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Abstract

Fine-tuning large language models (LLMs) for downstream tasks has become increasingly
crucial due to their widespread use and the growing availability of open-source models.
However, the high memory costs associated with fine-tuning remain a significant challenge,
especially as models increase in size. To address this, parameter efficient fine-tuning (PEFT)
methods have been proposed to minimize the number of parameters required for fine-tuning
LLMs. However, these approaches often tie the number of optimizer states to dimensions
of model parameters, limiting flexibility and control during fine-tuning. In this paper, we
propose sparse gradient compression (SGC), a training regime designed to address these
limitations. Our approach leverages inherent sparsity in gradients to compress optimizer
states by projecting them onto a low-dimensional subspace, with dimensionality independent
of the original model’s parameters. By enabling optimizer state updates in an arbitrary
low-dimensional subspace, SGC offers a flexible tradeoff between memory efficiency and
performance. We demonstrate through experiments that SGC can decrease memory usage in
optimizer states more effectively than existing PEFT methods. Furthermore, by fine-tuning
LLMs on various downstream tasks, we show that SGC can deliver superior performance
while substantially lowering optimizer state memory requirements, particularly in both data-
limited and memory-limited settings.

1 Introduction

Large language models (LLMs) are increasingly being used across various disciplines, achieving remarkable
performance in a wide range of natural language processing tasks. With the release of more open-source
models, demand is growing to adapt them to downstream tasks (Touvron et al., 2023; Dubey et al., 2024).
This is typically achieved using full fine-tuning, where all the parameters of a model are updated. However,
as LLMs scale to billions of parameters, fine-tuning all the parameters of a model becomes increasingly
challenging, demanding substantial memory resources.

Full fine-tuning requires not only storing billions of model weights, but also maintaining both the gradi-
ents and optimizer states needed during training, which can drastically increase the memory consumption
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(Chowdhery et al., 2022; Bai et al., 2023). For example, the Adam optimizer requires storing both the first-
and second-order moments of the gradients, doubling the memory needed compared to storing the model’s
trainable parameters (Kingma & Ba, 2017). These memory constraints limit the practical ability to fine-
tune LLMs, particularly in resource-constrained environments such as edge devices or personal computing
platforms.

To address this problem, parameter efficient fine-tuning (PEFT) techniques have been introduced, to train
a model using a significantly smaller number of parameters (Ding et al., 2023; Han et al., 2024). However,
many existing methods lack the ability to provide both flexible and granular control over the number of
optimizer states used for fine-tuning. Flexibility refers to the capacity to accommodate a broad range in the
number of optimizer states, while granular control refers to the precision with which the number of optimizer
states can be adjusted in small increments. This limitation may hinder the realization of a broader range
of memory-performance tradeoffs, thereby restricting the potential of PEFT methods to achieve further
efficiency gains.

On the one end, we have approaches like BitFit (Zaken et al., 2022), which fine-tune only the bias terms,
using a minimal number of parameters, but is neither flexible nor offers granular control. On the other hand,
the popular low-rank adaptation (LoRA) is a more flexible approach that provides some control over the
number of trainable parameters (Hu et al., 2021). However, there still exists limitations to both flexibility and
granularity. LoRA reparameterizes the fine-tuned weight matrices W (1) ∈ Rm×n into W (1) = W (0) + BA,
where W (0) ∈ Rm×n is the frozen pre-trained weight matrix, and A ∈ Rr×n and B ∈ Rm×r are two low-rank
matrices of rank r (r ≪ min{m, n}) to be trained. However, with LoRA, the number of optimizer states
is a function of the dimensions of A and B, which are dependent on n and m, respectively. The minimum
number of trainable parameters (achieved when r = 1) is equal to n + m, limited by the dimensions of
W (0). Therefore, there exists a bound dependent on n + m in which we cannot reduce the number of
optimizer states during fine-tuning any further. Likewise, the granularity over parameters is also a function
of n and m, and notice that both flexibility and granularity are impacted negatively with larger models. A
similar limitation exists with many other approaches using prefix-tuning (Li & Liang, 2021) and gradient
compression approaches, such as GaLore (Zhao et al., 2024) (see Appendix A).

To address the above limitation, we propose sparse gradient compression (SGC), a training regime that
enables more flexible and granular control over the number of parameters to train during fine-tuning. SGC
updates the optimizer states in a k-dimensional subspace, where k is independent of the original parameters
dimension and represents the number of optimizer states. This allows SGC to significantly reduce the
number of optimizer states, irrespective of the pretrained model’s size, with k providing flexibility to balance
performance and memory efficiency (see Figure 1). Importantly, this memory saving comes without sacrificing
performance, as we will demonstrate in our experimental results.

The key idea behind SGC is leveraging the inherent sparsity of gradients during fine-tuning. By linearly
projecting the optimizer states onto an arbitrarily lower-dimensional subspace, we can perform updates in
this compressed space instead of the original space. A sparse recovery algorithm is then used to project the
result of the optimizer function back into the original space, estimating the full-dimensional sparse vector
from its lower dimensional representation, with sparsity originating from the gradients. By fine-tuning
LLaMA2-7B, LLaMA3-8B, and LLaMa2-13B (Touvron et al., 2023; Dubey et al., 2024) on commonsense
reasoning tasks, we show that SGC achieves comparable or better results than other PEFT methods while
using a significantly smaller number of optimizer states. Additionally, we show that our approach yields
improved fine-tuning performance in both data-limited and memory-limited scenarios.

2 Related Works

Parameter Efficient Fine-tuning. PEFT methods are used to reduce the expensive memory requirements
for fine-tuning large models. Existing techniques can be split into several categories. Adapter-based methods
introduce additional trainable modules that are inserted into the original frozen model (Houlsby et al., 2019;
Pfeiffer et al., 2021; He et al., 2022; Mahabadi et al., 2021). However, these approaches may increase latency
during inference. Prompt tuning, on the other hand, adapts a model by adding learnable prefix tokens to
the input (Li & Liang, 2021; Lester et al., 2021; Liu et al., 2022). Despite their simplicity, these methods
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Figure 1: Diagram comparing SGC (green) and PEFT methods LoRA and GaLore (blue) in terms of
the dimension of optimizer states compared to full fine-tuning. SGC enables a lower minimum and finer
granularity for the number of optimizer states since it is independent of parameter dimensions.

have structural limitations since they only train additional input tokens. LoRA is a widely used PEFT
method that does not introduce additional inference latency (Hu et al., 2021). LoRA employs low-rank
matrices to approximate the updates in the parameters during fine-tuning. Several variants of LoRA have
been developed to either improve performance or further reduce the number of trainable parameters (Zhang
et al., 2023; Xia et al., 2024; Liu et al., 2024; Kopiczko et al., 2024). Due to LoRA’s popularity, extensive
research has been conducted on both its theoretical foundations and empirical performance (Jang et al.,
2024; Hayou et al., 2024; Mao et al., 2024). Additionally, quantization-based methods have been proposed
to further reduce memory overhead Dettmers et al. (2023); Qin et al. (2024).

Gradient Compression. An area that has been relatively underexplored but is now gaining attention is
gradient compression (Zhao et al., 2024; Hao et al., 2024; Liang et al., 2024; Wu et al., 2024; Song et al.,
2024). These approaches selectively compress gradient information to reduce the size of optimizer states
during training. One category of methods uses projection matrices to obtain a lower-rank gradients (Zhao
et al., 2024; Hao et al., 2024; Liang et al., 2024). For instance, GaLore uses singular value decomposition
(SVD) to obtain projection matrices (Zhao et al., 2024), while FLoRA utilizes random projection matrices
(Hao et al., 2024). Liang et al. (2024) propose a method that updates the projection matrix in an online
fashion using principal component analysis. Alongside projection matrices, gradient sparsity is another
emerging factor. SIFT shows that gradients are approximately sparse, and achieves efficient fine-tuning
by selecting parameters corresponding to the largest gradient magnitudes (Song et al., 2024). However, a
significant limitation of this approach is that the selected parameters remain static, failing to fully capture
the dynamic nature of gradient sparsity patterns during training.

3 Problem Formulation

We investigate the task of updating the parameters of a neural network, W ∈ Rd, focusing specifically on
fine-tuning, and without introducing any new weights into the model’s architecture. The objective is to
adapt pretrained weights W (0) ∈ Rd to W (1) ∈ Rd for a particular task.1 The transition from W (0) to W (1)

is defined as follows:
W (1) = W (0) + ∆W . (1)

The parameter update process involves minimizing a loss function L with respect to W as follows:

min
W
L(W (0) + ∆W ), (2)

where we change the parameters in W minimizing L to achieve W (1) from W (0). With no closed-form
solution, the above problem is solved iteratively using the gradient signal Gt = ∇WtL ∈ Rd at every time

1Without loss of generality, we represent model parameters as vectors instead of matrices.
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step t, where Wt denotes the parameters in W at time t. Typically, to improve fine-tuning performance,
an optimizer function ρt(·) is applied to the gradient Gt, where ρt requires storing and updating additional
optimizer states, each with the same dimensions as Gt. Therefore, the computational complexity and the
memory requirements of applying the optimizer function is directly dependent on d, the dimension of Gt.

With the emergence of LLMs, d has grown substantially, making execution of the optimizer function ρt(·)
highly resource-intensive. To address this, we define a transformation function that reduces the dimension of
Gt before being used in the optimizer function ρt. Specifically, we define f : Rd → Rk as the transformation
function applied to the gradient Gt as Ĝt = f(Gt) for some k ≪ d. Now we use Ĝt as the input to the
optimizer function ρt, reducing the dimension of the operations in the optimizer from a d-dimensional space
to a k-dimensional space. The parameter update W for a single time step can be written as follows:

Wt+1 = Wt − ηg(ρt(Ĝt)), (3)

where η is the learning rate, and g : Rk → Rd is a transformation function that brings the output of ρt back
into the original d-dimensional space. We then denote the total changes in the parameters W after T time
steps as:

W (1) = W (0) − η
∑

t

g(ρt(Ĝt)). (4)

This formulation allows us to perform the optimizer state updates in a smaller subspace Rk instead of the
original space Rd, where k ≪ d. In practice, tracking the optimizer states in ρt can be memory intensive if
k is large. Thus, the goal is to reduce k as much as possible while maintaining reasonable performance in
minimizing L.

4 Methodology

In this section, we introduce our proposed method for performing updates on a k-dimensional subspace.
We begin by motivating our approach with an overview of the well-known AdamW optimizer (Kingma &
Ba, 2017; Loshchilov & Hutter, 2019), followed by a detailed description of the gradient compression and
decomposition processes. In addition, we present two more efficient variants of the proposed approach along
with an analysis of memory requirements.

4.1 Motivation

Full fine-tuning model parameters W (0) corresponds to the case where all parameters in W (0) are updated,
i.e., f is the identity function and Ĝt = Gt. If ρt is also the identity function, i.e. we use no optimizer
function, the updates simplify to stochastic gradient descent (SGD), and calculating ∆W requires storing
no optimizer states. However, using an optimizer function that makes use of momentum often yields better
performance during fine-tuning. In this paper, we focus on the popular AdamW optimizer (see Algorithm
1), while both our formulation and proposed approach can be applied to various other optimizers. For full
fine-tuning, AdamW requires storing two states Mt ∈ Rd and Vt ∈ Rd corresponding to the first and second
moments, whose updates are controlled with hyperparameters β1 ∈ [0, 1] and β2 ∈ [0, 1], respectively. Taking
this into account, the parameter update requires 2d memory in total to store Mt and Vt. We note that (·)2

and
√
· applied to vectors are element-wise square and square-root operations, and ϵ is a small constant to

ensure numerical stability during division. With g being the identify function, we have

Wt+1 = Wt − ηNt, Nt = Mt√
Vt + ϵ

. (5)

Optimizer functions like AdamW contribute a large proportion of memory consumption during fine-tuning,
and we will show how our approach aims to tackle this.

4.2 Sparse Gradient Compression (SGC)

In full fine-tuning, the gradients that are used as input in the AdamW algorithm can have a large dimension
d. We would like to modify Algorithm 1 to update Mt and Vt on a k-dimensional subspace rather than
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Algorithm 1 AdamW at timestep t
Require: Gt, β1, β2, ϵ

1: Mt ← β1Mt−1 + (1− β1)Gt

2: Vt ← β2Vt−1 + (1− β2)G2
t

3: Mt ← Mt

1−βt
1

4: Vt ← Vt

1−βt
2

5: Nt ← Mt√
Vt+ϵ

6: return Nt

the d-dimensional space, for some k ≪ d, while retaining performance. This would significantly enhance
the memory and compute efficiency of the optimizer, improving the efficiency of fine-tuning. We highlight
that Mt and Vt are functions of Gt ∈ Rd and G2

t ∈ Rd, respectively. Therefore, in order to perform the
operations on Mt and Vt in a k-dimensional subspace, we need to represent Gt and G2

t on that subspace.
We make use of the observation that Gt is a quasi-sparse vector (Song et al., 2024) and can be compressed
to a lower dimensional subspace to reduce memory usage in the optimizer function since both Mt and Vt

can also be represented in the lower dimensional subspace. This enables us to conduct fine-tuning with much
greater efficiency and control over the memory usage.

We first sparsify Gt ∈ Rd by keeping only s non-zero elements corresponding to s entries with largest
magnitudes, and set all other elements to zero which is denoted by Sparsifys(·). The explicit sparsification
of the gradients is necessary because even though the gradients are quasi-sparse, the noise from the non-
zero entries can reduce the fine-tuning performance. The sparsified gradient is then projected onto a lower
dimensional subspace of an arbitrary dimension k using a projection matrix A ∈ Rk×d that is initialized
before fine-tuning:

G̃t = Sparsifys(Gt) ∈ Rd, pt = AG̃t ∈ Rk. (6)

To compress G2
t , we use the fact that element-wise squares retain the sparsity pattern of Gt. Thus, similar

to Gt, we can represent G2
t on the k-dimensional subspace through

qt = AG̃2
t ∈ Rk. (7)

With Gt and G2
t represented in a compressed form with dimension k as pt and qt, respectively, we modify

Algorithm 1 by representing Mt and Vt in this k-dimensional subspace as follows:

Mt ← β1Mt−1 + (1− β1)pt, (8)
Vt ← β1Vt−1 + (1− β1)qt. (9)

Accordingly, we can perform the updates on optimizer states Mt and Vt on a k-dimensional subspace since
pt and qt are k-dimensional. However, we need to go back to the original d-dimensional space to perform
the weight updates from Wt to Wt+1. As indicated in equation 3, this transform is conducted using the
function g : Rk → Rd. Rewriting equation 4, this problem is equivalent to finding a function g(·) to perform
the update

W (1) = W (0) − η
∑

t

g(ρt(pt, qt)). (10)

Thus, this approach enables performing the updates on a k-dimensional subspace instead of the d-dimensional
space using AdamW. The only missing part is how to define g(·) that enables going from a k-dimensional
subspace back to the original d-dimensional space for the parameter updates. Next, we introduce an approach
to achieve such g(·) functionality.

4.3 Compressed Sensing of Optimizer States

Ideally, we would like to use Gt and G2
t or their respective sparse versions G̃t and G̃2

t for the optimizer
algorithms; however, for enhancing efficiency we instead use pt and qt. We note that pt and qt are the
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results of linear projection of sparse vectors G̃t and G̃2
t , respectively, onto a k-dimensional subspace. Thus,

function g(·) should provide a good estimate of G̃t and G̃2
t when applied to pt and qt, respectively. As a

result, the problem is to estimate the sparse vectors G̃t and G̃2
t from their compressed forms, pt and qt,

respectively, compressed with linear projection.

We use a recovery algorithm from compressive sensing (CS) to achieve the function g(·), which aims to
estimate a sparse vector from its compressed form, compressed through linear projection. CS is a signal
processing technique used to recover signals using fewer measurements than the Nyquist rate, when the
signals are sparse (Candes et al., 2004; Donoho, 2006). Consider an s-sparse signal x ∈ Rd with s non-
zero entries. We can reconstruct x from a set of linear measurements y = Ax, if the measurement matrix
A ∈ Rk×d satisfies the restricted isometry property (RIP) for some number of measurements k ≤ d (Candes
& Tao, 2005; Candes, 2008). The RIP conditions can be satisfied with high probability if every element of
A is independent and identically distributed according to a zero-mean normal distribution with standard
deviation 1/

√
k, and k ≥ κs, where κ is an algorithm dependent constant (Candes et al., 2004).

There exist various recovery algorithms to recover the d-dimensional s-sparse signal x from measurements
y (Marques et al., 2018). In this paper, we use a greedy algorithm named orthogonal matching pursuit
(OMP) (Pati et al., 1993). To enhance efficiency, inspired by Zhu et al. (2020), we have developed a GPU
optimized version of OMP, enabling its seamless integration with fine-tuning (see Appendix B for details).
The OMP algorithm reconstructs an s-sparse vector x from the measurements y having knowledge about
the measurement matrix A denoted as follows:

x̂ = OMPA(y). (11)

We now apply the recovery algorithm OMP to map the updates Mt and Vt, given in equations 8 and 9, re-
spectively, from the k-dimensional subspace back to the original d-dimensional space. With the initialization
M0 = 0 and V0 = 0, we can rewrite the updates Mt and Vt as:

Mt = A

t∑
i=1

hi(β1)G̃i, Vt = A

t∑
i=1

hi(β2)G̃2
i (12)

where hi(·) is a constant only a function of β1 or β2. We observe that
∑t

i=1 hi(β1)G̃i and
∑t

i=1 hi(β2)G̃2
i

are linear combinations of the first and second moments of the sparsified gradients, respectively. Assuming
that the total changes in the sparsity of Gt over all t can be bounded by some constant s̃ ≪ d, we can use
the OMP algorithm as in 11 to almost accurately recover the original d-dimensional representations of Mt

and Vt. After applying OMP to Mt and Vt separately, we obtain Nt as follows:

Nt = α
OMPA(Mt)√
OMPA(Vt) + ϵ

, (13)

where α is a scaling factor. We note that the feasibility of obtaining Nt, as in equation 13, is ensured
by the fact that G̃t and G̃2

t , and thus Mt and Vt, share the same sparsity pattern. Consequently, the
indices of the non-zero entries in OMPA(Mt) and OMPA(Vt) are identical. Furthermore, the sparsity level
s provides a tradeoff between performance and efficiency. Clearly, a larger s leads to better performance
since G̃t provides a better estimate for Gt; however, it increases the computational overhead with the OMP
algorithm in recovering an s-sparse vector.

Following compression, the optimizer states Mt and Vt are now k-dimensional vectors. Setting k = κs leads
to a reasonable recovery of

∑t
i=1 hi(β1)G̃i and

∑t
i=1 hi(β2)G̃2

i from Mt and Vt in 12, using OMP. Now, the
size of the optimizer states in AdamW becomes purely a function of k, and can be controlled at a granular
level.

We refer to our proposed method as SGC, which uses the AdamW optimizer and is presented in Algorithm
2. For ease of presentation, we represent this algorithm with Nt = SGC(Gt), which takes the gradient
vector Gt ∈ Rd as the input and outputs Nt ∈ Rd, while the optimizer states Mt and Vt are k-dimensional.
Incorporating this into our formulation in equation 4 yields:

W (1) = W (0) − η
∑

t

SGC(Gt). (14)
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Algorithm 2 SGC at timestep t
Require: Gt, A, s, β1, β2, ϵ

1: pt ← A Sparsifys(Gt), qt ← A Sparsifys(G2
t )

2: Mt ← β1Mt−1 + (1− β1)pt

3: Vt ← β2Vt−1 + (1− β2)qt

4: Mt ← Mt

1−βt
1

5: Vt ← Vt

1−βt
2

6: Nt ← α OMPA(Mt)√
OMPA(Vt)+ϵ

7: return Nt

SGC is a gradient compression method but differs from GaLore in some key areas. GaLore makes use of
the low-rank structure of gradients, while SGC leverages sparsity of gradients to perform optimizer state
updates in a dimension independent of the parameter dimensions. SGC uses a random matrix projection
and a signal recovery algorithm OMP to recover the original dimensions, while GaLore relies on SVD. SGC
and GaLore approach the gradient compression from two different perspectives and they can be integrated
together for further efficiency, as we demonstrate in the next section.

4.4 Efficient SGC

Here, we propose two efficient alternatives of the SGC algorithm.

Memory Efficient SGC (MESGC). Based on our observations, size of the projection matrix A ∈ Rk×d

may significantly contribute to the computation overhead. Although it is initialized only once before fine-
tuning, the memory requirements can become substantial depending on the value of s, the sparsity level of
G̃t, particularly when applying the OMP algorithm. To address this issue, we introduce the idea of chunking
the gradient signals prior to applying a projection matrix. Specifically, we split Gt into c equal sized chunks
before sparsifying and projecting each chunk. This enables the projection matrix A to be much smaller in
size from k × d to (k × d)/c. We split Gt to c equal-size chunks Gt =

[
G1

t , . . . , Gc
t

]
and apply the SGC

algorithm to each Gi
t. Accordingly, we have N i

t = SGC(Gi
t) ∈ R d

c , and we concatenate all these outputs
to obtain Nt as Nt =

[
N1

t , . . . , N c
t

]
. We select sc = s/c non-zero elements per chunk to ensure s non-zero

entries overall. Since the projection matrix A is the same for each chunk, we obtain efficiency by a factor
of c for storing A. However, we may not achieve an exact estimate of G̃t and G̃2

t when sparsifying and
concatenating Gi

t’s because the sparsity pattern in Gt is not truly uniform. This performance loss would
be more severe with increasing c, while it enhances efficiency by reducing the dimension of the projection
matrix A. We note that the chunking technique introduces more flexibility with the proposed SGC approach
in realizing a more diverse spectrum of performance-efficiency tradeoff.

Compute Efficient SGC (CESGC). The main tradeoff for our memory efficient approach is increased
runtime attributed to OMP, which scales with d, the size of gradients Gt. Here, we present a computationally
efficient alternative at the expense of slightly increased memory usage. For ease of presentation here, consider
Gt ∈ Rm×n to be in a matrix form. The main idea is to perform double compression, where we first compress
Gt once using a projection matrix Bt ∈ Rr×m, and then apply SGC to this compressed gradient of dimension
(r × n) ≪ d, therefore reducing time complexity. The intuition behind this approach is that the resultant
vector after the first compression is still quasi-sparse. The projection matrix Bt should be selected such that
as much information is retained after projection. For this purpose, we use the fact that SGC is orthogonal
to many other approaches. Thus, we apply one of these methods, GaLore, to obtain Bt, which reduces the
dimension of the vector entering the SGC algorithm. Specifically, we initialize the projection matrix Bt

every fixed number of iterations by applying truncated SVD on Gt:

U , Λ, V = SVD(Gt), Bt = U [:, : r] ∈ Rr×m,

where Bt is set to be the first r columns of the left-singular vectors of SVD of Gt. We then project the
gradients Gt using Bt and apply SGC to the resultant vector, i.e., SGC(BtGt). Finally, we project back the
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Table 1: Comparison between our approach, GaLore, and LoRA for storing the trainable parameters during
fine-tuning with AdamW. For simplicity, assume weight dimensions d can be reshaped to 2D matrix of size√

d ×
√

d, r ≪ d is the chosen rank, k ≪ d is the dimension we want to compress each optimizer state to.
The projection matrices refer to the costs of storing Bt during fine-tuning.

MESGC CESGC GaLore LoRA

Weights d d d d + 2r
√

d

Optimizer States 2k 2k 2r
√

d 4r
√

d

Projection Matrices - r
√

d r
√

d -

resultant updates from SGC(BtGt) onto the original d-dimensional space using BT
t to update the parameters

in W . Incorporating this into our formulation in equation 4 yields:

W (1) = W (0) − η
∑

t

BT
t SGC(BtGt). (15)

We note that the dimension of the vector entering SGC is r× n rather than d, thus improving the compute
efficiency with OMP. CESGC can be combined with our memory efficient implementation, where chunking
is performed after the projection of Gt, and we assume this is performed by default for experiments using
CESGC. In Appendix C, we discuss some further extensions of SGC.

4.5 Memory Analysis

Here, we analyze the memory requirements of our efficient SGC implementations and compare it with popular
gradient compression and PEFT methods, specifically GaLore and LoRA. The memory requirements of our
approach, Galore, and LoRA to perform weight updates for a single vector are shown in Table 1. Observe
that the number of optimizer states in both Galore and LoRA are a function of d. On the other hand,
the size of optimizer states for our memory efficient approach is independent of the weight dimensions, and
only depends on k = κcsc, where sc is sparsity per chunk, c is the number of chunks, and the constant κ is
to satisfy the RIP conditions for the OMP algorithm. This enables SGC to be significantly more memory
efficient in the optimizer states.

4.6 Convergence Analysis

Following Stich et al. (2018), it is possible to show that top-k sparsification leads to convergence at the same
rate as vanilla SGD. The key difference in our algorithm is the use of chunking and sparsification applied to
every chunk. Thus, the proof of convergence boils down to bounding the distance between the sparse form
of gradient vector G and the sparse form of every sub-vector after chunking the gradient vector G.
Definition 1 (Chunk-based s-sparsification). Let G ∈ Rd be a gradient vector, partitioned into c equally
sized chunks:

G =
[
G1, . . . , Gc

]
, Gi ∈ R

d
c , i = 1, . . . , c.

We define the chunk-based s-sparsified vector G̃′ by applying an sc-sparsification to each chunk, where
s =

∑c
i=1 sc. Concretely,

G̃′ =
[
G̃1, . . . , G̃c

]
, G̃i = Sparsifysc

(
Gi

)
.

That is, within each chunk Gi, we keep exactly the top sc magnitude entries and set the rest to zero.

Separately, we define the global s-sparsified vector

G̃ = Sparsifys

(
G

)
,

which keeps the top-s entries from the entire vector G rather than chunk-by-chunk.
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Theorem 1 (Worst-case bound on chunk-based vs. global sparsification). Let G, G̃′ and G̃ be as in Defini-
tion 1. Then, it holds that

E
[
∥G̃′ − G̃∥2

2
]
≤ 2

(
1− s

d

)
Gmax,

where Gmax is an upper bound on E
[
∥G̃′∥2

2
]
.

Proof. The worst-case scenario corresponds to when all s non-zero entries of G̃′ are contiguous, and without
loss of generality, located in indices 1 to s. Let l =

⌈
s

d/c

⌉
be the number of chunks spanning these s non-zero

indices of G̃′. Decompose the total error:

D1 = E
[ l∑

i=1
∥G̃′i − G̃i∥2

2

]
and D2 = E

[ c∑
i=l+1

∥G̃′i − G̃i∥2
2

]
.

Intuitively, D1 captures missing entries in the first l chunks not selected by G̃′, while D2 captures “extra”
entries in the other c− l chunks that are selected but should be zero.

By bounding each term via

D1 ≤ (s− lsc)E
[

∥G̃′∥2
2

s

]
and D2 ≤ (c− l) sc E

[
∥G̃′∥2

2
s

]
,

we obtain
E

[
∥G̃′ − G̃∥2

2
]

= D1 + D2 ≤ 2
(

1− s
d

)
E

[
∥G̃′∥2

2
]
≤ 2

(
1− s

d

)
Gmax,

which completes the proof.

We note that for the uniform case where the non-zero entries of G̃′ are uniformly distributed among the d
indices, each chunk Gi is likely to contain about sc of those entries. Thus, G̃′ ≈ G̃ in expectation, and

E
[
∥G̃′ − G̃∥2

2
]

= 0.

Using these results, we provide further analysis for the SGC Algorithm in Appendix D.

5 Experiments

We evaluate our approach on fine-tuning various large languages models, specifically on LLaMA2-7B,
LLaMA3-8B, and LLaMA2-13B, and Mistral-7B. The results are compared with full fine-tuning, LoRA,
and GaLore as baseline for all the setups. In addition, we demonstrate how our approach performs well in
both small dataset and optimizer state sizes. The results show that SGC enables more granular control over
the number of optimizer states and achieves comparable or better accuracy to baseline approaches while
using a significantly smaller number of optimizer states.

5.1 Commonsense and Knowledge Evaluation

We evaluate LLaMA2-7B, LLaMA3-8B, and LLaMA2-13B on a set of commonsense reasoning tasks to
demonstrate CESGC’s effectiveness in fine-tuning. Commonsense reasoning tasks involve 8 subtasks and we
follow Hu et al. (2023) to combine the training sets into a single dataset and evaluate on each of the individual
tasks separately. Details of hyperparameters and training settings can be found in Appendix E.1. Results
from Table 2 show that our approach achieves a comparable average accuracy compared to both GaLore
and LoRA, while using a smaller number of optimizer state parameters. Notably, in the LLaMA3-8B model,
CESGC performs the best, achieving a superior accuracy of 1% over LoRA, while using less than half the
number of optimizer state parameters. To further demonstrate the consistency of our approach, we fine-tune
Mistral-7B on a subset of the cleaned Alpaca dataset Taori et al. (2023), and evaluate its performance on
the MMLU benchmark (details can be found in Appendix E.2). These results indicate that our approach
achieves competitive performance across different model types and tasks.
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Table 2: LLaMA2-7B, LLaMA3-8B, and LLaMA2-13B on fine-tuning eight commonsense benchmarks (5
shots) using various PEFT methods. Average accuracy is reported in the final column. Note that # Params
refers to percentage of optimizer states, Mt and Vt, relative to full fine-tuning.

Model Method # Params (%) ARC-e ARC-c BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Average

LLaMA2-7B

Full Fine-tuning 100 82.5 55.4 83.8 77.8 45.8 80.1 55.4 77.8 69.8
CESGC 0.08 82.9 53.9 82.9 77.5 44.8 79.9 54.2 74.5 68.7
GaLore 0.10 82.3 54.1 81.7 78.2 45.8 80.6 53.5 75.3 68.9
LoRA 0.20 82.1 53.2 84.3 76.2 44.0 80.4 54.0 76.5 68.8

LLaMA3-8B

Full Fine-tuning 100 85.8 62.5 86.6 81.2 51.4 82.3 59.5 81.9 73.9
CESGC 0.08 83.9 57.8 85.2 81.0 46.2 82.0 53.4 77.8 70.9
GaLore 0.10 84.3 57.2 82.6 81.2 46.2 82.3 52.9 78.0 70.6
LoRA 0.20 82.3 56.2 83.8 79.5 48.0 81.7 52.8 74.4 69.9

LLaMA2-13B

Full Fine-tuning 100 86.2 60.9 87.4 81.0 51.8 82.0 60.3 82.9 74.1
CESGC 0.07 84.1 57.2 85.3 80.0 49.4 82.0 54.6 78.6 71.4
GaLore 0.08 83.8 56.2 85.3 81.2 47.4 81.7 55.5 79.0 71.3
LoRA 0.16 83.4 57.1 86.3 81.3 48.0 81.7 56.5 79.6 71.7

Table 3: Mistral-7B performance on the MMLU evaluation across various domains using different PEFT
methods. Average accuracy is reported in the final column.

Method STEM Social Science Humanities Other Average
CESGC 52.3 72.6 56.0 69.2 61.9
GaLore 52.3 72.6 56.0 69.0 61.8
LoRA 52.1 72.8 55.9 68.9 61.8

5.2 Memory Efficiency and Throughput

Consider r = 1, the minimum rank used for GaLore and LoRA. Based on Table 1, we can calculate that
GaLore and LoRA require 8192 and 16384 optimizer states, respectively. With sc = 1, c = 64, and κ = 7,
MESGC requires only 896 optimizer states, reducing the number of parameters by around 10 times. To
demonstrate how MESGC performs using a significantly lower number of optimizer states, we fine-tune
LLaMA2-7B on a subset of the commonsense reasoning dataset, setting k = 2048 (see Appendix E.3 for
details). Table 5 shows that MESGC achieves 0.6% higher average accuracy than GaLore when fine-tuning
LLaMA2-7B on commonsense reasoning while using only half the number of optimizer states. We also
measure the throughput using wall clock time per iteration with the same fine-tuning task and compare our
approaches with other methods (see Table 4). In particular, MESGC introduces some additional runtime,
but the gap between CESGC and other approaches is much smaller. Our current implementation can be
further optimized with the use of multi-gpu processing, as each chunk can be executed in parallel. We expect
to see significant speedups with these changes and leave this as part of future work.

5.3 Small Datasets and Small Optimizer States

In this section, we analyze our approach in extreme scenarios, namely cases of extremely small datasets
and optimizer states. To evaluate our approach’s effectiveness on small datasets, we focus on fine-tuning
LLaMA2-7B on subsets of the BoolQ (Clark et al., 2019) dataset while using a minimal number of optimizer
states. Specifically, we split the full dataset into multiple subsets ranging from 500 to 2000 samples, and use
an equal number of optimizer states across all methods (further details can be found in Appendix E.4). From
Figure 2(a), it can be seen that CESGC performs strictly better using small dataset sizes. We observe that
this may be task dependent, but for tasks such as BoolQ that rely on leveraging the pre-trained knowledge
about facts and entities, our approach can provide a more targeted method for fine-tuning by greedily
adjusting based on largest gradient magnitudes. On the other hand, LoRA at the lowest rank (r = 1)
struggles to learn under the limited dataset scenario, while GaLore with r = 1 underperforms CESGC.

By being independent of hidden dimension size, our approach enables fine-tuning using a smaller number
of optimizer states than possible compared to both GaLore and LoRA (see Figure 2(b)). With κ = 8 and
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Table 4: Comparison of wall clock time per iteration
between methods.

Method Time per iteration (s)
Full Fine-tuning 1.69

LoRA 1.51
GaLore 1.88
MESGC 7.52
CESGC 2.82

Table 5: Fine-tuning results using a minimum num-
ber of optimizer states. MESGC conducted with
c = 256, sc = 1, κ = 8, while both GaLore and
LoRA use rank r = 1.

Method # Params Accuracy
MESGC 4096 68.0
GaLore 8192 67.4
LoRA 16384 67.7

c = 64, we can increase sc by 1 at each increment to obtain the plot for CESGC. The granularity for CESGC
is 512, which is significantly less than both GaLore (8192) and LoRA (16384). This enables a finer sweep
in the number of optimizer states to search for best hyperparameters to use. For instance, as shown in the
figure, CESGC achieves 80.2% accuracy with using just over 6000 optimizer states, whereas both GaLore
and LoRA are unable to obtain results since it is below the minimum number of optimizer state parameters
they can support.

(a) Small Dataset study (b) Optimizer State study

Figure 2: (a). CESGC outperforms both GaLore and LoRA when fine-tuning with limited data on BoolQ.
(b). Plot showing improvement of accuracy of CESGC when using a minimal number of optimizer states.
Hollow blue points are interpolated values that indicate the granularity of CESGC across optimizer states.

5.4 Ablation Study

Here, we investigate the effects of number of chunks c, total sparsity s, and the constant κ on fine-tuning
performance (details in Appendix E.5). First, we set the total sparsity s, to be constant and vary c. Figure
3(a) shows that increasing the number of chunks, while keeping the total s constant decreases average
accuracy across the commonsense reasoning evaluation. We attribute this to the uniform chunking, where
the number of non-zero elements selected per chunk is sc = s/c. However, in practice, the sparsity pattern
of gradients may vary across the chunks, with certain parameter regions potentially requiring more attention
than others. Therefore, we see higher accuracy corresponding to smaller chunk sizes.

For sparsity, there is a general increasing trend, as seen in Figure 3(b). As the number of non-zero elements
selected increases, so does the number of optimizer states k, we expect the accuracy to improve until s is
equal to the number of parameters, as in full fine-tuning. We observe that increasing s after a certain point
results in diminished returns seeing as the slope is most steep when s is increased initially and is less steep
afterwards. This can be explained by how a small percentage of parameters account for the majority of the
gradient norms during fine-tuning, which is supported by the observations in Song et al. (2024).
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(a) Number of chunks study (b) Sparsity study (c) κ study

Figure 3: Ablation study for effects of number of chunks c, sparsity s, and constant κ. (a). Average accuracy
with varying c and constant s. (b). Average accuracy with varying s and constant c. (c). Average accuracy
with varying κ.

Finally, we investigate the effect of κ, the constant to satisfy the RIP condition, with the goal of finding a
lower bound such that performance is not negatively affected. Based on Figure 3(c), we see that if κ is set to
6, performance drops significantly. However, there is minimal gain from increasing κ from 7 to 8, indicating
a κ value of 7 should be sufficient.

6 Conclusion

In this work, we proposed a novel fine-tuning method, SGC, that enables flexible and granular control
over the number of optimizer states. The key idea, leveraging the sparsity of the gradients, is to compress
them through a linear projection onto a subspace of an arbitrary dimension k, which is independent of
the original parameter dimensions. The updates are performed within this lower-dimensional subspace,
and the results are projected back into the original d-dimensional space, effectively utilizing the gradient
sparsity. This allows SGC to have significantly smaller and more granular number of parameters to train
during fine-tuning compared to other PEFT approaches. We also provided two efficient implementations
of SGC, MESGC and CESGC, and show through experiments that our approach can achieve comparable
accuracy while being more memory efficient than other PEFT methods. Notably, we demonstrated that our
approach achieves superior performance in data-limited settings, achieving higher accuracy than both LoRA
and GaLore. Our approach is orthogonal to many gradient compression methods, opening opportunities for
future work to integrate them and explore SGC’s generalizability in domains like vision and audio.
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A GaLore Analysis
Rather than operating on the parameter space, GaLore saves memory by reducing the number of parameters
in the optimizer states (Zhao et al., 2024). Specifically, it projects the gradient Gt ∈ Rm×n at each time step
t to a lower-dimensional representation Ĝt = PtGt ∈ Rr×n by using a projection matrix Pt ∈ Rr×m that is
set to the first r columns of the left singular vectors of SVD of Gt. The size of the optimizer states, which are
equal to the dimensions of the projected gradient Ĝt is then reduced, providing memory savings. However,
observe that Ĝt is still dependent on n, meaning that, similar to LoRA, there exists a bound dependent on
n that we cannot reduce the number of optimizer states any further. Likewise, granularity over parameters
is a function of n, and tied to the model’s weight dimensions.

B Efficient Orthogonal Matching Pursuit
Our implementation of OMP is based on the inverse Cholesky factorization method (Zhu et al., 2020), see
Algorithm 3. We perform pre-calculation of the gram matrix G, to reduce computational costs, but introduce
additional memory requirements. For memory efficiency, G should not be pre-computed or alternatively, it
is possible to implement a more memory efficient Algorithm 3 at the expense of additional runtime.

Algorithm 3 OMP by Inverse Cholesky Factorization
Require: Measurements y, projection matrix A, sparsity value s

Initialize: Λ0 = ∅, the residual r(0) = y, gram matrix G = AHA, and the iteration counter k = 1.
while k ≤ s do

Projection: if k = 1, compute p0 = AHr0, else

p(k−1) = p(k−2) − b:(k−1)ak−1,

where b:(k−1) is the (k − 1)-th column of Bk−1, and ak−1 is the (k − 1)-th entry of ak−1.

Select i(k) = arg maxi=1,2,...,d

(
|p(k−1)

i
|

∥A:i∥

)
, where p

(k−1)
i is the i-th entry of p(k−1).

Let Λk = Λk−1 ∪ {i(k)}, i.e., λk = i(k) is the k-th entry of the set Λk.

Obtain
ck−1 =

(
bH

λk,1:Λk−1

)H

,

where bλk,1:Λk−1 is the λk-th row of Bk−1. Then compute γk = 1√
gλk,λk

−cH
k−1ck−1

,

ak = γkpk−1
λk

,

ak =
[
aT

k−1 a:k
]T

,

b:k = γk (g:λk
−Bk−1ck−1) ,

Bk =
[
BT

k−1 b:k
]

,

where pk−1
λk

is the λk-th entry of pk−1, gk
:λk

is the λk-th column of G, and c0 = B0 = a0 = ∅ is assumed
for k = 1. Finally, if k = 1, compute F1 = √gλ1,λ1 , else

Fk =
[
Fk−1 −γkFk−1ck−1
0k−1 γk

]
,

k := k + 1.
end while
Output: Compute x̂s = Fsas, r(s) = y −AΛs

x̂s, and return r(s), Λs, x̂s.
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Algorithm 4 SGCA at timestep t
Require: Gt, A, s, β1, β2, ϵ

1: pt ← A Sparsifys(Gt)
2: qt ← A Sparsifys(G2

t )
3: Mt ← β1Mt−1 + (1− β1)pt

4: Vt ← β2Vt−1 + (1− β2)qt

5: Mt ← Mt

1−βt
1

6: Vt ← Vt

1−βt
2

7: Nt ← α OMPA(Mt)√
OMPA(Vt)+ϵ

8: if t mod T = 0 then
9: Sample A′ ∼ N

(
0, 1√

k
1

)
10: Mt ← A′OMPA(Mt)
11: Vt ← A′OMPA(Vt)
12: A← A′

13: end if
14: return Nt

C Extensions of SGC

In practice, having a static projection matrix A is heavily dependent on the initialization, and can potentially
lead to slower convergence. To address this, we can adjust A every T iterations, and modify SGC to obtain
SGCA outlined in Algorithm 4. Lines 9 initializes a new random projection matrix A′ to enable future
gradients Gt to be projected into another subspace. Lines 10 − 11 are necessary to ensure the current Mt

and Vt terms are re-aligned using A′ such that we can perform OMP at the next time step. Algorithm 4
can improve performance but comes at a cost of increased runtime, since we need to run OMP two more
times. Alternatively, it can be possible to store the results from first call but requires additional memory
requirements.

D Analysis of SGC

In this section, we provide an analysis on the SGC algorithm and provide a bound on the error for recovering
Mt and Vt using OMP.
Theorem 2 (Exact OMP Recovery). Suppose A satisfies the RIP conditions. If x is an exactly s-sparse
vector and y = A x, then OMP recovers x exactly:

OMPA(y) = x.

Details and proofs can be found in Candes & Tao (2005). For the standard OMP case, we can exactly recover
x from y = Ax provided that the number of measurements k ≥ κs. A potential concern that may impact
the recovery accuracy lies in the changing sparsity patterns of G̃t over time, such that x is not exactly
s-sparse.
Definition 2. To handle the possibility of changing sparsity, define the union of the supports over all
iterations T as ΩT .

ΩT =
T⋃

i=1
supp

(
G̃i

)
, so |ΩT | ≤ Ts (naive worst case).

Theorem 3 (Approximate OMP Recovery). Let M̃t be the approximate recovery of Mt using SGC. If |ΩT |
can be bounded by some constant s̃, then the error of OMP recovery satisfies

∥Mt − M̃t∥2 ≤ C min
∥v∥0≤s̃

∥Mt − v∥2.
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Expanding on equation 12, SGC aims to recover the first and second moments. Without loss of generality,
we present an analysis on the first moment due to exact sparsity patterns between the two. Consider the
following expression, which is what SGC aims to recover:

M̃t =
t∑

i=1
hi(β1)G̃i.

The key question is how to quantify the effect of changing sparsity patterns of G̃t and to what degree it
negatively affects the compressive sensing guarantees.

From empirical experiments, we observe that the total distinct coordinates of top s values remains small,
and so we can bound |ΩT | by s̃≪ d. That is,

|ΩT | = |
T⋃

i=1
supp

(
G̃i

)
| ≤ s̃.

Then, M̃t is at most s̃-sparse at any time t. Hence, if k is selected such that k ≥ κs̃, then OMP can recover
M̃t exactly. However, we find that it is acceptable even if a smaller value of k is selected, in which case
OMP will recover an approximation whose error is on the order of the tail energy of the indices outside the
top s̃. In this case, OMP recovers M̃t, satisfying

∥Mt − M̃t∥2 ≤ C min
∥v∥0≤s̃

∥Mt − v∥2,

for some constant C > 0. We also empirically observe that the tail energy of the gradients beyond its largest
s̃ coordinates are significantly small, enabling some flexibility in selecting a smaller value for k, while allowing
for reasonable OMP recovery performance.
Remark 1. The decaying coefficients β1 and β2 helps reduce the error because older coordinates get scaled
down over time. This shrinkage ensures that the union of large coordinates does not explode and can remain
bounded, such that M̃t remains effectively s̃-sparse for all t.

E Fine-Tuning Experiments

E.1 Commonsense Reasoning

We fine-tune pretrained LLaMA2-7B, LLaMA2-13B, and LLaMA3-8B models obtained from Hugging Face.
We trained each model for 1 epoch on the full commonsense dataset consisting of 170k examples. For
consistency, we used a batch size of 16 across all experiments and train for 1 epoch. Since the goal is to
observe performance improvements with only training a limited number of parameters, we only fine-tune
on two of the attention matrices, keeping everything else frozen. For LlaMA2-7B and LLaMA-2-13B, we
target the query and value matrices, whilst for LLaMA3-8B, we targeted the query output matrices. For
LLaMA3-8B, we select the output matrix instead of the value matrix to keep the dimensions consistent for
comparison. Full details of hyperparameters can be found in Table 6. To ensure fair comparison, we kept a
fixed random seed across each set of experiments comparing SGC against the baseline approaches.

E.2 Knowledge Evaluation

We fine-tune Mistral-7B model obtained from Hugging face using 1 epoch on a 10k subset of the cleaned
Alpaca dataset. We only target the the query and value matrices and follow a similar selection policy as the
commonsense reasoning task for the remaining hyperparameters (see Table 7 for details).
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Table 6: Hyperparameters used for commonsense reasoning experiments.

Model Method learning rate rank r num. chunks c sparsity s κ α

LLaMA2-7B

Full Finetuning 1e-5 - - - - -
CESGC 2e-5 32 64 1984 7 2
GaLore 2e-5 4 - - - 2
LoRA 1e-4 4 - - - -

LLaMA3-8B

Full Finetuning 1e-5 - - - - -
CESGC 2e-5 32 64 1984 7 2
GaLore 2e-5 4 - - - -
LoRA 1e-4 4 - - - -

LLaMA2-13B

Full Finetuning 1e-5 - - - - -
CESGC 3e-5 32 64 2496 7 2
GaLore 3e-5 4 - - - 2
LoRA 1e-4 4 - - - -

Table 7: Hyperparameters used for knowledge evaluation experiment.

Model Method learning rate rank r num. chunks c sparsity s κ α

Mistral-7B
CESGC 2e-5 32 64 1984 7 2
GaLore 2e-5 4 - - - 2
LoRA 1e-4 4 - - - -

Table 8: LLaMA2-7B results on commonsense reasoning for MESGC.

Method ARC-e ARC-c BoolQ HellaSwag OBQA PIQA SIQA WinoGrande Average
CESGC 80.9 53.4 82.4 78.4 43.8 79.9 52.3 73.2 68.0
GaLore 80.2 52.2 79.0 78.4 43.0 80.5 51.6 74.0 67.4
LoRA 80.9 52.2 79.5 78.5 44.6 80.0 51.7 73.9 67.7

Table 9: Hyperparameters used for commonsense reasoning for MESGC.

Method learning rate rank r num. chunks c sparsity s κ α

MESGC 2e-5 - 256 256 8 2
GaLore 2e-5 1 - - - 2
LoRA 1e-4 1 - - - -

E.3 Memory Efficiency

For this experiment, we apply the MESGC algorithm. First, we select a subset of 10k examples from the
full commonsense dataset and fine-tune the LLaMA2-7B model, evaluating on all commonsense reasoning
tasks. We used a batch size of 16 across all experiments and train for 1 epoch is used. The full results can
be found in Table 8 and hyperparameters in Table 9.

E.4 Fine-tuning on Small Datasets

We first obtain a subset consisting of 2000 samples from the BoolQ dataset. We then create four partitions of
data ranging in size from 500 to 2000 examples, in increments of 500. For this experiment, we are interested
in comparing performance between our approach and baselines given equal optimizer state sizes. Thus, we
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Table 10: Hyperparameters used for fine-tuning BoolQ.

Method learning rate rank r num. chunks c sparsity s κ α

CESGC 2e-5 8 64 64 8 2
GaLore 2e-5 1 - - - 2
LoRA 1e-4 1 - - - -

Table 11: Hyperparameters used for ablation study.

Study Method rank r num. chunks c sparsity s κ

Chunks c MESGC - 256, 512, 1024, 2048, 4096 4096 7
Sparsity s CESGC 32 64 64, 4096, 16384, 32768, 65536 7
Kappa κ CESGC 32 64 1984 6, 7, 8

set the total number of optimizer states to 8192, and perform fine-tuning with batch size 16 over 2 epochs
using LLaMA2-7B based on the settings shown in Table 10.

E.5 Ablation Study

For chunks c and sparsity s studies, we fine-tuned on the LLaMA2-7B model fine-tuned on a subset of 30k
examples using commonsense reasoning dataset. For the chunk size study, we performed the experiment
based on our MESGC approach, while for sparsity, we used CESGC. Finally, different values of κ was tested
on the full commonsense dataset using CESGC. The same batch size of 16, training epochs of 1, learning
rate, η = 2e−5 and alpha, α = 2 is used for all three studies. Other hyperparameter details are shown in
Table 11.
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