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Abstract

Modern language model (LM) training has been divided into multiple stages, mak-
ing it difficult for downstream developers to evaluate the impact of design choices
made at each stage. We present EvoLM, a model suite that enables systematic
and transparent analysis of LMs’ training dynamics across pre-training, contin-
ued pre-training, supervised fine-tuning, and reinforcement learning. By training
over 100 LMs with 1B and 4B parameters from scratch, we rigorously evaluate
both upstream (language modeling) and downstream (problem-solving) reasoning
capabilities, including considerations of both in-domain and out-of-domain general-
ization. Key insights highlight the diminishing returns from excessive pre-training
and post-training, the importance and practices of mitigating forgetting during
domain-specific continued pre-training, the crucial role of continued pre-training in
bridging pre-training and post-training phases, and various intricate trade-offs when
configuring supervised fine-tuning and reinforcement learning. To facilitate open
research and reproducibility, we release all pre-trained and post-trained models,
training datasets for all stages, and our entire training and evaluation pipeline.

Model Suite ¥ Datasets ) Code

1 Introduction

Scaling up language models has been a paradigm that enables various downstream applications [,

, 2”]. One approach to understanding scaling—and enabling more efficient resource allocation—is
through scaling laws, which characterize the quantitative relationship between pre-training log-loss
and compute [, 27/, 23, 2 1]. In part due to the vast design space [ -] and the complex interactions
of several training phases such as pre-training and post-training [ | &, /()] for open-weight models [ | /],
it remains challenging to clearly identify which decisions consistently lead to reliable downstream
performance gains.

Although progress has been made in understanding how models learn during training [5%, 53, <3,

, 00], accurately forecasting downstream problem-solving performance remains challenging due
to the training-inference mismatch in auto-regressive generative models [ 0] and the non-smooth
nature of downstream performance improvements [ 5]. Existing studies often rely on checkpoints
with limited transparency regarding training details, which can introduce potential confounding
factors [/0]. These include: (1) dependence on opaque analyses from post-training studies that
utilize off-the-shelf base models, often without strict control over key variables such as model size,
pre-training data size, and data components [/, |0, 6 1], and (2) evaluations based on intermediate
checkpoints [59, 51], which may have sub-optimal downstream performance due to incomplete
learning rate decay [©, 7+, 54, 67/, 20], thereby complicating fair comparisons.

In this work, we establish an end-to-end development pipeline using open toolkits [, 71, 9]
and open data sources [¢, 03, 55, 2] to systematically and transparently investigate language
models’ reasoning capabilities throughout their lifecycle, covering phases of pretraining, continued
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pretraining, supervised fine-tuning, and reinforcement learning. We introduce EvoLM, a model
suite comprising 100+ decoder-only autoregressive LMs with 1B and 4B parameters, each trained
from scratch with complete learning rate decay across various configurations of model size and
dataset scale. Pre-trained on publicly available corpora FineWeb [ ] only, our base models achieve
competitive performance on English-only language modeling tasks compared with other open-
weight models with significantly more pretraining compute (Table 4). For example, our 1B and 4B
models, pre-trained on 320B tokens, perform competitively with TinyLlama-1B and Qwen1.5-4B,
respectively, despite their significantly more pre-training data (2T and 3T tokens). We evaluate
both upstream language modeling performance (measured by perplexity) and downstream practical
problem-solving capabilities (assessed through generative rollout performance) on both in-domain
(ID) math reasoning and out-of-domain (OOD) general reasoning tasks. Through extensive controlled
and transparent experiments, our study addresses several critical gaps in understanding LM training
dynamics, provides novel insights into model behaviors, and identifies open research directions in
recent literature. In summary, our contributions include:

» Systematic analyses of language model capabilities across their entire lifecycle—from pre-training
to RL post-training—with evaluation on reasoning-intensive upstream cloze tasks and downstream
generative tasks, considering both in-domain and out-of-domain generalization.

* Open-sourcing 100+ LMs trained from scratch with 1B and 4B parameters and their training data
for all stages, enabling the research community to build upon our findings.

* Open-sourcing a comprehensive, transparent, and reproducible training pipeline and evaluation
framework, facilitating further research into scaling laws, training dynamics, and evaluating
upstream and downstream capabilities of language models.

2 Experimental Settings
2.1 Training Setup

We initialize all models using the LLaMA-2 [50] architecture with 1B and 4B parameters. Our
training pipeline consists of four sequential stages:

* Pre-training: Conducted on FineWeb-Edu [*“]. Guided by the Chinchilla scaling law [~ ] that
recommends a compute-optimal ratio of approximately 20 tokens per model parameter, we pre-train
models across token budgets ranging from the optimal 20x model size to 320B tokens to investigate
the effects of mild over-training (>1x Chinchilla, <16x Chinchilla) and excessive over-training
(>16x Chinchilla) on task performance.

. : Performed on FineMath [] with token budgets from 2B to 42B.
To mitigate catastrophic forgetting of general-domain knowledge, we also incorporate pre-training
data replay strategies [/5, |, 4, 6].

* Supervised Fine-Tuning (SFT): Applied to a dataset of QA pairs augmented from GSMSK [ ]
and MATH [”0], collected from a mixture of MetaMathQA [0 -], OpenMathlInstruct2 [55], and
NuminaMath [ ]. We filter out low-quality prompts using model correctness consistency [ ],
discarding samples with zero inter-model consensus.

* Reinforcement Learning (RL): Conducted using Proximal Policy Optimization (PPO) [/ /], with
a binary verifiable reward. The RL stage uses the same data sources as SFT but ensures no overlap
with the SFT dataset.

We use a compact model signature to denote the configuration of each model across training stages.
For example, 1B-160BT- -100Kep1-100Kep16 represents a model with the following setup:
* 1B: A model with 1 billion parameters.

* 160BT: Pretrained on 160 billion tokens from FineWeb-Edu.

. : Continued pretrained with 8 billion tokens of replayed general-domain data (FineWeb-
Edu) and 42 billion tokens of domain-specific data (FineMath).

100Kep!: Supervised fine-tuned on 100K examples for 1 epoch.

100Kep16: Reinforcement learning fine-tuned on 100K examples for 16 epochs.



For all configurations, we train models with complete learning rate scheduling and only take the final
checkpoints as subjects of study. More training details can be found at Appendix B.2.

2.2 Evaluation Protocol

Upstream Cloze Tasks These tasks assess models’ language modeling capabilities via next-token
prediction, without requiring conversational abilities. We evaluate pretrained and continued-pretrained
models on the following datasets, reporting average 0-shot accuracy across them: HellaSwag [05],
Winogrande [], PIQA [0], OBQA [0], ARC-Easy/Challenge [ |].

Downstream Generative Tasks These tasks evaluate models’ problem-solving abilities in a genera-
tive, conversational setting. We test supervised fine-tuned and RL-finetuned models on: 1) In-Domain
Tasks (math reasoning): GSM8K-Platinum [>7/] (a revised version of the full GSM8K [|”] test
set that minimizes label noises) and MATH [”0]. 2) Out-of-Domain Tasks: CRUXEval [ 9] (code
reasoning), BGQA [”“] (logical reasoning), TabMWP [ ] (table reasoning), and StrategyQA [!¢]
(commonsense reasoning). We evaluate models in a zero-shot manner by prompting them to gen-
erate full solutions in response to problems and report average performance for ID and OOD tasks.
More evaluation details including dataset descriptions, sampling parameters, and standard errors are
reported in Appendix B.3. Evaluation metrics include:

* Accuracy: We measure accuracy under four prompting schemes: 1) Pass@1: Temperature = 0.

A single deterministic response is generated. The problem is marked correct if this response is
correct. 2) Maj@16: Temperature = 1. Sixteen responses are sampled, and the majority answer is
evaluated for correctness. 3) RM@16: Temperature = 1. Sixteen responses are sampled; the one
with the highest ORM score is evaluated for correctness. 4) Pass@16: Temperature = 1. Sixteen
responses are sampled; the problem is marked solved if any one of the responses is correct.
For all these settings, final answers are extracted from model outputs and compared against ground-
truth solutions to determine correctness. We additionally report Correct Ratio: In the response
groups that have at least one correct solution, we compute the ratio of the number of correct
solutions to the total number of solutions (16).

* ORM Score: We use an outcome reward model—Skywork-Reward-Llama-3.1-8B-v0.2
[ 5]—to assign scalar scores to generated solutions, based on input problems and responses.
This metric serves as a proxy for solution quality.

3 Scaling Studies Across Three Training Stages

3.1 Scaling Up Pre-training Compute

To quantify how varying the total amount of pre- 0.575
training compute affects language modeling perfor-
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centage point when moving from 80 BT to 160 BT.
The larger 4B model continues to benefit slightly Figure 1: Upstream task performance vs. pre-
longer but also plateaus by 320 BT. training tokens on models {0.5B, 1B, 4B}-

We further assess how these pre-training budgets {10BT, 20BT, 40BT, 80BT, 160BT, 320BT}.

translate to downstream capabilities for both SFT

and SFT+RL models. Figure 2 shows all six metrics on ID and OOD downstream tasks from 20BT to
320BT pretraining budgets for 1B models. Both SFT and SFT+RL variants exhibit strong initial gains
up to 80BT, but performance saturates thereafter: For instance, ID Maj@ 16 accuracy of SFT model
rises sharply from 8% at 20BT to 15% at 80 BT, yet only inches up to 17% at 320 BT. RL yields a
consistent uplift over pure SFT, but likewise shows negligible benefit from over-training beyond 80BT.
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Figure 2: Downstream task performance vs. number of pretraining tokens on models:

- SFT: 1B-{20BT, 40BT, 80BT, 160BT, 320BT}- -100Kepl
- SFT+RL: 1B-{20BT, 40BT, 80BT, 160BT, 320BT}- -100Kep1-100Kep8.
Base Model ID Acc. (SFT / SFT+RL) OOD Acc. (SFT /SFT+RL)

Greedy Maj@16 Pass@16  Greedy Maj@16 Pass@16

Same Pretraining Compute

1B-320BT- 14.1/20.1 16.1/250 36.0/49.0 253/283 24.8/299 54.4/62.6

4B-80BT- 11.3/15.7 13.2/20.0 34.2/43.0 24.8/282 234/29.6 52.2/60.2
Same Pretraining Tokens

1B-80BT- 12.1/18.0 14.1/21.4 35.1/454 254/275 246/31.0 557/653

4B-80BT- 11.3/15.7 13.2/20.0 342/43.0 24.8/282 234/29.6 52.2/60.2

IB-160BT- 12.8/17.5 14.2/225 345/45.1 23.8/282 25.6/31.6 553/64.9

4B-160BT- 22.0/27.8 264/348 47.6/584 279/29.6 26.0/332 57.3/66.2

Table 1: Comparison between 1B and 4B SFT / SFT+RL models under fixed pre-training compute/-
tokens.

Moreover, Maj@ 16, RM@ 16, and Pass@ 16 accuracies on OOD tasks decrease after 160BT budget,
and such degradation is also amplified by a drop in ORM score, showing the overall generation quality
decreases to a certain amount. These patterns reveal that excessively large pre-training budgets also
lead to diminishing returns on downstream performance and might even cause degradation. This
finding is consistent with previous work [* | ], which points out that scaling up pre-training does not
always improve or can even hurt LMs’ performance after SFT, and we further complete the studies
by showing that 1) such performance gain stagnation is also reflected on downstream generative
reasoning tasks and 2) RL finetuning is also constrained by overtraining.

- Takeaway 1. Excessive general-domain pre-training does not always improve domain-specific
post-training and might even cause performance degradation on some downstream tasks (saturation
happens around 80x to 160x model size in our study).

We further look into how model size interplays with scaling up pre-training. As Table 1 illustrates,
under a fixed pre-training compute budget (1B-320BT vs. 4B—80BT), the smaller 1B model even
outperforms the 4B model across both SFT and SFT+RL settings. When matching on pre-training
tokens, we see the same trend at lower budgets: at 80B tokens the 1B—80BT and 4B—80BT models
perform comparably, with the smaller model slightly ahead. However, once the budget rises to 160B
tokens, the 4B—160BT model “unlocks” its scale: For example, the 4B SFT model jumps to an ID
Maj@16 of 26.4% (vs. 14.2% of 1B counterpart) and the 4B SFT+RL model jumps to 34.8% (vs.
22.5% of 1B counterpart), demonstrating that only after reaching the saturation regime of pre-training
does model size translate into substantial gains in post-training performance.

w Takeaway 2. Under limited pre-training budgets, smaller post-trained models can even out-

perform larger counterparts. Conversely, once pre-training tokens reach the saturation regime,
increasing model size enables clear improvements in both in-domain performance and OOD general-
ization.



3.2 Scaling Up Compute

We investigate the impact of continued pretrain-
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degrades upstream task performance, indicating
catastrophic forgetting [ >]. To mitigate this
issue, we adopt a simple “replay” strategy [~ 5]

by randomly interleaving a small amount of pre- 1,110 5. GSM8K-Platinum performance (Pass@ 1
training data dunng CPT. Figure 3 demopstrates accuracy) of pretrained model 1B-160BT contin-
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replay baseline across all CPT budgets. We then fetuned using examples wi epoch.

apply SFT on the CPT models on 100K exam-

ples for one epoch to investigate the impact of replay on downstream performance. Table 2 reports
Pass@1 accuracy on GSM8K-Platinum for each CPT mix. Pure FineMath CPT (50 BT) achieves
19.27%, whereas a mix of 8 BT FineWeb replay with 42 BT FineMath tokens even yields a better
result at 21.01%. Configurations with either too little (1.6+48.4 BT) or too much (16+34 BT) replay
perform worse, highlighting that a modest replay budget (around 5%) optimally balances retention of
general-domain knowledge with adaptation to downstream generative tasks.

w Takeaway 3. CPT on domain-specific data pretrained wfo replay replay 1.68
induces catastrophic forgetting of pre-trained @ replay88 Sk replay 168
knowledge which could harm both upstream and © 0.52 b ~—e *
downstream performance, while incorporating 8 '
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In Figure 4, we plot downstream performance of
both SFT and SFT+RL models as a function of 0 10 20 30 40 50
CPT budget (with a fixed 8 BT replay budget). Total CPT tokens (B)

All variants improve steadily with more domain-

specific tokens up to around 32BT and then  gjgyre 3: Upsiream task performance vs. CPT
plateau by 42 BT. For instance, the ID greedy (,1ens on models 1B-160BT, 1B-160BT-
accuracy of the SFT model rises from about 1B-160BT- 1B-

5% at 2BT to 12% at 32 BT before leveling off. |gopT.

Such a trend is also observed in OOD metrics.

Across the CPT range, RL finetuning consistently outperforms pure SFT; notably, without CPT, RL
can even underperform SFT (as seen in Maj@ 16, RM @16, and Pass@16), yet the gain brought by
RL tends to strengthen as CPT tokens increase.
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Figure 4: Downstream task performance vs. continued pre-training tokens on models:
- SFT: 1B-160BT-100Kepl, 1B-160BT- -100Kep1
- SFT+RL: 1B-160BT-100Kep1-100Kep8, 1B-160BT- -100Kep1-100Kep8.



w Takeaway 4. Domain-specific post-training should be supported by adequate domain-specific
CPT data: without it, SFT performance remains suboptimal and RL can even degrade such perfor-
mance.

w Takeaway S. As domain-specific CPT data increase, in-domain downstream performance steadily
improves and the SFT models could benefit more from RL finetuning.

w Takeaway 6. With sufficient domain-specific CPT data, post-training on in-domain tasks not only
improves in-domain performance but also generalizes effectively to OOD tasks.

3.3 Scaling Up SFT Compute
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Figure 5: Downstream task performance vs. number of SFT epochs for models:
- SFT: 1B-160BT- -100Kep{1,2,4,8,16,32}
- SFT+RL: 1B-160BT- -100Kep{1,2,4,8,16,32}-100Kep8.
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Figure 6: Downstream task performance vs. number of SFT examples for models:
- SFT: 1B-160BT- -{50K, 100K, 150K, ..., 400K }ep]1
- SFT+RL: 1B-160BT- -{50K, 100K, 150K, ..., 400K }ep1-100Kep8.

To evaluate how downstream performance responds to increased SFT compute, we conduct two
complementary studies using 1B-160BT- as the base model.

Varying SFT epochs. Holding SFT examples fixed at 100K, we finetune the base model for {1,
2,4, 8,16, 32} epochs. As shown in Figure 5, ID metrics increase steadily with more epochs and
saturate at around 8 epochs, reflecting increased memorization of solving in-domain problems. In
contrast, OOD performance peaks at 2—4 epochs before declining, indicating that over-specialization
hinders generalization. These findings also validate the commonly chosen SFT hyperparameter of
approximately 3 epochs. Moreover, the marginal gains from downstream RL finetuning shrink on
over-trained SFT models: once the model has excessively memorized the supervised data, there is
little room for RL to improve.



Varying SFT dataset size. As proposed by previous study [”], post-training performance for
downstream tasks follows a power-law relationship with SFT dataset size, but the conclusion is drawn
from experiments conducted on up to 10K examples. We further scale that budget by varying the
number of SFT examples from 50K to 400K, holding epochs fixed at one to minimize memorization.
As illustrated in Figure 6, ID performance improves monotonically with more examples, confirming
that additional SFT compute consistently improves performance on in-domain tasks. However, OOD
metrics fluctuate and can even decline with larger datasets. Similarly as scaling up epochs, the
incremental benefit from RL diminishes as the model learns more SFT examples.

w Takeaway 7. Excessive SFT improves ID performance with diminishing returns but does not
necessarily improve and can even degrade OOD performance.

- Takeaway 8. Excessive SFT, especially overly large epochs, could limit further RL improvements.

3.4 Scaling Up RL Compute

Similarly, to evaluate how downstream performance responds to increased RL compute, we also vary
either epochs or dataset size, using a 1B-160BT- -100Kep1 base model. We additionally
incorporate 0 epochs/examples to indicate the SFT baseline. More experiment results and findings
regarding RL can be found at Appendix A.2.
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Figure 7: Downstream task performance under different RL scales.

Varying RL epochs. We apply RL across another 100K examples (disjoint from the SFT dataset)
for {0, 1, 2, 4, 8, 16, 32} epochs. As shown in Figure 7a, for both ID and OOD tasks, greedy,
Maj@16, and RM @16 accuracies peak at around 8—16 epochs and then saturates thereafter. We
also notice that while the correct ratio keeps increasing, Pass@16 accuracy greatly degrades beyond
4 epochs, indicating that RL primarily sharpens confidence in already-correct outputs rather than
effectively expanding the set of solvable samples. This is also reflected by results in Table 1: For 1B
and 4B SFT models, Maj@ 16 accuracy could sometimes underperform greedy accuracy, indicating
that low-quality solutions take the majority. However, after RL is conducted on the SFT models, all
Maj@ 16 accuracies are higher than greedy accuracies.

Varying RL dataset size. Given a fixed epoch of 8, we vary the RL dataset size from 0 to 400K
examples. Figure 7b shows that for both ID and OOD metrics, greedy, Maj@16, and RM@16
accuracies continue to increase from more data up to around 150-200K examples, after which gains
flatten and fluctuate. In contrast, Pass@K saturates much earlier and starts to degrade, while the
correct ratio keeps increasing, similar to the finding in scaling up RL epochs. This finding is in
line with observations by concurrent work [0-] that similarly conclude that RL mainly boosts the
confidence of existing correct outputs rather than enhancing the fundamental reasoning capabilities
of LMs. We further expand this insight by illustrating the precise trade-offs for both RL epochs and
dataset size. Additionally, we notice a drastic performance drop at 350K and 400K examples, and



training results show that during the final RL steps, both models learn to greatly increase response
length and their generations often exceed their predefined context window lengths, thus causing the
performance drop. However, RL with overly large epochs is much more stable and such collapse
caused by response length scaling is not observed.

w Takeaway 9. RL with excessive epochs or
examples improves downstream performance on e 18 4B

both ID and OOD tasks but with diminishing Greedy Pass@16
returns (saturation happens at 4-8 epochs or
50-100K examples in our study). 0.200

w Takeaway 10. Beyond saturation regime, 8 0175

RL primarily increases the probability of sam- 0.150
pling high-quality rollouts but does not neces-

AN
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sarily improve models’ fundamental reasoning 0-125 0.700
capabilities. 0.30 '
0.675
To further investigate how to configure SFT and 8
RL data allocation in data-constrained scenarios, o 0.650
we subsample 100K examples from the entire 0.26
500 K dataset and evaluate five SFT/RL splits: 0.625
(10 /90, 30 /70, 50/ 50, 70 / 30,90/ 10) K 10 30 50 70 90 10 30 50 70 90

and conduct either SFT or RL for 4 epochs. We SFT/RL Data Allocation (K examples)
choose 100K because it is around the saturation

regime of both ID and OOD performance (Fig- Figure 8: Downstream task performance for { 1B,
ure 7b). As shown in Figure 8, ID accuracy 4B}-160BT- -{10K, ..., 90K }ep4-{90K, ...,
(greedy and Pass@16) increases with the pro- 10K }ep4. Darker green/blue denotes more data al-
portion of SFT data, plateauing beyond around location to SFT/RL. The total number of examples
70 K, whereas OOD metrics are driven by RL is fixed at 100K.

allocation, peaking at 10K SFT (i.e. 90K RL).

These trends hold across both the 1B and 4B models.

w Takeaway 11. Under a constrained downstream data budget, allocating more examples to SFT
maximizes in-domain gains at the expense of weaker OOD generalization, while allocating more to
RL improves OOD performance.

4 Additional Studies and Discussions

Given that we find post-training interacts non-trivially with pre-training—necessitating a sophisticated
training recipe—does downstream performance scale smoothly or predictably? This section provides
one example illustrating why our comprehensive study is essential to fully grasp how training
dynamics shape downstream performance in LMs, and another example where a metric could
correlate with downstream problem-solving performance.

4.1 Intermediate Checkpoints May Not Be Reliable Surrogates

In reality, practitioners usually train each de-

sired model through the full learning-rate sched- Model  Upstream _ Dovnstream (Greedy/Pass@16)
ule and exhaust the available pre-training data, MathLevel | MathLevel 2
rather than taking intermediate checkpoints as %E ]f::' jg-gg 5;;; oW ?ggj B;g
final models. To mimic the real-world work- ' : — —
flow of training models from scratch for 20B or ol e 21'_9377/,197_'3986 32'_3668/,1; »

40B tokens, we compare those standalone runs

against the checkpoints extracted at the same .

token counts (20B and 40B) from a longer 160B- Table 3: Performance on Upstream tasks and
token pre-training run. After each model sees MATH (Level 1 and 2) under different pretrain-
20B or 40B tokens, we further apply a single ing configurations. “xBT full” refers to a complete
epoch of SFT on 100K examples to deliver a pre-training run on = BT, while “zBT int.” refers
basic conversational grounding, and evaluate to an intermediate checkpoint taken during training
the models on two easiest subsets of the MATH (0 160B tokens, corresponding to BT seen so far.
dataset.



As Table 3 shows, the intermediate checkpoints consistently lag behind their dedicated 20B and
40B counterparts on both upstream task accuracy and math reasoning performance. This gap arises
because earlier stopping points—captured before learning-rate decay and data repetition—omit the full
optimization trajectory that smaller runs complete. In other words, simply slicing out a 40B-token
checkpoint from a longer schedule does not reproduce the benefits of training a model exclusively for
40B tokens.

These results caution against using such intermediate checkpoints as proxies for studying and
understanding fully trained smaller models. When interpreting training dynamics, it is essential to
compare like-for-like runs—each with its own complete schedule—rather than relying on mid-course
snapshots that understate true model capability.

4.2 Correlating Downstream Task Performance with ORM Score

While perplexity across domains sometimes shows strong correlations, downstream task accuracy
may not be consistently correlated, largely because post-trained models are miscalibrated and thus
lower validation perplexity does not necessarily indicate better generative performance. In our
experiments, we found that the correlation between ORM scores and downstream task accuracy
presents a clear relationship. In Figure 9, we plot ORM score (avg@ 16) versus Maj@ 16 accuracies
for all post-trained model variants starting from base model 1B-160BT- and find that ORM
scores exhibit consistently strong predictive power, evidenced by high correlation coefficients ranging
approximately from 0.62 to 0.84 across both ID and OOD tasks. While we observe that the correlation
is low for StrategyQA, this might arise because 1) StrategyQA emphasizes more about commonsense
knowledge rather than explicit deductive reasoning, or 2) the reward model used is less suited to the
specific problem distribution of this dataset.

ID 00D Regression
] GSMB8K-P (r2=0.621) MATH (r?=0.838) BGQA (r?=0.687) STGQA (r=0.065) TabMWP (r?=0.733) CRUXEval (r2=0.839)
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Figure 9: Correlation between accuracy and ORM score across different tasks. Each subplot
represents one dataset, where each point corresponds to a model variant. A dashed line indicates the
linear trend, and the Pearson correlation coefficient is reported in each title.

The non-trivial correlation between ORM scores and downstream accuracies suggests that scores
produced by large ORMs can serve as reliable unsupervised proxy metrics for assessing generation
quality during post-training phases. For example, ORM scores can be particularly useful in data-
constrained scenarios where collecting sufficient high-quality test examples is challenging. ORM
scoring is also advantageous when direct testing is impractical, such as in tasks where final answers
are inherently difficult to automatically extract and verify. Moreover, the generalizability of ORMs
enables practitioners to train them on existing reasoning tasks and apply to other data-constraint
reasoning tasks. Under such circumstances, ORM scores enable effective validation and iterative
refinement of models without the reliance on extensive labeled evaluation datasets.

w Takeaway 12. ORM score could be a more reliable unsupervised validation metric that helps
predict downstream task performance during post-training, compared to validation loss. Notably,
ORM scores from an 8B reward model correlate well with problem-solving accuracies of 1B models
on many downstream reasoning tasks.

5 Related Work

Studying Language Models Across Training Stages. Recent research has explored how different
training stages shape downstream capabilities of language models. Observations by recent study
[1©] indicate that extensively pre-trained language models scale reliably on downstream tasks,
though their conclusions predominantly address pre-trained models evaluated via top-1 error, leaving
open questions regarding models subjected to additional post-training. In contrast, “catastrophic
overtraining” is identified by recent work [ | ]: Prolonged pre-training beyond a certain point actually
impairs downstream fine-tuning by increasing sensitivity to parameter updates and exacerbating
forgetting. Complementing this, researchers [©0] have derived a multiplicative joint scaling law for



fine-tuning, showing performance gains depend more on scaling model size than pretraining data,
with optimal approaches depending critically on task and data regimes.

Pre-training Drives Post-training. Recent success in LM post-training has led to research investi-
gating how post-training is affected by pre-training. Recent research [0] applies causal inference on
observational data, finding general upstream capabilities strongly correlate with base model FLOPs,
influencing specialized abilities like math reasoning. Researchers have also demonstrated through
RL-based post-training that RL fine-tuning amplifies pre-trained patterns, driving models toward
dominant output distributions exhibiting scale-dependent biases and cross-task generalization, espe-
cially in mathematical reasoning tasks [/()]. Reinforcing these findings, some critically examine the
assumption that RL inherently boosts reasoning beyond pretrained baselines, concluding RL primarily
enhances confidence and probability of generating high-quality solutions rather than fundamentally
improving reasoning capabilities [0].

Scaling Laws for Language Models. Early scaling work [, /] established fundamental relation-
ships linking training loss to model size, data quantity, and compute. Recent studies have extended
this framework in several ways. A dual-axis scaling law has shown reliable loss predictions even in
highly over-trained regimes, significantly beyond traditional optimal compute points [ | ©]. Addition-
ally, new quantitative models predict emergent behaviors in model accuracy either through explicit
loss thresholds or by probing with targeted finetuning [50), |/]. Cross-distribution transferability
has also been modeled, allowing accurate extrapolations of loss curves between different datasets
from minimal pilot data [/]. Further refinements address data-limited contexts, deriving optimal
epoch allocation when unique training data is scarce [ /], and revealing similar scaling patterns for
synthetic data with clear diminishing returns [(']. Moreover, scaling laws now capture continual
pre-training dynamics, guiding mixing domain-specific and general data, and quantifying forgetting
effects during domain adaptation with replay data [ |]. Finally, research into compute allocation has
developed scaling relationships specifically for distillation, determining precisely when distillation
methods surpass direct pre-training efficiency [V].

Post-training for Reasoning. Recent research has investigated the impact of post-training strategies
on the reasoning capabilities of LLMs. One study challenges the “Superficial Alignment Hypothesis”
[/”], demonstrating that SFT post-training performance scales with the number of fine-tuning
examples, akin to pre-training scaling laws [/”]. Moreover, RL post-training has been shown to
amplify behaviors acquired during pre-training, particularly in tasks requiring advanced mathematical
reasoning and coding [/(]. A comparative study indicates that while SFT tends to memorize training
data, RL foster better generalization [|(]. Investigations into the mechanics of reasoning have
demystified long chain-of-thought learned through RL, identifying factors that enable the generation
of extended reasoning trajectories []. Conversely, a critical examination questions whether RL
truly incentivizes reasoning capacities beyond what is already learned during pre-training, suggesting
that RL may not elicit fundamentally new reasoning patterns [0-].

6 Concluding Remarks

In this work, we systematically studied how factors such as training tokens and model size influence
language models’ upstream and downstream performance. Our study revealed scaling trends, dimin-
ishing returns from excessive training, and the importance of carefully managing domain-specific
continued pretraining to prevent forgetting. Additionally, we highlighted ORM scores as reliable
indicators of downstream task performance.

We acknowledge several limitations in our study. First, we focused on qualitative analyses of models
up to 4B parameters. Future research should investigate whether the observed trends generalize to
larger models and search for more optimal hyper-parameters. Second, our focus on reasoning-centric
post-training objectives leaves unexplored dynamics for objectives like safety alignment, instruction-
following, tool-calling, and coding tasks. Lastly, our RL experiments employed only Proximal Policy
Optimization (PPO) with verifiable rewards. Exploring alternative reinforcement learning methods
could offer broader insights into their effects on downstream capabilities.

Broadly, we advocate open-source research to enhance transparency, enabling better understanding,
controlling, and responsibly managing machine learning models through community efforts.
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A Additional Experiment Results

A.1 Observational Comparison of Pre-trained Models

Model Name  Tokens H/S W/G PIQA OBQA ARC-E ARC-C Awg.

OPT 1.3B 300B 53.65 59.59 72.36 33.40 50.80 29.44 49.87
Pythia 1B 300B 47.16 5343 69.21 31.40 48.99 27.05 46.21
Pythia 1.4B 300B 52.01 57.38 70.95 33.20 54.00 28.50 49.34
TinyLlama 1B 2T 61.47 59.43 73.56 36.80 55.47 32.68 53.23
Llama3.2 1B 9T 63.66 60.46 74.54 37.00 60.48 35.75 55.31

Qwen3 1.7B 36T 60.46 61.01 72.36 36.80 69.91 43.26 57.30

20B 42.25 51.30 67.85 32.80 54.80 29.61 46.44
40B 47.53 54.62 69.59 36.20 58.08 30.29 49.38
1B (ours) 80B 51.05 53.59 70.78 37.20 62.71 35.92 51.88
160B 52.30 53.99 71.71 36.60 63.09 36.09 52.30
320B 53.86 53.51 71.93 37.20 62.29 36.18 52.49

Pythia 6.9B 300B 63.89 61.17 76.39 37.20 61.07 35.15 55.81

OPT 6.7B 300B 67.18 65.35 76.50 37.40 60.06 34.73 56.87
Qwenl.5 4B 3T 71.45 64.09 77.10 39.60 61.41 39.51 58.86
Qwen2.5 3B 18T 73.61 68.51 78.89 42.00 73.23 47.18 63.90
Qwen3 4B 36T 73.71 70.64 71.75 41.00 76.22 51.88 65.20
Llama3.23B 9T 73.63 69.69 77.53 43.20 71.76 45.90 63.62

80B 48.84 54.38 69.91 35.80 59.68 32.68 50.22
4B (ours) 160B 56.49 55.88 72.63 40.20 66.67 39.93 55.30

320B 61.38 57.46 74.27 41.80 67.55 39.16 56.94

Table 4: Upstream benchmark comparison across various small-size LMs. All scores are percentages.
We highlight our base model performance in bold font, models with performance at a comparable
scale in red, and excessively over-trained models with similar performance in green.

Table 1 compares our pre-trained models against several open-weight models including OPT [09],
Pythia [©], TinyLlama [6], Llama [56], and Qwen []. Our models, pretrained on a significantly
smaller number of tokens (320B tokens for our 1B and 4B models), demonstrate competitive
performance with other state-of-the-art small models such as TinyLlama-1B (trained on 2T tokens)
and Qwen1.5-4B (trained on 3T tokens).

Specifically, despite TinyLlama-1B and Qwen1.5-4B models being trained with 6.25x and 9.38x more
tokens respectively, our 1B and 4B models achieve similar or slightly better results across standard
benchmarks like HellaSwag (H/S), Winogrande (W/G), PIQA, OBQA, ARC-Easy (ARC-E), and
ARC-Challenge (ARC-C). This empirical observation is consistent with our experimental findings in
Section 3.1, highlighting diminishing returns from excessive pretraining: beyond a certain optimal
compute threshold, additional pretraining leads to minimal incremental gains in general domain
upstream task performance.

A.2 Scaling Up RL compute

To further look into effective practice for scaling up RL compute, we plot results in “example-epochs”
units (#examples x #epochs, in 10°) in Figure 10. We use the same configurations as Section 3.4.
Under a fixed compute budget, allocating more epochs on a moderate dataset (e.g., I00Kx8 = 800K
example-epochs) typically yields higher ID and OOD performance than spreading compute over a
larger dataset with fewer epochs, and RL with excessive training examples could sometimes lead to
collapsed performance due to overly long and unfinished responses (shown by the crosses in Figure 10
and response length in Figure 11), while we do not observe such problems when conducting RL with
excessive training epochs (shown in Figure 12). This demonstrates that deeper policy optimization
per sample is more cost-effective than broader data coverage for RL scaling, which is consistent with
findings proposed by [5¢] showing that RL using even only one training example could be effective
in incentivizing the mathematical reasoning capabilities of LLMs.
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Figure 10: Downstream task performance vs. RL compute. A cross mark indicates models that tend
to generate responses longer than their context window limits.
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A.3 Post-trained Models are Miscalibrated for Language Modeling Tasks

Our upstream evaluations indicate that post-trained LMs exhibit significant miscalibration when
assessed through validation PPL. We evaluate PPL on the validation set (disjoint from the training
set) for each post-trained model. As illustrated in Figure 13, we observe negligible correlations
between validation perplexity and downstream task accuracy across various datasets. Specifically, the
Pearson correlation coefficients remain close to zero, reinforcing that low perplexity does not reliably
predict enhanced generative reasoning performance. This contrasts sharply with the strong predictive
capability exhibited by ORM scores, as discussed in Section 4.2. While validation perplexity is
conventionally used to monitor model quality, it is insufficient for post-training phases, particularly
when evaluating generative reasoning tasks. In practice, relying solely on perplexity as a validation
metric could misguide resource allocation decisions during training.

e ID 00D Regression
> GSMB8K-P (r2=0.019) MATH (r?=0.219) BGQA (r2=0.000) STGQA (r?=0.009) TabMWP (r2=0.006) CRUXEval (r?=0.001)
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Maj@16 Acc.

Figure 13: Correlation between accuracy and validation PPL across different tasks. Each subplot
represents one dataset, where each point corresponds to a post-trained model variant. A dashed line
indicates the linear trend, and the Pearson correlation coefficient is reported in each title.
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B Reproducibility

B.1 Model Architectures

We show model architecture details for 0.5B, 1B and 4B models in Table 5.

Model Size Hidden Size Intermediate Size Vocab Size Context Length # Heads # Layers # Query Groups

0.5B 1536 3216 32000 2048 32 20 4
1B 2048 4896 32000 2048 32 22 4
4B 4096 7792 32000 2048 32 28 4

Table 5: Model architecture details.

B.2 Training Details
B.2.1 Hyperparameters

Hyperparameters for pretraining/continued pretraining, SFT, and RL are shown in Table 6, Table 7,
Table 8, respectively. We use the AdamW optimizer and up to 32 NVIDIA H100 80GB HBM3
GPUs for all training stages. For pretraining, continued pretraining, and SFT, we use a standard
warmup-cosine-decay strategy for the learning rate schedule. For RL, we apply a warmup-constant
learning rate schedule.

0.5B 1B 4B
precision bf16-mixed precision bf16-mixed precision bf16-mixed
global_batch_size 512 global_batch_size 512 global_batch_size 1024
max_seq_length 2048 max_seq_length 2048 max_seq_length 2048
Ir_warmup_ratio 0.1 Ir_warmup_ratio 0.1 Ir_warmup_ratio 0.1
max_norm 1 max_norm 1 max_norm 1
Ir 0.00025 Ir 0.0002 Ir 0.00015
min_lIr 0.000025 min_Ir 0.00002 min_Ir 0.000015
weight_decay 0.1 weight_decay 0.1 weight_decay 0.1
betal 0.9 betal 0.9 betal 0.9
beta2 0.95 beta2 0.95 beta2 0.95
epoch 1 epoch 1 epoch 1

Table 6: Hyperparameters for pre-training/continued pre-training.

1B 4B
cutoff_len 2048 cutoff_len 2048
batch_size 128 batch_size 256
learning_rate 0.00001 learning_rate 0.0000075
Ir_scheduler_type cosine Ir_scheduler_type cosine
warmup_ratio 0.1 warmup_ratio 0.1

Table 7: Hyperparameters for supervised finetuning.

B.2.2 SFT/RL Template

We use the following template for SFT and RL tuning:

Human: {query}
Assistant: {response}
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1B 4B
actor_lIr 2.00E-06 actor_Ir 1.00E-06
critic_Ir 2.00E-05 critic_Ir 1.00E-05
kl 0.0001 kil 0.0001
train_batch_size 1024  train_batch_size 2048
max_prompt_length 1024  max_prompt_length 1024
max_response_length 1024  max_response_length 1024
ppo_mini_batch_size 1024  ppo_mini_batch_size 2048
ppo_micro_batch_size_per_gpu 32  ppo_micro_batch_size_per_gpu 16
log_prob_micro_batch_size_per_gpu 64 log_prob_micro_batch_size_per_gpu 32
warmup_steps_ratio 0.1 warmup_steps_ratio 0.1

Table 8: Hyperparameters for reinforcement learning (PPO).

B.2.3 Training Data

FineWeb-Edu [ “]: An extensive educational dataset sourced from web content, specifically designed
for pretraining language models on high-quality academic and educational text. There are ~1.3
trillion tokens in total.

FineMath [*©]: A curated dataset of mathematical texts, problems, and solutions, intended to
enhance language models’ mathematical knowledge. There are ~50 billion tokens in total.

OpenMathInstruct2 [©°], MetaMathQA [0 ], NuminaMath [ |]: Instruction-tuning datasets
containing mathematical questions paired with step-by-step solutions and explanations, designed
to improve the mathematical reasoning capabilities of LLMs. The responses corresponding to the
prompts from these datasets are collected by prompting the Qwen2.5-7B-Math-Instruct model [0].

B.3 Evaluation Details

B.3.1 Benchmarks and Sampling Parameters

For all test datasets and all models, we directly ask the models the corresponding questions applying
the same prompt template used for SFT/RL. We set the temperature to O for greedy decoding and 1
for decoding with randomness (the number of generations being 16), and set the repetition penalty to
1.1. We use the vLLM framework [~ ©] for inference. Details of each test dataset are as follows.

MATH [”0] is a large-scale benchmark designed to evaluate mathematical reasoning. It contains
12,500 challenging problems sourced from math competitions, categorized into seven topics including
Algebra, Geometry, Calculus, and Number Theory, and divided into 5 difficulty levels. Each
problem requires generating detailed, step-by-step solutions rather than simple numerical answers,
emphasizing comprehensive reasoning skills and logical deduction.

GSMS8K-Platinum [>7] is a manually cleaned and denoised version of GSM8K [!”] which is a
math benchmark that consists of 8.5K high-quality, linguistically diverse grade-school math word
problems designed for multi-step reasoning (2 to 8 steps). Solutions involve elementary arithmetic
operations and require no concepts beyond early algebra. Its test set contains 1319 unique problems.

BoardgameQA [’ "] is a logical reasoning benchmark designed to evaluate language models’ ability
to reason with contradictory information using defeasible reasoning, where conflicts are resolved
based on source preferences (e.g., credibility or recency). Its test set contains 15K unique problems.

CRUXEVval [19] is a benchmark for evaluating code reasoning, understanding, and execution,
featuring 800 Python functions (3-13 lines) with input-output pairs for input and output prediction
tasks. Given a function snippet and an input example, LLMs are tasked to generate the corresponding
outputs. Its test set contains 800 unique problems.

StrategyQA [ ! ©] is a commonsense question-answering benchmark designed for multi-hop reasoning
where the necessary reasoning steps are implicit and must be inferred using a strategy. Each of
the 2,780 examples includes a strategy question, its step-by-step decomposition, and supporting
Wikipedia evidence.
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TabMWP [°] is a benchmark introduced to evaluate mathematical reasoning over tabular data. It
contains around 38,000 math word problems, each associated with relevant tables, spanning diverse
mathematical reasoning types like arithmetic operations, comparisons, and aggregation tasks.

B.3.2 Statistical Significance

In Appendix B.3.2, we show the standard errors of model performance on ID and OOD tasks for
all main results in Section 3, encompassing Maj@ 16, Pass@ 16, RM@ 16, ORM scores, and correct
ratios. The results are obtained from four experiments with different random seeds.
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B.3.3 Example Model Outputs

We show 3 input-output examples. The outputs are collected from the model 1B-160BT-
100Kep1-100Kep8.

(GSMS8KPlatinum)

[Model Input]

Human: While on vacation in Bali, Thea bought a hat from a craftsman worth $70. If she gave
the craftsman four $20 bills, how much change did she get?

Assistant:

[Model Output]

To determine how much change Thea got, we need to follow these steps: 1. Calculate the total
cost of the hat. 2. Subtract the amount she paid for the hat from the amount she received.

First, the cost of the hat is $70. She gave the craftsman four $20 bills. Therefore, the total amount
she gave is: 4 x 20 = 80 dollars.

Next, we subtract the amount she paid for the hat from the total cost of the hat: 70 — 80
Performing the subtraction: 70 — 80 = —10 So, Thea got dollars in change. The final
answer is: dollars. The change Thea got is dollars. Therefore, the answer is:

dollars. The final answer is: dollars.

(CRUXEVval)
[Model Input]
Human: You are given the following function:

def f(array):
new_array = array.copy()
new_array = reversed(new_array)
return [x*x for x in new_array]

You are also given the following input (the order of the input is the same as the order of the input
variables in the function):

[1, 2, 1]
With the given function and input, what would be the output? Assistant:

[Model Output] To find the output of the function f, we need to apply the function step by step.
The function starts with an array called "array" and copies its elements to a new array called
"new_array". Then, it reverses the order of the elements in "new_array". Finally, it returns a list
containing the squares of each element in "new_array".

The given input is:

[1, 2, 1]
So, when we apply the function, we get:
f(1,2,1]) = [1%,22,17]
Now, the output is: | [1, 4, 1]

Thus, the output is: | [1, 4, 1]

(BoardGameQA)

[Model Input]

Human: Solve the following problem. Your final answer should be "True", "False", or "Uncer-
tain".

A few players are playing a boardgame. The current state of the game is as follows. The ant
hides the cards that she has from the owl. The chihuahua borrows one of the weapons of the
worm. The husky reveals a secret to the worm. The owl has six friends. The worm has 8 friends.
The worm has a football with a radius of 16 inches. And the rules of the game are as follows.
Rulel: If the worm has a football that fits in a 26.7 x 34.4 x 38.5 inches box, then the worm
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does not swear to the german shepherd. Rule2: If the husky reveals a secret to the worm and the
chihuahua borrows one of the weapons of the worm, then the worm manages to convince the
monkey. Rule3: If the owl has fewer than nine friends, then the owl shouts at the dolphin. Rule4:
Here is an important piece of information about the worm: if it has more than 2 friends then it
does not swear to the german shepherd for sure. Rule5: If you are positive that you saw one
of the animals dances with the bee, you can be certain that it will not manage to convince the
monkey. Rule6: Be careful when something manages to convince the monkey but does not swear
to the german shepherd because in this case it will, surely, hide her cards from the mouse (this
may or may not be problematic). Rule7: If at least one animal shouts at the dolphin, then the
worm does not hide her cards from the mouse. Rule5 is preferred over Rule2. Rule6 is preferred
over Rule7. Based on the game state and the rules and preferences, does the worm hide the cards
that she has from the mouse?

Assistant:

[Model Output]

To determine whether the worm manages to convince the monkey, we need to follow the given
rules and preferences step by step.

1. **Rule 1**: If the worm has a football that fits in a 26.7 x 34.4 x 38.5 inches box, then the
worm does not swear to the german shepherd.

- This rule is satisfied.

2. **Rule 2**: If the husky reveals a secret to the worm, then the worm manages to convince the
monkey.

- This rule is satisfied.

3. **Rule 3**: If the owl has fewer than nine friends, then the owl shouts at the dolphin.

- This rule is not satisfied.

4. **Rule 4**: Here is an important piece of information about the worm: if it has more than 2
friends then it does not swear to the german shepherd for sure.

- This rule is satisfied.

5. **Rule 5**: If you are positive that you saw one of the animals dances with the bee, you can
be certain that it will not manage to convince the monkey.

- This rule is satisfied.

6. **Rule 6**: Be careful when something manages to convince the monkey but does not swear
to the german shepherd because in this case it will, surely, hide her cards from the mouse.

- This rule is not satisfied.

Thus, the worm manages to convince the monkey. Therefore, the final answer is: .
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