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Figure 1: The proposed method aims to restore a sharp RGB image from a blurry image by utilizing events provided by a
separate event camera, as shown in (a). Previous event-based motion deblurring methods assume that the image and event are
spatially aligned perfectly. However, in real-world images, except for low-quality APS images, there are misaligned pixels
with events even when the baseline of two cameras is minimized, as in (b). In general, the misalignment between these pixels
depends on the distance to camera. Therefore, as shown in (d) and (e), for distant objects that are partially aligned, the state-
of-the-art event-based image deblurring method UEVD [28] performs better than the only image-based method MPRNet [6].
Instead, even when utilizing additional information, the event-based model often fails to preserve details for objects that are
close, compared to the image-based model. On the other hand, our approach robustly restores sharp textures for both near
and distant objects by matching each pixel between the image and event at the feature-level, as in (c).

Abstract
Motion deblurring from a blurred image is a challeng-

ing computer vision problem because frame-based cameras
lose information during the blurring process. Several at-
tempts have compensated for the loss of motion information
by using event cameras, which are bio-inspired sensors with
a high temporal resolution. Even though most studies have
assumed that image and event data are pixel-wise aligned,
this is only possible with low-quality active-pixel sensor
(APS) images and synthetic datasets. In real scenarios,
obtaining per-pixel aligned event-RGB data is technically
challenging since event and frame cameras have different
optical axes. For the application of the event camera, we
propose the first Non-coaxial Event-guided Image Deblur-
ring (NEID) approach that utilizes the camera setup com-
posed of a standard frame-based camera with a non-coaxial

project: https://sites.google.com/view/neid2023

single event camera. To consider the per-pixel alignment
between the image and event without additional devices, we
propose the first NEID network that spatially aligns events
to images while refining the image features from temporally
dense event features. For training and evaluation of our
network, we also present the first large-scale dataset, con-
sisting of RGB frames with non-aligned events aimed at a
breakthrough in motion deblurring with an event camera.
Extensive experiments on various datasets demonstrate that
the proposed method achieves significantly better results
than the prior works in terms of performance and speed,
and it can be applied for practical uses of event cameras.

1. Introduction
Motion blur occurs due to the motions during the ex-

posure time since a frame-based camera records the scene
during the exposure time and outputs the averaged signal.
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The inverse problem, called deblurring, is restoring a sharp
image given a blurry image [41, 35, 5, 13, 67, 71, 1, 22, 30,
39, 65]. Previous learning-based deblurring methods are de-
signed to be sophisticated [6, 69] to improve the deblurred
image quality, leading to enormous complexity.

With the advent of event cameras, event-based mo-
tion deblurring methods have been proposed to overcome
the loss of motion information in the frame-based camera
[43, 42, 21, 25, 31, 62, 66, 49, 72, 61]. The event camera
asynchronously provides event data with low latency, which
has no motion blur even in extreme motion and contains
both texture and motion information over continuous time.
Despite these potentials of event data, the critical issue is
that even the most recent research still exploits a strong
assumption that events and images are pixel-wise aligned.
However, in real scenarios, it can be challenging to ob-
tain per-pixel aligned event-RGB data unless the event cam-
era provides active-pixel sensor (APS) images [3]; because
event and frame cameras have different optical axes. Since
APS images are generally of low image quality [16, 2],
some works use event simulators (e.g. ESIM [46]) on high-
frame-rate video datasets (e.g. GoPro [37]) to generate syn-
thetic event streams for restoring clean RGB images. How-
ever, as mentioned in [19, 52, 44, 4], synthetic event data
is far from the output of an actual event camera. A model
that has been trained effectively on a synthetic dataset may
experience significant performance degradation when eval-
uated on a real-event dataset.

In the real world, two distinct types of cameras must
be used together to acquire high-quality event stream and
RGB images simultaneously (see (a) of Fig. 1). Since the
two cameras are different devices, they have different op-
tical axes and field-of-views (FoV). It means they are not
aligned pixel-wisely. For video interpolation, a task differ-
ent from motion deblurring, existing works used a feature-
based homography warping process [58] or an additional
device (e.g. beamsplitter) [57] for pixel-wise alignment be-
tween the two cameras. However, feature-based alignment
between events and images [36] is too complicated due
to the sequence of image reconstruction, feature matching,
and global homography warping. Furthermore, this process
only works when the camera is static; the object is front-
paralleled in a limited range. In non-coaxial camera se-
tups, the pixel misalignment between two cameras varies
with the 3D information of each scene. Therefore, the pixel
alignment between two cameras obtained by the homogra-
phy can not perfectly align all the pixels of both near and
faraway objects, even calculated scene by scene as in [58].
In other words, feature-based homography cannot be a gen-
eral solution to cover most situations. On the other hand,
an additional device for pixel alignment could not achieve a
compact design and larger FoV, leading to many limitations
in real-world applications, such as mobile devices.

We aim to utilize events from non-coaxial event cameras
for motion deblurring without homography/additional de-
vices. As shown in (b) of Fig. 1, despite of close placement
of the RGB camera and the event camera, the event and im-
age are not aligned. Furthermore, the extent of unalignment
is slightly different for each scene and even for each object
in the same scene. Therefore, we introduce a Non-coaxial
Event-guided Image Deblurring (NEID) task that can un-
lock the potential of the event camera in a real scenario.
NEID aims to spatially align the image and event at the fea-
ture level during motion deblurring. To use pixel-wise mis-
aligned events, we need a framework to align events with
images, even if the images are blurry.

To this end, we propose a novel framework called Non-
coaxial Event-guided Deblurring Network (NED-Net). As
a key component for managing alignment between image
and event features in the pipeline, we propose the Attention-
based Deformable Align (ADA) module. The module lever-
ages both structure-based coarse alignment and patch-based
fine alignment. From these two cascade alignment pro-
cesses, events and images can be aligned well at the fea-
ture level despite the distinctive modality differences. Af-
ter global spatial alignment, the proposed Local Score-
based Aggregation (LSA) computes the similarity score
with the surrounding image features to remove the unnec-
essary event features and aggregate confident events to im-
prove the effect of deblurring. Finally, we develop the
Cross-Channel Interaction (CCI) module for texture en-
hancement. In addition, we first present the Non-Coaxial
Events and RGB (NCER) dataset consisting of 83 scenes
collected with a sophisticated camera setup with tempo-
rally synchronized frames and events. This dataset pro-
vides multiple scenes with dynamic motion at varying dis-
tances suitable for the NEID task. Unlike the existing
event-guided motion deblurring dataset [28, 25, 52, 55], the
NCER dataset provides high-resolution event data and high-
quality RGB images, not APS images.

2. Related Works
Frame-based Motion Deblurring. Some attempts [41, 35,
13, 67, 71, 1, 22, 30] have tried to restore the sharp im-
age given a blurred image without knowing the blur ker-
nel. They have succeeded in modeling simple motions;
however, it is still hard to recover under complex mo-
tions. With the deep learning-based approach, some meth-
ods [65, 39, 40, 37, 69, 70] have tried to resolve complex
motions using the convolutional neural network (CNN) and
recurrent neural network (RNN) [65, 24, 38, 75]. Recent
state-of-the-art methods [69, 6] have adopted a multi-stage
scheme composed of smaller sub-tasks. Especially, Chen et
al. [6] proposed the extended Instance Normalization [59]
as an enhancement method of restoration. However, despite
these advances, the plausible recovery from a single motion
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Figure 2: The overview of Non-coaxial Event-based Deblurring Network (NED-Net). NED-Net contains the residual dense
blocks (RDB), and global feature fusion (GFF) proposed in [26]. Our main contributions are as follows: Attention-based
Deformable Align (ADA), Local Score-based Aggregation (LSA), and Cross-Channel Interaction (CCI) module.

blurred frame is still challenging due to the loss of motion
information in the process of degradation.

Event-based Motion Deblurring. To address the lack
of information, one alternative is to use additional sen-
sors, such as [76, 29, 57]. Event cameras, a novel bio-
inspired sensor, can record the temporally dense bright-
ness change information. Event cameras have been in-
vestigated for their potential in diverse environments and
tasks [8, 10, 9, 27, 77, 51, 20, 7]. When it comes to deblur-
ring, [42, 43] succeeded in modeling relationships between
events, a sharp image, and a blurry image. Haoyu et al. [21]
also defined the relationship between a blurry image and
events, using the modified U-Net [48] with a global residual
connection. Other approaches use neural networks to learn
the relationships directly between blurry and sharp images
with the guide of events. Jiang et al. [25] proposed a recur-
rent architecture with an event filter, which generates sharp
boundary prior. Lin et al. [31] resolve both problems of de-
blurring and interpolation using a dynamic filtering method
to deal with spatially and temporally variant thresholds that
trigger events. Wang et al. [62] developed the sparse learn-
ing method, which is robust to noise. Recent works have
aimed to design more sophisticated architecture [55, 74] and
better solve real situations, such as non-consecutive blurry
videos [49], unknown exposure time videos [28], and data
inconsistency [66]. These works generally assume the event
data is per-pixel aligned with the image; however, this as-
sumption is not valid for real cameras because an event
camera and an RGB camera are not positioned co-axially.
In this paper, we aim to utilize events for motion deblurring
without any additional devices and a hand-crafted align-
ment process. To the best of our knowledge, ours is the first
NEID framework that utilizes a non-coaxial event camera
for deblurring a real-world RGB image.

3. Motion Deblurring with Non-coaxial Events
3.1. Framework Overview

Our goal is to restore a sharp image (IS) given a blurry
image (IB) and an event (E) corresponding to the exposure
time. As shown in Fig. 2, our proposed NED-Net consists of
three modules: Attention-based Deformable Align (ADA),
Local Score-based Aggregation (LSA), and Cross-Channel
Interaction (CCI) module.

First, we extract features from images and events. Then,
to account for computation cost while widening the recep-
tive field, we rearrange the image and event through pixel
reshuffle [50]. In addition, we adopt the residual dense
blocks (RDB) and global feature fusion (GFF) [26] to ex-
ploit whole hierarchical features. Then, the extracted image
features (F I) and event features (FE) are transferred to the
ADA module for generating spatially aligned event features
(FD). After the global alignment, LSA module generates
the local refined features (FS) by aggregating the aligned
event features (FD) with the image features (F I). Finally,
the CCI module extracts rich context through channel-wise
relation between the two modalities. Then, the output of
CCI module (FC) is used to restore a sharp image (IR)
through pixel shuffle upsampling [50].

3.2. Attention-based Deformable Align

As shown in Fig. 5, events and images are pixel-wise
mismatched, varying from scene to scene and object to ob-
ject. In the case of images, flow estimation [56, 54] is com-
monly used to estimate per-pixel matching between two ad-
jacent frames. However, in our setup, we need to find the
per-pixel matching between the image and the event, which
is challenging by solely relying on flow estimation. Without
access to ground truths, optical flow networks are generally
trained with warping-based photometric loss [34], but it is
challenging to apply this due to the sparse nature of events.
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Figure 3: The proposed Attention-based Deformable Align
(ADA) module.

Therefore, the correspondences match from events to im-
ages is unreliable due to the significant modality difference
between events and images.

To solve these issues, we propose the Attention-based
Deformable Align (ADA) module that estimates the coarse
optical flow only for initial alignment. Then, the ADA
module aligns the features precisely through transformer
[53, 60] structures and a deformable convolution [12, 64].
The transformer can obtain matching pixels for each pixel
through similarity, even between two different modalities.
Also, the deformable convolution can handle the various
sizes of the pixel-displacement for each pixel. As shown
in Fig. 3, we design a shallow structure of motion estima-
tor consisting of a few convolutional and ReLU activation
layers. Given image features F I and event features FE , the
motion estimator generates optical flows OE→I from events
to images. Then, we generate the warped features F Ê by
backward warping operation with optical flows OE→I .

After coarse alignment, we perform fine alignment in
the local region through deformable convolution. The chal-
lenge for such fine alignment is the ambiguity of match-
ing because image features are blurry, not sharp. Therefore,
we adopt the more discriminative feature representations,
i.e. Transformer [53]. To calculate the cross-attention, we
generate query Q ∈ RWH×C from the image feature F I ,
and key K ∈ RC×WH and value V ∈ RWH×C from the
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Figure 4: The proposed Local Score-based Aggregation
(LSA) module.

warped event feature F Ê . The Q,K,V are projected by
efficient depth-wise separate convolutional (Dconv) layer
[23], convolution layer and normalization layer. Then, ADA
module computes the attention map A, which contains cor-
relation between images and warped events as:

A = softmax(KQ/α) ∈ RC×C , (1)

where α is a learnable parameter that adjusts the scale of the
attention map. The attention map A represents the similar-
ity between two features. Then, the offset ∆P and modula-
tion weights ∆mk are computed by multiplying the warped
event feature with the attention map and going through the
feed-forward function [68]. We predefine the deformable
convolutional kernels with K2 sampling points (K = 3 in
our experiment). The spatially aligned event feature FD at
specific position P can be obtained as:

FD(P) =

K2∑
k=1

wk · F Ê (P + Pk +∆Pk) ·∆mk, (2)

where wk is the weight for k-th point, Pk is the fixed off-
set to P in the kernels. Using correlation through an at-
tention mechanism, we can precisely align event features
with image features. In general, the previous transformer
works [33, 14] correlate the queries and keys spatially so
that the computation cost quadratically increases as input
resolution increases, i.e. O(W 2H2). To be computation-
ally efficient even for high-resolution, we compute atten-
tion channel-wise so that complexity is linear, i.e. O(C2).
Nevertheless, our experiments show that it can sufficiently
perform spatial alignment.

3.3. Local Score-based Aggregation (LSA)

Event cameras have an inherently natural noise char-
acteristic and have different response functions from the
frame-based camera because they are distinct devices.
Therefore, the location of the triggered event may not match
the area where the blurring occurs in the image. To obtain
locations where events exist and blur effects are likely to
occur and, simultaneously, to remove unnecessary event re-
gions, we design the Local Score-based Aggregation (LSA)



module. First, as shown in Fig. 4, we feed the image feature
F I and spatially aligned event feature FD into a 3× 3 con-
volution layer with a ReLU activation layer, and obtain the
features of the same size as RĈ×Ĥ×Ŵ . Next, for each fea-
ture, we sample the surrounding pixels by a specified win-
dow for each pixel. Let F Î , F D̂ ∈ Rσ×Ĉ×Ĥ×Ŵ denote the
features sampled by the number of σ around each spatial lo-
cation of the image features and spatially aligned event fea-
tures, respectively. Then, we generate the matching score
S by calculating the similarity between the F Î and F D̂ as
S = ⟨F Î , F D̂⟩ ∈ Rσ×Ĥ×Ŵ . Here, ⟨·, ·⟩ is the inner prod-
uct. The score S contains the similarity score between the
sharp representations of the two modalities, thus alleviat-
ing unnecessary events for deblurring. Using the score and
aligned feature of each surrounding pixel, we can obtain an
aggregated feature as:

FS∗
(p) =

σ∑
i=1

F D̂(i,p)× sigmoid(S(i,p)). (3)

Finally, the output of LSA module is defined by adding the
aggregated feature FS∗

to the spatially aligned event fea-
ture FD as FS = FS∗

+ FD. By considering neighbors
together, a more reliable aggregate is possible, and ambigu-
ity can be resolved even if there are repeated patterns.

3.4. Cross-Channel Interaction

Through the ADA and LSA modules, event features are
spatially aligned well with the blurry image. To further ex-
ploit the rich context in the features, we focus on the re-
lationships between channels. As explored in the previous
studies [17, 45, 15, 18], channel-wise attention of features
leads to a performance gain of the model. Therefore, we de-
sign the Cross-Channel Interaction (CCI) module for con-
text enhancement by adopting the channel-attention mech-
anism [17]. The Cross-Channel Interaction (CCI) module
takes the image feature F I and the output of the LSA mod-
ule FS . To well exploit the spatial information for atten-
tion, we feed the features F I and FS into the convolu-
tional and activation layers and extract the encoded features
F (I) ∈ RC×W×H and F (S) ∈ RC×W×H , respectively.
To compute the relationship between two modalities, we
add the two features to get correlated feature F (A). We
compute the temporal correlation matrix A ∈ RC×C by
applying a softmax function and multiplication to the re-
shaped feature F (A) ∈ RC×(W×H) as follows:

Auv =
exp((F (A)F (A)⊤)uv)∑C
c=1 exp((F (A)F (A)⊤)uc)

,

C∑
v=1

Auv = 1.

(4)
The feature FC , which is the output of the CCI module, is
obtained through multiplication with encoded feature F (S)
and residual addition with the output of the LSA module
FS as FC = AF (S) + FS .

Table 1: Comparison of our NCER dataset with publicly
available High Quality Frames (HQF) dataset [52], recorded
by DAVIS240C.

NCER (Ours) HQF [52]

No. sequences 83 14
No. frames 80.6 k 15.4 k

Event Camera 640× 480 240× 180
Frame Camera 640× 480 240× 180

Max Frame Rate 226 FPS 40 FPS
Color ✔ ✗

Pixel Aligned ✗ ✔
Dynamic Range [dB] 71.43 55

3.5. Loss Functions

We use the learned perceptual similarity (LPIPS) loss
(LLPIPS) [73] for better visual quality and L1 loss, which
are formulated as

Lrestore =
∥∥IS − IR

∥∥
1
+ λ0LLPIPS(I

S , IR), (5)

where IS is ground-truth sharp frame and IR is the restored
sharp frame.

4. Non-Coaxial Events and RGB dataset

Most event datasets for deblurring usually consist of pre-
aligned APS images with grayscale. However, since these
images have low frame rates and are noisy, it makes sense
to anticipate a high-quality RGB image instead, which is
the case in [57, 58]. However, additional equipment is used
to align accurately, but it is not easy for all users to make
such a bulky and elaborate system [57, 47], and calibration
and homography calculations are required in the meantime.
To demonstrate that our framework can perform feature-
level alignment without additional equipment, we propose
an Non-Coaxial Events and RGB (NCER) dataset recorded
with a high-frame-rate RGB camera in combination with
a high-resolution event camera. Each camera is separated
from the other, so they are not pixel-wise aligned. We use a
1440×1080 FLIR BlackFly S RGB camera and a 640×480
DVXplorer event camera with approximately the same field
of view to generate our dataset. Then, we crop the RGB im-
age so that the resolution of the RGB camera becomes the
same as that of the event camera with 640 × 480. We only
use 640 × 440 resolution for training and evaluation, dis-
carding the last 40 rows that the RGB camera does not cap-
ture. We split the NCER dataset into two subsets, namely
NCER-F (Far) and NCER-E (Extreme).

NCER-F consists of a total of 39.7k images of 43 scenes.
We average varying numbers from 11 to 31 of successive
sharp frames to generate blurs of different strengths. Then,
we define the sharp ground truth image corresponding to
each blurry image as the intermediate image of the sharp
sequences used to generate the blurry image. Finally, our
NCER-F dataset provides 4,037 pairs of blurry and sharp
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Figure 5: Qualitative results for the proposed method with other methods on NCER-F dataset.

images and corresponding event streams. The dataset is
split into 2,583 and 1,454 for training and evaluation, re-
spectively. As shown in Table 1, compared to the existing
dataset [52] composed of APS images, the NCER dataset
has more scenes and RGB images with higher resolution. In
addition, we can generate more realistic motion blur frames
due to the use of a high-frame-rate camera while capturing.

NCER-E. The NCER-F focuses on specific situations
where the data from the two separate cameras are partially
aligned. Therefore, the NCER-F dataset has a minimum
distance of 2m between the nearest object and a camera to
ensure a certain degree of alignment. On the other hand,
the NCER-E dataset targets more general but challenging
environments. We establish the NCER-E dataset under the
challengeing conditions of three folds: (1) The intensity of
the blur can vary from object to object within a scene; (2)
As a homography should not correct misalignment, mis-
alignment varies within the scene; (3) There must be a very
close object (distance ≪ 1m), so the degree of misalign-
ment must be enormous. Therefore, the NCER-E dataset
mainly contains significantly close and distant objects in a
single scene simultaneously. So, the extent of misalignment
varies for each object in the scene. We average the sharp im-
ages in the NCER-E dataset with various numbers to gen-
erate blurry images, and the train and test set is split into
2,572 and 1,448 images, respectively. More details about
the proposed NCER dataset are described in the supple.

5. Experiments

5.1. Implementation Details

Following previous studies, we represent an event stream
with a voxel grid [78] and set bins of the voxel grid as 24.
We set the σ of Sec. 3.3 as 9. The proposed networks are
trained by Adam [32] optimizer. The initial learning rate is
set to 1 × 10−4 and decreases by the factor of 0.5 at every

Table 2: Comparison of PSNR (dB) and SSIM from other
methods and ours without pre-alignment. The best and
second-best scores are highlighted and underlined.

NCER-F NCER-E Parm ↓ Time ↓
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ (M) (ms)
Frame
MIMO [11] 25.30 0.7810 29.56 0.8443 16.1 133
HINet [6] 27.23 0.8148 30.36 0.8660 88.7 144
MPRNet [69] 27.98 0.8317 31.13 0.8708 20.1 488
Frame + Event
EVDI [74] 23.58 0.7159 27.88 0.8199 3.9 40
LEDVDI [31] 24.35 0.7445 28.11 0.8212 5.5 194
eSL-Net [63] 23.59 0.7112 27.65 0.8176 1.8 280
EFNet [55] 27.97 0.8401 30.76 0.8708 8.5 81
RED-Net [66] 27.95 0.8375 32.20 0.8922 9.8 100
UEVD [28] 27.52 0.8246 32.10 0.8913 27.9 197
NED-Net 28.78 0.8476 33.20 0.9059 14.5 148

100 epochs. All networks are trained up to 300 epochs. We
train networks on 192× 128 patches with a batch size of 8.
We set λ1 as 0.3 before 50 epochs, then decrease λ1 to 0.1
after 50 epochs. On the other hand, λ0 is fixed at 0.01.

5.2. Experiments Results

We compare our method with state-of-the-art image-only
and event-based methods on the NCER dataset. We train
each model with the proposed NCER dataset using the of-
ficial code provided by the authors. We present the result
without pre-alignment, as shown in Table 2.
Experiments w/o Pre-alignment. The result of the best
frame-based method [69] overcomes the most existing
event-based methods. Even though there is no significant
misalignment between events and images in the NCER-F
dataset, most methods cannot deal with it. Instead, event-
based methods benefit at runtime by using events, i.e.,
EFNet has 0.01dB lower PSNR than MPRNet, but inference
time is 6 times faster. Our NED-Net is designed to correct
the misalignment between modalities within the network,
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Figure 6: Qualitative results for the proposed method with other methods on NCER-E dataset.

Table 3: Comparison of PSNR (dB) and SSIM from other
methods and ours with pre-alignment. The best and second-
best scores are highlighted and underlined.

NCER-F NCER-E
Method Align PSNR↑ SSIM↑ PSNR↑ SSIM↑
Frame
MIMO-UNet [11] 25.30 0.7810 29.56 0.8443
HINet [6] 27.23 0.8148 30.36 0.8660
MPRNet [69] 27.98 0.8317 31.13 0.8708
Frame + Event
EVDI [74] ✔ 23.64 0.7156 27.62 0.8182
LEDVDI [31] ✔ 24.52 0.7481 28.20 0.8245
eSL-Net [63] ✔ 23.84 0.7206 27.53 0.8154
EFNet [55] ✔ 27.43 0.8249 30.86 0.8779
RED-Net [66] ✔ 28.04 0.8350 32.25 0.8904
UEVD [28] ✔ 27.98 0.8261 31.53 0.8806
NED-Net 28.78 0.8476 33.20 0.9059

thus achieving the best performance. In addition, NED-Net
has better performance than MPRNet and is as fast as 3.3
times, so it can be a step forward to solving the dilemma
of the tradeoff between performance and speed. As shown
in Fig. 5, our NED-Net robustly restores sharper details
than image-only and event-based methods. As shown in
Fig. 6, the NCER-E dataset comprises objects at various dis-
tances, which are more frequent in the real-world than in the
NCER-F dataset. Most of the event-based methods struggle
in the NCER-E dataset. The reason is that the NCER-E
dataset has a lot of dynamic motion, and the pixel differ-
ence between event and image is diverse. Therefore, it is
challenging to find the per-pixel alignment between the two
modalities with a simple convolution kernel.

Experiments w/ Pre-alignment. For a fair comparison,
we conduct additional experiments with pre-alignment, as
shown in Table 3. Following [57, 58], we use extrinsic-
and feature-based homography to align events to images
for the NCER-F and NCER-E, respectively. In NCER-F,
where many objects are situated at a distance, a certain de-

Table 4: Ablation of the proposed modules.

Ver. ADA LSA CCI NCER-F NCER-E
1 27.73 31.97
2 ✔ 27.81 32.11
3 ✔ 27.83 32.17
4 ✔ ✔ 27.98 32.24
5 ✔ 28.33 32.74
6 ✔ ✔ 28.57 33.04
7 ✔ ✔ 28.64 33.11
8 ✔ ✔ ✔ 28.78 33.20

Inputs Baseline +ADA +ADA+LSA +ADA+LSA+CCI

Figure 7: Qualitative results of the ablation study.

gree of alignment is established. For example, UEVD ob-
tains a PSNR of 27.98 dB, which is comparable in some
manner to our PSNR score of 28.78 dB. However, in the
NCER-E dataset where various distances exist, the effect
of pre-alignment is not significant, i.e., performance differ-
ence between UEVD and NED-Net widens to 1.67 dB. In
the NCER-E, aligning a nearby object results in the mis-
alignment of a distant object and vice versa. Therefore, it
is clear that global pre-alignment cannot be a general solu-
tion for extensive misalignments and object distance varia-
tions. This implies that our feature-level alignment is more
effective than explicit approaches. In addition, as shown
in Fig. 6, even in the prominent misalignment of the two
modalities, our method shows better quality than the exist-
ing methods by using event information efficiently. More
qualitative results, such as real blurry images, etc., are pro-
vided in the supple.



Table 5: The results of the ADA module regarding PSNR,
SSIM, runtime, model parameters, and GMACs. The unit
of time and model parameters are ms and M, respectively.

Method PSNR SSIM Time Parm. GMACs
w/o ADA 27.98 0.8316 130 13.4 1056
w/ ADA (Ours) 28.78 0.8476 148 14.5 1124

Inputs ADA (𝐹𝐷) LSA (𝐹𝑆) CCI (𝐹𝐶)

Figure 8: The visualization of the feature maps extracted
from each module. Zoom in for a better view.

5.3. Ablation Studies and Discussion

We conduct in-depth examinations of our NED-Net on
the NEID task using the NCER dataset.
1. Contribution of each component for the performance.
To investigate the contribution of each module, we report
the ablation results in Table 4. We set the baseline net-
work by removing all proposed modules, which are flexi-
ble structures. Starting from the baseline network, we pro-
ceed with the evaluation by adding the proposed compo-
nents one by one. The noteworthy point is the significant
performance improvement when using the ADA module,
which performs spatial alignment between two modalities.
Even using the ADA module standalone, the PSNR is im-
proved by 0.6 dB and 0.77 dB on the NCER-F and NCER-E,
respectively (Ver.1 and 5). On the other hand, if LSA and
CCI modules are used without the ADA module, the perfor-
mance improvement is relatively insignificant because spa-
tially unaligned events are used (Ver.2∼4). Instead, if the
ADA module is used together, performance improvement
is significant. For example, with the standalone use of the
LSA module on NCER-F, improvement rises by only 0.08
dB (Ver.1 and 2), but when used with the ADA, it increases
by 0.31 dB (Ver.5 and 7). Finally, the best performance is
achieved when all proposed modules are used together. To
further validate the proposed modules, we present the qual-
itative ablation study in Fig. 7.
2. Efficient design of the ADA. We validate how the pro-
posed ADA module, which leads to the most significant per-
formance boost, is designed highly efficiently. We report
the results for various metrics in Table 5. The w/o ADA rep-
resents a network where only the ADA module is removed
from full network (see Ver.4 in Table 4). We confirm that in-
troducing ADA significantly affects deblurring performance

Table 6: Performance according to voxel grid bin size.

Bin 8 12 16 24 32
PSNR 28.49 28.67 28.75 28.78 28.80

Table 7: Results about generalization ability. Networks are
trained in NCER-F and tested in NCER-E

Frame Frame + Event
Method [6] [69] [55] [66] [28] NED-Net
PSNR↑ 30.36 31.13 28.56 30.48 30.10 32.60
SSIM↑ 0.8660 0.8708 0.8337 0.8701 0.8621 0.9004

Table 8: Comparison of PSNR (dB), runtime (ms), model
parameters (M), and GMACs with only flow-based [54] and
patch-based attention [53] methods.

Method NCER-F NCER-E Time Parm. GMACs
[53] 28.12 31.87 273 17.8 1827
[54] 27.96 32.38 436 23.9 1413
ADA 28.78 33.20 148 14.5 1124

(27.98 dB vs. 28.78 dB) compared with the w/o ADA net-
work. Nevertheless, the ADA module is lightweight, which
increases the minimal additional time (130 ms vs. 148 ms)
and computation cost (1054 GMACs vs. 1124 GMACs)
very little. We demonstrate that the ADA module efficiently
solves the alignment problem using a few parameters, sug-
gesting our framework can be generally used on various mo-
bile devices.
3. How does each module work for the NEID task? To
explain explicitly, we visualize the output features gener-
ated from each module in Fig. 8. Looking at FD, which is
the result of the ADA module that aligns globally, the po-
sition of event features are mostly moved to the edges of
objects in the images, but the mismatched events still re-
main. After that, the LSA module locally aggregates a few
mismatched events in F s. Finally, the output feature of the
CCI module FC has sharp textures aligned with the blurry
regions through cross-channel attention with the image fea-
ture. From the results, we demonstrate that our proposed
modules are suitable for solving NEID task.
4. Comparison with direct flow- and patch-based meth-
ods. We provide the comparisons of the proposed ADA
module with existing direct flow [54] and patch-based atten-
tion methods [53]. As shown in Table 8, [54] demonstrates
a certain level of performance in NCER-F despite lacking
an explicit alignment process, but it falls short in NCER-E.
On the other hand, [53], which employs a larger model for
obtaining optical flow, struggles with precise alignment in
NCER-F. Furthermore, [53] imposes a heavy computational
burden of O(C2WH) due to spatial operations, which have
significantly higher complexity than ours, O(C2).
5. Voxel Grid Size. Table 6 reports the performance ac-
cording to the voxel size on NCER-F dataset. Small sizes
perform worse, but it is not significant. The bin size of 16



is the same as in UEVD, but ours still performs better.
6. Generalization Ability. Another issue that can be con-
sidered in the NEID task is whether the network can operate
for different distributions of misalignment. To validate the
generalization ability of our approach, we train networks
using the NCER-F dataset and assess their performances on
the NCER-E dataset under various misalignment scenarios.
As shown in Table 7, event-based networks that do not con-
sider misalignment often struggle to generalize to datasets
with different distributions of misalignment. As an exam-
ple, Table 3 demonstrates that UEVD [28] produces the
PSNR that is 0.8 dB lower than our approach in the NCER-
F dataset. However, in the case of the NCER-E, the PSNR
value is 2.5 dB lower when compared to our approach. In
contrast, our method shows to be robust to variations in mis-
alignment and yields the best performance by a significant
margin, even trained with little misalignment.

6. Conclusion
In this paper, we first tackle the Non-coaxial Event-

guided Image Deblurring (NEID) task with a practical fo-
cus on a camera setup consisting of an RGB camera and a
non-coaxial event camera. To this end, we propose a novel
framework suitable for this task, called NED-Net. For train-
ing and evaluation, we propose the first Non-Coaxial Event
and RGB (NCER) dataset composed of real-world RGB im-
ages with pixel-wise non-aligned events at high-resolution.
The experiments on two real-world event datasets demon-
strate the effectiveness of our method. Furthermore, our
NED-Net achieves high deblurring performance even in the
diverse environment, varying mismatches with unaligned
events. Although we set the target task as deblurring in this
study, our framework and dataset can be flexibly extended
to other tasks, such as super-resolution or video frame in-
terpolation that can use temporally dense events efficiently.
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