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Abstract
Hypergraphs are expressive structures for de-
scribing higher-order relationships among enti-
ties, with widespread applications across biol-
ogy and drug discovery. Hypergraph neural
networks (HGNNs) have recently emerged as a
promising representation learning approach on
these structures for clustering, classification, and
more. However, despite their promising perfor-
mance, HGNNs remain a black box, and explain-
ing how they make predictions remains an open
challenge. To address this problem, we propose
HyperEX, a post-hoc explainability framework
for hypergraphs that can be applied to any trained
HGNN. HyperEX computes node-hyperedge pair
importance to identify sub-hypergraphs as expla-
nations. Our experiments demonstrate how Hy-
perEX learns important sub-hypergraphs respon-
sible for driving node classification to give useful
insight into HGNNs.

1. Introduction
Hypergraphs are a powerful tool for modeling complex rela-
tional data, particularly when there are higher-order interac-
tions that simple graphs fail to capture (Benson et al., 2016;
Wenping et al., 2022). Whereas standard graphs encode bi-
nary relationships, hypergraphs generalize this idea to sets,
where a single hyperedge can connect any number of entities
(Wenping et al., 2022). As a result, hypergraphs have proven
to be a useful representational structure across domains, in-
cluding social networks, biological networks of genes and
proteins, and more (Estrada & Rodrı́guez-Velázquez, 2006).
Recent studies have demonstrated how hypergraph neural
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networks (HGNNs) can expressively encode information
in hypergraph-structured data and achieve excellent predic-
tive performance across many learning tasks (Chien et al.,
2022; Wei et al., 2022; Gao et al., 2022), especially in many
biological settings where multi-way interactions are a more
natural representation (Zhang et al., 2020; Zhang & Ma,
2020; Chan et al., 2022). However, despite their success,
HGNNs are not easily interpretable by humans due to their
black-box nature. As in similar domains, explainablility
methods can help us understand these models and their pre-
dictions (Adadi & Berrada, 2018), and provide a basis for
further improvement (Ying et al., 2019; Yuan et al., 2023).
To the best of our knowledge, there are no general methods
specifically designed for HGNN explainability that account
for the complex nature of hypergraphs (Gao et al., 2022).

Recently, a number of methods have been developed for ex-
plaining graph neural networks (GNNs) based on computed
gradients, perturbation, and training of surrogate models
and provide explanations in the form of scored nodes or
edges (Yuan et al., 2023). Although effective for graphs,
node-based approaches fail to elucidate key relationships,
whereas edge-based approaches are inherently pairwise in
nature. Collectively, these approaches do not capture the
higher-order set relationships, i.e. node-hyperedge associ-
ation, that are the essence of hypergraph learning. Unfor-
tunately, understanding the impact of a single hyperedge
requires considering all the nodes it connects, and existing
methods based on combinatorial optimization become in-
tractable for hypergraphs due to the exponential increase
in sub-hypergraph candidates. Furthermore, the multi-set
nature of hypergraphs and hyperedges introduces inherent
heterogeneity in learning models that may be challenging
to explain with established methods. New methods that can
account for these challenges are critical for explainability.

Given the lack of established methods for HGNNs, we pro-
pose a novel approach for explaining the decisions made
by hypergraph neural networks by finding important sub-
hypergraphs with respect to both nodes and hyperedges.
Specifically, given a hypergraph dataset and a trained HGNN
model, we aim to identify the sub-hypergraphs that are most
important for the model’s predictions, and show how remov-
ing these sub-hypergraphs significantly changes the model’s
predictions. Our framework, HyperEX, leverages a simple
attention mechanism to enable post-hoc explainability for
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Figure 1. Illustration of various explainability techniques applied
to a hypergraph representation of a gene-protein interaction net-
work. Approaches that focus solely on identifying important nodes
(a) or hyperedges (b) alone may still be ambiguous in their expla-
nations. In contrast, identifying sub-hypergraph that incorporate
both key nodes and hyperedges can capture the full spectrum of
interactions and relationships within the complex system (c). The
node of interest is highlighted in yellow with important neighbors
in red.

HGNNs, and provides insights into the specific substruc-
tures and node-hyperedge associations in the hypergraph
that the model relies on (Figure 1).

2. Related Work
Both HGNNs and explainability in machine learning are
active areas of research. Numerous approaches for HGNNs
have recently been reported (Feng et al., 2019; Yadati et al.,
2019; Arya et al., 2020; Zhang et al., 2020; Chien et al.,
2022; Wei et al., 2022) due to their ability to learn complex
relationships among entities (Gao et al., 2022). Our work
seeks to explain these powerful yet complex models, as no
methods have been developed for their post hoc explain-
ability. Adjacently, GNNs have proven to be powerful for
learning on graph-structured data (Bronstein et al., 2021;
Wu et al., 2022). With their application has also come the
need for explainability methods, as they play a crucial role
in understanding GNN models and their decisions (Pope
et al., 2019; Yuan et al., 2023). These methods do not natu-
rally extend to the challenges presented when generalizing
beyond binary edges and are unable to account for the het-
erogeneous nature of hypergraphs.

3. Problem Formulation
Hypergraphs Explanability Overview. A hypergraph H
is defined as a pair (V, E), where V represents a set of nodes
and E represents a set of hyperedges. A hyperedge e ∈ E
is a subset of V , indicating the nodes it connects. In our
setting, each node vi ∈ V is associated with a feature vector
xi ∈ Rd, where d denotes the feature dimension. In the
context of hypergraphs and HGNNs, post-hoc explainability

refers to the process of interpreting the decisions made by
the HGNN model after training. Hence, given a trained
HGNN, f(H), the goal of post-hoc explainability methods
is to offer insight into the model f(H).

Generally, there are three ways to provide hypergraph ex-
planations based on their nodes, their hyperedges, or the
relationships between them. We further illustrate this us-
ing a gene-protein interaction network. Figure 1 shows a
hypothetical gene-protein interaction using a hypergraph
model where genes and proteins are the nodes of this hyper-
graph, and hyperedges are the relations between them. An
explanation for the gene-protein hypergraph could consist
of genes and proteins (node-based), gene-protein relations
(hyperedge-based), or provide a subset of genes, proteins,
and their interactions (sub-hypergraphs).

Node-based Explanations. One approach is to find impor-
tant nodes responsible for the model prediction (Figure 1).
However, focusing on key entities alone overlooks the rela-
tionships between them, which are critical for many appli-
cations. Furthermore, if a node’s importance is largely due
to its role within certain hyperedges, focusing on individual
nodes could misrepresent the true dynamics. For example,
in Figure 1 (a), an explanation focused only on finding key
genes and proteins in a network may be confounded by the
many possible interactions.

Hyperedges-based Explanations. Hyperedge-based ap-
proaches instead focus on the relationship between entities.
However, when hyperedges relate many nodes, it can be
difficult to interpret the exact nature of the relationship. For
example, in Figure 1 (b), an explanation only finds impor-
tant interactions, while it is not clear if all or only some
genes/proteins are important in these interactions.

Sub-hypergraph-based Explanations. Finally, one can
find important nodes with respect to hyperedges of a hyper-
graph. In other words, the sub-hypergraph could be edges
in a bipartite representation of a hypergraph that connects
nodes to hyperedges. This way of explainability is more
general compared to the other approaches as it balances the
focus on nodes and hyperedges and offers a more compre-
hensive view of the network dynamics that can be adapted
to different tasks. For example, the model in Figure 1 (c),
show significant edges in the bipartite representation which
creates a more comprehensive explanation by highlighting
which both key genes and proteins are critical connectors
and their hyperedges. These could be genes and proteins
that might not have the most interactions (high degree nodes)
or be part of the largest clusters of interactions (large hyper-
edges) but serve as key links within the system.

Identifying Sub-hypergraphs with Star-Expansion. Al-
though hypergraphs can be readily represented as multi-
sets based on the formalism above, reformulating them
can provide a further basis for interpretation. For ex-
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Figure 2. Overview of HyperEX framework. HyperEX learns an
importance score αij between nodes and their hyperedges (left)
which defines an explanatory sub-hypergraph. The learning objec-
tive maximizes the mutual information between the outputs of the
original hypergraph and learned sub-hypergraph.

ample, two commonly-used approaches include clique-
expansion (Sun et al., 2008), where a graph is constructed by
replacing every hyperedge by fully-connecting its vertices,
and star-expansion, where hyperedges are replaced by new
nodes (Zien et al., 1999). Importantly, the star-expansion
formalism provides a convenient basis for interpretability
as it establishes a new set of node-hyperedge relationships.
Formally, in star-expansion, a hypergraph H = (V, E) is
transformed into a bipartite graph H∗ = (V, E ,B). In this
bipartite representation, V and E are the original sets of
nodes and hyperedges, respectively, and B represents set
of node-hyperedge connections in the bipartite graph. We
denote these new connections as bij ∈ B. Each bij is indi-
cating that node vi ∈ V is connected to hyperedge ej ∈ E
in the bipartite graph.

4. HyperEX: Framework and Method
Here, we describe the framework for HyperEX for post-hoc
hypergraph explainability. Given a hypergraph H and a
trained HGNN, f(H), HyperEX defines a framework to
identify an explanatory, induced sub-hypergraph that ex-
plains the HGNN predictions. Figure 2 summarizes our
framework.

Scoring the Importance of Node-Hyperedge Pairs.
Given hypergraph H, we first construct its star expansion
representation that transforms the hypergraph into its bipar-
tite representation, H∗ = (V, E ,B), where B corresponds to
the new set of node-hyperedge connections in the bipartite
graph.

Our procedure begins by running the HGNN model, f(·)
to obtain the model’s output and using it to generate the
embedding matrix Z ∈ RN×C , where N = |V| and C is
the number of the classes in our training dataset. We then
generate hyperedge embeddings by taking the average of
their respective node embeddings:

Z = f(H), and hj =
1

|N (j)|
∑

l∈N (j)

zl, (1)

Here, hj denotes the embedding vector of hyperedge j,
N (j) represents the set of nodes connected to hyperedge j,
and zl is the embedding vector of node l. For each node, we
then define a scoring function score : RC ×RC → R which
is used to calculate the attention coefficients between nodes
and hyperedges that serve as node-hyperedge association
weights ωij in the bipartite expansion:

αij =
exp (ωij)∑

k∈N (i) exp (ωik)
,

where ωij = (WQzi)
⊤ · (WKhj) · si

(2)

Here WQ and WK are linear transformations that capture
the importance of nodes and hyperedges respectively, zi is
the embedding of node i, hj is the embedding of hyperedge
j, and si is a learnable scalar that modulates the score based
on the distance to its K-hop neighborhood. In essence, this
operation provides a normalized attention score over an
expanded receptive field that classifies the relative impact
of adjacent hyperedges with a K-hop neighborhood.

Identifying Important Sub-hypergraphs. To identify
important sub-hypergraphs, we first find the K-hop neigh-
borhood of a given node. Then, we calculate the node-
hyperedge pair weights in this neighborhood using Equa-
tion (2). Finally, we pick the top-k pairs with the highest
weights as the important sub-hypergraph.

Learning Objective. The learning objective of our frame-
work is to maximize the restricted mutual information (MI)
between the node embeddings obtained from the original
hypergraph and the embeddings obtained from the induced
sub-hypergraph. Formally, let Z = f(H) denote the node
embeddings of the original hypergraph and Fθ(H) identify
the sub-hypergraph induced by important nodes and hyper-
edges of the original hypergraph learned through HyperEX
and Zθ = f(Fθ(H)) is the node embedding of that sub-
hypergraph. Our objective based on the restricted MI can
be written as maxθ (MI (f(H), f(Fθ(H))).

This objective encourages the model to capture the most im-
portant structures and relationships within the hypergraph,
as reflected in the sub-hypergraph. In our framework, we op-
timize for the noise-contrastive estimation (NCE) (Gutmann
& Hyvärinen, 2010), specifically InfoNCE (van den Oord
et al., 2019), as opposed to the direct computation of mutual
information, due to the improved computational efficiency
offered by InfoNCE.

loss = − 1

N

N∑
i=1

(
log

exp(zi · zi,θ)∑
j ̸=i exp(zi · zj,θ)

)
(3)
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Table 1. Fidelity+ scores with controlled sparsity using HyperGCL with generated (G), and fabricated (F) augmentations. Higher Fidelity+

indicates better explanation.

HGNN EXPLAINER CORA CITESEER CORA-CA ZOO PUBMED

HYPEREX 0.25± 0.06 0.25± 0.06 0.34± 0.05 0.88 ± 0.16 0.11 ± 0.00
HYPERGCL (G) SALIENCY 0.05± 0.00 0.04± 0.00 0.19± 0.00 0.41± 0.04 0.04 ± 0.00

IG 0.06± 0.01 0.14± 0.06 0.33 ± 0.01 0.41 ± 0.02 0.09 ± 0.00

HYPEREX 0.18± 0.07 0.18± 0.07 0.37± 0.05 0.73± 0.23 0.11 ± 0.01
HYPERGCL (F) SALIENCY 0.05± 0.00 0.01± 0.00 0.23± 0.36 0.41± 0.02 0.08 ± 0.01

IG 0.06± 0.00 0.13± 0.01 0.35± 0.00 0.52 ± 0.02 0.11± 0.01

where zi is the embedding of node vi in the original hyper-
graph, zi,θ is the embeddings of node vi in sub-hypergraph,
and N denotes the number of samples in a mini-batch re-
spectively.

5. Experiments and Results
Evaluation Metrics. We adapt the standard fidelity+

score (Pope et al., 2019) which concentrates on whether
removal of the key sub-hypergraph alters the model’s pre-
diction. In contrast, we also define fidelity−, which corre-
sponds to keeping only the important sub-hypergraph. The
sparsity score quantifies the fraction of structures deemed
significant by the explanation method (Pope et al., 2019).

HGNN models. We focus our current work on the AllSet
model as our primary HGNN model (Chien et al., 2022).
To augment this model, we also apply fabricated and gener-
ated augmentations from recent self-supervised pretraining
literature on hypergraphs (Wei et al., 2022).

Baselines. Since currently there are no explainable mod-
els for HGNNs, we adopt two common gradient-based ap-
proaches, Saliency (Simonyan et al., 2013) and Integrated
Gradients (IG) (Sundararajan et al., 2017), as our baselines
to evaluate against HyperEX.

5.1. Quantitative Evaluation with Fidelity and Sparsity

Table 1 shows fidelity+ scores across a range of datasets,
with HyperEX outperforming gradient-based methods on
all tasks. These results indicate that gradient-based ap-
proaches to identify critical nodes are insufficient for hy-
pergraph explainability. In contrast, HyperEX results in
significantly higher fidelity. We further evaluate our frame-
work using fidelity− metric on Zoo, and Cora-CA, which
directly measures the quality of the learned sub-hypergraph
(Figure 3). Again, our framework outperforms gradient-
based approaches.

5.2. Visualization of Sub-hypergraphs Explanations

To demonstrate the ability of HyperEX to generate sparse
explanations, we next generated visualizations of the re-
sulting sub-hypergraphs and plotted them alongside results

from IG (Figure 4). HyperEX (top) directly identifies node-
hyperedge pairs that provide a sparse hypothesis relative
to a few neighbors. In contrast, IG can only identify rele-
vant nodes, rather than the relationships between nodes and
hyperedges. As a result the generated explanations remain
dense, as any possible connecting hyperedge must also be
considered (bottom).

(a) (b)

Figure 3. Fidelity− on two datasets Zoo, and Cora-CA. Higher
Fidelity− indicates better explanation.

(a) HyperEX

(b) IG

Figure 4. HyperEX vs Integrated Gradients analysis on Cora-CA.
Explanations are generated with respect to the yellow node (far
right). The green edges are sub-hypergraphs found by explainable
models.

6. Conclusions
In summary, we have introduced HyperEX, a new post-hoc
explainability method for hypergraph neural networks that
enables the extraction of meaningful sub-hypergraphs based
on model predictions.
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