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Abstract

Backgrounds in images play a major role in contributing
to spurious correlations among different data points. Owing
to aesthetic preferences of humans capturing the images,
datasets can exhibit positional (location of the object within
a given frame) and size (region-of-interest to image ratio)
biases for different classes. In this paper, we show that these
biases can impact how much a model relies on spurious
features in the background to make its predictions. To better
illustrate our findings, we propose a synthetic dataset derived
from ImageNet1k, Hard-Spurious-ImageNet, which contains
images with various backgrounds, object positions, and ob-
ject sizes. By evaluating the dataset on different pretrained
models, we find that most models rely heavily on spurious
features in the background when the region-of-interest (ROI)
to image ratio is small and the object is far from the center
of the image. Moreover, we also show that current methods
that aim to mitigate harmful spurious features, do not take
into account these factors, hence fail to achieve considerable
performance gains for worst-group accuracies when the size
and location of core features in an image change.

1. Introduction

Spurious features are defined as features that are predictive
of the class label without being directly related to it. Such
features are usually helpful for object recognition when the
object is placed in a perfect environment or context. An
example of that would be a sea lion near a body of water.
This is because most models learn to associate water with sea
lions and vice versa. On the contrary, spurious features can
be extremely harmful when the object or the ”core” features
are observed in an unusual environment or against a spurious
background. This scenario can happen when the model is

a) Tench b) Zucchini

c) Goldfish d) Sea Lion

Figure 1. Gradcam visualizations for Pre-trained ConvNext-Base.
a) Model predicts core class ”Tench” when the object is located
in the center of the image, b) Spurious class ”Zucchini” is pre-
dicted when the ”core” class moves away from the center, c) Class
”GoldFish” is predicted when the size of the core object is large
(112× 112), d) Spurious class ”Sea Lion” is predicted when size
of core object reduces to 84× 84.

deployed in the wild. Deep neural networks can be fooled
easily to predict the label from the spurious cues in the back-
ground without relying on ”object” or ”core” features in the
image itself. Recently, a plethora of techniques have been
proposed to mitigate the reliance on unnecessary cues for
image classification. Sagawa et al. [20] introduced a distribu-
tionally robust optimization technique which, coupled with
strong regularization, helped in achieving high accuracies for
data groups that have strong spurious feature reliance. Simi-
larly, Kirichenko et al. [6] address this problem by retraining
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Figure 2. ImageNet classes and their center and size scores.
Toyshop has largest center and size scores, whereas Volleyball has
smallest center score and Balance Beam has smallest size score.
Other classes are sampled randomly for visualization.

the last layer of a DNN using equal data points from different
groups with core and spurious backgrounds. These methods
are helpful when the test set exhibits similar biases as the
training data, yet they fail to achieve similar performance
gains when these biases are explicitly removed.

Biases in datasets can hugely impact a deep neural net-
work’s performance. Earlier works have proven that convo-
lutional neural networks are not entirely translation invariant
and have the capacity to learn location information about
objects [2]. Some studies have found that models perform
poorly on untrained locations [1]. Similarly, object size
within an input frame can lead to models performing badly
when the sizes differ at inference time. The deep learning
community has tried to mitigate the effect of these biases by
proposing different data augmentation techniques that ensure
that models are robust to changes in size and locations of the
objects. However, the impact of the aforementioned factors
in the presence of spurious features remains less explored.

In this work, we try to answer the questions: In the ab-
sence of biases mentioned above, namely position and size
of objects, how much do pre-trained models rely on spurious
backgrounds to make their predictions, and are the current
techniques that mitigate harmful spurious features, enough
to tackle this problem? Specifically, the contributions of our
work are as follows:

• We calculate the centeredness and size scores of different
classes in ImageNet [4], and analyze their relation with
the level of spuriousness present in that class.

• We derive a dataset from ImageNet1k, called Hard-
Spurious-ImageNet, containing objects against spurious
backgrounds with varying sizes and positions. The code
to generate the dataset will be provided.

• With the help of experimentation and ablation, we con-
clude that the size and location of the object should be
taken into account when trying to mitigate harmful spuri-
ous correlations in the dataset.
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Figure 3. Counts in log scale of relative centers of ground truth
bounding boxes containing the object corresponding to the image
class (ImageNet1k validation set). Most object centers are concen-
trated around the image center, while some are present along the
main axes. Objects of interest are rarely present in image corners.

2. Related Work

2.1. Spurious Features
Moayeri et al. [13] show that adversarial training increases
model reliance on spurious features. They also show that
increased spurious feature reliance occurs when the perturba-
tions added to core features are too small to break spurious
correlations. Murali et al. [17] show that spurious features
are related with a model’s learning dynamics. Specifically,
”easier” features learnt in the start of model training can hurt
generalization. Neuhaus et al. [18] proposed a method to
identify spurious features in the ImageNet dataset and intro-
duced a fix to mitigate a model’s dependence on these fea-
tures without requiring additional labels. While the proposed
methods to mitigate spurious feature reliance are helpful in
many cases, their efficacy is less known when factors such
as size and location of core features in an image change.

2.2. Existing Datasets
Xiao et al. [25] present an analysis of model’s performance
as a function of varying backgrounds and foregrounds for
ImageNet. They conclude that more accurate models have
less reliance on backgrounds.They also propose a dataset
called ImageNet-9 with mixed foregrounds and backgrounds.
Moayeri et al. [14] propose a dataset derived from ImageNet
with segmentation masks for a subset of images. These
masks label entire objects and various visual attributes. They
name this dataset RIVAL10 and also test different models’
sensitivity to noise in backgrounds and foregrounds. Moay-
eri et al. [15] propose a dataset with segmentation masks
for images in 15 classes of ImageNet1k. These images have
high spurious features. They attribute this to objects being
small and less centered in these images. Singla and Feizi
[21] label spurious and core features for ImageNet samples.
They achieve this by making use of activation maps as soft
masks. Moayeri et al. [16] rank images in ImageNet dataset
based on spurious cues present. They show that spurious
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feature reliance is influenced more by the data a model is
trained on rather than how a model is trained. Lynch et al.
[12] propose a photo-realistic dataset with many-to-many
spurious correlations between different groups of spurious
attributes and classes. One work closely related to ours is
[27]. They do a fine-grained analysis of the robustness of
different models by varying factors such as object size, lo-
cation, and rotation. Our technical contributions differ from
theirs because we take into account the spuriosity level of
backgrounds and correlate it with the above factors as well.

2.3. Biases in Datasets
While capturing images through a camera, humans often
tend to place the region of interest in the center. Due to
this, there often exists a bias in classification datasets where
objects are mostly located in the center of images and away
from the boundary of the image. Exploiting the center bias
in ImageNet, resizing and center cropping has been usually
used for testing image classification models. Taesiri et al.
[23] show that there exists a strong center bias in out-of-
distribution benchmarks such as ImageNet-A and ObjectNet
by using resize and center crop operations only. They resize
the image to multiple scales and patchify it, followed by a
center crop operation at every patch. Doing this, they end up
with different zoomed-in versions of the input images. The
computed accuracy of the center crop is maximum showing
the presence of a strong center bias in the dataset. In this pa-
per, we do an in-depth analysis of the presence of center and
size bias in every class of ImageNet by computing distinct
scores. The detailed explanation of these scores are given in
following sections.

3. Biases in ImageNet
In this section, we quantitatively analyze positional and size
biases present in ImageNet1k. To get a better sense of these
biases, we propose centeredness and size scores.

3.1. Centeredness Score
In the majority of images in ImageNet1k, the objects of
interest are located in the image’s center (see Figure 3).
Hence, in this paper, we use ”positional” and ”center” as
synonyms. To understand the extent of center bias prevalent
in ImageNet1k, we propose a Center Score defined as

Cc =
1

M

1

N

M∑
i=1

N∑
j=1

1− (∥Ii,c −Oi,j,c∥∞), (1)

where Cc is the centeredness score for class c, M is total
number of images in the class, N is total number of objects
within a frame, I is image center, and O is object center. The
distance between image center and object center is calculated
by the ℓ∞ norm. It is subtracted from 1 to establish a direct

relationship between the score and center bias prevalent in
the class c.

3.2. Size Score

To measure the average sizes of objects within images, we
define a size score as

Sc =
1

M

1

N

M∑
i=1

N∑
j=1

hjwj

HiWi
, (2)

where Sc is the size score for class c, h and w refer to the
height and width of object j in image i. H and W are the
height and width of the image itself. Figure 2 shows the
center and size scores of different classes, with Toyshop
having the maximum center and size scores. The histograms
in Figure 5 show the distribution of center and size scores
of all the classes in the ImageNet1k validation data. It can
be seen that the majority of the classes in ImageNet1k are
highly centered with objects of interest occupying half of
the image pixels on average. These scores are calculated by
using Ground Truth bounding boxes of ImageNet.

3.3. Relationship with the Level of Spuriosity

To establish a correlation between centeredness and size
scores of every class to spurious feature reliance in Ima-
geNet, we first calculate the validation accuracies of different
classes in ImageNet with object information removed. We
achieve this by using Inpaint-Anything [26] with the goal of
creating a more realistic effect when the region of interest is
removed from the image. The input to Inpaint Anything are
the object bounding boxes and it makes use of Segment Any-
thing [7] to predict masks for objects within these bounding
boxes. These predicted masks are then input to the inpainting
model LaMa [22] which fills the masked region predicted by
SAM. Finally, we resize the inpainted images to 224× 224.
We use ConvNext-Base [11] pre-trained on ImageNet22k
and fine-tuned on ImageNet1k, to compute the validation
accuracies for the inpainted dataset. Classes with higher val-
idation accuracies indicate higher spurious feature reliance,
since the model has learnt to associate the class label not
just with the core object, but also with the background infor-
mation. In order to assess the correlation present between
center and size scores and the level of spuriousity present in
different classes of ImageNet, we use Kendall’s τ coefficient
and Spearman’s correlation coefficient. The negative corre-
lation values (see Figure 4) depict that there is an inverse
relationship between both inpainted data’s accuracy and the
different considered scores, which validates the hypothesis
that a higher spurious feature reliance is observed in case of
non-centered small object sizes. The correlation is overall
rather weak, which is to be expected since different classes
are differently hard to classify, even from their core features.
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Kendall’s τ = −0.266, Spearman’s ρ = −0.382 Kendall’s τ = −0.279, Spearman’s ρ = −0.397 Kendall’s τ = −0.293, Spearman’s ρ = −0.416
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Figure 4. Correlation between the validation accuracy on inpainted ImageNet and, from left to right, center scores, size scores, and their
product, respectively. Jointly considering center and size score shows strongest negative correlation with the accuracy.

Avg. Center Score = 0.747 Avg. Size Score = 0.417
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Figure 5. Histograms showing distribution of scores in different
classes of ImageNet1k dataset.

4. Dataset

Similar to the waterbirds dataset [20], we assume that ev-
ery datapoint (x, y) has an attribute a(x) ∈ A which is
spuriously correlated with label y. We conjecture that the
strength of the correlation between attribute a(x) and label
y is controlled by two factors: size s and position p of the
core features in the input image. To investigate this corre-
lation, we propose Hard-Spurious-ImageNet, a synthetic
dataset to illustrate the problem of spurious feature reliance
in the presence of varying object bounding box sizes, loca-
tions, and backgrounds. The prime motivation of creating
the dataset is to have precise control over these factors and
help the community build robust models against stronger
spurious cues.

We consider the image content within the provided
ground truth object bounding boxes for ImageNet as core
features and the features outside the bounding box as the
background. In ImageNet, bounding boxes are available for
all images in the validation data, yet only a subset of images
in training data are annotated. The images are annotated
and verified through Amazon Mechanical Turk. We employ
these annotations to provide us an estimate of the location of
core features in any image. A brief analysis of these anno-

tations using Grounding DINO is provided in the appendix
in section 12. As a first step, we want to disentangle core
features from the rest of the image. We achieve this by crop-
ping out the core objects from the images and inpainting the
resulting image, as explained in the previous section. Next,
we resize core object bounding boxes to different sizes, and
place them in two different locations against inpainted back-
grounds. The size and location of core objects and the kind
of background chosen, gives rise to different groups in the
data. To efficiently gauge the performance of these different
groups, we categorize them as follows:
• Group CeO: Core object in the Center of image against

its Original inpainted background.
• Group CoO: Core object in the top right Corner of image

against its Original inpainted background.
• Group CeR: Core object in the Center of image against

Random inpainted background.
• Group CoR: Core object in the top right Corner of image

against Random inpainted background.
We consider three core object sizes: 56 × 56, 84 × 84,

and 112× 112. It is important to note that all the inpainted
backgrounds have already been resized to 224× 224, so the
core object sizes mentioned above represent 4

64 th, 9
64 th, and

16
64 th of the whole image.

We also experimented with object masks obtained from
the Segment Anything [7] model rather than the provided
bounding boxes as foreground objects (see Table 7 in supple-
mentary). We observed that the mask quality for some ob-
jects was not good enough, hence, we used provided bound-
ing boxes for this work.

4.1. Hard-Spurious-ImageNet-v2
Randomly chosen backgrounds have varying levels of spu-
riosity based on the classes they are taken from. We derive a
variant of the proposed dataset where, instead of choosing
backgrounds in a random fashion, they are chosen based on
the level of spurious features present in them. To achieve
this, we first analyze the level of spuriosity present in every
class. We give inpainted images without the core objects, as
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CeO CoO CeR CoR
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56x56
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84x84

Figure 6. Different samples from Hard-Spurious-ImageNet. Image size remains same in all images i.e. 224× 224, whereas object size
changes. The label of every image is same as the label of the foreground object.

Model Clean Accuracy

ConvNext-Base 85.86
ResNet-50 80.20
CoAtNet 83.59

Table 1. Clean accuracies of standard ImageNet validation data
with different pre-trained models.

input to the pretrained ConvNext-Base model , and record
the accuracies of every class. The classes where accuracies
are high indicate that the model has learnt to predict the class
label without the presence of core objects. On the contrary,
classes for which the accuracy is low are highly reliant on
core features to make predictions. We choose 10 classes
that are highly spurious, namely: snorkel, bobsled, maypole,
potter’s wheel, gondola, bearskin, volleyball, basketball, ca-
noe, geyser, and yellow lady’s slipper as backgrounds. For
foreground objects, we choose 10 classes with high core
features such as: bluetick, box turtle, Chihuahua, Japanese
spaniel, Maltese dog, Shih-Tzu, Blenheim spaniel, papillon,
Rhodesian ridgeback, and basset. We combine the above-
mentioned foregrounds and backgrounds to create a dataset
with 10 classes of foreground objects and highly spurious
backgrounds. Similar to before, for every class, the chosen
background class remains same for all images belonging to
that class, but the backgrounds can differ from one image
to another. Finally, we create four groups for the dataset as
before and test on pre-trained models.

5. Experimental Results
We test the robustness of different models with the two pro-
posed two variants of Hard-Spurious-ImageNet. The images
are already resized to 224× 224, so no additional resizing is
applied to the images when giving as input to the pre-trained
models. Images are normalized with mean and standard
deviation of the ImageNet dataset. We use HuggingFace

PyTorch models to test the dataset.
Figure 7 shows test accuracies of the proposed data

and its variant on three pretrained models. We consider
ConvNext-Base trained on ImageNet22k and fine-tuned with
ImageNet1k, ResNet-50 [5] and CoAtNet [3] pretrained on
ImageNet1k to test the performance of proposed dataset. De-
tailed results are given in Tables 5 and 6 in supplementary
section. ConvNext Base performs best across all groups and
datasets. This can be attributed to the fact that the data aug-
mentation pipeline of ConvNext-Base consists of rigorous
steps, which ensures it stays robust to varying object sizes
and locations. The difference in accuracy between groups
CeR and CoR, when the core object size is 112× 112 is less
across all the models. This indicates that the core feature
size is big enough for the model to ignore changes in loca-
tion. Moreover, 1

4 th of the number of pixels in the image
are occupied by core features in this case, so backgrounds
are less exposed as compared to when the core object size is
even less. Another interesting observation is that the impact
of size change is far stronger on model performance than the
location of core features. We also see that Hard-Spurious-
ImageNet-v2 has far worse performance on groups CeR and
CoR across all architectures and sizes. This indicates that the
strength of spurious backgrounds is far greater than that of
core features when the size of core features starts to decrease.
We also observe that in almost all the groups, there is signif-
icant drop in performance compared with clean accuracies
on standard validation dataset (see Table 1).

Based on the above observations, we divide all the 12
groups consisting of different core feature sizes and loca-
tions into three distinct categories: Easy: This set con-
sists of Groups CeO and CoO for larger core feature sizes,
i.e. 84×84 and 112×112, as these groups seem to be doing
considerably better than the rest. Hard: Groups CeR and
CoR are the worst performing across all architecture for core
feature sizes 56 × 56 and 84 × 84. We categorize them as
Hard group. The remaining groups, i.e. groups CeO and
CoO for size 56 × 56, and groups CeR and CoR for size
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Figure 7. Benchmarking results of different models. Performance for our Hard-Spurious-ImageNet-v2 is the worst across all groups.

Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

ResNet-50 (Baseline) 76.13
562 38.62 32.53 8.71 7.03
842 56.46 52.47 28.44 27.37
1122 65.87 64.16 46.58 46.57

ResNet-50 (Data Augmentations) 80.33
562 49.14 38.47 13.19 4.49
842 65.74 58.48 33.30 20.01
1122 72.93 68.19 45.12 36.40

ViT Base 81.92
562 44.78 39.37 7.15 5.57
842 63.65 58.83 28.56 25.46
1122 71.31 70.46 46.43 47.93

Table 2. The first two rows show the impact of data augmentation on the proposed dataset. Performance across group CoR becomes worse,
indicating that just augmenting the data might not be enough to deal with spurious correlations. The third row shows the performance on
ViT-Base pre-trained using CLIP and fine-tuned on IN-1K, highlighting similar trends observed earlier.

112× 112 seem to be performing moderately, we put them
in Medium category.

Following the analysis done earlier (see Figure 5), we find
that most of the images in ImageNet are centered with an
estimated size score of ≈ 0.5, indicating that on average, the
core features in an image occupy half the number of pixels of
the entire image. Keeping this in mind, we create the training
data of Hard-Spurious-ImageNet consisting of majority and
minority groups, where the number of images belonging to
majority groups are far more than in minority groups. This
is done to replicate the long-tailed distribution nature of the
ImageNet dataset in terms of hardness. For the training data,
we consider 80 images per group in the Easy category and
10 images from groups in Medium and Hard categories. This
brings the total to 400 images per class in the training data.
Out of the 400 images, 320 images belong to the Easy group
and 80 to the Medium and Hard groups. For the validation
set, we use a balanced dataset having equal data points from
every group. We use 20 images per group, resulting in
240 images per class. Both training and validation set of
Hard-Spurious-ImageNet are derived from training data of
ImageNet, whereas the test set is derived from the validation
data. The test set is also balanced, comprising 50 images per
group, totaling 600 images in every class.

5.1. Effects of Data Augmentation and Self-
Supervised Models

To measure the effect of data augmentations, we compared
vanilla ResNet-50 trained without any augmentations on Im-
ageNet1K with an advanced training recipe involving auto-
augment, random erase, mixup, and cutmix. The results
(shown in Table 2) indicate that while data augmentation
increases accuracy across groups CeO, CoO, and CeR, the
performance decreases in case of group CoR for all sizes.
This indicates that standard data augmentation approaches
do not take into account the presence of spurious features in
the data while augmenting, hence, may end up highlighting
them instead. Moreover, the gap in performance still persists
across all four groups for a given core object size. This hints
that mere data augmentation strategies are insufficient to deal
with this problem. In the supplementary materials provided
(see Table 5 and Table 6), we test the model on Hiera-Base
with Masked Autoencoder which has been trained in a self-
supervised manner. The results follow a similar trend across
groups as other methods shown in the paper, although the
Group CoR for size shows the worst performance when com-
pared with all the other architectures. Moreover, we also
computed the performance of different groups in the pro-
posed dataset on a ViT pretrained on WIT-400M image-text
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Methods Easy Medium Hard Average

Pretrained 65.39 48.50 16.54 43.48
ERM 74.84 66.67 57.56 65.94
JTT 60.90 53.09 46.49 53.50
DFR 72.47 65.65 59.79 65.97

Table 3. Test Performance of different methods on Easy, Medium,
and Hard categories in Hard-Spurious-ImageNet. Average accuracy
is the average test performance of all the groups combined.

pairs by OpenAI using CLIP and fine-tuned on ImageNet1k.
The results are given in Table 2 and show similar trends as
reported earlier.

5.2. Group Robustness Methods
We measure the performance of the proposed dataset using
simple fine-tuning and two state-of-the-art group robustness
methods. Empirical Risk Minimization or ERM [24] is
conventional training to optimize average training accuracy
without specialized methods for optimizing worst-group ac-
curacy. Deep Feature Reweighting or DFR [6] tackles the
problem of spurious correlations by retraining the last layer
of a pre-trained model with equal data points from different
groups present in the training data. Just Train Twice or JTT
[9] upsamples the training images which were wrongly pre-
dicted by the ERM trained model by a certain factor λup,
and trains the classifier again. We experiment with different
variations of the above methods. The implementation details
are given in the supplementary material.
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Figure 8. (left) The effect of training epochs of ERM model on
the performance of DFR. ERM model trained with 20 epochs gives
the highest performance for DFR. (right) ERMall narrows the gap
between easy, medium, and hard groups.

5.3. Results
The results in Table 3 show that pretrained ImageNet models
perform worst on the hard group. This could be attributed
to the fact that the model has very little exposure to small
core features against spurious backgrounds in the training
data. The ERM model does better across easy, medium and
hard groups, but there still exists a disparity in performance
among the three groups.

DFR is able to perform slightly better in the Hard group
by sacrificing some accuracy in Easy and Medium groups.

Size CeO CoO CeR CoR

562 62.25 60.8 54.56 54.45
842 73.35 72.60 69.76 69.96
1122 77.19 77.13 75.34 75.48

Table 4. Breakdown of test accuracies with ERMall model. The
network architecture is ResNet-50.

The average test accuracy is similar for ERM and DFR. The
performance with JTT also decreases, which hints that the
task of learning data has become difficult for the model in
the presence of upsampled images. Since the embeddings
in DFR are dependent on the ERM-trained model, we also
analyze how the number of training epochs the ERM model
is trained for, impacts the DFR performance. The epochs for
retraining the last layer remain fixed to 1000, all other hy-
perparameters also remain the same for DFR models trained
with different ERM-trained embeddings. The left plot in Fig-
ure 8 indicates that, when the base model is fine-tuned for 20
epochs, the performance of DFR on the test set increases. As
the training time increases for ERM, performance by DFR
decreases, whereas the ERM model continues to improve.

In case of ERM, we also analyze the effect of the percent-
age of training data in minority groups i.e. easy and hard
groups on model’s test performance. We refer to ERMeasy

as the model that has been fine-tuned with data from the
majority group only i.e. 0% of data from medium and hard
group. Conversely, we refer to ERMall as the model that has
been fine-tuned with equal data points from all the groups,
and ERM as the standard training data consisting of 20% of
data from minority groups. The results are depicted in the
right plot in Figure 8. We see that training with the Easy
group has worst performance on the Hard group. ERMall

seems to narrow the gap between all groups. The accuracy
of the Easy group remains similar across the three models.

Table 4 shows the breakdown of accuracies for all the
sub-groups for ERMall model. As compared to accuracies
shown in Figure 7, there is a considerable improvement in
case of CoR and CeR for size 56 × 56 and 84 × 84. The
closest to clean accuracy for ResNet-50 is observed in case
of size 112× 112 and group CeO.

5.4. Analysing Classifications with Saliency Maps
We use Gradcam to visualize the predictions on the ResNet-
50 model. Figure 9 shows the visualizations on the ImageNet
pretrained model and two variations of ERM: ERMall which
is fine-tuned with equal data points from all the groups and
ERMeasy which is fine-tuned only with images from the
Easy category, consisting of subgroups CeO and CoO for
size 54 × 54 and 112 × 112 respectively. The images on
the left side of Figure 9 show a stick insect of size 56× 56
placed in the center against an outdoor environment. The

7



Pre-trained ERM ERM ERM ERMPre-trainedeasy easyall all

Whiptail Partridge Stick Insect Partridge Bolete Ice-Cream

Figure 9. Gradcam visualizations showing regions of the image the model pays attention to in order to make the classification decision.
Labels in red show false predictions and labels in green indicate correct prediction.

pre-trained and ERMeasy model make their predictions by
picking up cues from the backgrounds and predicting class
Whiptail and Partridge respectively. Upon inspection, we
find that most of the images in these classes are set in similar
environments, hence the model has learnt to associate the
given outdoor environment with these classes and are ignor-
ing the core features. ERMall, however, is more robust to
changes in environment and makes the correct prediction of
class Stick Insect. The images on the right show that, while
the pre-trained model is confused by the spurious cues in the
background, ERMeasy makes the wrong predictions based
on the cues in the core features and the background together.
However, ERMall makes the correct prediction by mostly
relying on core features. Figure 10 highlights the effect of
the size of core features on the ability of the ERMall model
to make correct predictions. Having a smaller core feature
size results in the model making incorrect prediction of class
Goldfish.

56x56
Mushroom Goldfish

112x112

Figure 10. Effect of core feature size on model performance. A
larger core feature makes the model ignore spurious cues in the
background and surroundings. Both the predictions are for the
ERMall model.

6. Challenges and Future Work
The dataset variants of Hard-Spurious-ImageNet are pro-
posed to understand the extent of background reliance as a
function of size and location of core features. One of the
limitations of the datasets is that they rely on ground truth
bounding boxes of objects. In case of images where core
features are not labeled by bounding boxes, no inpainting is
performed on them, subsequently leading to core features
in background and foreground occurring simultaneously.

Moreover, the presence of secondary objects and clutter
in the background makes it difficult for the models to learn
small core feature sizes. The lack of segmentation bounding
boxes for all images in ImageNet restricted us to using ob-
ject bounding boxes instead of masks. Currently, we have
only experimented with one location per core object. For
future work, we plan to experiment with different locations
of core objects in the images and analyze the impact of using
different network architectures with the dataset. Moreover, it
would be interesting to extend this analysis to other datasets
and models trained in different ways such as with contrastive
learning, and various data augmentation techniques.

7. Conclusion
In this paper, we propose a variant of ImageNet, Hard-
Spurious-ImageNet, to help the deep learning community to
better understand spurious feature reliance. We show that
ImageNet is center-biased and exhibits a bias towards large
object sizes. We also provide an analysis showing that there
exists a negative correlation between size and location of
core features in an image and the strength of spurious cues in
the background. We experiment with different group robust-
ness methods and highlight the need for specialized methods
to solve this problem.
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Figure 11. Histograms showing distribution of scores in different
classes of train data in ImageNet1k dataset.

8. Benchmark Results
The results for Hard-Spurios-ImageNet and its variant are
given in Tables 5 and 6 respectively. We test the perfor-
mance of the datasets on 5 different pre-trained architectures:
ConvNext-Base [11] trained on ImageNet21k and fine-tuned
on ImageNet1k, ResNet-50 [5], CoATNet [3], Hiera-Base
with MAE [19], and MVit2-small [8]. Except for ConvNext,
these models are pretrained on ImageNet1k only. Across all
models, the performance on Group CoR for size 56 × 56
is the worst. Benchmark results for different groups along
with clean accuracies are given in Tables 5 and 6. Clean
accuracies in Table 6 are for 10 Hard-Spurious-ImageNet-v2
classes only.

9. Biases in ImageNet
Figure 11 shows the distribution of center and size scores
for different classes in the training data of ImageNet. We
calculate these scores using the available bounding boxes for
ImageNet training data. Figure 5 refers to the distribution
for the validation data.

10. Inpaint Anything
The predicted masks from Segment Anything are dilated by
a kernel size of 15 to avoid edge effects when the ”hole” is
filled by LaMa. Some examples of the inpainted data are
given in Figure 12.

11. Hard-Spurious-ImageNet-v2
Despite inpainting, the background (Bg) consists of cues that
help the model predict the background label (see Figure 13).

Figure 12. Original images with their resized inpainted versions.

Core: Japanese Spaniel
Bg: Snorkel

Core: Maltese Dog
Bg: Potter’s Wheel

Core: Shih-Tzu
Bg: Busby Hat

Figure 13. Examples from Hard-Spurious-ImageNet-v2.

12. True Objects in Background
Ensuring that the backgrounds do not contain true objects
depends on the fidelity of provided ImageNet annotations.
We perform an additional analysis with a foundation model,
Grounding DINO [10], to extract bounding boxes from the
images. We consider similarity scores between Grounding
DINO predictions and the ImageNet annotations to analyze
the correctness of ImageNet annotations. For ImageNet
validation data, we get an overall mIOU of 0.8675 across
all classes between both sets of bounding boxes with 139
classes having mIOU value less than 0.8 (see Figure 14
for a histogram by mIOU). This shows that the majority of
the classes in ImageNet data have correct bounding boxes
and the amount of objects from the foreground class in the
background is negligible.

13. Hard-Spurious-ImageNet with SAM
We also experiment with using the Segment Anything [7]
model to obtain masks for the objects inside a bounding
box and resize it to 3 different sizes (56, 84, and 112). The
resized masks are then placed in the center and corner of
the inpainted image, similar to the setting described in the
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.86
562 59.62 50.14 20.15 14.98
842 74.42 70.05 50.81 46.47
1122 79.82 76.54 67.43 60.92

ResNet-50 80.20
562 45.79 36.74 11.83 6.78
842 62.19 56.80 23.37 24.19
1122 72.43 70.22 55.85 55.62

CoATNet 83.59
562 40.79 35.78 5.27 3.28
842 66.58 50.14 25.92 17.02
1122 72.70 72.51 45.45 44.44

Hiera 84.48
562 49.45 34.34 4.61 1.31
842 67.64 55.09 21.81 12.49
1122 74.07 69.32 47.26 37.82

MVitv2 83.77
562 41.44 31.38 5.41 1.38
842 67.38 51.12 29.53 14.17
1122 70.51 64.86 48.00 37.81

Table 5. Test Accuracies on Hard-Spurious-ImageNet.

Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.8
562 57.4 38.6 8.2 1.0
842 79.0 71.0 27.0 11.4
1122 83.2 79.8 45.4 17.0

ResNet-50 82.2
562 45.00 29.6 6.4 0.0
842 70.8 58.4 17.0 9.8
1122 79.4 78.6 35.6 28.6

CoATNet 83.4
562 20.9 21.8 0.8 0.0
842 71.8 49.0 11.0 4.0
1122 75.40 80.8 18.2 23.0

Hiera 85.8
562 46.8 22.8 1.0 0.0
842 75.6 55.6 4.0 1.8
1122 78.6 74.6 16.0 10.6

MVitv2 86.6
562 29.0 15.0 0.4 0.0
842 72.6 47.8 11.2 1.2
1122 72.4 66.0 18.4 12.6

Table 6. Test Accuracies on Hard-Spurious-ImageNet-v2 with highly spurious backgrounds.

main paper. At the moment, we only consider one object
per image. Since we have access to ImageNet-annotated
bounding boxes, we use them as prompts to be given to SAM.
The results are shown in Table 7. Compared to the results in
Table 5, the results with SAM are worse, mainly because the
resized SAM object masks are not entirely accurate in cases
where objects are small and thin, such as insects, etc. Hence,
we preferred human-annotated ImageNet bounding boxes.

14. Group Robustness Methods

We use pretrained ResNet-50 trained on ImageNet1k
for our experiments. The Base model is fine-tuned with
batch size 256, constant learning rate of 0.001 for 20
epochs. The input images are randomly cropped with an
aspect ratio in the bounds (0.75,1.33) and finally resized
to 224 × 224. Horizontal flipping is applied afterward.
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Model Clean
Accuracy

Object
Resolution

Group Accuracies
CeO CoO CeR CoR

Convnext-Base 85.8
562 46.07 36.07 13.86 6.21
842 61.18 53.92 31.04 22.30
1122 67.78 64.69 42.91 13.84

ResNet-50 82.2
562 29.33 24.34 6.68 4.36
842 45.17 40.63 19.09 16.24
1122 55.24 52.56 31.34 29.87

CoATNet 83.4
562 30.57 27.61 7.91 3.93
842 50.94 44.66 21.03 15.63
1122 60.60 56.73 33.00 29.30

MVit2 85.8
562 37.94 25.88 9.08 2.92
842 54.89 44.73 24.74 15.15
1122 63.73 57.94 36.80 30.60

Hiera 86.6
562 39.88 27.06 10.34 3.198
842 56.36 46.18 25.13 15.72
1122 66.14 60.38 39.15 31.63

Table 7. Test Accuracies on Hard-Spurious-ImageNet with SAM Masks.

Figure 14. Class-wise mIOU scores between Grounding DINO pre-
dictions and ImageNet annotations on the validation set. Averaged
mIOU is 0.875.

A momentum of 0.9 and weight decay of 0.001 is used.
For DFR, we normalize the embeddings using mean and
standard deviation of validation data used to train the last
layer, and use the same statistics to normalize embeddings
of test data. We re-train the last layer for 1000 epochs,
learning rate of 1, cosine learning rate scheduler and SGD
optimizer with full-batch. We use ℓ2 regularization with λ
set to 100. These hyperparamters are similar to the ones
set by Kirichenko et al. [6] for optimizing the last layer for
ImageNet-9 dataset [25]. Since, the data distribution in the
proposed dataset and ImageNet-9 is similar, we assumed
the same hyperparamteres. In case of JTT, models have the
same hyperparameters as the ERM trained model. λup is set

Methods Easy Medium Hard Average

Pretrained 71.14 54.93 29.21 51.75
ERM 76.91 70.63 63.48 70.34

ERMeasy 77.82 68.33 51.39 65.85
DFR 74.82 68.66 61.68 68.39

Table 8. Test Performance of different methods on Easy, Medium,
and Hard categories in Hard-Spurious-ImageNet. Average accuracy
is the average test performance of all the groups combined. The
model is Convnext-tiny.

to 50.
After extracting the embeddings from the pre-trained
ERM model, the embeddings are normalized us-
ing fit transform() and transform() functions of
sklearn.preprocessing.StandardScaler for val and test
data, respectively. For the JTT model, the images are applied
with random resized cropping followed by horizontal
flipping. No additional data augmentation is applied
afterward. We also experimented with ConvNext-tiny
pre-trained on ImageNet-22k and fine-tuned on ImageNet1k.
We fine-tune the pre-trained model on the proposed data
under various settings. ERM is trained by replicating
the long-tailed distribution of the data, while ERMeasy

is trained only with the easy group. ERMall is trained
with equal data points from all groups. DFR is trained by
extracting embeddings from ERM, and re-training the last
layer only. The number of train and test images is similar to
the data setting described in the main paper.
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