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Abstract

Many real-world dynamical systems consist of
sparsely interacting components and hence ex-
hibit an underlying graph structure as in logisti-
cal, epidemic, and traffic networks. Yet, because
of their high dimensionality, their forecasting
presents major computational challenges, which
are often exacerbated by measurement noise or un-
certainty. We propose to partly address this prob-
lem, focusing on computationally efficient and
robust forecasting under network topology per-
turbation. The latter represents a singular aspect
of network systems entailing specific challenges,
such as break in synchronization and cascade fail-
ures, hence calling for tailored forecasting algo-
rithms. Specifically, in the limit of large number
of nodes, we uncover distinct noise regimes in
which the underlying system is either predictable
with arbitrary accuracy, predictable only up to a
limited accuracy, or entirely unpredictable. Fur-
thermore, we propose a network forecasting ap-
proach based on a probabilistic representation of
the system under study, that leverages a Bayesian
coreset approximation for efficient and robust di-
mensionality reduction. Numerical experiments
demonstrate the competitiveness of the proposed
method.

1. Introduction

Network structure is ubiquitous in real-world interconnected
systems, making the study of robustness of network fore-
casting a topic of major importance. It spans applications
ranging from epidemic spread prediction to logistics and
traffic network forecasting, among many others. Yet, ro-
bustness studies have so far been restricted to static network
tasks(N1 et al., |2024; |Ziigner and Giinnemann, 2019; Wang
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et al.||2021; L1 et al.| 2024} 'Wang et al.,|2024), such as node
classification, edge classification or graph regression... As
for data-driven modeling of non-linear network dynami-
cal systems, it has been mostly focused on proposing var-
ious time-varying graph neural network architectures (Liu
and Zhang| 2024} Lan et al., |2022; |Shao et al., [2022; |Yan
et al., 2024b) for settings with given noiseless topologies,
besides signal recovery schemes (Sardellitti et al., 2021}
Cec1 and Barbarossal, 2018). Hence, we consider in this
work the problem of forecasting network systems under mis-
specification of the topology, in a high-dimensional setting
i.e. for networks with a large number of nodes. Such types
of noise or uncertainty may be encountered due to several
reasons, including partial observability such as in social
networks, abrupt changes such as road closures due to acci-
dents, or equipment failure in electrical grids. Addressing
this problem entails designing a suitable scheme that aims
to circumvent the sensitivity to topology perturbation by
probabilistic estimation of the main components of the con-
sidered state system evolution, i.e. a robust model reduction
scheme. Specifically, the key contributions are organized as
follows:

* We provide a theoretical analysis of the impact of topol-
ogy perturbation on the system trajectory, for a class
of common network systems

* We propose a simple yet effective graph time series
forecasting scheme combining a Bayesian coreset ap-
proximation of a Graph Convolution Network (GCN)
embedding, for robustness enhancement, with a Recur-
rent Neural Network (RNN) to model the time evolu-
tion

* We conduct numerical experiments on real-world traf-
fic data, demonstrating the competitiveness of the pro-
posed approach.

2. Problem Setting

Consider a network system under random initial condition
with node states (x1, ..., x,) such that

dzi(t)
dt

= f(z;(t) + Zaijg(xi(t),xj(t)), i=1,...,n
- (1)



Submission and Formatting Instructions for ICML 2025

where f describes the self-dynamics of x;, g captures the
interactions with its neighbors, and A = (ai;)1<i j<n
non-negative weights encoding the network topology. A
large number of real-world dynamic networks can be mod-
eled as such, including epidemic (Gao and Yan, [2022),
traffic (Ding et al., 2019), and gene regulation(Aubin{
Frankowski and Vert, |2020) networks, among many oth-
ers (Prasse and Van Mieghem, 2022)). Assume f and g to
be unknown, but instead trajectories of the system nodes
(x1(t), ..., xn(t)) j<m are given, for different initial con-
ditions. The task we address in this work is the forecasting
of node states for unseen initial conditions as well as for
t > tm,, aslong as (z1(t),...,z,(t)) is defined, under per-
turbation or misspecification of the network topology. We
consider discrete random perturbations represented as a ma-
trix (€; j)1<i,j<n Of i.i.d. Bernoulli random variables with
success parameter p € (0,1).

3. Forecasting Sensitivity to Noise

In this section, we investigate the predictability of network
systems with noisy topologies. Specifically, in the limit of a
large number of nodes, we identify distinct noise regimes.
Under negligible noise, the system remains arbitrarily pre-
dictable. With weak noise, predictability persists but is
limited in accuracy. As expected, higher levels of random
perturbations render the system effectively unpredictable.
more precisely, we present two results analyzing discrete
and continuous perturbations respectively.

Proposition 3.1. (Discrete Noise)

Consider a binary adjacency matrix A = (a; j)1<i,j<n and
a discrete noise matrix € = (€; j)1<; j<n Of independent
and identically distributed (i.i.d.) Bernoulli random vari-
ables, with success probability p € (0,1). Assume f and g
are continuously differentiable and the system trajectory to
be supported on a space of lower dimension m < n, where
n is the number of nodes. Then, denoting by y1, . . . , Ym the
spatial modes and (x.(t))ieT the trajectory over a compact
time domain of the perturbed system

0~ J)+ Y (@i +e) g0 5(0) @
j=1

e If p < (ma’(iﬂ% with o« > 0, then

limy, 4o Efsupyer [[4(t) — 2= (8)[]] = 0

. Ifp= (maxy Hgkl\m)’l
that for alln > 2,
E[SUPteT [|z(t) —

s Ifp >
n > 2, E[sup,erp [|l2(t) —

, then there exists M > 0, such

ze(t)] < M

(maxp [|yklloo) "

and ||g||coc > 0, then for all

ze(t)[l] > 0.

Proof. The proof is postponed to Appendix A.1. O

Proposition 3.2. (Gaussian Noise)

Consider a Gaussian noise matrix € = (€;;)1<i j<n Of
i.i.d. standard Gaussian random variables, with variance
o2 > 0. Assume f and g are continuously differentiable and
the system trajectory to be supported on a space of lower
dimension m < n, where n is the number of nodes. Then,
denoting by denoting by v, . . . , Ym the spatial modes and
(z(t))ter the trajectory over a compact time domain of the
perturbed system (2)), we have

clf o < Emlwle)™ g oo s g
limy,, 4 oo E[supeq [l2(t) — 22 (2)[|]] = 0

then

(maxy Hykl\oc)_l

e Ifo= , then there exists M > 0, such
that for all n > 2,

Elsupyer [[#(t) — 2= ()] < M

e Ifo > M and ||gl|s > 9, then for all
n > 2, Elsup,cq [|z(t) — z(t)]]] > 9.

Proof. The proof is postponed to Appendix A.2. O

Remark.

Given the invariance encoded in network systems, the set
of their node trajectories typically lives (approximately)
on a space of much lower dimensionality than the number
of nodes. In particular, several common network models
satisfy this property (Prasse and Van Mieghem), |2022).

4. Network Coreset Forecasting

In order to achieve scalability and robustness in network
forecasting, we propose to evolve in time only a subset of
node embeddings. Hence, the key problem that we aim to
solve is how to efficiently down-sample the processed node
features for accurate prediction, while keeping sensitivity to
network topology perturbation as small as possible. Classi-
cal approaches such as max-pooling (Hamilton et al., [2017)
or low-rank approximations (Savas and Dhillon, 2011) ei-
ther suffer from poor performance or high computational
cost. Indeed, the nodes with the highest values at different
screen-shots, might be very different from the ones that
should be tracked to approximate the system trajectory. As
for combinations of nodes with high eigenvalues, they can
be quite sensitive to random perturbations, in addition to
being costly to compute i.e. they require O(n?*) operations.
Consequently, we propose to leverage a probabilistic repre-
sentation of the network time series by selecting the nodes
which approximate the best, the distribution of the whole
system trajectory. Specifically, we consider a Bayesian
setting where the network time series constitute realiza-
tions of a given distribution and identify a subset of nodes
{ix, k < m} such that the posterior given node embeddings
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{ix,k < m} is the closest to the full posterior. That is,
we identify a Bayesian coreset (Campbell and Broderickl,
2019; Huggins et al.| 2016). In the following, we describe
with greater detail the different components of the proposed
method, illustrated in figure ?? and report a pseudo-code of
the proposed algorithm.

4.1. Bayesian Coreset Approximation

Bayesian coresets have been developed to reduce the
cost of Bayesian inference with a large amount of data,
without compromising accuracy (Campbell and Broderick,
2019). More precisely, considering a data set (z;);<, of
n observations, a likelihood p(z;|@) for each observation
given the parameter # € © C RY, and a prior density
mo on O, the Bayesian posterior is given, by 7(f) :=
- exp (L(0)) m(#), where the log-likelihood § — L(6)
and the marginal likelihood Z are defined by

)= Li(6)

i=1

, st Li(0) = logp(x;]6)

and
7= / exp(£(0))0(0)do.

The aim of the Bayesian coreset framework is then to find a
set of weights (w;);<y, such that

L— i wiﬁl
i=1

min

with w > 0,
weR™

7w, L

and .
Z I, >0) < m,
i=1

where || - || ».¢ is a functional norm that involves a scaling by
the full likelihood £ and the posterior 7. This problem can
be solved by a Frank-Wolfe type algorithm (Jaggil 2013}
Campbell and Broderickl 2019). We refer to (Campbell
and Broderick, [2019) for more details. In our setting, we
consider the (embedded) trajectory (x;(t1), ..., x;(t¢)) of
each node ¢ < n to be a multi-dimensional realization of
a probability distribution, where ¢ is predicted sequence
length, and we look for the subset of nodes that summarizes
the best the whole network trajectory-segment. To simplify
the algorithm and reduce the computational burden, we
approximate the data distribution as Gaussian and adopt a
Gaussian prior in the implementation.

Remark. (Computational Complexity)

The computational complexity of the Bayesian coreset
reduction component may scale like O(n?) which is already
an improvement from classical low-rank approximations
which scales like O(n?). Hence, to improve scalability
further, we use random projections for the computation of

the norms, following (Campbell and Broderick| [2019). This
results in a complexity of O(ng), where ¢ is the dimension
of the projection space.

4.2. Graph Structure Embedding

Following previous work (Liu and Zhang|, 2022;|[2024), we
extract node embeddings incorporating the graph informa-
tion with a graph convolution network (Kipt and Welling,
2017). Specifically, we train a GCN encoder-decoder net-
work, where the encoder performs message passing between
nodes leveraging the network topology information and the
decoder performs a diffusion of the updated states of the
coreset selected nodes. For that matter, we first compute the
coresets -kept nodes in reduced space, of the training data
considering trajectories divided according to forecasting
range target -forecasting sequence length, then we train the
GCN decoder to estimate the updates of nodes discarded
during the space reduction. Once this graph autoencoder is
trained, we use its encoder to embed the node features be-
fore recomputing a new set of coresets that will be evolved
in time by training a RNN, as we describe in the next sub-
section.

4.3. Latent Representation Temporal Evolution

Once the embedded node subsets are extracted, we
simply train a long short-term memory (LSTM) network
(Cho et al., 2014) to model the time evolution. As a
result of the reduction in dimensionality, the temporal
evolution computational cost is considerably reduced
allowing for scalability to large networks. Note that such
a reduction is necessary since the complexity of effective
sequence-to-sequence models (e.g. RNNs, Transformers) is
in O(n?), where n is the dimension of the feature space. In
the case of RNNs, that comes from the standard choice of a
hidden-state dimension that scales similarly to input space

dimension, resulting in an output scaling in O(n?). Once
lyd:.‘ B '

o0

Figure 1. Time Evolution in Reduced Space

the predictions in reduced space are obtained, the node
updates are diffused using the GNN decoder. Note that,
given that probabilistic formulation of the model reduction
component, the number of nodes which are kept slightly
varies across trajectory segments. Hence, we consider the
size of largest coreset as RNN input dimension, and pad
the RNN input with the mean encoded value for smaller
coresets.

we present numerical results of the network coreset
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forecasting approach on a real-world traffic forecasting

dataset, made publicly available by (Guo et all 202T).

Traffic forecasting represents a major practical problem that
requires robust forecasting schemes, given the different
noise sources leading to topology changes that it can be
subject to, such as weather incidents, traffic accidents as
well as closure due to road maintenance. We note from

2
L

254

4
v

s

s
5 20
£ —&— NCF
E] —&— D2STGNN
® 15 4 —&— ASTGNN
c
m
@
=
10 |
s1¢ + + +
0 2 4 6 8 10 12 14

Noise level

Figure 2. Test error evolution for PEMS04 dataset - 30% cor-
rupted test data with discrete noise
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Figure 3. Test error evolution for PEMSO0S dataset - 30% cor-
rupted test data with discrete noise

figures [2] and [3] that NCF significantly outperforms the
competitor methods. This is partly due to the highly noisy
nature of the considered dataset, illustrated in ﬁgureﬂ as is
often the case in real-world settings.

5. Discussion
5.1. Limitations & Outlook

Network Coreset Forecasting performs competitively, but
also raises limitations that point to opportunities for future
research. First, it relies on a two-stage training approach
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Figure 4. State trajectory evolution from the PEMS04 dataset

as opposed to an end-to-end training formulation. Besides,
since it relies on a probabilistic formulation of the model
reduction component, it might under-perform under perfect
knowledge of the topology, as compared to other approaches.
However, that is not a surprising aspect given that all meth-
ods are bound by the accuracy-robustness trade-off
[2015). More generally, we have mostly focused in this
study on independent identically distributed (i.i.d.) noise,
hence extending the analysis to account for structured or
correlated noise represents a promising direction for future
work.

5.2. Conclusion

In this work, we analyzed the predictability of a com-
mon class of network systems under topology perturbation.
While we focused on random perturbations, we also ex-
plored structured changes via sparsification of the network
topology. Furthermore, we proposed a novel probabilistic
network forecasting scheme, employing a Bayesian coreset
approach in combination with GNN encoding and RNN
temporal modeling, to robustly capture the principal compo-
nents of the underlying network signal. We demonstrated
the competitiveness of the proposed approach with respect
to the state-of-the-art, for different types of noise. We be-
lieve our results constitute an important initial step towards
robust modeling of real-world network systems.
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A. Related Works

Time-Varying Graph Neural Networks.

In order to leverage the expressive power of graph neural networks (Kipf and Welling) |2017) for graph time series
forecasting, several architectures have been proposed. First approaches were based on evolving the graph extracted features
using recurrent neural networks (Manessi et al.,[2020; [Seo et al., [2018) or leveraging a RNN to evolve the weights of a
graph convolution network (Pareja et al.| |2020). More recently, various adaptive attention-based mechanisms for spatial
or temporal modeling have been proposed (Guo et al., 2021} |Yan et al., | 2024a). For instance, (Lan et al.,2022) combine
a multi-order Chebyshev polynomial GCN with an adaptive self-attention mechanism to leverage the dynamic spatial
correlation within multi-scale neighborhoods, whereas (Shao et al., 2022) combines a self-attention layer with a GRU (Cho
et al., 2014)) to model the non-diffusive component in traffic forecasting. We refer to (Yan et al., 2024a)) for an extensive
review. Yet, these approaches assume the graph to be given. In contrast, we propose a forecasting scheme that is designed to
be robust to graph topology perturbation or misspecification.

Robustness of Graph Neural Networks. For static tasks such as node classification or edge classification, the
robustness of GNNs has been extensively studied (Ziigner and Giinnemann, 2019; Wang et al.l 2021} Bojchevski and
Giinnemann, 20195 [Yang et al., [2024a3b; (Geisler et al., [2021)), mostly focusing on adversarial defense to node or edge
attacks. Specifically, (Entezari et al., [2020; |Wu et al., 2019) propose pre-processing techniques to overcome adversarial
perturbations via low-rank approximation of the graph adjacency matrix or gradient averaging, while (Zhang and Zitnikl
2020) propose a mechanism to tackle adversarial training by assigning higher weights to edges connecting similar nodes. On
the other hand, (Wang et al.,|202 1} |Ziigner and Glinnemann, 2019) propose certifiable defenses against bounded adversarial
attacks, via convex relaxation of the robust optimization target or random smoothing. More recently, (Yang et al., 2024a)
proposed the first deterministic certificate defense leveraging a majority vote among sub-graphs defined via an unperturbed
hash function. Nonetheless, most of these approaches are too conservative for non-adversarial noise settings and do not
scale to time-varying graphs, given the exponential explosion in the number of sub-graphs to consider when a temporal
component is introduced.

Reduced Order Modeling.

Model reduction of parametric evolution equations governing physical systems has been extensively studied (Benner et al.,
2015)), given the high computational cost associated with full-scale resolution. Specifically, two main families of methods
have emerged: model-based projections and data-driven surrogates. Model-based approaches leveraging the structure of the
equations include Galerkin projections (Hesthaven and Warburton, [2007), Krylov subspace methods (Liesen and Strakos,
2013)), and dynamic low-rank approximations (Kazashi et al.| 2025; Musharbash et al.| 2020). They are based on different
identification schemes of the underlying low-dimensional manifold capturing most of the variability of the system. More
recently, several deep learning-based approaches have demonstrated competitive performance, among which Dynamic
Mode Decomposition (Schmid, 2022), Physics-Informed neural networks (Cai et al.|[2021) and Neural Operator Learning
(Lu et al., 2021} [Li et al., 2021)) are most notable. Nonetheless, most work has been restricted to low-dimensional noiseless
dynamical systems. Alternatively, we consider noisy high-dimensional network systems.

B. Proofs

B.1. Proof of proposition 1

Recall that we would like to show that a Bernoulli perturbed network system features different behaviors depending the
success parameter p € (0, 1) of the Bernoulli noise. Specifically,

(max, Hkaoo)_l . ;
< th = 1 E t) —x(t =
< ~Tra witha > 0 | [?EIT) lz(t) — z=(@)]I] =0

Denote by Y the matrix of reduced space basis of the system trajectory, and E the noise matrix i.e.

Y1 c1
Y=1]:|, and E=| |, with & =(ci;)j<n
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Given a perturbed adjacency matrix A = A + E, note that we have for k < m,
| Ay, — Ayill < | Ay — Aykll + | Byillco = [ Byl

Furthermore, setting without loss of generality (1) = 0 and T' = (1, 2), we have

sup o(0) - =) =sup | [ D cusglos a0

Ssup/1 Zf:i,jg(xi(s)axj(s)) ds

teT
1

2
S/l ;Ei,jg(xi(s)vxj(s)) ds

1

leading to
2
B sup ()~ o0l | <B | [ | cosaoito).as(o)| ds
€ 1%

By regularity of g, z, z. and Fubini theorem, we get

E|:§2$|x<t)_l‘e(t)||l:| §/121E %:Ei,jg(xi((?)’xj(&?)) ds

1

Hence, by proposition 2 in section C of (Prasse and Van Mieghem), 2022)), it is enough to show for each k < m that

B Byili],— 0

That is equivalent to
n—-+oo
However, by Holder inequality
1
Ye; o)< — — 0
ElYeill) < np(max gelloe) <~ —

And, we can also have the result for || - |2 by the fact that || - |2 < || - ||1.

(maxp ||yklloo)

Similar reasoning leads to the result of the case p = o

Last, for the case p > M and ||g]|cc > 9, let
r=inf (s > 1 Jg(er(s), 22(s)] > )

Then, 1 < 7 < +o00, thanks to the regularity of g and the fact that the considered differential system is autonomous. Hence,
E[igg [l (t) — ze(t)]1] / Zez ilg(wi(s), z;(s))| ds
Z 70 Z E[Ei’j]
,J

> §(mae ]l oc)
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B.2. Proof of proposition 2

The proof proceeds similarly as for proposition 1, except this time the noise is not non-negative. Hence, using the properties
of the absolute value and Gaussian distributions, we get

1
— — 0
n% n—+oo

El[Yeil] < [ Y leisl (max [[yxloc) = no(max||yxllo) <
; ,

since E|e; j| = o. The remaining cases can be shown in an analogus way.
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