
Learning to Ask: When LLM Agents Meet Unclear Instruction

Anonymous ACL submission

Abstract001

Equipped with the capability to call functions,002
modern LLM agents can leverage external tools003
for addressing a range of tasks unattainable004
through language skills alone. However, the005
effective execution of these tools relies heav-006
ily not just on the advanced capabilities of007
LLM agents but also on precise user instruc-008
tions, which often cannot be ensured in the009
real world. To evaluate the performance of010
LLM agents tool-use under imperfect instruc-011
tions, we meticulously examine the real-world012
instructions queried from users, analyze the er-013
ror patterns, and build a challenging tool-use014
benchmark called Noisy ToolBench (Noisy-015
ToolBench). We find that due to the next-token016
prediction training objective, LLM agents tend017
to arbitrarily generate the missed argument,018
which may lead to hallucinations and risks.019
To address this issue, we propose a novel020
framework, Ask-when-Needed (AwN), which021
prompts LLM agents to ask questions to users022
whenever they encounter obstacles due to un-023
clear instructions. Moreover, to reduce the man-024
ual labor involved in user-LLM interaction and025
assess LLM agents’ performance in tool utiliza-026
tion from both accuracy and efficiency perspec-027
tives, we design an automated evaluation tool028
named ToolEvaluator. Our experiments demon-029
strate that the AwN significantly outperforms030
existing frameworks for tool learning in the031
NoisyToolBench. We will release all related032
code and datasets to support future research.033

1 Introduction034

LLMs have undergone remarkable development035

since OpenAI introduced ChatGPT-3.5 (Bang et al.,036

2023). This model demonstrates a significant ad-037

vancement in solving multiple tasks, including038

code generation (Dong et al., 2023; Sakib et al.,039

2023; Feng et al., 2023), machine translation (Jiao040

et al., 2023; Peng et al., 2023), even game play-041

ing (Wu et al., 2024). However, despite their im-042

pressive capabilities, LLMs often struggle with043

complex computations and delivering accurate, 044

timely information (Qu et al., 2024). Tool learn- 045

ing emerges as a promising solution to mitigate 046

these limitations of LLMs by enabling dynamic 047

interaction with external tools (Schick et al., 2024). 048

The incorporation of tool usage capabilities 049

marks a pivotal step towards enhancing the intel- 050

ligence of LLMs, pushing them closer to exhibit- 051

ing human-like intelligence. The integration of 052

tool usage allows LLMs to perform a broader ar- 053

ray of complex and varied tasks, including manag- 054

ing emails, designing presentations, and browsing 055

the web to gather real-time information. For ex- 056

ample, LLMs can perform complex calculations 057

using a calculator tool, access real-time weather 058

updates through weather APIs, and execute pro- 059

gramming code via interpreters (Qin et al., 2023a; 060

Schick et al., 2024; Mialon et al., 2023; Yang et al., 061

2023a). Toolformer (Schick et al., 2024) is a pio- 062

neering work in empowering language models with 063

self-learning capabilities for tool usage. Then, sig- 064

nificant research efforts have been directed toward 065

accessing a wider variety of tools or using multiple 066

tools simultaneously to resolve a single query, such 067

as Gorilla(Patil et al., 2023), RestGPT (Song et al., 068

2023) and ToolLLM (Qin et al., 2023b). 069

Despite the significant strides made, existing 070

frameworks and benchmarks often operate under 071

the assumption that user instructions are always 072

explicit and unambiguous, a premise that diverges 073

from real-world scenarios (Qin et al., 2023a; Song 074

et al., 2023; Patil et al., 2023). Due to the feature of 075

API calls, it requires precise user instructions since 076

the arguments for the function call can hardly toler- 077

ate ambiguity. We find that due to the next-token 078

prediction training objective, LLMs tend to arbitrar- 079

ily generate the missed argument, which may lead 080

to hallucinations and risks (as the example shown 081

in Figure 1a). Furthermore, as the tasks assigned to 082

LLMs grow in complexity, multiple and sequential 083

API calls are needed to resolve a single task. This 084

1

ARISE Template 2022 3

How is the
weather today?

API retrieved

API call

The user did not provide
the location. Anyway, let
me just fill in New York.

weather_for_now_api
(location=“New York”)

It’s sunny today.

How is the
weather today?

API retrieved

API call

The user did not provide
the location. Let’s ask

the user for clarification.

weather_for_now_api
(location=“London”)

It’s raining today.

Location?

London

1 2

34

1 2

45

3

(a) The execution process of previous frameworks.

ARISE Template 2022 3

How is the
weather today?

API retrieved

API call

The user did not provide
the location. Anyway, let
me just fill in New York.

weather_for_now_api
(location=“New York”)

It’s sunny today.

How is the
weather today?

API retrieved

API call

The user did not provide
the location. Let’s ask

the user for clarification.

weather_for_now_api
(location=“London”)

It’s raining today.

Location?

London

1 2

34

1 2

45

3

(b) The execution process of our framework.

Figure 1: The motivating example of our Ask-when-Needed (AwN) framework.

complexity amplifies the challenge, as any error in085

the sequence of API calls can culminate in an out-086

come that strays from the user’s original intention.087

Hence, LLMs tool-use under unclear instruction is088

an important but rarely investigated direction.089

To address this oversight, we conduct a system-090

atic analysis of actual user instructions, identifying091

and categorizing potential issues into several key092

areas. These include instructions lacking essen-093

tial information, instructions with ambiguous ref-094

erences, instructions containing inaccuracies, and095

instructions that are unfeasible for LLMs to execute096

due to the limitations of the tools available. Build-097

ing on this observation, we meticulously design098

a noisy instruction benchmark, named NoisyTool-099

Bench, which is pimarily used for assessing the100

capability of LLMs to detect ambiguities in user101

queries and to pose relevant questions for clarifi-102

cation accordingly. Specifically, NoisyToolBench103

includes a collection of provided APIs, ambiguous104

queries, anticipated questions for clarification, and105

the corresponding responses.106

To improve the performance of LLMs tool-use107

under unclear instructions, we propose a novel108

framework called Ask-when-Needed (AwN). Our109

key insight is encouraging LLMs to proactively ask110

questions to seek clarifications from users when111

uncertainties arise during instruction execution. By112

facilitating dialogue throughout the process, our113

method aims to ensure the accurate invocation of114

functions (See Figure 1b)115

To evaluate the performance of LLMs tool-use116

under unclear instruction, we design several inno-117

vative metrics from the accuracy and efficiency118

perspectives. For accuracy, we measure the LLMs’119

proficiency in asking appropriate clarifying ques-120

tions, their ability to execute the correct function121

calls, and their success in delivering final responses122

that meet the users’ needs. For efficiency, we calcu- 123

late the average number of redundant asked ques- 124

tions and the average number of actions required to 125

complete the instruction. An ideal LLM should 126

achieve higher accuracy with fewer number of 127

queries. Recognizing the labour-intensive nature of 128

manually communicating with LLMs and verifying 129

all execution results, we also innovatively design 130

an automatic evaluation system, ToolEvaluator, to 131

streamline the whole process. ToolEvaluator lever- 132

ages the advanced problem-solving capabilities of 133

GPT-4o to communicate with LLMs and automati- 134

cally evaluate the performance of LLMs’ tool-using 135

under unclear instruction. Our experiments on 6 136

LLMs and 2 tool-using frameworks demonstrate 137

that the AwN significantly outperforms existing 138

baseline methods for tool learning in the Noisy- 139

ToolBench. 140

The key contributions of this research are sum- 141

marized as follows: 142

• We conduct a systematic study on real-world user 143

instruction for tool utilization and categorize the 144

prevalent issues into four distinct categories. 145

• We create and release a novel benchmark, Noisy- 146

ToolBench, which can be used to evaluate the 147

performance of LLMs’ tool-using under imper- 148

fect user instruction. 149

• We design five evaluation metrics from both ac- 150

curacy and efficiency perspectives and introduce 151

an automatic evaluation system, ToolEvaluator, 152

that can proxy users to interact and assess LLMs. 153

• We introduce a novel framework, named AwN 154

method, to prompt LLMs to actively ask ques- 155

tions to request clarifications from users when 156

facing uncertainties. Experimental results show 157

that AwN can significantly improve the LLMs’ 158

tool-using under unclear instructions. 159

2

2 Related Works160

Tool Learning for LLMs. LLMs have recently161

made significant advancements, with ChatGPT be-162

ing recognized as a major step towards achieving163

AGI (Wu et al., 2023; Lund and Wang, 2023; Jiao164

et al., 2023). These LLMs possess strong reason-165

ing capabilities, enabling them to perform increas-166

ingly complex tasks (Liu et al., 2023). However, to167

progress further towards AGI, it is crucial for LLMs168

to master the utilization of tools. Toolformer is the169

first innovative AI model designed to use several170

specialized tools, such as a web browser, a code in-171

terpreter, and a language translator, within a single172

framework (Schick et al., 2023). The model’s abil-173

ity to seamlessly switch between these tools and174

apply them contextually represents a significant ad-175

vancement in AI capabilities. Recent studies like176

RestGPT (Song et al., 2023) and ToolLLM (Qin177

et al., 2023b), have connected LLMs with real-life178

Application Programming Interfaces (APIs), allow-179

ing them to sequentially employ multiple external180

tools to solve user queries. The tool-augmented181

approach empowers LLMs to use various kinds182

of tools to do more sophisticated tasks, showcas-183

ing an enhanced level of capability compared to184

pure LLMs. Besides, API-Bank (Li et al., 2023),185

ToolAlpaca (Tang et al., 2023), ToolBench (Qin186

et al., 2023b), ToolQA (Zhuang et al., 2023) and187

RestBench (Song et al., 2023) are exemplary bench-188

marks to systematically evaluate the performance189

of tool-augmented LLMs performance in response190

to user’s queries. However, current models often191

ignore the situations in which users might not give192

exact instructions, which can result in the tools not193

working properly. Thus, our study aims to tackle194

this specific challenge by developing a new bench-195

mark specifically for ambiguous instructions.196

Prompting LLMs for Decision Making. In cer-197

tain situations, addressing user queries may re-198

quire more than a single API call. This necessi-199

tates the effective division of the overarching task200

into smaller, more manageable components, which201

presents a significant challenge. Prior research has202

focused extensively on enhancing LLMs’s ability203

to effectively plan and execute complex tasks. The204

’Chain of Thought’ prompting approach facilitates205

advanced reasoning by introducing intermediate206

steps in the reasoning process (Wei et al., 2022).207

The ReAct methodology improves the integration208

of reasoning and action, enabling LLMs to take209

informed actions based on environmental feedback210

(Yao et al., 2022). Meanwhile, Reflexion is de- 211

signed to reduce errors in the reasoning process 212

by revisiting and learning from previous mistakes 213

(Shinn et al., 2023). DFSDT expands upon Re- 214

flexion, allowing LLMs to evaluate various options 215

and choose the most viable path (Qin et al., 2023b). 216

In our work, we innovatively involve users in the 217

process of executing instructions. Our approach, re- 218

ferred to as AwN, motivates LLMs to consider the 219

necessity of requesting further information from 220

users during each tool invocation round. This strat- 221

egy aims at clarifying users’ ambiguous instruc- 222

tions to help execute the tasks in alignment with 223

the users’ intentions. 224

Learning to Ask. Since user queries may not al- 225

ways be clear, and the execution of LLMs may 226

encounter uncertainties and ambiguities, learning 227

to ask questions has emerged as a challenging yet 228

crucial research area (Rao and Daumé III, 2018; 229

Kuhn et al., 2022; Andukuri et al., 2024). For 230

example, some researchers introduce a learning 231

framework that empowers an embodied visual nav- 232

igation agent to proactively seek assistance(Zhang 233

et al., 2023). Recently, similar ideas have been 234

adopted in the software engineering, leveraging a 235

communicator to enhance the reliability and quality 236

of generated code (Wu, 2023). Our work focuses 237

on the tool-learning scenario, which is more sensi- 238

tive to the user’s unclear query. A concurrent study 239

(Qian et al., 2024) also focuses on the reliability 240

of tool-learning systems under unclear instruction. 241

However, they did not systematically examine real- 242

world user behavior, leading to the limited and bi- 243

ased nature of their dataset that doesn’t accurately 244

capture user errors. Our research addresses this 245

shortfall by starting with a user analysis. Addition- 246

ally, Qian’s methodology depends significantly on 247

human manual interaction and assessment of LLM 248

performances, which is time-consuming and hard 249

to reproduce. In contrast, we introduce an auto- 250

mated evaluation method that can proxy humans to 251

communicate with and automatically evaluate the 252

performance of LLMs. 253

3 Noisy ToolBench 254

Several tool-learning benchmarks have been intro- 255

duced to assess LLMs’ ability in tool utilization. 256

However, these benchmarks overlook the potential 257

ambiguity in users’ instruction, which might hin- 258

der LLMs from executing tasks as intended by the 259

user. For instance, as depicted in Figure 1a, if a 260

3

user inquires, "How is today’s weather" without261

specifying the location, LLMs cannot accurately262

activate the APIs to fetch the correct weather in-263

formation. This scenario underscores the critical264

role of interaction between users and LLMs in exe-265

cuting instructions accurately. However, previous266

tool-learning benchmarks only contain perfect user267

instruction in a one-query-one-execution manner.268

To create a realistic benchmark for ambiguous269

instructions, the initial step involves a systematic270

examination of the common errors in user instruc-271

tions that could complicate correct execution by272

LLMs. Therefore, we first collect real-world user273

instructions that are problematic. Then, we classify274

these instructions into various categories based on275

their characteristics. Lastly, we manually create276

our dataset, ensuring it reflects the distribution of277

errors found in the real-world user instructions.278

3.1 User Instruction Analysis279

To analyze the issues in real-world user instruc-280

tion, we recruit human annotators to write user281

queries according to the API provided. Firstly, we282

select 100 APIs from the ToolBench (Qin et al.,283

2023b), containing real-world RESTful APIs span-284

ning 49 categories, ranging from sports to finance.285

Secondly, we hire 10 volunteers, who have a Bach-286

elor’s degree, are proficient in English, and have287

experience using LLMs. We provide them with the288

100 APIs, and then ask them to write down an in-289

struction to prompt LLMs to call each API, ending290

up with 1000 user queries. Finally, we manually291

identify the problematic user queries and catego-292

rized them as follows.293

• Instructions Missing Key Information (IMKI):294

These are user instructions that omit crucial de-295

tails necessary for the successful execution of a296

function. An example of IMKI would be, "Set297

an alarm to wake me up" without providing a298

specific time. Asking for more information is299

needed when encountering this issue.300

• Instructions with Multiple References (IMR):301

These user instructions include elements that can302

be interpreted in several ways, potentially lead-303

ing to confusion for LLMs in understanding the304

user’s actual intent. For example, an IMR in-305

stance is "I want to know the director of the306

movie ’The Matrix’," where the ambiguity arises307

because there are multiple versions of ’The Ma-308

trix’, each possibly having a different director.309

This issue is similar to IMKI but is more subtle310

and difficult to detect. Pointing out potential ref-311

Type of Issue Ratio
Instructions Missing Key Information (IMKI) 56.0%
Instructions with Multiple References (IMR) 11.3%
Instructions with Errors (IwE) 17.3%
Instructions Beyond Tool Capabilities (IBTC) 15.3%

Table 1: Distribution of problematic instructions.

erences and asking for clarification are needed 312

when encountering this issue. 313

• Instructions with Errors (IwE): This category 314

consists of user instructions that contain the nec- 315

essary information for executing a function, but 316

the information is incorrect. An example of IWE 317

is, "Please help me to log in to my Twitter. My 318

user account is ’abcde@gmail.com’ and the pass- 319

word is ’123456’," where the user might have 320

provided the wrong account details or password 321

due to typographical errors. Asking for the cor- 322

rect information is needed when encountering 323

this issue. 324

• Instructions Beyond Tool Capabilities (IBTC): 325

These are user instructions that request actions or 326

answers beyond what LLMs can achieve with the 327

available APIs. In such cases, the existing tool- 328

augmented LLM frameworks might randomly 329

choose an available API, leading to an incorrect 330

function call. This scenario highlights the need 331

for LLMs to recognize their limitations in tool 332

usage. Telling the user that the query is beyond 333

the capabilities and refusing to generate API calls 334

are needed when encountering this issue. 335

Table 1 shows the ratio of the four issues, where 336

the most common issue in the instructions is "In- 337

structions Missing Key Information", with a sig- 338

nificant 56.0% of all errors. This issue is a clear 339

indication that users often do not provide adequate 340

information to effectively use the APIs. Addition- 341

ally, issues such as "Instructions with Errors" and 342

"Instructions Beyond Tool Capabilities" were iden- 343

tified at rates of 17.3% and 15.3%, respectively. 344

3.2 Data Construction 345

Our user instruction analysis reveals that there are 346

four kinds of instruction issues that may lead to 347

LLMs’ tool utilization failures: Instructions Miss- 348

ing Key Information (IMKI), Instructions with Mul- 349

tiple References (IMR), Instructions with Errors 350

(IwE), and Instructions Beyond Tool Capabilities 351

(IBTC). So, we build our benchmark with the four 352

issues by intentionally modifying the problem-free 353

instructions from well-established datasets to prob- 354

lematic ones. We first select 200 data with problem- 355

4

ARISE Template 2022 5

Instruction

API call

API response

CoT/ReAct

Result

Instruction

API call

API response

Result

CoT/ReAct + QwN

Need to ask?

Query for help
single

element

single
element

Yes No

Figure 2: The comparison of our QwN prompting com-
pared with original CoT/ReAct Prompting

free instruction from ToolBench and then manually356

modify the user instructions to make them suffer357

from the four kinds of instruction issues. Then358

we annotate the expected questions that LLMs359

should ask when facing each imperfect user query,360

which will be used to measure whether LLMs can361

ask the right questions, as well as the answer to362

the question, which will be used to proxy the hu-363

man responses. We conduct a two-round cross-364

verification to ensure the quality of the annotation.365

Each data is annotated and verified by different peo-366

ple and any disagreement data will be re-annotated367

until reach a consensus. Finally, each data entry368

in NoisyToolBench has the following five compo-369

nents: the imperfect user query, the available APIs,370

the questions that LLMs should ideally ask, the an-371

swers to these questions, and the expected function372

calls along with their respective arguments.373

4 Ask-when-Needed Prompting374

Previous approaches to tool-using often overlooked375

the importance of user engagement during the376

reasoning and planning stages. To address this377

oversight, we introduce a new prompting strategy378

named Ask-when-Needed (AwN). The key insight379

is prompting LLMs to detect the potential flaws in380

user instructions and proactively seek clarifications381

by asking questions before generating the API call.382

AwN is built upon widely-used tool-using meth-383

ods, such as CoT and ReAct. As in Figure 2, we384

introduce an additional step before the generation385

of API calls. This step involves presenting all avail-386

able information to the LLMs, including the user387

query and API guideline, and prompting them to388

determine the adequacy and correctness of user in- 389

struction. If LLMs identify any missing argument 390

needed for function execution based on the API’s 391

requirements, they are encouraged to ask questions 392

to the user for this information. AwN prompts 393

LLMs not to generate any API call until obtaining 394

all the necessary information. In other words, only 395

if no further information is needed, they can bypass 396

the query step and directly initiate the API call. We 397

also provide various kinds of specific instructions 398

and demonstration examples for different kinds of 399

instruction issues. 400

You are AutoGPT, tasked with processing user
requests through a variety of APIs you have
access to. Sometimes, the information provided
by users may be unclear, incomplete, or
incorrect. Your main responsibility is to
determine if the user’s instructions are
sufficiently clear and detailed for effective
use of the APIs. Here’s your strategy:
1. If user instructions are missing crucial
details for the APIs, pose a question to obtain
the necessary information.
2. If the user’s instructions appear to be
incorrect, delve deeper by asking questions to
clarify and rectify the details.
3. If the user’s request falls outside the
capabilities of your current APIs, notify them
that you’re unable to meet the request by
stating: ”Due to the limitation of the toolset,
I cannot solve the question”.
...

401

5 Experiments 402

In this section, we evaluate the performance of our 403

Ask-when-Needed (AwN) prompting technique on 404

the NoisyToolBench dataset. We first introduce 405

the evaluation metrics, where we specify the crite- 406

ria used to assess the effectiveness of AwN. Then, 407

we describe the evaluation pipeline, detailing the 408

step-by-step process employed to measure AwN’s 409

performance. Lastly, we discuss the main experi- 410

ments, presenting the results and findings from our 411

comprehensive testing of the AwN technique. 412

5.1 Evaluation Metrics 413

We evaluate the performance of LLMs’ tool-using 414

under unclear instructions from two perspectives: 415

accuracy and efficiency. The accuracy assessment 416

aims to measure the LLMs’ capability to make 417

correct decisions during the instruction execution 418

phase and to generate accurate final answers. In 419

contrast, the efficiency assessment focuses on the 420

number of redundant decisions made by the LLMs, 421

considering that unnecessary communication could 422

lead to a waste of processing time. Specifically, we 423

5

ARISE Template 2022 7

User: Provide me with the
profile information of my

TikTok account.

LLM’s reflection: Is user’s intention
clear? Does user provide enough
information for further process?

Thought:…………
API Name: ………
Arguments:……….

LLM’s question: XXXXX?

No

Yes Sentence
Transformer

[Expected Question]
in dataset

Similarity
> T ?

Proxy User: I cannot
provide additional

information about this. Yes

No

Proxy User:
[Pre-Defined Answer]

Automatic Interaction

Figure 3: Illustration of the Auto-Interaction module.

design the following five metrics:424

• Accuracy 1 (A1). A1 evaluates the capability425

of LLMs to ask the anticipated questions that426

pinpoint the ambiguous elements in user instruc-427

tions. A1 is considered a success if the LLMs428

manage to ask the correct questions at any point.429

Conversely, it is deemed a failure if they do not.430

• Accuracy 2 (A2). A2 assesses the ability of431

LLMs to use all available information to invoke432

the correct API calls. It is deemed a success433

if the LLMs call all the anticipated APIs with434

the correct arguments. If they fail to do so, it is435

considered a failure.436

• Accuracy 3 (A3). A3 measures the ability of437

LLMs to extract the anticipated information from438

previous API calls to fulfill the user’s instruc-439

tions. This is achieved and considered a success440

if the user’s instructions are successfully exe-441

cuted. If not, it is regarded as a failure.442

• Average Redundant Asked questions (Re).443

This metric evaluates the quantity of irrelevant444

or redundant questions asked by LLMs during445

the instruction process. Irrelevant questions are446

those that do not meet the initial expectations of447

the query, and redundant questions include those448

that are repetitive or have previously been asked.449

This metric is crucial for assessing the LLMs’450

ability to precisely identify the ambiguous as-451

pects of user instructions and to formulate ap-452

propriate questions to clarify these uncertainties.453

The larger the value, the worse the performance.454

• Steps. Steps quantifies the average number of455

actions required to complete an instruction, in-456

cluding inference generation, asking questions,457

and conducting API calls. A smaller number in-458

dicates fewer unnecessary steps in the instruction459

execution process, signifying a more efficient460

and direct approach to accomplishing the task.461

5.2 Auto-Evaluation Pipeline 462

To assess how LLMs perform under unclear instruc- 463

tions, interacting with LLMs and making assess- 464

ments are needed. Previous work employs individ- 465

uals to interact with and evaluate LLMs throughout 466

the entire evaluation process, which is inefficient 467

and not reproducible. To address this, we design 468

an automated evaluation method named ToolEval- 469

uator to proxy this process. ToolEvaluator can 470

automatically interact with LLMs and assess their 471

performances. 472

Auto-Interaction. ToolEvaluator can proxy 473

the user’s communication with LLMs. When 474

LLMs post a question, ToolEvaluator calculates 475

the semantic similarity between the asked ques- 476

tion and the expected question by the sentence- 477

transformer (Reimers and Gurevych, 2019). If the 478

similarity is higher than a threshold, ToolEvaluator 479

replies with the predefined answer to the LLMs. 480

Otherwise, this question is treated as an irrelevant 481

question and ToolEvaluator replies with a standard 482

reply of "Sorry, I cannot provide additional infor- 483

mation about this.". This approach streamlines the 484

evaluation process by reducing the need for human 485

interaction with LLMs, as illustrated in Figure 3. 486

Auto-Assessment. ToolEvaluator can also auto- 487

matically assess how well LLMs perform under 488

ambiguous instructions according to the five met- 489

rics introduced above. A1 measures whether LLMs 490

can ask the right question. ToolEvaluator calculates 491

the semantic similarity between the LLMs-asked 492

question and the expected question to asses A1. A2 493

measures whether LLMs can conduct correct API 494

calls. Following the previous works (Yang et al., 495

2023b; Chiang and yi Lee, 2023; Wang et al., 2023; 496

Yuan et al., 2023), ToolEvaluator adopts GPT-4o 497

as a judge to identify whether the generated API 498

6

Model Framework IMKI IMR IwE IBTC

A1(%) A2(%) A3(%) A1(%) A2(%) A3(%) A1(%) A2(%) A3(%) A1(%)

gpt-3.5

CoT 0.74 0.36 0.22 0.20 0.24 0.12 0.5 0.24 0.16 0.38
+ AwN 0.74 0.44 0.24 0.86 0.46 0.20 0.74 0.48 0.28 0.48

DFSDT 0.64 0.16 0.12 0.60 0.18 0.16 0.48 0.14 0.14 0.46
+ AwN 0.88 0.52 0.46 0.88 0.56 0.48 0.72 0.42 0.36 0.64

gpt-4

CoT 0.74 0.48 0.32 0.72 0.52 0.36 0.52 0.26 0.24 0.34
+ AwN 0.94 0.62 0.50 0.76 0.44 0.38 0.48 0.34 0.34 0.94

DFSDT 0.82 0.16 0.16 0.70 0.28 0.26 0.54 0.12 0.10 0.54
+ AwN 0.80 0.56 0.48 0.80 0.50 0.44 0.52 0.38 0.36 0.94

gpt-4o

CoT 0.52 0.48 0.34 0.18 0.28 0.16 0.12 0.12 0.10 0.10
+ AwN 0.90 0.58 0.36 0.80 0.46 0.30 0.60 0.44 0.32 0.92

DFSDT 0.58 0.20 0.18 0.26 0.18 0.16 0.18 0.06 0.04 0.08
+ AwN 0.88 0.60 0.46 0.90 0.52 0.36 0.64 0.46 0.38 0.94

deepseek-v3

CoT 0.44 0.40 0.20 0.24 0.28 0.24 0.10 0.14 0.14 0.30
+ AwN 0.70 0.52 0.36 0.70 0.54 0.46 0.40 0.30 0.26 0.98

DFSDT 0.42 0.30 0.26 0.60 0.20 0.18 0.22 0.12 0.12 0.48
+ AwN 0.72 0.52 0.42 0.82 0.52 0.48 0.54 0.38 0.36 0.98

gemini-1.5

CoT 0.22 0.18 0.10 0.22 0.10 0.02 0.08 0.12 0.06 0.52
+ AwN 0.86 0.40 0.18 0.74 0.24 0.08 0.58 0.28 0.22 0.68

DFSDT 0.62 0.02 0.02 0.6 0.08 0.04 0.36 0.06 0.02 0.48
+ AwN 0.82 0.40 0.12 0.76 0.28 0.04 0.66 0.36 0.26 0.70

claude-3.5

CoT 0.24 0.26 0.20 0.12 0.28 0.24 0.08 0.26 0.24 0.30
+ AwN 0.54 0.5 0.5 0.32 0.30 0.24 0.34 0.34 0.26 0.88

DFSDT 0.26 0.18 0.14 0.12 0.18 0.18 0.12 0.20 0.18 0.62
+ AwN 0.52 0.44 0.42 0.32 0.30 0.18 0.36 0.36 0.30 0.86

Table 2: Assessing the accuracy of various LLMs using different prompting methods in our benchmark.

calls are the same as the expected API calls. A3499

measures whether LLMs can correctly generate the500

final answer. ToolEvaluator adopts GPT-4o as a501

judge to identify whether the final answer aligns502

with the user’s intent. For measuring the efficiency,503

ToolEvaluator counts the number of generated irrel-504

evant questions as Re and counts the total number505

of actions during the process as Steps. All the de-506

tails can be found in the Appendix due to the space507

limitation.508

5.3 The Effectiveness of ToolEvaluator509

Since ToolEvaluator is an automatic evaluation510

method, the evaluation can be inaccurate due to511

the imperfect nature of AI techniques, such as sen-512

tence transformer or GPT-4o as the judge. In this513

section, we conduct a human annotation to validate514

the effectiveness of ToolEvaluator. Specifically,515

we randomly select 50 cases and ask annotators516

to assess the accuracy and efficiency, according to517

the evaluation metrics mentioned above. Then we518

compare the assessment results from ToolEvalua-519

tor and human annotators. ToolEvaluator achieves520

90% accuracy, indicating its effectiveness. 521

5.4 Experimental Setup 522

We evaluated the performance of AwN against two 523

baseline methods, chain-of-thought (CoT) (Wei 524

et al., 2022) and depth-first search-based decision 525

tree (DFSDT) (Qin et al., 2023b), which are two 526

widely-used tool-learning methods. All the ex- 527

periments are conducted with several LLMs as 528

engines, gpt-3.5-turbo-0125, gpt-4-turbo-2024-04- 529

09, gpt-4o-2024-11-20, deepseek-v3, gemini-1.5- 530

flash-latest and claude-3-5-haiku-20241022, using 531

the default setting. Since an ideal reaction under 532

Instructions Beyond Tool Capabilities (IBTC) is 533

telling the user that the query is beyond the ca- 534

pabilities and refusing to generate API calls, its 535

performance in A2 and A3 are measured neither. 536

5.5 Main Result 537

We evaluate the performance of AwN as well as the 538

baseline methods on our NoisyToolBench dataset. 539

The accuracy-related results are shown in Table 2 540

and the efficiency-related results are in Table 3. 541

7

Model FrWork IMKI IMR IwE IBTC

Re Steps Re Steps Re Steps Re Steps

gp
t-

3.
5 CoT - 4.46 - 4.02 - 3.90 - 2.10

+ AwN 0.66 5.36 1.1 5.98 0.76 5.08 - 2.40

DFSDT - 12.82 - 12.80 - 13.82 - 5.50
+ AwN 1.44 16.94 0.98 11.24 0.94 11.68 - 3.94

gp
t-

4

CoT - 4.00 - 3.98 - 3.34 - 2.04
+ AwN 0.16 3.94 0.20 3.94 0.36 3.46 - 1.16

DFSDT - 83.96 - 21.04 - 22.40 - 4.06
+ AwN 0.48 9.82 0.74 13.08 0.62 9.42 - 2.10

gp
t-

4o

CoT - 3.00 - 2.98 - 2.48 - 1.28
+ AwN 0.62 3.86 0.70 3.96 0.46 3.18 - 1.10

DFSDT - 5.98 - 9.58 - 5.78 - 8.98
+ AwN 0.86 6.70 1.18 7.68 0.88 8.56 - 1.14

de
ep

se
ek

-v
3 CoT - 4.20 - 3.52 - 3.12 - 1.18

+ AwN 0.20 3.88 0.06 3.60 0.04 2.92 - 1.10

DFSDT - 59.08 - 41.70 - 24.24 - 11.64
+ AwN 1.16 15.86 1.80 24.60 1.20 11.82 - 1.32

ge
m

in
i-

1.
5 CoT - 4.00 - 4.12 - 2.86 - 4.52

+ AwN 0.42 6.44 0.68 6.36 0.48 4.54 - 1.46

DFSDT - 750.80 - 685.00 - 725.14 - 559.78
+ AwN 5.34 445.16 9.08 532.56 1.94 411.18 - 1.46

cl
au

de
-3

.5 CoT - 2.64 - 3.40 - 3.04 - 1.90
+ AwN 0.18 3.74 0.33 1.03 0.36 3.76 - 1.68

DFSDT - 3.34 - 9.64 - 5.98 - 4.26
+ AwN 0.76 6.74 0.80 17.46 1.04 13.08 - 2.76

Table 3: Assessing the efficiency of various LLMs using
different prompting methods in our benchmark.

AwN enhances the capability of LLM Agents542

to ask pertinent questions across different is-543

sues. For example, as is shown in Table 2, AwN544

improved the A1 scores from 0.52 to 0.90, from545

0.18 to 0.80, from 0.12 to 0.60, and from 0.10 to546

0.92 for gpt-4o-based CoT as well as from 0.58 to547

0.88, from 0.26 to 0.90, from 0.18 to 0.64 and from548

0.08 to 0.94 for gpt-4o-based DFSDT.549

Asking the right question leads to the better550

generation and execution of API calls. Besides551

the significant improvements on A1, AwN also552

achieves considerable performance in generating553

correct API calls (A2) and returning the expected554

final answer (A3). For example, AwN improved555

the A2 scores from 0.48 to 0.58, from 0.28 to 0.46,556

from 0.12 to 0.44 for gpt-4o-based CoT as well as557

from 0.20 to 0.60, from 0.18 to 0.52, from 0.06 to558

0.46 for gpt-4o-based DFSDT.559

AwN can improve most of the LLM agents560

without generating excessive unnecessary ques-561

tions. As is shown in Table 3, AwN only leads562

to 0.16, 0.20, and 0.36 redundant questions for563

gpt-4-based-CoT, as well as 0.48, 0.74, and 0.62564

redundant questions for gpt-4-based-DFSDT.565

However, a few LLM agents tend to ask more566

irrelevant or redundant questions, as indicated by 567

the higher Re scores in Table 3. For example, in 568

Gemini-1.5-based DFSDT, where the average num- 569

ber of redundant questions is 5.34, 9.08, and 1.94. 570

This suggests that while the AwN aids in identify- 571

ing and addressing ambiguities in user instructions, 572

it also leads to a less efficient querying process. 573

AwN can reduce the average cost of LLM’s 574

tool-using. The average number of steps mea- 575

sures the cost of LLMs’ tool-using. As is shown 576

in Table 3, adopting AwN can reduce the num- 577

ber of actions, especially for gpt-4-based DFSDT, 578

deepseek-v3-based-DFSDT and gemini-1.5-based- 579

DFSDT. Although AwN can lead to a higher cost 580

for a few LLM agents, such as claude-3.5, con- 581

sidering the significant performance improvements 582

achieved, the moderate increase in cost is justifiable 583

and worthwhile. 584

6 Conclusion 585

This study explores how unclear user instructions 586

hinder modern LLMs’ tool usage. To investi- 587

gating the common error patterns in real-world 588

instructions, we propose: (1) Noisy ToolBench 589

(NoisyToolBench), a novel benchmark for evalu- 590

ating LLM performance under ambiguous instruc- 591

tions; (2) Ask-when-Needed (AwN), an innovative 592

approach enabling LLMs to request clarification 593

when uncertain; and (3) an automated evaluator 594

(ToolEvaluator) to assess accuracy and efficiency. 595

Experimental results show that the AwN algorithm 596

markedly surpasses existing methods in the Noisy- 597

ToolBench dataset and significantly improves the 598

performance of LLMs’ tool-using under unclear 599

user instructions. 600

Limitations 601

This paper has two limitations: 602

1. Although AwN can improve the performance, 603

there is still a big gap to perfect. We hope that 604

this work can serve as the first stepping stone, 605

inspiring future researchers to delve deeper into 606

this field of study. 607

2. The automatic evaluation process is not 100% 608

accurate, leading to some potential false neg- 609

atives and false positives. In the future, more 610

efforts are needed to build a more reliable auto- 611

evaluation method. 612

8

References613

Chinmaya Andukuri, Jan-Philipp Fränken, Tobias Ger-614
stenberg, and Noah D Goodman. 2024. Star-gate:615
Teaching language models to ask clarifying questions.616
arXiv preprint arXiv:2403.19154.617

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-618
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei619
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-620
task, multilingual, multimodal evaluation of chatgpt621
on reasoning, hallucination, and interactivity. arXiv622
preprint arXiv:2302.04023.623

Cheng-Han Chiang and Hung yi Lee. 2023. Can large624
language models be an alternative to human evalu-625
ations? In Annual Meeting of the Association for626
Computational Linguistics.627

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023.628
Self-collaboration code generation via chatgpt. arXiv629
preprint arXiv:2304.07590.630

Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally,631
Weijian Zheng, Meikang Qiu, and Haihua Chen.632
2023. Investigating code generation performance633
of chatgpt with crowdsourcing social data. In 2023634
IEEE 47th Annual Computers, Software, and Ap-635
plications Conference (COMPSAC), pages 876–885.636
IEEE.637

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing638
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is chat-639
gpt a good translator? yes with gpt-4 as the engine.640
arXiv preprint arXiv:2301.08745.641

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar.642
2022. Clam: Selective clarification for ambiguous643
questions with generative language models. arXiv644
preprint arXiv:2212.07769.645

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu,646
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. Api-647
bank: A benchmark for tool-augmented llms. arXiv648
preprint arXiv:2304.08244.649

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji650
Zhou, and Yue Zhang. 2023. Evaluating the logical651
reasoning ability of chatgpt and gpt-4. arXiv preprint652
arXiv:2304.03439.653

Brady D Lund and Ting Wang. 2023. Chatting about654
chatgpt: how may ai and gpt impact academia and655
libraries? Library Hi Tech News, 40(3):26–29.656

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-657
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,658
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,659
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and660
Thomas Scialom. 2023. Augmented language mod-661
els: a survey. Preprint, arXiv:2302.07842.662

Shishir G. Patil, Tianjun Zhang, Xin Wang, and663
Joseph E. Gonzalez. 2023. Gorilla: Large lan-664
guage model connected with massive apis. Preprint,665
arXiv:2305.15334.666

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen, 667
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and 668
Dacheng Tao. 2023. Towards making the most 669
of chatgpt for machine translation. arXiv preprint 670
arXiv:2303.13780. 671

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng, 672
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou, Yankai 673
Lin, Zhiyuan Liu, and Maosong Sun. 2024. Tell 674
me more! towards implicit user intention under- 675
standing of language model driven agents. Preprint, 676
arXiv:2402.09205. 677

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 678
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, 679
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, 680
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun 681
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen 682
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, 683
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, 684
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, 685
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng 686
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and 687
Maosong Sun. 2023a. Tool learning with foundation 688
models. Preprint, arXiv:2304.08354. 689

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 690
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 691
Bill Qian, et al. 2023b. Toolllm: Facilitating large 692
language models to master 16000+ real-world apis. 693
arXiv preprint arXiv:2307.16789. 694

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, 695
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong 696
Wen. 2024. Tool learning with large language mod- 697
els: A survey. arXiv preprint arXiv:2405.17935. 698

Sudha Rao and Hal Daumé III. 2018. Learning to ask 699
good questions: Ranking clarification questions using 700
neural expected value of perfect information. arXiv 701
preprint arXiv:1805.04655. 702

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 703
Sentence embeddings using siamese bert-networks. 704
EMNLP. 705

Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM 706
Karim. 2023. Extending the frontier of chatgpt: 707
Code generation and debugging. arXiv preprint 708
arXiv:2307.08260. 709

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 710
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 711
moyer, Nicola Cancedda, and Thomas Scialom. 2024. 712
Toolformer: Language models can teach themselves 713
to use tools. Advances in Neural Information Pro- 714
cessing Systems, 36. 715

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 716
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 717
Cancedda, and Thomas Scialom. 2023. Toolformer: 718
Language models can teach themselves to use tools. 719
Preprint, arXiv:2302.04761. 720

9

https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://api.semanticscholar.org/CorpusID:258461287
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2302.07842
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2402.09205
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761

Noah Shinn, Beck Labash, and Ashwin Gopinath.721
2023. Reflexion: an autonomous agent with dy-722
namic memory and self-reflection. arXiv preprint723
arXiv:2303.11366.724

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,725
Han Qian, Mingbo Song, Hailiang Huang, Cheng Li,726
Ke Wang, Rong Yao, Ye Tian, and Sujian Li. 2023.727
Restgpt: Connecting large language models with real-728
world restful apis. Preprint, arXiv:2306.06624.729

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,730
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-731
alized tool learning for language models with 3000732
simulated cases. arXiv preprint arXiv:2306.05301.733

Wenxuan Wang, Zhaopeng Tu, Chang Chen, Youliang734
Yuan, Jen-tse Huang, Wenxiang Jiao, and Michael R735
Lyu. 2023. All languages matter: On the multilin-736
gual safety of large language models. arXiv preprint737
arXiv:2310.00905.738

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten739
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,740
et al. 2022. Chain-of-thought prompting elicits rea-741
soning in large language models. Advances in Neural742
Information Processing Systems, 35:24824–24837.743

Jie JW Wu. 2023. Does asking clarifying questions744
increases confidence in generated code? on the com-745
munication skills of large language models. Preprint,746
arXiv:2308.13507.747

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang748
Liu, Qing-Long Han, and Yang Tang. 2023. A brief749
overview of chatgpt: The history, status quo and750
potential future development. IEEE/CAA Journal of751
Automatica Sinica, 10(5):1122–1136.752

Yue Wu, Xuan Tang, Tom M. Mitchell, and Yuanzhi Li.753
2024. Smartplay: A benchmark for llms as intelligent754
agents. Preprint, arXiv:2310.01557.755

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter756
Abbeel, and Dale Schuurmans. 2023a. Foundation757
models for decision making: Problems, methods, and758
opportunities. Preprint, arXiv:2303.04129.759

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Ruth Pet-760
zold, William Yang Wang, Xun Zhao, and Dahua761
Lin. 2023b. Shadow alignment: The ease of sub-762
verting safely-aligned language models. ArXiv,763
abs/2310.02949.764

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak765
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.766
React: Synergizing reasoning and acting in language767
models. arXiv preprint arXiv:2210.03629.768

Youliang Yuan, Wenxiang Jiao, Wenxuan Wang,769
Jen-tse Huang, Pinjia He, Shuming Shi, and770
Zhaopeng Tu. 2023. Gpt-4 is too smart to be safe:771
Stealthy chat with llms via cipher. arXiv preprint772
arXiv:2308.06463.773

Jenny Zhang, Samson Yu, Jiafei Duan, and Cheston 774
Tan. 2023. Good time to ask: A learning framework 775
for asking for help in embodied visual navigation. 776
Preprint, arXiv:2206.10606. 777

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, 778
and Chao Zhang. 2023. Toolqa: A dataset for llm 779
question answering with external tools. Preprint, 780
arXiv:2306.13304. 781

10

https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2308.13507
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2310.01557
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://arxiv.org/abs/2303.04129
https://api.semanticscholar.org/CorpusID:263620436
https://api.semanticscholar.org/CorpusID:263620436
https://api.semanticscholar.org/CorpusID:263620436
https://arxiv.org/abs/2206.10606
https://arxiv.org/abs/2206.10606
https://arxiv.org/abs/2206.10606
https://arxiv.org/abs/2306.13304
https://arxiv.org/abs/2306.13304
https://arxiv.org/abs/2306.13304

	Introduction
	Related Works
	Noisy ToolBench
	User Instruction Analysis
	Data Construction

	Ask-when-Needed Prompting
	Experiments
	Evaluation Metrics
	Auto-Evaluation Pipeline
	The Effectiveness of ToolEvaluator
	Experimental Setup
	Main Result

	Conclusion

