580 0.603 0.598 0.592 0.591 0.573 0.569 0.937 0.690 0.669 0.579 0.601 0.676 0.734 1.000
Avg. Rank 4.867 6.067 8.467 8.133 6.800 5.933 4.867 4.733 13.333 12.133 10.333 5.467 7.267 10.800 11.400 15.400

Table 2: Raw per-dataset values of MASE for all models on the in-domain benchmark.

Pretrained Models (In Domain) Pretrained Models (Other) Task Specific Models Local Models
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Electricity (15 Min.) 0.391 0.394 0.418 0.445 0.443 0.422 0.410 0.410 1.169 0.707 0.625 0.750 0.677 0.445 0.450 0.515 1.108 0.498
Electricity (Hourly) 1.439 1.590 1.477 1.348 1.503 1.580 1.614 1.419 1.573 1.712 1.669 1.200 1.742 1.082 1.349 1.528 1.789 1.840
Electricity (Weekly) 1.739 1.801 1.942 1.954 1.938 1.890 1.879 1.864 2.979 2.858 2.758 1.773 3.884 1.852 1.631 2.517 2.800 3.037
KDD Cup 2018 0.683 0.646 0.687 0.667 0.618 0.624 0.631 0.654 0.844 0.661 0.656 0.687 0.675 0.598 0.616 0.779 1.022 0.994
London Smart Meters 0.828 0.838 0.846 0.857 0.771 0.759 0.748 0.740 0.792 0.770 0.754 0.822 0.886 0.796 0.733 0.832 0.788 0.966
M4 (Daily) 3.144 3.160 3.148 3.154 3.140 3.120 3.145 3.116 8.038 3.445 3.377 3.269 4.402 4.357 3.450 3.305 3.292 3.278
M4 (Hourly) 0.682 0.694 0.721 0.758 0.722 0.697 0.667 0.671 3.807 1.210 0.951 0.767 2.783 1.230 0.967 1.215 1.833 1.193
M4 (Monthly) 0.960 0.970 0.982 0.991 0.992 0.974 0.956 0.950 2.090 1.033 1.005 0.886 1.533 1.751 0.962 1.040 1.009 1.260
M4 (Weekly) 1.998 2.021 2.113 2.155 2.137 2.077 2.005 1.948 5.658 2.475 2.419 2.262 3.483 8.087 1.996 2.346 2.745 2.777
Pedestrian Counts 0.272 0.286 0.304 0.303 0.309 0.297 0.292 0.279 0.342 0.355 0.330 0.307 0.363 0.258 0.339 0.311 0.364 0.369
Rideshare 0.865 0.862 0.854 0.830 0.840 0.854 0.856 0.871 0.891 0.911 0.900 0.853 0.932 0.895 0.827 0.996 1.067 1.250
Taxi (30 Min.) 0.830 0.849 0.941 0.944 0.902 0.861 0.848 0.823 1.069 1.374 1.088 1.054 1.023 1.261 1.077 1.158 1.113 1.160
Temperature-Rain 0.980 0.986 1.012 1.029 0.945 0.935 0.929 0.924 1.031 0.963 0.988 1.011 1.419 1.189 1.250 1.015 0.994 2.243
Uber TLC (Daily) 0.821 0.839 0.870 0.906 0.952 0.938 0.887 0.876 1.289 0.937 0.874 0.803 1.219 0.855 0.813 0.905 0.916 1.378
Uber TLC (Hourly) 0.670 0.673 0.677 0.689 0.786 0.777 0.771 0.779 0.711 0.728 0.716 0.677 0.812 0.809 0.696 0.703 0.746 0.931

Agg. Relative Score 0.695 0.706 0.727 0.732 0.729 0.718 0.708 0.698 1.141 0.856 0.806 0.745 1.030 0.876 0.740 0.821 0.939 1.000
Avg. Rank 4.667 6.000 7.867 8.467 7.667 6.733 5.467 4.467 14.333 12.533 10.667 7.467 15.467 10.533 6.733 12.200 13.800 15.933

F. Additional results: Long-Horizon Forecasting
Figure 11 shows results on a long-horizon benchmark constructed by increasing the forecast length H of each dataset in
Benchmark II (Zero-Shot) by a factor of 2 and 3, implying maximum horizons of 112 and 168 (for NN5 Daily). Benchmark
I (In-Domain) was not used as increasing the forecast length over the prescribed ones (see Table 9) would imply mixing
the test and training portions of the datasets. The datasets in Benchmark II without sufficient history in all time series
to allow for longer horizons have been skipped. WaveToken-Base outperforms other foundation models across all three
metrics in the H × 2 setting. When H × 3, TimesFM performs better with respect to WQL only. All results for Chronos and
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Table 3: Raw per-dataset values of VRSE for all models on the in-domain benchmark.

Pretrained Models (In Domain) Pretrained Models (Other) Task Specific Models Local Models
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Electricity (15 Min.) 0.022 0.023 0.021 0.024 0.027 0.026 0.024 0.027 1.354 0.018 0.024 0.033 0.019 0.012 0.022 0.030 0.109 0.032
Electricity (Hourly) 0.012 0.013 0.012 0.009 0.013 0.010 0.012 0.013 0.008 0.014 0.012 0.007 0.014 0.011 0.007 0.008 0.010 0.011
Electricity (Weekly) 0.015 0.014 0.022 0.021 0.021 0.019 0.016 0.014 0.099 0.093 0.179 0.011 0.368 0.017 0.026 0.070 0.057 0.159
KDD Cup 2018 0.099 0.101 0.108 0.115 0.113 0.118 0.123 0.131 0.157 0.129 0.119 0.151 0.141 0.097 0.117 0.131 0.996 0.284
London Smart Meters 0.323 0.337 0.341 0.352 0.213 0.213 0.208 0.205 0.252 0.208 0.188 0.274 0.237 0.194 0.241 0.309 0.261 0.177
M4 (Daily) 0.010 0.007 0.005 0.007 0.004 0.004 0.004 0.004 0.022 0.005 0.004 0.004 0.006 0.005 0.005 0.006 0.007 0.007
M4 (Hourly) 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.003 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.002
M4 (Monthly) 0.047 0.047 0.048 0.047 0.045 0.044 0.044 0.043 0.080 0.042 0.042 0.040 0.067 0.065 0.043 0.041 0.044 0.048
M4 (Weekly) 0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.020 0.006 0.005 0.004 0.007 0.020 0.004 0.005 0.008 0.008
Pedestrian Counts 0.083 0.104 0.110 0.108 0.111 0.109 0.105 0.099 0.121 0.126 0.133 0.111 0.109 0.021 0.128 0.088 0.109 0.118
Rideshare 0.043 0.041 0.043 0.041 0.043 0.043 0.044 0.043 0.052 0.066 0.064 0.047 0.056 0.046 0.041 0.031 0.049 0.032
Taxi (30 Min.) 0.097 0.099 0.136 0.126 0.118 0.104 0.096 0.087 0.169 0.329 0.156 0.172 0.151 0.271 0.214 0.208 0.222 0.108
Temperature-Rain 0.596 0.633 0.677 0.712 0.512 0.515 0.505 0.493 0.423 0.419 0.409 0.528 0.463 0.340 0.854 0.527 0.542 1.715
Uber TLC (Daily) 0.024 0.023 0.023 0.024 0.028 0.023 0.024 0.024 0.067 0.031 0.024 0.022 0.074 0.030 0.023 0.024 0.031 0.115
Uber TLC (Hourly) 0.020 0.019 0.020 0.024 0.022 0.021 0.020 0.024 0.047 0.029 0.023 0.020 0.036 0.025 0.030 0.030 0.028 0.058

Agg. Relative Score 0.550 0.547 0.582 0.591 0.555 0.567 0.540 0.540 1.350 0.684 0.664 0.521 0.894 0.565 0.608 0.681 0.921 1.000
Avg. Rank 7.467 7.467 9.067 9.133 8.667 7.400 7.000 7.067 14.267 10.533 9.200 7.600 12.733 8.267 9.400 9.800 12.933 13.000

Table 4: Raw per-dataset values of WQL for all models on the zero-shot benchmark.

Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models
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Australian Electricity 0.067 0.075 0.074 0.063 0.094 0.065 0.075 0.071 0.097 0.055 0.046 0.089 0.037 0.087 0.036 0.084
Car Parts 1.060 1.057 1.029 1.024 0.973 0.986 0.994 1.001 1.011 1.654 1.621 1.019 0.998 0.967 0.871 1.600
CIF 2016 0.014 0.013 0.015 0.013 0.014 0.012 0.014 0.012 0.041 0.011 0.031 0.020 0.140 0.136 0.011 0.015
Covid Deaths 0.045 0.048 0.059 0.084 0.057 0.050 0.048 0.049 0.276 0.038 0.035 0.204 0.065 0.108 0.034 0.133
Dominick 0.332 0.333 0.338 0.346 0.352 0.348 0.343 0.342 0.443 0.361 0.346 0.426 0.345 0.364 0.320 0.453
ERCOT Load 0.019 0.016 0.018 0.018 0.017 0.015 0.015 0.019 0.033 0.019 0.021 0.021 0.017 0.032 0.023 0.037
ETT (15 Min.) 0.068 0.069 0.064 0.072 0.068 0.071 0.063 0.061 0.080 0.075 0.070 0.084 0.054 0.069 0.075 0.141
ETT (Hourly) 0.073 0.081 0.080 0.085 0.080 0.072 0.073 0.074 0.106 0.095 0.084 0.092 0.071 0.081 0.082 0.122
Exchange Rate 0.013 0.014 0.013 0.012 0.015 0.014 0.014 0.013 0.011 0.010 0.012 0.013 0.010 0.009 0.011 0.013
FRED-MD 0.020 0.022 0.017 0.017 0.026 0.022 0.027 0.026 0.389 0.047 0.048 0.035 0.042 0.043 0.112 0.122
Hospital 0.056 0.056 0.057 0.058 0.060 0.059 0.057 0.055 0.093 0.060 0.057 0.051 0.070 0.056 0.053 0.073
M1 (Monthly) 0.130 0.128 0.139 0.138 0.140 0.139 0.134 0.128 0.196 0.155 0.151 0.123 0.165 0.150 0.175 0.191
M1 (Quarterly) 0.107 0.105 0.103 0.103 0.111 0.110 0.111 0.119 0.141 0.108 0.107 0.087 0.078 0.089 0.122 0.150
M1 (Yearly) 0.183 0.181 0.172 0.179 0.177 0.173 0.167 0.166 0.293 0.195 0.199 0.163 0.165 0.139 0.124 0.209
M3 (Monthly) 0.096 0.097 0.100 0.099 0.099 0.098 0.097 0.095 0.155 0.102 0.101 0.093 0.113 0.099 0.096 0.149
M3 (Quarterly) 0.074 0.076 0.079 0.081 0.079 0.077 0.076 0.075 0.134 0.080 0.085 0.072 0.074 0.073 0.071 0.101
M3 (Yearly) 0.151 0.153 0.155 0.159 0.140 0.149 0.151 0.143 0.192 0.166 0.170 0.123 0.133 0.122 0.130 0.167
M4 (Quarterly) 0.082 0.083 0.084 0.086 0.081 0.081 0.080 0.079 0.132 0.081 0.080 0.074 0.074 0.080 0.080 0.119
M4 (Yearly) 0.134 0.137 0.136 0.140 0.134 0.136 0.134 0.130 0.178 0.121 0.138 0.117 0.106 0.111 0.110 0.161
M5 0.587 0.586 0.590 0.595 0.602 0.597 0.593 0.590 0.635 0.692 0.584 0.559 0.597 0.657 0.560 1.024
NN5 (Daily) 0.156 0.161 0.169 0.173 0.190 0.176 0.162 0.161 0.261 0.181 0.162 0.160 0.149 0.155 0.145 0.425
NN5 (Weekly) 0.091 0.091 0.090 0.091 0.094 0.092 0.092 0.090 0.111 0.092 0.092 0.086 0.081 0.087 0.086 0.123
Tourism (Monthly) 0.100 0.103 0.113 0.109 0.117 0.103 0.096 0.093 0.213 0.123 0.113 0.088 0.092 0.092 0.096 0.104
Tourism (Quarterly) 0.061 0.069 0.069 0.074 0.071 0.070 0.066 0.063 0.202 0.100 0.085 0.069 0.074 0.072 0.074 0.119
Tourism (Yearly) 0.183 0.207 0.200 0.218 0.184 0.197 0.193 0.192 0.238 0.167 0.163 0.148 0.136 0.127 0.102 0.209
Traffic 0.256 0.264 0.263 0.264 0.240 0.250 0.260 0.250 0.256 0.225 0.231 0.184 0.246 0.233 0.264 0.362
Weather 0.139 0.140 0.143 0.150 0.142 0.140 0.139 0.137 0.164 0.135 0.132 0.150 0.143 0.147 0.151 0.217

Agg. Relative Score 0.645 0.662 0.667 0.678 0.683 0.655 0.655 0.644 1.097 0.698 0.707 0.692 0.684 0.733 0.639 1.000
Avg. Rank 6.630 7.963 8.556 9.741 9.333 8.000 7.074 5.630 14.481 9.667 9.296 6.259 6.037 7.000 5.778 14.556

WaveToken are averaged across three different seeds.
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Table 5: Raw per-dataset values of MASE for all models on the zero-shot benchmark.

Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models
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Australian Electricity 1.333 1.319 1.399 1.114 1.657 1.287 1.404 1.310 1.635 1.250 0.995 1.631 1.395 0.699 0.871 1.473 0.810 1.253
Car Parts 0.906 0.899 0.887 0.891 0.847 0.860 0.865 0.873 0.816 1.734 1.540 0.893 1.575 1.106 0.803 0.798 0.799 1.201
CIF 2016 0.986 0.981 0.989 1.051 1.066 1.012 0.997 0.977 2.235 1.208 1.138 0.925 2.023 1.260 1.537 1.363 1.553 1.289
Covid Deaths 42.550 42.687 42.670 43.621 38.051 37.939 37.670 36.969 78.456 33.036 33.063 55.627 53.486 66.391 36.465 38.203 30.635 46.912
Dominick 0.818 0.816 0.819 0.833 0.825 0.823 0.821 0.822 1.250 0.880 0.845 1.220 1.268 1.168 0.867 0.851 0.800 0.871
ERCOT Load 0.617 0.550 0.573 0.588 0.565 0.510 0.519 0.627 0.834 0.590 0.660 0.590 1.043 0.703 0.553 1.197 0.690 0.761
ETT (15 Min.) 0.741 0.739 0.710 0.792 0.729 0.710 0.674 0.642 0.967 0.968 0.765 1.037 0.915 0.899 0.652 0.874 0.962 1.169
ETT (Hourly) 0.735 0.789 0.789 0.797 0.795 0.737 0.723 0.726 1.002 0.895 0.839 0.890 0.985 0.860 0.729 0.814 0.875 0.932
Exchange Rate 2.375 2.433 2.252 2.030 2.306 2.268 2.224 2.348 3.087 1.536 1.923 3.310 1.792 2.709 1.540 1.615 2.361 1.740
FRED-MD 0.500 0.486 0.496 0.483 0.510 0.503 0.501 0.500 2.283 0.609 0.598 0.484 0.659 1.139 0.745 0.621 0.929 1.101
Hospital 0.810 0.810 0.815 0.817 0.713 0.709 0.697 0.697 0.939 0.821 0.824 0.759 1.051 0.833 0.859 0.804 0.799 0.921
M1 (Monthly) 1.090 1.117 1.169 1.174 1.205 1.158 1.104 1.079 1.875 1.271 1.241 1.027 1.578 1.322 1.208 1.122 1.326 1.314
M1 (Quarterly) 1.713 1.739 1.764 1.785 1.782 1.779 1.758 1.787 3.036 1.877 1.829 1.632 2.176 1.956 1.920 1.741 2.144 2.078
M1 (Yearly) 4.301 4.624 4.659 4.958 4.737 4.895 4.751 4.449 7.149 4.629 4.707 4.004 5.699 5.645 4.042 3.685 4.316 4.894
M3 (Monthly) 0.857 0.868 0.885 0.900 0.912 0.888 0.877 0.858 1.846 0.947 0.924 0.870 1.514 1.087 1.225 0.943 0.916 1.146
M3 (Quarterly) 1.181 1.199 1.256 1.289 1.272 1.247 1.223 1.216 2.886 1.433 1.439 1.150 2.113 1.512 1.264 1.209 1.160 1.425
M3 (Yearly) 3.106 3.209 3.276 3.385 3.009 3.142 3.185 2.992 5.114 3.654 3.823 2.697 4.238 3.651 2.949 2.827 2.860 3.172
M4 (Quarterly) 1.216 1.231 1.246 1.271 1.243 1.226 1.212 1.210 2.663 1.285 1.259 1.160 2.027 1.657 1.150 1.254 1.248 1.602
M4 (Yearly) 3.606 3.678 3.651 3.743 3.688 3.731 3.652 3.550 5.866 3.601 4.174 3.339 5.141 4.421 3.072 3.178 3.119 3.974
M5 0.944 0.939 0.940 0.944 0.944 0.945 0.941 0.940 0.965 1.440 0.930 0.912 1.094 1.051 0.919 0.956 0.909 1.399
NN5 (Daily) 0.573 0.585 0.615 0.642 0.732 0.678 0.621 0.615 0.992 0.700 0.626 0.629 1.031 0.620 0.575 0.585 0.556 1.292
NN5 (Weekly) 0.940 0.938 0.944 0.947 0.966 0.951 0.948 0.937 1.141 0.991 0.994 0.949 1.053 0.989 0.877 0.920 0.896 1.063
Tourism (Monthly) 1.761 1.828 1.900 1.950 1.997 1.821 1.695 1.633 3.030 2.040 1.911 1.541 2.491 3.223 1.572 1.529 1.686 1.631
Tourism (Quarterly) 1.677 1.717 1.730 1.829 1.836 1.804 1.762 1.725 3.695 2.712 2.306 1.731 3.224 2.135 1.723 1.586 1.729 1.699
Tourism (Yearly) 3.755 3.900 3.901 4.048 3.635 3.852 3.697 3.689 3.755 3.060 3.284 3.234 3.266 3.706 3.138 3.702 3.047 3.552
Traffic 0.804 0.828 0.837 0.850 0.785 0.817 0.843 0.817 0.829 0.725 0.759 0.638 0.841 0.606 0.790 0.737 0.880 1.077
Weather 0.822 0.824 0.836 0.853 0.846 0.834 0.830 0.822 1.001 0.831 0.808 0.912 0.876 0.929 0.860 0.911 0.913 1.004

Agg. Relative Score 0.823 0.832 0.841 0.850 0.848 0.828 0.817 0.810 1.291 0.908 0.875 0.846 1.120 0.981 0.810 0.843 0.847 1.000
Avg. Rank 6.519 7.111 8.370 10.370 9.333 8.259 7.000 5.630 16.444 11.037 10.148 7.185 15.222 13.407 6.370 7.593 7.778 13.222

Table 6: Raw per-dataset values of VRSE for all models on the zero-shot benchmark.

Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models
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Australian Electricity 0.008 0.008 0.008 0.010 0.012 0.005 0.009 0.010 0.006 0.004 0.003 0.013 0.008 0.002 0.002 0.012 0.001 0.008
Car Parts 0.906 0.922 0.867 0.843 0.863 0.854 0.845 0.848 0.933 0.967 0.946 0.893 1.370 0.801 0.976 0.908 0.948 0.827
CIF 2016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.001 0.006 0.000 0.035 0.030 0.000 0.000
Covid Deaths 0.003 0.004 0.006 0.012 0.006 0.005 0.003 0.003 0.079 0.003 0.002 0.099 0.013 0.015 0.011 0.045 0.002 0.026
Dominick 0.273 0.279 0.290 0.308 0.242 0.243 0.241 0.245 0.283 0.244 0.242 0.278 0.256 0.245 0.279 0.271 0.311 0.401
ERCOT Load 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.004 0.001 0.001 0.001 0.003 0.001 0.001 0.003 0.001 0.002
ETT (15 Min.) 0.006 0.006 0.006 0.008 0.007 0.007 0.006 0.005 0.034 0.007 0.006 0.010 0.011 0.008 0.004 0.006 0.006 0.019
ETT (Hourly) 0.007 0.007 0.008 0.009 0.007 0.006 0.006 0.007 0.020 0.012 0.009 0.014 0.018 0.012 0.007 0.009 0.010 0.012
Exchange Rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
FRED-MD 0.005 0.001 0.000 0.000 0.004 0.002 0.006 0.004 0.577 0.013 0.013 0.011 0.011 0.006 0.010 0.009 0.084 0.051
Hospital 0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.003 0.007 0.003 0.003 0.003 0.014 0.004 0.006 0.009 0.010 0.005
M1 (Monthly) 0.059 0.060 0.057 0.061 0.078 0.082 0.071 0.060 0.177 0.102 0.078 0.106 0.270 0.102 0.174 0.156 0.232 0.094
M1 (Quarterly) 0.020 0.020 0.020 0.015 0.021 0.020 0.022 0.027 0.031 0.019 0.018 0.016 0.008 0.027 0.008 0.008 0.028 0.029
M1 (Yearly) 0.097 0.094 0.079 0.087 0.084 0.082 0.078 0.072 0.193 0.094 0.081 0.077 0.082 0.071 0.068 0.039 0.037 0.092
M3 (Monthly) 0.032 0.033 0.037 0.031 0.030 0.030 0.029 0.028 0.064 0.030 0.031 0.031 0.068 0.039 0.039 0.034 0.032 0.030
M3 (Quarterly) 0.024 0.026 0.028 0.029 0.026 0.025 0.025 0.024 0.059 0.024 0.024 0.023 0.034 0.026 0.021 0.021 0.021 0.026
M3 (Yearly) 0.095 0.079 0.074 0.068 0.062 0.074 0.086 0.067 0.175 0.051 0.055 0.060 0.064 0.055 0.066 0.040 0.061 0.060
M4 (Quarterly) 0.031 0.032 0.032 0.032 0.030 0.030 0.029 0.029 0.064 0.028 0.027 0.027 0.039 0.034 0.028 0.029 0.032 0.037
M4 (Yearly) 0.060 0.060 0.060 0.062 0.060 0.061 0.060 0.058 0.193 0.050 0.057 0.056 0.074 0.074 0.051 0.048 0.052 0.065
M5 0.279 0.275 0.286 0.285 0.319 0.296 0.292 0.281 0.308 0.258 0.280 0.324 0.305 0.289 0.375 0.338 0.318 0.618
NN5 (Daily) 0.047 0.046 0.046 0.044 0.041 0.041 0.040 0.040 0.108 0.046 0.038 0.053 0.148 0.050 0.043 0.035 0.042 0.275
NN5 (Weekly) 0.016 0.016 0.016 0.016 0.017 0.016 0.016 0.016 0.021 0.016 0.016 0.018 0.025 0.020 0.013 0.015 0.017 0.026
Tourism (Monthly) 0.019 0.021 0.027 0.015 0.021 0.019 0.020 0.026 0.087 0.018 0.014 0.009 0.030 0.170 0.014 0.019 0.019 0.010
Tourism (Quarterly) 0.004 0.004 0.004 0.005 0.004 0.003 0.003 0.002 0.045 0.005 0.002 0.002 0.005 0.024 0.005 0.005 0.009 0.024
Tourism (Yearly) 0.033 0.037 0.032 0.036 0.030 0.035 0.038 0.036 0.125 0.038 0.017 0.021 0.038 0.034 0.014 0.018 0.007 0.034
Traffic 0.243 0.244 0.243 0.239 0.227 0.235 0.241 0.236 0.224 0.223 0.221 0.150 0.189 0.105 0.227 0.223 0.247 0.279
Weather 0.070 0.070 0.072 0.073 0.068 0.068 0.068 0.067 0.073 0.065 0.065 0.078 0.066 0.071 0.076 0.071 0.079 0.098

Agg. Relative Score 0.623 0.629 0.608 0.624 0.632 0.585 0.610 0.584 1.843 0.604 0.557 0.773 1.087 0.810 0.732 0.854 0.667 1.000
Avg. Rank 8.852 9.815 9.852 10.074 8.889 7.815 7.593 6.889 15.481 6.852 5.444 9.444 13.593 11.111 8.333 8.444 9.741 12.778
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Figure 11: Long-horizon benchmark constructed by increasing the forecast length of each dataset in Benchmark
II (Zero-Shot) by a factor of 2 and 3. (Top row) Results with horizon multiplied by 2: WaveToken-Base outperforms
other foundation models across all three metrics. (Bottom row) Results with horizon multiplied by 3: WaveToken-Base
outperforms other foundation models with respect to MASE and VRSE. TimesFM performs better with respect to WQL.
(Right) List of all datasets included in the two long-horizons benchmarks. All results for Chronos and WaveToken are
averaged across three different seeds.
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G. Additional results: Qualitative analysis
Figures 12, 13 and 14 show all the cross-attention maps for the 12 decoder layers of Chronos-Base (left) and WaveToken-Base
(right) when forecasting the spiky data of the second row in Figure 1. Figures 15, 16 and 17 show example forecasts
generated by WaveToken-Base on the evaluation datasets considered in Section 3.

H. Datasets and Baselines
In this section we report details on all the datasets (Tables 7 and 9) and baselines (Table 8) used for the experiments of
Section 3. For the SeasonalNaive baseline, we relied on the implementation available in the StatsForecast library (Garza
et al., 2022). For the task-specific deep learning models, we used their implementations available in the GluonTS library
(Alexandrov et al., 2020). Finally, we used the corresponding reference implementations for Lag-llama4 (Rasul et al., 2023),
Moirai5 (Woo et al., 2024), TimesFM6 (Das et al., 2023) and Chronos7 (Ansari et al., 2024).

Table 7: Breakdown of the datasets and baselines used for training and evaluation.

Data Subset # Datasets # Series Usage Evaluation Baselines

Pretraining-only 13 795,936 pretraining -

Benchmark I 15 97,272
pretraining and
in-domain evaluation

SeasonalNaive, DeepAR, TFT, PatchTST
Lag-Llama, Moirai-1.0-R (Base & Large),
Chronos (Mini-Large), TimesFM

Benchmark II 27 190,674 zero-shot evaluation All of the above

Table 8: Baseline models and hyper-parameter choices. Hyper-parameters not specified are set to defaults in their respective
implementations. C stands for context length, dh for hidden layer dimension, nL for number of layers, and nH for number
of heads.

Model Model Type Implementation Probabilistic Hyperparameters

SeasonalNaive Local StatsForecast Yes N/A
DeepAR Task-specific GluonTS Yes dh = 40, nL = 2
TFT Task-specific GluonTS Yes dh = 32, nH = 4
PatchTST Task-specific GluonTS Yes Patch length: 16, Stride: 8, dh = 32, nL = 2, nH = 4
Lag-Llama Pretrained Reference Yes C = 32
Moirai-1.0-R Pretrained Reference Yes C = 1024, Patch length: selected by dataset-specific validation
TimesFM Pretrained Reference Yes All hyperparameters set to defaults from the released models
Chronos Pretrained Reference Yes All hyperparameters set to defaults from the released models
WaveToken Pretrained Reference Yes All hyperparameters set to defaults as in Chronos

4https://github.com/time-series-foundation-models/lag-llama
5https://github.com/SalesforceAIResearch/uni2ts
6https://github.com/google-research/timesfm
7https://github.com/amazon-science/chronos-forecasting
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Figure 12: Cross-attention maps for the first to fourth (from top) decoder layers of Chronos-Base (left) and WaveToken-Base
(right) when forecasting the spiky data of the second row in Figure 1.
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Figure 13: Cross-attention maps for the fifth to eighth (from top) decoder layers of Chronos-Base (left) and WaveToken-Base
(right) when forecasting the spiky data of the second row in Figure 1.
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Figure 14: Cross-attention maps for the ninth to twelfth (from top) decoder layers of Chronos-Base (left) and
WaveToken-Base (right) when forecasting the spiky data of the second row in Figure 1.
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Figure 15: Example of forecasts from WaveToken-Base on the test datasets used in experiments.
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Figure 16: Example of forecasts from WaveToken-Base on the test datasets used in experiments.
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Figure 17: Example of forecasts from WaveToken-Base on the test datasets used in experiments.
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Table 9: Details of all datasets used for experiments, as collected by Ansari et al. (2024), partitioned according to how they
are used for training and evaluation of WaveToken models.

Dataset Domain Freq. Num. Series Series Length Prediction

min avg max Length (H)

Pretraining-only

Solar (5 Min.) energy 5min 5166 105120 105120 105120 -
Solar (Hourly) energy 1h 5166 8760 8760 8760 -
Spanish Energy and Weather energy 1h 66 35064 35064 35064 -
Taxi (Hourly) transport 1h 2428 734 739 744 -
USHCN nature 1D 6090 5906 38653 59283 -
Weatherbench (Daily) nature 1D 225280 14609 14609 14610 -
Weatherbench (Hourly) nature 1h 225280 350633 350639 350640 -
Weatherbench (Weekly) nature 1W 225280 2087 2087 2087 -
Wiki Daily (100k) web 1D 100000 2741 2741 2741 -
Wind Farms (Daily) energy 1D 337 71 354 366 -
Wind Farms (Hourly) energy 1h 337 1715 8514 8784 -

In-domain evaluation

Electricity (15 Min.) energy 15min 370 16032 113341 140256 24
Electricity (Hourly) energy 1h 321 26304 26304 26304 24
Electricity (Weekly) energy 1W 321 156 156 156 8
KDD Cup 2018 nature 1h 270 9504 10897 10920 48
London Smart Meters energy 30min 5560 288 29951 39648 48
M4 (Daily) various 1D 4227 107 2371 9933 14
M4 (Hourly) various 1h 414 748 901 1008 48
M4 (Monthly) various 1M 48000 60 234 2812 18
M4 (Weekly) various 1W 359 93 1035 2610 13
Pedestrian Counts transport 1h 66 576 47459 96424 48
Rideshare transport 1h 2340 541 541 541 24
Taxi (30 Min.) transport 30min 2428 1469 1478 1488 48
Temperature-Rain nature 1D 32072 725 725 725 30
Uber TLC (Daily) transport 1D 262 181 181 181 7
Uber TLC (Hourly) transport 1h 262 4344 4344 4344 24

Zero-shot evaluation

Australian Electricity energy 30min 5 230736 231052 232272 48
CIF 2016 banking 1M 72 28 98 120 12
Car Parts retail 1M 2674 51 51 51 12
Covid Deaths healthcare 1D 266 212 212 212 30
Dominick retail 1D 100014 201 296 399 8
ERCOT Load energy 1h 8 154854 154854 154854 24
ETT (15 Min.) energy 15min 14 69680 69680 69680 24
ETT (Hourly) energy 1h 14 17420 17420 17420 24
Exchange Rate finance 1B 8 7588 7588 7588 30
FRED-MD economic 1M 107 728 728 728 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M4 (Quarterly) various 3M 24000 24 100 874 8
M4 (Yearly) various 1Y 23000 19 37 841 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4
Traffic transport 1h 862 17544 17544 17544 24
Weather nature 1D 3010 1332 14296 65981 30
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