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Abstract

Backgrounds in images play a major role in contributing001
to spurious correlations among different data points. Owing002
to aesthetic preferences of humans capturing the images,003
datasets can exhibit positional (location of the object within004
a given frame) and size (region-of-interest to image ratio)005
biases for different classes. In this paper, we show that these006
biases can impact how much a model relies on spurious007
features in the background to make its predictions. To better008
illustrate our findings, we propose a synthetic dataset derived009
from ImageNet1k, Hard-Spurious-ImageNet, which contains010
images with various backgrounds, object positions, and ob-011
ject sizes. By evaluating the dataset on different pretrained012
models, we find that most models rely heavily on spurious013
features in the background when the region-of-interest (ROI)014
to image ratio is small and the object is far from the center015
of the image. Moreover, we also show that current methods016
that aim to mitigate harmful spurious features, do not take017
into account these factors, hence fail to achieve considerable018
performance gains for worst-group accuracies when the size019
and location of core features in an image change.020

1. Introduction021

Spurious features are defined as features that are predictive022
of the class label without being directly related to it. Such023
features are usually helpful for object recognition when the024
object is placed in a perfect environment or context. An025
example of that would be a sea lion near a body of water.026
This is because most models learn to associate water with sea027
lions and vice versa. On the contrary, spurious features can028
be extremely harmful when the object or the ”core” features029
are observed in an unusual environment or against a spurious030
background. This scenario can happen when the model is031
deployed in the wild. Deep neural networks can be fooled032
easily to predict the label from the spurious cues in the back-033
ground without relying on ”object” or ”core” features in the034
image itself. Recently, a plethora of techniques have been035

a) Tench b) Zucchini

c) Goldfish d) Sea Lion

Figure 1. Gradcam visualizations for Pre-trained ConvNext-Base.
a) Model predicts core class ”Tench” when the object is located
in the center of the image, b) Spurious class ”Zucchini” is pre-
dicted when the ”core” class moves away from the center, c) Class
”GoldFish” is predicted when the size of the core object is large
(112× 112), d) Spurious class ”Sea Lion” is predicted when size
of core object reduces to 84× 84.

proposed to mitigate the reliance on unnecessary cues for 036
image classification. Sagawa et al. [20] introduced a distribu- 037
tionally robust optimization technique which, coupled with 038
strong regularization, helped in achieving high accuracies for 039
data groups that have strong spurious feature reliance. Simi- 040
larly, Kirichenko et al. [6] address this problem by retraining 041
the last layer of a DNN using equal data points from different 042
groups with core and spurious backgrounds. These methods 043
are helpful when the test set exhibits similar biases as the 044
training data, yet they fail to achieve similar performance 045
gains when these biases are explicitly removed. 046

Biases in datasets can hugely impact a deep neural net- 047
work’s performance. Earlier works have proven that convo- 048
lutional neural networks are not entirely translation invariant 049
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Figure 2. ImageNet classes and their center and size scores.
Toyshop has largest center and size scores, whereas Volleyball has
smallest center score and Balance Beam has smallest size score.
Other classes are sampled randomly for visualization.

and have the capacity to learn location information about050
objects [2]. Some studies have found that models perform051
poorly on untrained locations [1]. Similarly, object size052
within an input frame can lead to models performing badly053
when the sizes differ at inference time. The deep learning054
community has tried to mitigate the effect of these biases by055
proposing different data augmentation techniques that ensure056
that models are robust to changes in size and locations of the057
objects. However, the impact of the aforementioned factors058
in the presence of spurious features remains less explored.059

In this work, we try to answer the questions: In the ab-060
sence of biases mentioned above, namely position and size061
of objects, how much do pre-trained models rely on spurious062
backgrounds to make their predictions, and are the current063
techniques that mitigate harmful spurious features, enough064
to tackle this problem? Specifically, the contributions of our065
work are as follows:066
• We calculate centeredness and size scores of different067

classes in ImageNet [4], and analyze their relation with068
the level of spuriousity present in that class.069

• We derive a dataset from ImageNet1k, called Hard-070
Spurious-ImageNet, containing objects against spurious071
backgrounds with varying sizes and positions. The code072
to generate the dataset will be provided.073

• With the help of experimentation and ablation, we con-074
clude that the size and location of the object should be075
taken into account when trying to mitigate harmful spuri-076
ous correlations in the dataset.077

2. Related Work078

2.1. Spurious Features079

Moayeri et al. [13] show that adversarial training increases080
model reliance on spurious features. They also show that081
increased spurious feature reliance occurs when the perturba-082
tions added to core features are too small to break spurious083
correlations. Murali et al. [17] show that spurious features084
are related with a model’s learning dynamics. Specifically,085
”easier” features learnt in the start of model training can hurt086
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Figure 3. Counts in log scale of relative centers of ground truth
bounding boxes containing the object corresponding to the image
class (ImageNet1k validation set). Most object centers are concen-
trated around the image center, while some are present along the
main axes. Objects of interest are rarely present in image corners.

generalization. Neuhaus et al. [18] proposed a method to 087
identify spurious features in the ImageNet dataset and intro- 088
duced a fix to mitigate a model’s dependence on these fea- 089
tures without requiring additional labels. While the proposed 090
methods to mitigate spurious feature reliance are helpful in 091
many cases, their efficacy is less known when factors such 092
as size and location of core features in an image change. 093

2.2. Existing Datasets 094

Xiao et al. [25] present an analysis of model’s performance 095
as a function of varying backgrounds and foregrounds for 096
ImageNet. They conclude that more accurate models have 097
less reliance on backgrounds.They also propose a dataset 098
called ImageNet-9 with mixed foregrounds and backgrounds. 099
Moayeri et al. [14] propose a dataset derived from ImageNet 100
with segmentation masks for a subset of images. These 101
masks label entire objects and various visual attributes. They 102
name this dataset RIVAL10 and also test different models’ 103
sensitivity to noise in backgrounds and foregrounds. Moay- 104
eri et al. [15] propose a dataset with segmentation masks 105
for images in 15 classes of ImageNet1k. These images have 106
high spurious features. They attribute this to objects being 107
small and less centered in these images. Singla and Feizi 108
[21] label spurious and core features for ImageNet samples. 109
They achieve this by making use of activation maps as soft 110
masks. Moayeri et al. [16] rank images in ImageNet dataset 111
based on spurious cues present. They show that spurious 112
feature reliance is influenced more by the data a model is 113
trained on rather than how a model is trained. Lynch et al. 114
[12] propose a photo-realistic dataset with many-to-many 115
spurious correlations between different groups of spurious 116
attributes and classes. One work closely related to ours is 117
[27]. They do a fine-grained analysis of the robustness of 118
different models by varying factors such as object size, lo- 119
cation, and rotation. Our technical contributions differ from 120
theirs because we take into account the spuriosity level of 121
backgrounds and correlate it with the above factors as well. 122

2



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Kendall’s τ = −0.266, Spearman’s ρ = −0.382 Kendall’s τ = −0.279, Spearman’s ρ = −0.397 Kendall’s τ = −0.293, Spearman’s ρ = −0.416

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Center Scores

V
al

id
at

io
n

A
cc

ur
ac

y
of

In
pa

in
te

d
Im

ag
eN

et

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Size Scores

V
al

id
at

io
n

A
cc

ur
ac

y
of

In
pa

in
te

d
Im

ag
eN

et

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Size Scores · Center Scores

V
al

id
at

io
n

A
cc

ur
ac

y
of

In
pa

in
te

d
Im

ag
eN

et

Figure 4. Correlation between the validation accuracy on inpainted ImageNet and, from left to right, center scores, size scores, and their
product, respectively. Jointly considering center and size score shows strongest negative correlation with the accuracy.

Avg. Center Score = 0.747 Avg. Size Score = 0.417
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Figure 5. Histograms showing distribution of scores in different
classes of ImageNet1k dataset.

2.3. Biases in Datasets123

While capturing images through a camera, humans often124
tend to place the region of interest in the center. Due to125
this, there often exists a bias in classification datasets where126
objects are mostly located in the center of images and away127
from the boundary of the image. Exploiting the center bias128
in ImageNet, resizing and center cropping has been usually129
used for testing image classification models. Taesiri et al.130
[23] show that there exists a strong center bias in out-of-131
distribution benchmarks such as ImageNet-A and ObjectNet132
by using resize and center crop operations only. They resize133
the image to multiple scales and patchify it, followed by a134
center crop operation at every patch. Doing this, they end up135
with different zoomed-in versions of the input images. The136
computed accuracy of the center crop is maximum showing137
the presence of a strong center bias in the dataset. In this pa-138
per, we do an in-depth analysis of the presence of center and139
size bias in every class of ImageNet by computing distinct140
scores. The detailed explanation of these scores are given in141
following sections.142

3. Biases in ImageNet 143

In this section, we quantitatively analyze positional and size 144
biases present in ImageNet1k. To get a better sense of these 145
biases, we propose centeredness and size scores. 146

3.1. Centeredness Score 147

In the majority of images in ImageNet1k, the objects of 148
interest are located in the image’s center (see Figure 3). 149
Hence, in this paper, we use ”positional” and ”center” as 150
synonyms. To understand the extent of center bias prevalent 151
in ImageNet1k, we propose a Center Score defined as 152

Cc =
1

M

1

N

M∑
i=1

N∑
j=1

1− (∥Ii,c −Oi,j,c∥∞), (1) 153

where Cc is the centeredness score for class c, M is total 154
number of images in the class, N is total number of objects 155
within a frame, I is image center, and O is object center. The 156
distance between image center and object center is calculated 157
by the ℓ∞ norm. It is subtracted from 1 to establish a direct 158
relationship between the score and center bias prevalent in 159
the class c. 160

3.2. Size Score 161

To measure the average sizes of objects within images, we 162
define a size score as 163

Sc =
1

M

1

N

M∑
i=1

N∑
j=1

hjwj

HiWi
, (2) 164

where Sc is the size score for class c, h and w refer to the 165
height and width of object j in image i. H and W are the 166
height and width of the image itself. Figure 2 shows the 167
center and size scores of different classes, with Toyshop 168
having the maximum center and size scores. The histograms 169
in Figure 5 show the distribution of center and size scores 170
of all the classes in the ImageNet1k validation data. It can 171
be seen that the majority of the classes in ImageNet1k are 172
highly centered with objects of interest occupying half of 173
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the image pixels on average. These scores are calculated by174
using Ground Truth bounding boxes of ImageNet.175

3.3. Relationship with the Level of Spuriosity176

To establish a correlation between centeredness and size177
scores of every class to spurious feature reliance in Ima-178
geNet, we first calculate the validation accuracies of different179
classes in ImageNet with object information removed. We180
achieve this by using Inpaint-Anything [26] with the goal of181
creating a more realistic effect when the region of interest is182
removed from the image. The input to Inpaint Anything are183
the object bounding boxes and it makes use of Segment Any-184
thing [7] to predict masks for objects within these bounding185
boxes. These predicted masks are then input to the inpainting186
model LaMa [22] which fills the masked region predicted by187
SAM. Finally, we resize the inpainted images to 224× 224.188
We use ConvNext-Base [11] pre-trained on ImageNet22k189
and fine-tuned on ImageNet1k, to compute the validation190
accuracies for the inpainted dataset. Classes with higher val-191
idation accuracies indicate higher spurious feature reliance,192
since the model has learnt to associate the class label not193
just with the core object, but also with the background infor-194
mation. In order to assess the correlation present between195
center and size scores and the level of spuriousity present in196
different classes of ImageNet, we use Kendall’s τ coefficient197
and Spearman’s correlation coefficient. The negative corre-198
lation values (see Figure 4) depict that there is an inverse199
relationship between both inpainted data’s accuracy and the200
different considered scores, which validates the hypothesis201
that a higher spurious feature reliance is observed in case of202
non-centered small object sizes. The correlation is overall203
rather weak, which is to be expected since different classes204
are differently hard to classify, even from their core features.205

4. Dataset206

Similar to the waterbirds dataset [20], we assume that ev-207
ery datapoint (x, y) has an attribute a(x) ∈ A which is208
spuriously correlated with label y. We conjecture that the209
strength of the correlation between attribute a(x) and label210
y is controlled by two factors: size s and position p of the211
core features in the input image. To investigate this corre-212
lation, we propose Hard-Spurious-ImageNet, a synthetic213
dataset to illustrate the problem of spurious feature reliance214
in the presence of varying object bounding box sizes, loca-215
tions, and backgrounds. The prime motivation of creating216
the dataset is to have precise control over these factors and217
help the community build robust models against stronger218
spurious cues.219

We consider the image content within the provided220
ground truth object bounding boxes for ImageNet as core221
features and the features outside the bounding box as the222
background. In ImageNet, bounding boxes are available for223
all images in the validation data, yet only a subset of images224

in training data are annotated. The images are annotated 225
and verified through Amazon Mechanical Turk. We employ 226
these annotations to provide us an estimate of the location of 227
core features in any image. A brief analysis of these anno- 228
tations using Grounding DINO is provided in the appendix 229
in section 12. As a first step, we want to disentangle core 230
features from the rest of the image. We achieve this by crop- 231
ping out the core objects from the images and inpainting the 232
resulting image, as explained in the previous section. Next, 233
we resize core object bounding boxes to different sizes, and 234
place them in two different locations against inpainted back- 235
grounds. The size and location of core objects and the kind 236
of background chosen, gives rise to different groups in the 237
data. To efficiently gauge the performance of these different 238
groups, we categorize them as follows: 239

• Group CeO: Core object in the Center of image against 240
its Original inpainted background. 241

• Group CoO: Core object in the top right Corner of image 242
against its Original inpainted background. 243

• Group CeR: Core object in the Center of image against 244
Random inpainted background. 245

• Group CoR: Core object in the top right Corner of image 246
against Random inpainted background. 247

We consider three core object sizes: 56 × 56, 84 × 84, 248
and 112× 112. It is important to note that all the inpainted 249
backgrounds have already been resized to 224× 224, so the 250
core object sizes mentioned above represent 4

64 th, 9
64 th, and 251

16
64 th of the whole image. 252

We also experimented with object masks obtained from 253
the Segment Anything [7] model rather than the provided 254
bounding boxes as foreground objects (see Table 7 in supple- 255
mentary). We observed that the mask quality for some ob- 256
jects was not good enough, hence, we used provided bound- 257
ing boxes for this work. 258

4.1. Hard-Spurious-ImageNet-v2 259

Randomly chosen backgrounds have varying levels of spu- 260
riosity based on the classes they are taken from. We derive a 261
variant of the proposed dataset where, instead of choosing 262
backgrounds in a random fashion, they are chosen based on 263
the level of spurious features present in them. To achieve 264
this, we first analyze the level of spuriosity present in every 265
class. We give inpainted images without the core objects, as 266
input to the pretrained ConvNext-Base model , and record 267
the accuracies of every class. The classes where accuracies 268
are high indicate that the model has learnt to predict the class 269
label without the presence of core objects. On the contrary, 270
classes for which the accuracy is low are highly reliant on 271
core features to make predictions. We choose 10 classes 272
that are highly spurious, namely: snorkel, bobsled, maypole, 273
potter’s wheel, gondola, bearskin, volleyball, basketball, ca- 274
noe, geyser, and yellow lady’s slipper as backgrounds. For 275
foreground objects, we choose 10 classes with high core 276
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Figure 6. Different samples from Hard-Spurious-ImageNet. Image size remains same in all images i.e. 224× 224, whereas object size
changes. The label of every image is same as the label of the foreground object.

Model Clean Accuracy

ConvNext-Base 85.86
ResNet-50 80.20
CoAtNet 83.59

Table 1. Clean accuracies of standard ImageNet validation data
with different pre-trained models.

features such as: bluetick, box turtle, Chihuahua, Japanese277
spaniel, Maltese dog, Shih-Tzu, Blenheim spaniel, papillon,278
Rhodesian ridgeback, and basset. We combine the above-279
mentioned foregrounds and backgrounds to create a dataset280
with 10 classes of foreground objects and highly spurious281
backgrounds. Similar to before, for every class, the chosen282
background class remains same for all images belonging to283
that class, but the backgrounds can differ from one image284
to another. Finally, we create four groups for the dataset as285
before and test on pre-trained models.286

5. Experimental Results287

We test the robustness of different models with the two pro-288
posed two variants of Hard-Spurious-ImageNet. The images289
are already resized to 224× 224, so no additional resizing is290
applied to the images when giving as input to the pre-trained291
models. Images are normalized with mean and standard292

deviation of the ImageNet dataset. We use HuggingFace 293
PyTorch models to test the dataset. 294

Figure 7 shows test accuracies of the proposed data 295
and its variant on three pretrained models. We consider 296
ConvNext-Base trained on ImageNet22k and fine-tuned with 297
ImageNet1k, ResNet-50 [5] and CoAtNet [3] pretrained on 298
ImageNet1k to test the performance of proposed dataset. De- 299
tailed results are given in Tables 5 and 6 in supplementary 300
section. ConvNext Base performs best across all groups and 301
datasets. This can be attributed to the fact that the data aug- 302
mentation pipeline of ConvNext-Base consists of rigorous 303
steps, which ensures it stays robust to varying object sizes 304
and locations. The difference in accuracy between groups 305
CeR and CoR, when the core object size is 112× 112 is less 306
across all the models. This indicates that the core feature 307
size is big enough for the model to ignore changes in loca- 308
tion. Moreover, 1

4 th of the number of pixels in the image 309
are occupied by core features in this case, so backgrounds 310
are less exposed as compared to when the core object size is 311
even less. Another interesting observation is that the impact 312
of size change is far stronger on model performance than the 313
location of core features. We also see that Hard-Spurious- 314
ImageNet-v2 has far worse performance on groups CeR and 315
CoR across all architectures and sizes. This indicates that the 316
strength of spurious backgrounds is far greater than that of 317
core features when the size of core features starts to decrease. 318
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Figure 7. Benchmarking results of different models. Performance for our Hard-Spurious-ImageNet-v2 is the worst across all groups.

We also observe that in almost all the groups, there is signif-319
icant drop in performance compared with clean accuracies320
on standard validation dataset (see Table 1).321

Based on the above observations, we divide all the 12322
groups consisting of different core feature sizes and loca-323
tions into three distinct categories: Easy: This set con-324
sists of Groups CeO and CoO for larger core feature sizes,325
i.e. 84×84 and 112×112, as these groups seem to be doing326
considerably better than the rest. Hard: Groups CeR and327
CoR are the worst performing across all architecture for core328
feature sizes 56 × 56 and 84 × 84. We categorize them as329
Hard group. The remaining groups, i.e. groups CeO and330
CoO for size 56 × 56, and groups CeR and CoR for size331
112× 112 seem to be performing moderately, we put them332
in Medium category.333

Following the analysis done earlier (see Figure 5), we find334
that most of the images in ImageNet are centered with an335
estimated size score of ≈ 0.5, indicating that on average, the336
core features in an image occupy half the number of pixels of337
the entire image. Keeping this in mind, we create the training338
data of Hard-Spurious-ImageNet consisting of majority and339
minority groups, where the number of images belonging to340
majority groups are far more than in minority groups. This341
is done to replicate the long-tailed distribution nature of the342
ImageNet dataset in terms of hardness. For the training data,343
we consider 80 images per group in the Easy category and344
10 images from groups in Medium and Hard categories. This345
brings the total to 400 images per class in the training data.346
Out of the 400 images, 320 images belong to the Easy group347
and 80 to the Medium and Hard groups. For the validation348
set, we use a balanced dataset having equal data points from349
every group. We use 20 images per group, resulting in350
240 images per class. Both training and validation set of351
Hard-Spurious-ImageNet are derived from training data of352
ImageNet, whereas the test set is derived from the validation353
data. The test set is also balanced, comprising 50 images per354
group, totaling 600 images in every class.355

5.1. Effects of Data Augmentation and Self-356
Supervised Models357

To measure the effect of data augmentations, we compared358
vanilla ResNet-50 trained without any augmentations on Im-359

ageNet1K with an advanced training recipe involving auto- 360
augment, random erase, mixup, and cutmix. The results 361
(shown in Table 2) indicate that while data augmentation 362
increases accuracy across groups CeO, CoO, and CeR, the 363
performance decreases in case of group CoR for all sizes. 364
This indicates that standard data augmentation approaches 365
do not take into account the presence of spurious features in 366
the data while augmenting, hence, may end up highlighting 367
them instead. Moreover, the gap in performance still persists 368
across all four groups for a given core object size. This hints 369
that mere data augmentation strategies are insufficient to deal 370
with this problem. In the supplementary materials provided 371
(see Table 5 and Table 6), we test the model on Hiera-Base 372
with Masked Autoencoder which has been trained in a self- 373
supervised manner. The results follow a similar trend across 374
groups as other methods shown in the paper, although the 375
Group CoR for size shows the worst performance when com- 376
pared with all the other architectures. Moreover, we also 377
computed the performance of different groups in the pro- 378
posed dataset on a ViT pretrained on WIT-400M image-text 379
pairs by OpenAI using CLIP and fine-tuned on ImageNet1k. 380
The results are given in Table 2 and show similar trends as 381
reported earlier. 382

5.2. Group Robustness Methods 383

We measure the performance of the proposed dataset using 384
simple fine-tuning and two state-of-the-art group robustness 385
methods. Empirical Risk Minimization or ERM [24] is 386
conventional training to optimize average training accuracy 387
without specialized methods for optimizing worst-group ac- 388
curacy. Deep Feature Reweighting or DFR [6] tackles the 389
problem of spurious correlations by retraining the last layer 390
of a pre-trained model with equal data points from different 391
groups present in the training data. Just Train Twice or JTT 392
[9] upsamples the training images which were wrongly pre- 393
dicted by the ERM trained model by a certain factor λup, 394
and trains the classifier again. We experiment with different 395
variations of the above methods. The implementation details 396
are given in the supplementary material. 397
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

ResNet-50 (Baseline) 76.13
562 38.62 32.53 8.71 7.03
842 56.46 52.47 28.44 27.37
1122 65.87 64.16 46.58 46.57

ResNet-50 (Data Augmentations) 80.33
562 49.14 38.47 13.19 4.49
842 65.74 58.48 33.30 20.01
1122 72.93 68.19 45.12 36.40

ViT Base 81.92
562 44.78 39.37 7.15 5.57
842 63.65 58.83 28.56 25.46
1122 71.31 70.46 46.43 47.93

Table 2. The first two rows show the impact of data augmentation on the proposed dataset. Performance across group CoR becomes worse,
indicating that just augmenting the data might not be enough to deal with spurious correlations. The third row shows the performance on
ViT-Base pre-trained using CLIP and fine-tuned on IN-1K, highlighting similar trends observed earlier.

Methods Easy Medium Hard Average

Pretrained 65.39 48.50 16.54 43.48
ERM 74.84 66.67 57.56 65.94
JTT 60.90 53.09 46.49 53.50
DFR 72.47 65.65 59.79 65.97

Table 3. Test Performance of different methods on Easy, Medium,
and Hard categories in Hard-Spurious-ImageNet. Average accuracy
is the average test performance of all the groups combined.
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Figure 8. (left) The effect of training epochs of ERM model on
the performance of DFR. ERM model trained with 20 epochs gives
the highest performance for DFR. (right) ERMall narrows the gap
between easy, medium, and hard groups.

5.3. Results398

The results in Table 3 show that pretrained ImageNet models399
perform worst on the hard group. This could be attributed400
to the fact that the model has very little exposure to small401
core features against spurious backgrounds in the training402
data. The ERM model does better across easy, medium and403
hard groups, but there still exists a disparity in performance404
among the three groups.405

DFR is able to perform slightly better in the Hard group406
by sacrificing some accuracy in Easy and Medium groups.407
The average test accuracy is similar for ERM and DFR. The408
performance with JTT also decreases, which hints that the409

Size CeO CoO CeR CoR

562 62.25 60.8 54.56 54.45
842 73.35 72.60 69.76 69.96
1122 77.19 77.13 75.34 75.48

Table 4. Breakdown of test accuracies with ERMall model. The
network architecture is ResNet-50.

task of learning data has become difficult for the model in 410
the presence of upsampled images. Since the embeddings 411
in DFR are dependent on the ERM-trained model, we also 412
analyze how the number of training epochs the ERM model 413
is trained for, impacts the DFR performance. The epochs for 414
retraining the last layer remain fixed to 1000, all other hy- 415
perparameters also remain the same for DFR models trained 416
with different ERM-trained embeddings. The left plot in Fig- 417
ure 8 indicates that, when the base model is fine-tuned for 20 418
epochs, the performance of DFR on the test set increases. As 419
the training time increases for ERM, performance by DFR 420
decreases, whereas the ERM model continues to improve. 421

In case of ERM, we also analyze the effect of the percent- 422
age of training data in minority groups i.e. easy and hard 423
groups on model’s test performance. We refer to ERMeasy 424
as the model that has been fine-tuned with data from the 425
majority group only i.e. 0% of data from medium and hard 426
group. Conversely, we refer to ERMall as the model that has 427
been fine-tuned with equal data points from all the groups, 428
and ERM as the standard training data consisting of 20% of 429
data from minority groups. The results are depicted in the 430
right plot in Figure 8. We see that training with the Easy 431
group has worst performance on the Hard group. ERMall 432
seems to narrow the gap between all groups. The accuracy 433
of the Easy group remains similar across the three models. 434

Table 4 shows the breakdown of accuracies for all the 435
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Pre-trained ERM ERM ERM ERMPre-trainedeasy easyall all

Whiptail Partridge Stick Insect Partridge Bolete Ice-Cream

Figure 9. Gradcam visualizations showing regions of the image the model pays attention to in order to make the classification decision.
Labels in red show false predictions and labels in green indicate correct prediction.

sub-groups for ERMall model. As compared to accuracies436
shown in Figure 7, there is a considerable improvement in437
case of CoR and CeR for size 56 × 56 and 84 × 84. The438
closest to clean accuracy for ResNet-50 is observed in case439
of size 112× 112 and group CeO.440

5.4. Analysing Classifications with Saliency Maps441

We use Gradcam to visualize the predictions on the ResNet-442
50 model. Figure 9 shows the visualizations on the ImageNet443
pretrained model and two variations of ERM: ERMall which444
is fine-tuned with equal data points from all the groups and445
ERMeasy which is fine-tuned only with images from the446
Easy category, consisting of subgroups CeO and CoO for447
size 54 × 54 and 112 × 112 respectively. The images on448
the left side of Figure 9 show a stick insect of size 56× 56449
placed in the center against an outdoor environment. The450
pre-trained and ERMeasy model make their predictions by451
picking up cues from the backgrounds and predicting class452
Whiptail and Partridge respectively. Upon inspection, we453
find that most of the images in these classes are set in similar454
environments, hence the model has learnt to associate the455
given outdoor environment with these classes and are ignor-456
ing the core features. ERMall, however, is more robust to457
changes in environment and makes the correct prediction of458
class Stick Insect. The images on the right show that, while459
the pre-trained model is confused by the spurious cues in the460
background, ERMeasy makes the wrong predictions based461
on the cues in the core features and the background together.462
However, ERMall makes the correct prediction by mostly463
relying on core features. Figure 10 highlights the effect of464
the size of core features on the ability of the ERMall model465
to make correct predictions. Having a smaller core feature466
size results in the model making incorrect prediction of class467
Goldfish.468

6. Challenges and Future Work469

The dataset variants of Hard-Spurious-ImageNet are pro-470
posed to understand the extent of background reliance as a471
function of size and location of core features. One of the472
limitations of the datasets is that they rely on ground truth473

56x56
Mushroom Goldfish

112x112

Figure 10. Effect of core feature size on model performance. A
larger core feature makes the model ignore spurious cues in the
background and surroundings. Both the predictions are for the
ERMall model.

bounding boxes of objects. In case of images where core 474
features are not labeled by bounding boxes, no inpainting is 475
performed on them, subsequently leading to core features 476
in background and foreground occurring simultaneously. 477
Moreover, the presence of secondary objects and clutter 478
in the background makes it difficult for the models to learn 479
small core feature sizes. The lack of segmentation bounding 480
boxes for all images in ImageNet restricted us to using ob- 481
ject bounding boxes instead of masks. Currently, we have 482
only experimented with one location per core object. For 483
future work, we plan to experiment with different locations 484
of core objects in the images and analyze the impact of using 485
different network architectures with the dataset. Moreover, it 486
would be interesting to extend this analysis to other datasets 487
and models trained in different ways such as with contrastive 488
learning, and various data augmentation techniques. 489

7. Conclusion 490

In this paper, we propose a variant of ImageNet, Hard- 491
Spurious-ImageNet, to help the deep learning community to 492
better understand spurious feature reliance. We show that 493
ImageNet is center-biased and exhibits a bias towards large 494
object sizes. We also provide an analysis showing that there 495
exists a negative correlation between size and location of 496
core features in an image and the strength of spurious cues in 497
the background. We experiment with different group robust- 498
ness methods and highlight the need for specialized methods 499
to solve this problem. 500
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Figure 11. Histograms showing distribution of scores in different
classes of train data in ImageNet1k dataset.

8. Benchmark Results621

The results for Hard-Spurios-ImageNet and its variant are622
given in Tables 5 and 6 respectively. We test the perfor-623
mance of the datasets on 5 different pre-trained architectures:624
ConvNext-Base [11] trained on ImageNet21k and fine-tuned625
on ImageNet1k, ResNet-50 [5], CoATNet [3], Hiera-Base626
with MAE [19], and MVit2-small [8]. Except for ConvNext,627
these models are pretrained on ImageNet1k only. Across all628
models, the performance on Group CoR for size 56 × 56629
is the worst. Benchmark results for different groups along630
with clean accuracies are given in Tables 5 and 6. Clean631
accuracies in Table 6 are for 10 Hard-Spurious-ImageNet-v2632
classes only.633

9. Biases in ImageNet634

Figure 11 shows the distribution of center and size scores635
for different classes in the training data of ImageNet. We636
calculate these scores using the available bounding boxes for637
ImageNet training data. Figure 5 refers to the distribution638
for the validation data.639

10. Inpaint Anything640

The predicted masks from Segment Anything are dilated by641
a kernel size of 15 to avoid edge effects when the ”hole” is642
filled by LaMa. Some examples of the inpainted data are643
given in Figure 12.644

11. Hard-Spurious-ImageNet-v2645

Despite inpainting, the background (Bg) consists of cues that646
help the model predict the background label (see Figure 13).647

Figure 12. Original images with their resized inpainted versions.

Core: Japanese Spaniel
Bg: Snorkel

Core: Maltese Dog
Bg: Potter’s Wheel

Core: Shih-Tzu
Bg: Busby Hat

Figure 13. Examples from Hard-Spurious-ImageNet-v2.

648

12. True Objects in Background 649

Ensuring that the backgrounds do not contain true objects 650
depends on the fidelity of provided ImageNet annotations. 651
We perform an additional analysis with a foundation model, 652
Grounding DINO [10], to extract bounding boxes from the 653
images. We consider similarity scores between Grounding 654
DINO predictions and the ImageNet annotations to analyze 655
the correctness of ImageNet annotations. For ImageNet 656
validation data, we get an overall mIOU of 0.8675 across 657
all classes between both sets of bounding boxes with 139 658
classes having mIOU value less than 0.8 (see Figure 14 659
for a histogram by mIOU). This shows that the majority of 660
the classes in ImageNet data have correct bounding boxes 661
and the amount of objects from the foreground class in the 662
background is negligible. 663

13. Hard-Spurious-ImageNet with SAM 664

We also experiment with using the Segment Anything [7] 665
model to obtain masks for the objects inside a bounding 666
box and resize it to 3 different sizes (56, 84, and 112). The 667
resized masks are then placed in the center and corner of 668
the inpainted image, similar to the setting described in the 669

1
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.86
562 59.62 50.14 20.15 14.98
842 74.42 70.05 50.81 46.47
1122 79.82 76.54 67.43 60.92

ResNet-50 80.20
562 45.79 36.74 11.83 6.78
842 62.19 56.80 23.37 24.19
1122 72.43 70.22 55.85 55.62

CoATNet 83.59
562 40.79 35.78 5.27 3.28
842 66.58 50.14 25.92 17.02
1122 72.70 72.51 45.45 44.44

Hiera 84.48
562 49.45 34.34 4.61 1.31
842 67.64 55.09 21.81 12.49
1122 74.07 69.32 47.26 37.82

MVitv2 83.77
562 41.44 31.38 5.41 1.38
842 67.38 51.12 29.53 14.17
1122 70.51 64.86 48.00 37.81

Table 5. Test Accuracies on Hard-Spurious-ImageNet.

Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.8
562 57.4 38.6 8.2 1.0
842 79.0 71.0 27.0 11.4
1122 83.2 79.8 45.4 17.0

ResNet-50 82.2
562 45.00 29.6 6.4 0.0
842 70.8 58.4 17.0 9.8
1122 79.4 78.6 35.6 28.6

CoATNet 83.4
562 20.9 21.8 0.8 0.0
842 71.8 49.0 11.0 4.0
1122 75.40 80.8 18.2 23.0

Hiera 85.8
562 46.8 22.8 1.0 0.0
842 75.6 55.6 4.0 1.8
1122 78.6 74.6 16.0 10.6

MVitv2 86.6
562 29.0 15.0 0.4 0.0
842 72.6 47.8 11.2 1.2
1122 72.4 66.0 18.4 12.6

Table 6. Test Accuracies on Hard-Spurious-ImageNet-v2 with highly spurious backgrounds.

main paper. At the moment, we only consider one object670
per image. Since we have access to ImageNet-annotated671
bounding boxes, we use them as prompts to be given to SAM.672
The results are shown in Table 7. Compared to the results in673
Table 5, the results with SAM are worse, mainly because the674
resized SAM object masks are not entirely accurate in cases675
where objects are small and thin, such as insects, etc. Hence,676
we preferred human-annotated ImageNet bounding boxes.677

14. Group Robustness Methods 678

We use pretrained ResNet-50 trained on ImageNet1k 679
for our experiments. The Base model is fine-tuned with 680
batch size 256, constant learning rate of 0.001 for 20 681
epochs. The input images are randomly cropped with an 682
aspect ratio in the bounds (0.75,1.33) and finally resized 683
to 224 × 224. Horizontal flipping is applied afterward. 684
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.8
562 46.07 36.07 13.86 6.21
842 61.18 53.92 31.04 22.30
1122 67.78 64.69 42.91 13.84

ResNet-50 82.2
562 29.33 24.34 6.68 4.36
842 45.17 40.63 19.09 16.24
1122 55.24 52.56 31.34 29.87

CoATNet 83.4
562 30.57 27.61 7.91 3.93
842 50.94 44.66 21.03 15.63
1122 60.60 56.73 33.00 29.30

MVit2 85.8
562 37.94 25.88 9.08 2.92
842 54.89 44.73 24.74 15.15
1122 63.73 57.94 36.80 30.60

Hiera 86.6
562 39.88 27.06 10.34 3.198
842 56.36 46.18 25.13 15.72
1122 66.14 60.38 39.15 31.63

Table 7. Test Accuracies on Hard-Spurious-ImageNet with SAM Masks.

Figure 14. Class-wise mIOU scores between Grounding DINO pre-
dictions and ImageNet annotations on the validation set. Averaged
mIOU is 0.875.

A momentum of 0.9 and weight decay of 0.001 is used.685
For DFR, we normalize the embeddings using mean and686
standard deviation of validation data used to train the last687
layer, and use the same statistics to normalize embeddings688
of test data. We re-train the last layer for 1000 epochs,689
learning rate of 1, cosine learning rate scheduler and SGD690
optimizer with full-batch. We use ℓ2 regularization with λ691
set to 100. These hyperparamters are similar to the ones692
set by Kirichenko et al. [6] for optimizing the last layer for693
ImageNet-9 dataset [25]. Since, the data distribution in the694
proposed dataset and ImageNet-9 is similar, we assumed695
the same hyperparamteres. In case of JTT, models have the696
same hyperparameters as the ERM trained model. λup is set697

Methods Easy Medium Hard Average

Pretrained 71.14 54.93 29.21 51.75
ERM 76.91 70.63 63.48 70.34

ERMeasy 77.82 68.33 51.39 65.85
DFR 74.82 68.66 61.68 68.39

Table 8. Test Performance of different methods on Easy, Medium,
and Hard categories in Hard-Spurious-ImageNet. Average accuracy
is the average test performance of all the groups combined. The
model is Convnext-tiny.

to 50. 698
After extracting the embeddings from the pre-trained 699
ERM model, the embeddings are normalized us- 700
ing fit transform() and transform() functions of 701
sklearn.preprocessing.StandardScaler for val and test 702
data, respectively. For the JTT model, the images are applied 703
with random resized cropping followed by horizontal 704
flipping. No additional data augmentation is applied 705
afterward. We also experimented with ConvNext-tiny 706
pre-trained on ImageNet-22k and fine-tuned on ImageNet1k. 707
We fine-tune the pre-trained model on the proposed data 708
under various settings. ERM is trained by replicating 709
the long-tailed distribution of the data, while ERMeasy 710
is trained only with the easy group. ERMall is trained 711
with equal data points from all groups. DFR is trained by 712
extracting embeddings from ERM, and re-training the last 713
layer only. The number of train and test images is similar to 714
the data setting described in the main paper. 715
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