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ABSTRACT

Large language models (LLMs) have demonstrated powerful decision-making and
planning capabilities in solving complicated real-world problems. LLM-based au-
tonomous agents can interact with diverse tools (e.g., functional APIs) and generate
solution plans that execute a series of API function calls in a step-by-step manner.
The multitude of candidate API function calls significantly expands the action
space, amplifying the critical need for efficient action space navigation. However,
existing methods either struggle with unidirectional exploration in expansive ac-
tion spaces, trapped into a locally optimal solution, or suffer from exhaustively
traversing all potential actions, causing inefficient navigation. To address these
issues, we propose ToolChain∗, an efficient tree search-based planning algorithm
for LLM-based agents. It formulates the entire action space as a decision tree,
where each node represents a possible API function call involved in a solution
plan. By incorporating the A∗ search algorithm with task-specific cost function
design, it efficiently prunes high-cost branches that may involve incorrect actions,
identifying the most low-cost valid path as the solution. Extensive experiments
on multiple tool-use and reasoning tasks demonstrate that ToolChain∗ efficiently
balances exploration and exploitation within an expansive action space. It outper-
forms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5%
on average while requiring 7.35x and 2.31x less time, respectively.

1 INTRODUCTION

Large language models (LLMs), such as GPT (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI,
2023) and PaLM (Chowdhery et al., 2022; Anil et al., 2023), have exhibited remarkable capabilities of
reasoning and instruction-following across a wide range of tasks (Huang & Chang, 2023). Recently,
instructing LLMs to utilize external tools for complex real-world problems has emerged as a topic of
growing importance (Hao et al., 2023b; Zhang et al., 2023; Zhuang et al., 2023; Yang et al., 2023b;
Schick et al., 2023; Lu et al., 2023). For complicated tasks, LLM-based autonomous agents integrate
LLMs with various external tools (APIs), generating solutions that involve intermediate reasoning
steps (Schick et al., 2023; Lu et al., 2023; Patil et al., 2023; Qin et al., 2023b). Given a problem
description, the goal of an agent is to determine a chain of API function calls that can be executed
sequentially toward a valid solution. However, given an action space of hundreds of candidate API
functions, each comprised of various function names and parameters available at every planning step,
searching for a globally optimal solution becomes highly challenging.

Existing methods that leverage LLMs as autonomous agents for decision-making and reasoning can be
broadly classified into four categories (Figure 1): (1) open-loop methods (Wei et al., 2022; Zhou et al.,
2022; Huang et al., 2022a; Shen et al., 2023; Lu et al., 2023) generate a complete plan for problem-
solving without any adaptation during the execution; (2) greedy closed-loop methods (Yao et al.,
2023b; Jang, 2023; Huang et al., 2022b; Kim et al., 2023; Liang et al., 2022) leverage environmental
feedback to greedily determine the next step in the plan; and (3) closed-loop methods (Wang et al.,
2023; Sun et al., 2023) incorporate environment feedback to continuously monitor system behaviors
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Figure 1: A comparison of existing methods that leverage LLMs for decision-making from a searching
space perspective. Most existing methods of (1) open-loop systems (e.g., Chain-of-Thought (Wei
et al., 2022)), (2) greedy closed-loop systems (e.g., ReAct (Yao et al., 2023b)), and (3) closed-loop
systems (e.g., Adaplanner (Sun et al., 2023)) only explore one possible direction. This often leads
to limited exploration of the entire action space. In contrast, (4) tree search-based methods (e.g.,
Tree-of-Thoughts (Yao et al., 2023a)) identify a valid solution path by extensively examining multiple
decision space branches, covering almost every conceivable node. Our proposed ToolChain∗ belongs
to the tree search-based category and improves by developing an efficient search algorithm.

and modify subsequent plans accordingly. However, such unidirectional navigation systems have
two major limitations: error propagation, originating from a mistaken action and leading to a faulty
loop; limited exploration, despite being equipped with plan refinement strategies, most existing
methods only explore a small portion of the large action space, falling into locally optimal solutions.
To this end, few studies initiate exploring (4) tree search-based methods (Yao et al., 2023a; Hao
et al., 2023a) for leveraging multiple reasoning paths simultaneously and evaluating branches to
decide the next course of action. However, existing tree search-based algorithms, such as depth-first
search (DFS) (Yao et al., 2023a) and Monte Carlo Tree Search (MCTS) (Hao et al., 2023a), require
exhaustive exploration of nearly all potential actions within the entire decision space, resulting in
inefficient searches for globally optimal solutions.

To address these limitations, we propose ToolChain∗, an efficient A∗ tree search-based planning
method for LLM-based agents. We formulate the tool-use planning process as a decision tree, where
each node represents a potential API call for a given step. Aligned with the traditional A∗ search
algorithm, the proposed ToolChain∗ determines which paths to extend based on both the cost of the
current path and an estimated future cost required for completing the current plan. With task-specific
cost functions, erroneous actions will be penalized and mitigated, as these actions cause additional
costs when propagated along the path, leading the path to be progressively de-prioritized and left
unexpanded over iterations. In addition, unlike the simulation stage in MCTS, which requires multiple
steps to simulate until a terminal state during rollout, the future cost estimation in ToolChain∗ enables
expansion of only the next step. With efficient node expansion, ToolChain∗ effectively searches for
globally optimal solutions within a manageable number of steps.

Our main contributions are as follows: (1) We propose ToolChain∗, a novel A∗-like tree search
algorithm, to develop autonomous LLM-based agents for complex planning and reasoning tasks; (2)
ToolChain∗ formulates the action space as a decision tree, effectively mitigating error propagation and
expanding search space; and (3) ToolChain∗ significantly accelerates LLM-based agents in navigating
expansive action tree spaces, striking a balance between exploring unvisited actions and exploiting
global optimal solutions.

2 PRELIMINARIES

Problem Formulation. Leveraging LLMs as agents for problem solving can be conceptualized
as a planning process. For initialization, the LLM agent is augmented with access to a pool of m
candidate API functions, denoted as A = {API0,API1, · · · ,APIm}, along with a natural language
task description g ∈ G from the task space G. The objective of the LLM agent is to translate the task
description g into an ordered sequence of Tg API function calls pg = {a0, a1, · · · , aTg

}. Specifically,
considering the task description g as the initial state s0, we sample the plan pg by prompting the LLM
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agent with the API definitions I and demonstration samples D as: pg ∼ ρ(a0, a1, · · · , aTg
|s0; I,D) :

G × I × D → ∆(ATg ), where ∆(·) is a probability simplex function. The final output is derived
after executing the entire plan y ∼ π(y|s0, a1, a2, · · · , aTg ), where π(·) indicates a plan executor.

Tree Search-Based Systems. Tree search methods frame a planning problem as a search over a
decision tree, where each node n represents an action an, accompanied by a state sn ∈ S indicating
a valid path from the initial state to the current action. When exploring the tree space, tree search
approaches expand k potential child nodes ch(n) of the current node n via sampling from the potential
action set generated by LLMs a(j)ch(n) ∼ ρ(ach(n)|sn; I,D), (j = 1, · · · , k) and add the new nodes

to the tree state space S = S ∪ {(sn, a(j)ch(n))}
k
j=1. With value functions for state evaluation, tree

search-based methods aim to identify a path from the root node s0 to the leaf nodes with the highest
value or lowest cost. Our proposed ToolChain∗ is a tree search-based method.

Monte Carlo Tree Search. MCTS, which employs heuristic exploration to construct its search tree,
has achieved great success in decision-making tasks, such as GO (Silver et al., 2016). Its variant,
UCT (Kocsis & Szepesvári, 2006), has been adopted in Hao et al. (2023a) for the development of
LLM-based agents. Specifically, it initiates from the root node of the task description g and moves
down the tree by selecting optimal actions (child nodes) until the leaf node. Then, MCTS introduces
one or multiple child nodes based on available actions provided by LLMs and identifies the most
promising node n. From the newly expanded node n, MCTS requires LLM agents to execute a
simulated rollout until a terminal state is reached. Upon completing the simulation, a result is returned
from n all the way back to the root node, accompanied by the value function Q(n) to update all the
scores on the selected path.

© 2023 Adobe. All Rights Reserved. Adobe Confidential.
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Figure 2: A comparison between MCTS and A∗

search in ToolChain∗. Unlike MCTS, A∗ search
only requires one-step expansion guided by cost.

MCTS vs. A∗ Search. Despite the performance
gains attained by MCTS in planning and reason-
ing tasks, its direct application to LLM agents
comes with significant execution costs. The roll-
out mechanism within MCTS requires multiple
LLM calls to prompt the next actions until a
terminal state. Furthermore, unlike two-player
zero-sum games, the planning tasks essentially
operate as one-player games, where value func-
tions estimated by random rollouts might exhibit
significant inaccuracies. To mitigate the issue,
ToolChain∗ is proposed based on a more effi-
cient A∗ search algorithm. A comparison be-
tween MCTS and our proposed ToolChain∗ is
illustrated in Figure 2. Unlike MCTS, A∗ search
necessitates only a single LLM call for determining the next actions during expansion according
to two cost functions, g(n), quantifying the cost of the path from the root node to n, and h(n), a
heuristic function estimating the cost of the most promising path from n to the goal.

3 TOOLCHAIN∗: A TREE SEARCH PERSPECTIVE ON EXTERNAL TOOL USE

In this section, we introduce the ToolChain∗ that enables LLM-based agents to efficiently navigate
the action space to identify a valid solution path for problem-solving (Figure 3). First, we outline
the framework of ToolChain∗ (Section 3.1), consisting of three iterative stages: selecting the most
promising path in the explored decision tree, expanding the potential following actions along the
selected path, and subsequently updating the cost functions. Within ToolChain∗, the cost function is
composed of two components: cumulative cost g(n) (Section 3.2) and future score h(n) (Section 3.3).

3.1 OVERVIEW

ToolChain∗ is a best-first search algorithm, efficiently guiding LLM agents in generating a sequence
of API function calls as a solution plan. We formulate the action space as a search tree T , where each
node n represents an action an, accompanied by a state composed of the initial task description s0
and previous actions. This facilitates the translation of action sequence planning into a navigation
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Figure 3: ToolChain∗ framework of three phases: (a) selection, (b) expansion, and (c) update. The
dark and grey circles indicate the explored actions and the potential but unexplored ones, respectively.
The blue circles represent the selected next step.

task originating from the root node of the decision tree. ToolChain∗ starts the search tree T with a
single root node, corresponding to the input input problem description s0. At each step, it selects a
node n from the frontiers of T (denoted as F(T )) according to the cost function. Then, it expands n
with the LLM to generate a set of k potential i.i.d. actions {a(j)ch(n)}

k
j=1 for the next step and grows T

with the generated actions. Finally, we update the actions into new nodes s(j)ch(n) = (sn, a
(j)
ch(n)) and

update their cost functions accordingly. Algorithm 1 describes the procedure in detail.

Algorithm 1: ToolChain∗.
Input: x: input; ρ: large language model; T :

the maximum exploring steps; T : the
decision tree; F(T ): the set of frontier
nodes in T ; f(n): the cost function of
node n.

Initialize T = {V, E}, V ← x, E ← ∅
for t = 1, 2, · · · , T do

nnext ← argminn∈F(T ) f(n) // Selection
{a(i)}ki=1 ← ρ(nnext) // Expansion
for i = 1, 2, · · · , k do

Add [nnext,a(i)] to T under nnext

Update f(n) for n in F(T ). // Update
Output: The valid path to solve the problem

argmaxn∈F(T ) f(n).

Selection. Given a search tree T , we denote its
nodes as V(T ). The frontier F(T ) ⊆ V(T ) con-
tains all the leaf nodes in T that have yet to be
explored. Given our objective to minimize the total
cost of the final solution, the optimal next node to
expand would be the most promising plan as part of
the best solution. Assume we possess a cost func-
tion oracle f(n), which provides the cost of the
best plan incorporating n to address the problem s0
under T . Then, we can select the next node with
the lowest cost: nnext = argminn∈F(T ) f(n). A
proper design of the value function f(n) not only
augments search efficiency but also aids in identi-
fying globally optimal solutions.

Expansion. Once the node n with the minimum
cost estimation f(n) has been selected, we expand
the search tree with k potential actions for the next
step. These actions are sampled from the potential
action set generated by LLMs a(j)ch(n) ∼ ρ(ach(n)|sn; I,D), (j = 1, · · · , k), given the API definitions

I and demonstration examples D. For the generated actions or reasoning steps {a(j)ch(n)}
k
j=1, we

establish their corresponding nodes under node n. Contrasting with the approach in MCTS (Hao
et al., 2023a), which requires multiple calls to ρ until a terminal state during rollout, our expansion
only requires a single call to generate the possible actions at the next step.

Update. Denote the search tree T after expansion of node n as T ′. Given that new nodes have been
incorporated and the original tree structure has changed, we need to update the frontier nodes as
F(T ′). With the new frontier nodes n ∈ F(T ′), we can compute their corresponding cost functions
for the next selection-expansion-update iteration.

Cost Function. We draw inspiration from A∗ algorithm to design and update the cost function
f(n). Specifically, A∗ selects the path that minimizes f(n) = g(n) + h(n), where n is the current
node, g(n) represents the cost of the path from the start node to n, and h(n) is a heuristic function
estimating the cost of the cheapest path from n to the goal.
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3.2 DESIGN OF CUMULATIVE COST g(n)

During the planning process, we assess the cumulative cost of actions in the current plan and guide
the planning based on the assessment. For each node n in the searching tree, we design a single-step
value function gt(n) ranging from 0 to 1 and formulate the cost as its complement 1− gt(n). Thus,
the cumulative cost of n can be computed by summing up all the single-step costs of its ancestor
nodes an(n): g(n) =

∑
i∈an(n) 1 − gt(i). More specifically, we combine two different value

functions, the task-specific heuristic function from reference data (long-term memory) gt,1(n) and
the self-consistency frequency by LLM gt,2(n), to compute cumulative cost g(n):

g(n) =
∑

i∈{an(n),n}

(1− gt,1(i))
α · (1− gt,2(i))

1−α, (1)

where α is a weight parameter for the geometric mean.

Task-Specific Heuristic Function gt,1(n). We can also maintain a long-term memory with successful
experiences and compute a heuristic score accordingly. The long-term memory starts from a seed set
of demonstration examples provided in a specific dataset and is iteratively extended with successful
plans during evaluation. Each example within the long-term memory is represented as a plan
mj = (sj,0, aj,1, aj,2, · · · , aj,Tj ) ∈ M. The number of actions Tj in the plan varies case-by-
case. To leverage the successful experiences for evaluating the current plan, we compute the
longest common sub-sequence (LCS) score between the current generated plan sn and each plan
mj in the long-term memory LCS score(sn,mj) =

LCS(sn,mj)
min(L(sn),L(mj))

, where L(·) indicates the
length of the plan. Following this, we compute the cumulative functions as the highest LCS score
gt,1(n) = maxmj∈M LCS score(sn,mj), measuring the proportion of success in the plan relative
to the experiences accumulated in the long-term memory.

Self-consistency Frequency gt,2(n). Self-consistency (Wang et al., 2022b) is an ensemble approach
that samples k i.i.d. actions at the next step {a(j)t+1}kj=1 ∼ p(at+1|x, a0, a1, · · · , at). We then select
the semantically different actions from the k generated samples as the set of potential next steps. For
tool-use scenarios, as the actions are strict in format of API functions and parameters, we directly
construct the set with non-repeating actions. For reasoning scenarios, however, actions represent
intermediate thought processes articulated in natural language. Inspired by Kuhn et al. (2022), we
apply a DeBERTa-large model (He et al., 2020) fine-tuned on natural language inference (NLI)
dataset MNLI (Williams et al., 2018) to determine whether the two generated actions entail each other
semantically. This allows us to discard actions that are semantically equivalent, only retaining those
that offer distinct reasoning as potential next steps. Lastly, we consider the frequencies of different
actions in the set as their corresponding cumulative score, given by gt,2(n) = #{j|a(j)t+1 = n}/k.

3.3 DESIGN OF FUTURE COST h(n)

Similar to the formulation of cumulative cost g(n), we integrate two distinct reward functions, the
task-specific heuristic function ht,1(n) and the Imagination Score by LLM ht,2(n), to compute h(n):

h(n) = (1− ht,1(n))
β · (1− ht,2(n))

1−β , (2)

where β is the geometric mean weight for future cost.

Task-Specific Heuristic Function. Similar to the heuristic function in the cumulative cost (Sec-
tion 3.2), we continue to leverage the long-term memory to compute the future score. From the
long-term memory, we can derive the average relative position score of the action a appearing in the
plans mj : ht,1(a) =

∑
mj∈M 1{a∈mj}

pos(a,mj)
Tj

, where pos(a,mj) indicates the relative position
of action a in the plan mj . Note that the action space can be infinite, and the long-term memory may
not cover all potential actions relevant to unseen tasks. Thus, given an action node n, we compute its
future score as the heuristic score of the lexically closest action covered in the long-term memory:
ht,1(n) = ht,1(argmaxa∈M LCS score(n, a)).

Imagination Score by LLM. Directly querying LLMs for self-evaluation of the future cost at the
current step often yields over-confident scores (Lin et al., 2022). To address this, we enable LLMs to
imagine more concrete future steps until the target nT . However, it is worth noting that the imagined
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Table 1: Main experiment results (success rate) on ToolBench, including tool use scenarios of (1)
Home Search, (2) Trip Booking, (3) Google Sheets, and (4) Virtual Home.

Models

GPT-3.5-turbo GPT-4

Home
Search

Trip
Booking

Google
Sheets

Virtual
Home

Average
Home
Search

Trip
Booking

Google
Sheets

Virtual
Home

Average

GPT (OpenAI, 2023) 80.0 85.8 51.4 18.9 59.2 97.0 96.7 62.9 23.5 70.0

ReAct (Yao et al., 2023b) 83.0 86.7 47.1 20.5 59.3 94.0 97.5 64.3 22.7 69.6
AdaPlanner (Sun et al., 2023) 90.0 87.5 55.7 20.7 63.5 97.0 97.5 66.7 27.1 72.1

ToT-DFS (Yao et al., 2023a) 82.0 81.7 53.4 21.0 59.5 95.0 96.7 62.9 24.8 69.9
ToT-BFS (T=5) (Yao et al., 2023a) 83.0 83.3 48.6 21.8 59.9 92.0 94.2 64.3 26.6 69.3
MCTS (Hao et al., 2023a) 85.0 86.7 62.9 24.4 64.8 96.0 94.2 66.7 31.3 72.1
ToolChain∗ 93.0 90.8 61.4 28.6 68.5 98.0 97.5 68.6 34.5 74.7

actions may not align with the real executed actions in future plans. To this end, we compute the
future score as the proportion of current steps present in the imagined plan, i.e., the ratio of the
number between the current node n ancestors to the target node nT : ht,2(n) =

|{an(n)}|
|{an(nT )}| . A higher

score suggests that the imagined plan closely captures the path to the current step, indicating that
fewer remaining steps are needed to accomplish the task in the imagination of LLMs.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness and efficiency of ToolChain∗ through comprehensive
experiments across a wide range of tool-use scenarios from ToolBench (Xu et al., 2023) (Section
4.2). In addition, we conduct extensive experiments on GSM8K (Cobbe et al., 2021) (Section 4.3) to
showcase the generalization of ToolChain∗ on pure reasoning tasks without tool interaction.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate ToolChain∗ on four tool-use environments in ToolBench (Xu et al., 2023) and
one reasoning task in GSM8K (Cobbe et al., 2021). For tool-use scenarios, we select environments
with both a vast action space comprising a large number of function tools, and a requirement of a deep
solution path with multiple API functions (i.e., complicated tasks), including Home Search, Trip
Booking, Google Sheets, and Virtual Home. Given that numerical reasoning requires multi-step
computations to calculate answers, we choose GSM8K (Cobbe et al., 2021) for evaluation on math
reasoning. Dataset details are available in Appendix D.1.

Baselines. For environments from ToolBench, we compare ToolChain∗ with the state-of-the-art
LLM planning algorithms from three main categories, including open-loop systems (GPT (OpenAI,
2023)), closed-loop systems (ReAct (Yao et al., 2023b) and Adaplanner (Sun et al., 2023)), and
tree search-based systems (Tree-of-Thoughts (Yao et al., 2023a) and MCTS (Hao et al., 2023a)).
For mathematical reasoning problems, we employ a similar set of baselines as in the tool-use
tasks. However, we exclude ReAct and AdaPlanner from mathematical reasoning evaluations.
This is because they heavily depend on high-quality environment feedback to adjust action plans,
which is unavailable in the GSM8K dataset. Additionally, since the action steps in the tool-use
scenarios inherently form coherent sequences, we limit our comparison of ToolChain∗ to Chain-of-
Thought (Wei et al., 2022) and Self-Consistency (Wang et al., 2022b) only for the math reasoning
task, and exclude it from the ToolBench evaluations. Baseline details can be found in Appendix D.2.

4.2 TOOL USE: TOOLBENCH

We conduct experiments across four distinct planning tasks to assess the effectiveness and efficiency
of ToolChain∗ in tool usage. The objective is to generate a sequence of API function calls to formulate
a solution plan for each given task. For instance, these tasks include questions or requirements from
users, e.g., “Could you help me find train tickets to Cape Coral?”. We present the main results,
visualize the case study, analyze time-wise efficiency, and discuss ablation studies within the tool-use
scenarios as follows. We report the success rate as the evaluation metric. Detailed task setup for
ToolBench is available in Appendix B.3.
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Figure 5: Time efficiency evaluation on (a) ToolBench and (b) GSM8K. We report the average
running time in seconds over all instances in the dataset. ToolChain∗ achieves competitive efficiency
to closed-loop systems without a tree structure and outpaces other tree search-based algorithms.

Results. Table 1 presents the main experiment results on ToolBench. Our proposed ToolChain∗

consistently outperforms across nearly all datasets, surpassing state-of-the-art baselines by mar-
gins of 3.7% and 2.5% with the base LLMs GPT-3.5-turbo and GPT-4, respectively. In com-
parison with the strongest closed-loop baseline AdaPlanner, ToolChain∗ improves the average
success rate by 3.8%. This improvement is because AdaPlanner relies heavily on environmen-
tal feedback, which may not always be available in the tool-use scenarios. Without such high-
quality feedback, closed-loop methods tend to explore a restricted trajectory within the action
space, making them more susceptible to propagating errors from previous actions to future plans.
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WalkTo(shower) WalkTo(bedroom)

Find(soap)

TurnTo(shower) Grab(soap)TurnOn(shower)

ToolChain* Exploration Space

ReAct Exploration 
Space

…
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… … …

Take Shower
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WalkTo(shower)

Find(shower)

TurnTo(shower)

…

Figure 4: Case study of ToolChain∗ and Re-
Act (Yao et al., 2023b) on Virtual Home dataset.
Compared to ReAct with a unidirectional search
(red), ToolChain∗ effectively enlarges search space
(blue) with tree structures.

Moreover, ToolChain∗ not only surpasses the
strongest tree search-based method, MCTS, but
also shows the ability to exploit a better solution
plan within the same exploration budgets. This
is because our proposed task-specific cost func-
tion allows ToolChain∗ to prioritize the expan-
sion of the most promising branches. Additional
analysis is available in Appendix D.3.

Case Study. Figure 4 depicts an example
of ToolChain∗ (GPT-4) and ReAct (Yao et al.,
2023b) on a “take shower” task in Virtual Home
dataset. According to the ground truth (green,
“shower”), ToolChain∗ generates the correct ac-
tion plan (blue, “shower”) with an expanded
search space, whereas the baseline searching
method gets trapped in a locally optimal solu-
tion (red, “soap”). This suggests that by for-
mulating and expanding upon a tree-based ac-
tion space, ToolChain∗ is capable of effectively
searching for the globally optimal solution in
complex multi-step planning tasks.

Table 2: Ablation studies on ToolBench.
Home
Search

Trip
Booking

Google
Sheets

Virtual
Home

Average

ToolChain* 93.0 90.8 61.4 28.6 68.5
−g1,t(n) 91.0 88.3 60.0 22.6 65.5
−g2,t(n) 84.0 83.3 54.3 25.3 61.7
−h1,t(n) 88.0 87.5 61.4 23.0 65.0
−h2,t(n) 85.0 85.8 51.4 24.9 61.8

−g(n) 61.0 34.9 44.2 21.0 40.3
−h(n) 84.0 85.8 53.4 26.1 62.3

Efficiency Evaluation. In terms of efficiency,
we evaluate the running time of ToolChain∗

against all the baselines based on GPT-3.5-
turbo, as depicted in Figure 5(a). Remark-
ably, ToolChain∗ is 37.2% faster than the most
efficient tree search-based method, Tree-of-
Thoughts (BFS). This efficiency gain may stem
from the proposed superior cost function, which
efficiently navigates the most promising paths.
Additionally, ToolChain∗ outpaces the best-
performing tree search-based method, MCTS,
by an impressive 415.84%. This discrepancy
arises because ToolChain∗ focuses on expanding only the immediate next action during exploration.
In contrast, MCTS goes through a more exhaustive process, simulating the entire future plan step by
step using a rollout mechanism. Efficiency results based on GPT-4 are available in Appendix D.5.
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Ablation Studies. We conduct ablation studies to evaluate the effectiveness (success rate) of both
the cumulative and future cost functions (Table 2). The results suggest that each component of the
cumulative and future cost functions contributes to the performance of ToolChain∗. This verifies the
efficacy of our proposed cost functions in guiding the search through the decision tree. In addition,
eliminating either the entire cumulative or future cost results in a marked decline in the success rate.
Relying exclusively on the future cost results in a sharp performance drop of 28.2%, deteriorating
ToolChain∗ to a greedy strategy that favors the shortest solution plans with the least number of actions.
Conversely, if the search is guided only by the cumulative cost, ToolChain∗ essentially mirrors the
behavior of the BFS algorithm, yielding similar performance. Further analysis is in Appendix D.6.

4.3 MATH REASONING: GSM8K

Beyond tool-use scenarios, we demonstrate the flexibility of ToolChain∗ by generalizing its appli-
cation to mathematical reasoning for solving math word problems. We conduct experiments on the
entire set of GSM8K and also a subset of hard questions from GSM8K collected in ToolQA (Zhuang
et al., 2023). Detailed task setup for GSM8K is available in Appendix B.4.

Table 3: Main results on math reasoning task in
GSM8K and its hard subset collected in ToolQA.

Models
GPT-3.5-turbo GPT-4

GSM8K ToolQA GSM8K ToolQA

GPT 67.3 26.0 86.6 66.0
CoT 70.1 30.0 87.5 75.0
Self-Consistency 76.1 47.0 92.4 78.0

ToT-DFS 69.9 32.0 89.2 76.0
ToT-BFS 72.3 39.0 91.3 77.0
MCTS 74.7 27.0 91.0 74.0
ToolChain* 77.0 52.0 93.5 84.0

Results. Table 3 presents the main experi-
mental results (accuracy) for GSM8K and its
challenging subset from ToolQA. Similar to
tool-use studies (Table 1), ToolChain∗ consis-
tently outperforms all baselines in both the orig-
inal set and the challenging subset. These re-
sults demonstrate the flexibility and generaliza-
tion capabilities of ToolChain∗ in mathematical
reasoning tasks. Notably, ToolChain∗ demon-
strates greater advantages over other baselines
on ToolQA (hard questions) than on GSM8K,
indicating its superior capability in solving com-
plicated tasks. This is because simpler questions
are composed of simple and static reasoning,
eliminating the need for multiple branches. In
contrast, challenging questions often involve complex reasoning, numerous intermediate steps, and
multiple solution paths. The superior performance on hard subsets emphasizes the capability of
ToolChain∗ in solving complicated reasoning problems. Furthermore, the efficiency analysis pre-
sented in Figure 5(b) indicates that ToolChain∗ ranks among the most efficient tree-based search
baselines and has a time efficiency comparable to closed-loop systems without a tree structure.
Detailed case studies of action space exploration and efficiency analysis with the number of valid
actions are available in Appendix D.4 and D.5, respectively.

4.4 DISCUSSION: EMPIRICAL ANALYSIS
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Figure 6: Scaling analysis of ToolChain∗. (a) Per-
formance and (b) running time on ToolBench and
GSM8K when scaling up step limitations T .

From the comprehensive evaluations in planning
and reasoning tasks presented in Sections 4.2
and 4.3, we validate that ToolChain∗ addresses
the two core limitations of open-/closed-loop
LLM-based agents, error propagation in multi-
step solutions and constrained exploration in
expansive action spaces. Meanwhile, we demon-
strate ToolChain∗ a more efficient searching
strategy compared to existing tree search-based
agents. From the scaling-up analysis in Fig-
ure 10 in Appendix D.5, alongside experimental
results in Table 1 and efficiency metrics in Fig-
ure 5, we identify a crucial trade-off between
effectiveness and efficiency in the direct appli-
cation of tree search-based reasoning methods to complex tool use scenarios. To validate ToolChain∗
in solving these issues, we summarize key findings from experiments as follows: (1) From the main
experimental results shown in Tables 1 and 3, ToolChain∗ surpasses open-/closed-loop and tree search
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baselines in complex multi-step planning and reasoning tasks, effectively mitigating error propaga-
tion. A visualization example of how ToolChain∗ gradually abandons the faulty path and mitigates
error propagation is available in Figure 7 in Appendix D.4. (2) From case studies in Figures 4, 7,
and 8, ToolChain∗ navigates the path toward an optimal solution by formulating the action space as
a decision tree, thereby extensively broadening the exploration space. (3) From Figures 5 and 9,
ToolChain∗ significantly accelerates the search process compared to other tree search-based methods,
achieving time efficiency even comparable to closed-loop systems without a tree structure. (4) From
tool-use in ToolBench to math problems in GSM8K, we show that ToolChain∗ is a plug-and-play
generalizable framework applicable to a wide range of planning and reasoning problems. Notably,
it exhibits exceptional proficiency in solving more challenging tasks, like ToolQA, compared to
baselines. Additional results in Appendix E and F show that ToolChain∗ can generalize to a wide
range of complex reasoning tasks and open-source LLMs (e.g., LLaMA 2 (Touvron et al., 2023)). (5)
There is a trade-off between search depth (i.e., limitations on the number of steps) and the quality of
the solution path (Figure 6). ToolChain∗ efficiently searches optimal solutions within limited steps,
striking a balance between exploration and exploitation.

5 RELATED WORKS

LLMs for Tool Use. Recent advances have leveraged LLMs as autonomous agents to master tools
and generate solution plans for complicated problems (Qin et al., 2023a;b; Mialon et al., 2023; Shi
et al., 2024). Interacting with various tools, LLM agents can augment themselves with real-time
factual knowledge (Nakano et al., 2022; Yang et al., 2023a), multi-modality understanding (Shen
et al., 2023; Lu et al., 2023; Yang et al., 2023c), computational abilities (Schick et al., 2023; Parisi
et al., 2022), code interpretabilities (Gao et al., 2022; Paranjape et al., 2023), and domain-specific
functionalities (Zhang, 2023; Jin et al., 2023). However, many existing methods either concentrate on
individual tool-use scenarios (Schick et al., 2023; Parisi et al., 2022) or simply inject human-made
heuristic ordering rules for multi-tool utilization (Shen et al., 2023; Lu et al., 2023). With the
increasing number of potential API functions at each step and the escalating sequence of actions
for complex problem solutions, the action space expands exponentially, thereby diminishing their
effectiveness. ToolChain∗ frames the planning challenge across various tools as navigation through
the action space to efficiently identify a valid solution path.

LLMs with Search Algorithms. The majority of LLM-based agents with open- or closed-loop
systems rely on linear reasoning or planning structure. To explore multiple branches in the action
space, self-consistency (Wang et al., 2022b) samples multiple chains of thoughts, which can be
considered as multiple i.i.d. solution paths in the decision space, selecting the best answer through
majority voting. Maieutic prompting (Jung et al., 2022) generates a tree of explanations, enforcing
logical consistency. Xie et al. (2023) adopts beam search to decode and improve Chain-of-Thoughts
reasoning chain. CoRe (Zhu et al., 2023) proposes to fine-tune both the reasoning step generator
and verifier to solve math word problems, incorporating MCTS for reasoning decoding. Tree-of-
Thoughts (Yao et al., 2023a) utilizes heuristic approaches, including depth- and breadth-first search
to identify better reasoning pathways. Additionally, RAP (Hao et al., 2023a) combines a world model
with rewards within an advanced MCTS search approach. However, many search-guided planning
approaches face the trade-off between efficient exploration of an expansive action space against the
effective exploitation of global optimal solutions. To avoid exhaustive exploration like MCTS, we
propose ToolChain∗ to combine efficient A∗ search with the effective reasoning ability of LLMs.

6 CONCLUSION

In this paper, we propose ToolChain∗, an A∗ tree search-based planning algorithm to augment LLMs
with external tools for complicated real-world planning and reasoning tasks. Compared to existing
open- or closed-loop LLM agents, ToolChain∗ formulates the action space as a decision tree, thereby
effectively mitigating error propagation and extensively expanding the search space. Furthermore,
ToolChain∗ significantly accelerates the search process compared to other tree search-based methods,
enabling tree search in complicated action space and striking a dynamic balance between exploration
and exploitation. By achieving significant improvements over state-of-the-art baselines, ToolChain∗
showcases its potential as an efficient planning algorithm, navigating LLM-based agents in addressing
complex real-world challenges.
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A BROADER IMPACTS AND LIMITATIONS

In this study, we introduce ToolChain∗, an efficient tree search-based planning algorithm for LLMs-
based agents tackling challenging tasks involving tool usage. As a flexible plug-and-play framework
with compositional planning and reasoning capabilities, ToolChain∗ holds considerable promise for
positive social impact across diverse domains, including but not limited to real-world tool utilization
and complex decision-making processes. One potential limitation to consider is that, while the
efficiency of our proposed ToolChain∗ surpasses other tree search methods and is even comparable to
closed-loop systems, it still cannot match the efficiency of open-loop systems. Given the demands for
efficiency in real-world applications, we intend to further refine our tree structure and search strategy
in future work.

B IMPLEMENTATION DETAILS

B.1 HARDWARE INFORMATION

All experiments are conducted on CPU: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz and
GPU: NVIDIA A100 SXM4 80 GB using Python 3.8.13.
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B.2 PARAMETER CONFIGURATION

We chose the GPT-3.5-turbo engine for ChatGPT and the GPT-4 engine for GPT-4 when structuring
the LLM-based agent. The maximum length for generated solutions is set to 512, and the temperature
is set to 1 for flexibility in self-consistency frequency function gt,1 (Section 3.2). For LLaMA-2
experiments, the maximum length for generated solutions is set as 256 and the temperature is set
to 1. We use 8 NVIDIA A100 SXM4 80 GB GPUs and FastChat (Zheng et al., 2023) to tune the
LLaMA-2 7B and 13B models on the training data discussed in Appendix F. For ToolChain∗, we set
the weights of geometric means between heuristic and non-heuristic parts in cumulative and future
costs as α = β = 0.5 by default. The number of potential actions in self-consistency frequency is set
as k = 10 and the maximum step limit is set as T = 20 by default. Our code repository is presently
undergoing an internal review within the company for public release. Upon receiving approval, we
will make both the code and data available on GitHub.

B.3 TASK SETUP FOR TOOLBENCH

We define the nodes in the decision tree as function API calls. From the root node, which corresponds
to the input task description, we represent the complex process of identifying a successful solution as
navigating a valid path in the tree search space. To expand from the current node, we prompt LLMs
with API definitions, demonstration examples, the given query, and action history, thereby generating
multiple i.i.d. next steps. In order to precisely evaluate plan quality and gauge the proximity of
the current action to the goal, we employ task-specific heuristic functions (Section 3.2) for both
cumulative and projected scores. To ensure a fair comparison, all prompts dispatched to the baselines
and ToolChain∗ follow the configuration set by ToolBench (Xu et al., 2023). Detailed descriptions of
prompts are available in Appendix I.1. We adopt the success rate as the evaluation metric for Home
Search, Trip Booking, and Google Sheets. For Virtual Home, we report the proportion of scripts
achieving the correct end state or successfully completing the task.

B.4 TASK SETUP FOR GSM8K

GSM8K (Cobbe et al., 2021) serves as a dataset for high school-level mathematical reasoning.
Numerical reasoning tasks within this dataset typically comprise a descriptive component followed
by a culminating question. Answering this question requires multi-step mathematical calculations
based on the context of the description. Notably, the complexity directly relates to the number of
mathematical reasoning steps required for a solution. We conduct experiments on the entire set of
GSM8K and also a subset of hard questions from GSM8K collected in ToolQA (Zhuang et al., 2023).
In adapting ToolChain∗, we represent reasoning steps in a solution as nodes in the decision tree. With
the math question description as the root node, complex reasoning across numerous intermediate
steps is translated into navigating the decision space for a valid path. Given the absence of seed data
for long-term memory, we simplify ToolChain∗ to leverage self-consistency frequency and LLM
imagination as the cumulative score g(n) and future score h(n), respectively.

C LLM-BASED AGENTS

We summarize existing LLM-based Agents for tool-use scenarios in Table 4, with a detailed definition
and related works of open- and closed-loop systems in the following sections.

C.1 OPEN-LOOP SYSTEM

Open-loop Systems (Wei et al., 2022; Zhou et al., 2022) generate pre-defined plans to explore over
coherent intermediate steps toward problem-solving. Given the initial states s0, which are usually the
problem description x in the format of natural language, the systems generate the entire T -step plans
as the solution ρ(a1, a2, · · · , aT |s0) : S → ∆(AT ), where S is the state space, A is the action space,
and ∆(·) is probability simplex function. The final output is obtained after executing the entire plan
y ∼ p(y|s0, a1, a2, · · · , aT ).
LLMs for Open-Loop Planning. Trained on vast world knowledge and human examples, LLMs have
emerged with smart planning and decision-making capabilities. Leveraging LLMs as autonomous
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Table 4: A comparison of methods that leverage LLMs for tool-use. Each method’s features are
reported into five categories: 1) Basic Information: The basic information of the method about
tool-use relevance, covering the total number and type of tools used by the methods, the number of
tools involved in solving each problem, the instruction type of methods, and the tasks for evaluation.
2) Planning Ability: The method will generate a complete plan to solve problems. 3) Modify Steps:
The method makes changes to the next action (Taking Action). 4) Modify Plans: The method might
revise the entire plan (Modifying Plan) and make changes accordingly or not. 5) Trace Back: The
method can revise the past actions in the plan and make modifications to restart from previous actions.
Methods #Tools Tool Types #Tool/Task Instruction Type Task Planning Modify Steps Modify Plans Trace-Back

Open Loop Methods

CoT (Wei et al., 2022) 1 - 1 Prompting QA " % % %

Lila (Mishra et al., 2022) 1 Code (Math) 1 Prompting MathQA " % % %

PoT (Chen et al., 2022) 1 Code (Math) 1 Prompting TabQA " % % %

Code4Struct (Wang et al., 2022a) 1 Code (Event) 1 Prompting Extraction " % % %

PAL (Gao et al., 2022) 1 Code (Math) 1 Prompting MathQA " % % %

MathPrompt (Imani et al., 2023) 1 Code (Math) 1 Prompting MathQA " % % %

ToolFormer (Schick et al., 2023) 5 Basic 1 PR & FT QA " % % %

GraphToolFormer (Zhang, 2023) 5 Graph 1 PR & FT Graph " % % %

Talm (Parisi et al., 2022) - Basic 1 PR & FT QA " % % %

HuggingGPT (Shen et al., 2023) >10 Vision Models >1 Prompting VQA " % % %

Chameleon (Lu et al., 2023) >10 NLP, Table >1 Prompting QA " % % %

GeneGPT (Jin et al., 2023) 38 NCBI APIs >1 Prompting Gene Tasks " % % %

Greedy Closed-Loop Methods

WebGPT (Nakano et al., 2021) 10 Web Operations >1 Fine-tuning QA " " % %

ART (Paranjape et al., 2023) 8 Code, Basic >1 Prompting BigBench " " % %

ReAct (Yao et al., 2023b) 3 Retriever >1 PR & FT QA, Env " " % %

MM-ReAct (Yang et al., 2023c) >10 Vision Models >1 Prompting CV tasks " " % %

Visual ChatGPT (Wu et al., 2023) >10 Vision Models >1 Prompting CV tasks " " % %

Closed-Loop Methods

DEPS (Wang et al., 2023) - Game - PR & FT Game " " " %

AdaPlanner (Sun et al., 2023) - Actions - Prompting Envs " " " %

Tree Search-based Methods

ToT (Yao et al., 2023a) - Thoughts - PR Planning " " " "

MCTS (Hao et al., 2023a) - Thoughts - PR Planning " " " "

ToolChain∗ >10 General > 1 PR & FT Envs, MathQA " " " "

agents to accomplish decision-making tasks has gained attention and shown potential. Earlier studies
apply the open-loop framework to directly generate the entire plan as the solution. One line of
works, including Chain-of-Thought (Wei et al., 2022) and Zero-Shot Planner (Huang et al., 2022a),
generate intermediate reasoning steps all at once to solve the problem. Another line of works
selects the opposite direction (e.g., least-to-most prompting (Zhou et al., 2022)) that decomposes the
complicated problems into relatively easier sub-problems. For more complex tasks, methods like
HuggingGPT (Shen et al., 2023) and Chameleon (Lu et al., 2023) incorporate a set of functional
tools and directly generate the plan of API calls in a sequence for execution. However, all these
aforementioned methods explore a predetermined single path in the decision space, leaving the rest
potential plans not considered when solving the problems.

C.2 CLOSED-LOOP SYSTEM

Closed-loop Systems follow a more step-by-step plan modification and execution manner, inter-
leaving intermediate observations with decisions over the action space. When the agent interacts
with the environment at the t-th step, the agent is aware of the current observation ot ∈ O from
the environment and generates a trajectory-like context ct = (s0, a1, o1, a2, · · · , ot). In tool-use
scenarios, the intermediate observations are obtained during the execution of the previous actions in
the plan ot ∼ π(ot|s0, a1, o1, · · · , at−1). According to the environment feedback ot, two levels of
refinements can be applied: greedy closed-loop methods (Yao et al., 2023b; Shinn et al., 2023) only
decide the next single step at ∼ ρ(at|s0, ct; I,D), while the standard ones (Wang et al., 2023; Sun
et al., 2023) will modify the entire future plans π(at+1, at+2, · · · , aTg |s0, ct; I,D).
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Table 5: Task overview of (1) Home Search, (2) Trip Booking, (3) Google Sheets, (4) Virtual Home,
and (5) GSM8K datasets. We provide examples of task descriptions with output actions, and report
the number of APIs (# APIs) and questions (# Ques) within each dataset.

Datasets Task Descriptions Output Actions # APIs # Ques # APIs/Sol

Home
Search

I want to buy a townhouse, mobile or co-op
in Pittsburgh with 4 rooms. My budget is
$1385000.

API.set location(”Pittsburgh”)
API.set buy or rent(”buy”)· · ·

15 100 7.5

Trip
Booking

Could you help me find train tickets for 3
children and 5 adults from Des Moines to
Cape Coral on July 07, 2022?

API.select booking type(”trip tickets”)
API.select transportation(”train”)· · ·

20 120 13.4

Google
Sheets

Update chicken’s price by 2. [A table is
flattened in the context.]

df = get as dataframe(worksheet)
df.loc[df[’Product’] == ’chicken’, ’Price’] += 2· · ·

108 70 6.1

Virtual
Home

Read book Agent.Find(novel)
Agent.TurnTo(novel)· · ·

40 100 13.4

GSM8K
(ToolQA)

Elsa has 5 apples. Anna has 2 more apples
than Elsa. How many apples do they have
together?

1. Anna has 2 more apples than Elsa.
2. So Anna has 2 + 5 = 7 apples.· · ·

- 1319
(100)

-

LLMs for Closed-Loop Planning. Inspired by traditional reinforcement learning approaches that
heavily rely on interaction with the environment (either simulator or real world), researchers start
to improve the plan via refinement according to the environment feedback. Initially, ReAct (Yao
et al., 2023b) and Inner Monologue (Huang et al., 2022b) allow LLM agents to refine a single step
greedily according to the environment feedback. Considering that solely modifying the immediate
action being executed is easy to fall into local sub-optimal actions, improvements like DEPS (Wang
et al., 2023) and AdaPlanner (Sun et al., 2023) are proposed to recursively modify the entire future
plans according to the environment feedback. However, without a tracing-back mechanism to check
the already executed plans, these efforts in the closed-loop framework still only explore a small
proportion of decision space. To mitigate these issues, we propose ToolChain∗, that enables tree
search in planning and can record multiple branches in the decision space.

D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

We evaluate ToolChain∗ on four tool-use environments in ToolBench (Xu et al., 2023) and one
reasoning task in GSM8K (Cobbe et al., 2021). Table 5 provides examples of task descriptions and
output actions and reports the number of APIs and questions incorporated in the environment.

• Home Search simulates the process of locating homes in a specific area based on certain criteria.
Agents are required to leverage 15 functions (e.g., set location, search, etc.), to aid users in
completing the search.

• Trip Booking is a task that parallels the Home Search but incorporates more advanced dependencies
between function calls. This task simulates the process of submitting search requests for transportation
tickets, hotel rooms, or a combination of both. Specifically, it is guided by specific searching
conditions or parameters like locations, dates, and the number of tickets. The API includes a total of
20 functions related to trip booking scenarios.

• Google Sheets involves manipulating actual worksheets from Google Sheets 1 via the gspread
library 2, including common operations such as updating cell values, sorting, etc..

• Virtual Home derives from the setting of the VirtualHome simulator (Puig et al., 2018). It
requires the LLM agents to generate sequences of actions with multiple function calls for com-
pleting household activities. It consists of 40 functions (e.g., Sleep(), Push(object), and
PourInto(object1, object2)), each corresponding to a specific action exemplified in the

1https://www.google.com/sheets/about/
2https://docs.gspread.org/en/latest/
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simulator. Every function can take up to two arguments, representing valid objects within the
household settings.

• GSM8K (Cobbe et al., 2021) is a dataset of high-quality linguistically diverse grade school math
word problems. To evaluate the model performance on the GSM8K dataset, we evaluate the accuracy
at which models are able to obtain the final correct answer. In addition, we also report model
performance on a subset of hard questions in GSM8K, curated by ToolQA (Zhuang et al., 2023). The
hard questions are sampled from the error cases made by ChatGPT on the original GSM8K dataset.

D.2 BASELINE DETAILS

For tool-use tasks in ToolBench, we compare ToolChain∗ with GPT (OpenAI, 2023), ReAct (Yao
et al., 2023b), AdaPlanner (Sun et al., 2023), Tree-of-Thoughts (Yao et al., 2023a), and MCTS (Hao
et al., 2023a). For math reasoning tasks in GSM8K, we compare ToolChain∗ with the state-of-the-art
reasoning approaches, including GPT (OpenAI, 2023), Chain-of-Thought (Wei et al., 2022), Self-
Consistency (Wang et al., 2022b), ReAct (Yao et al., 2023b), Tree-of-Thoughts (Yao et al., 2023a),
and MCTS (Hao et al., 2023a).

We provide details of each baseline as follows:

• GPT (OpenAI, 2023) is a standard input-output prompt with four in-context examples. We directly
send the four-shot examples with the task description together to GPT-3.5-turbo and GPT-4. GPT
series serve as open-loop systems with closed-source LLMs as backbones.

• Chain-of-Thought (Wei et al., 2022) prompting is an open-loop mechanism to enhance reasoning
in language models. Chain-of-thought prompting breaks down multi-step problems, allocating
additional computational resources for extensive reasoning stages step by step.

• Self-Consistency (Wang et al., 2022b) is an open-loop decoding strategy to replace the conventional
greedy decoding typically employed in chain-of-thought prompting. It initially samples an array
of diverse reasoning paths rather than solely relying on the most probable one. Subsequently, by
marginalizing over these sampled reasoning trajectories, it pinpoints the most coherent answer.

• ReAct (Yao et al., 2023b) integrates reasoning with tool use by prompting LLMs to generate
interleaved verbal reasoning traces and tool calls. ReAct is a closed-loop system for LLM-based
agents in tool usage.

• AdaPlanner (Sun et al., 2023) is a closed-loop system that enables the LLM agent to adaptively
refine its self-conceived plan based on feedback from the environment. This refinement process
leverages both in-plan and out-of-plan strategies.

• Tree-of-Thoughts (Yao et al., 2023a) is a tree search-based LLM reasoning framework that built
upon chain-of-thought prompting. It facilitates exploration across cohesive textual segments, which
act as intermediary steps in the problem-solving process. Unlike linear reasoning pathways in open-
or closed-loop systems, ToT enables language models to engage in decision-making by examining
various reasoning trajectories. With the ability to self-assess choices for the subsequent steps, ToT
provides the flexibility to anticipate future steps or revisit previous ones to make holistic decisions.

• MCTS (Hao et al., 2023a) is a tree search-based LLM reasoning framework, repurposing LLM
and functioning both as a world model and a reasoning agent. It integrates a principled planning
algorithm, specifically based on MCTS, facilitating strategic exploration in the expansive reasoning
space. LLM-based agent systematically constructs a reasoning tree, guided by its inherent world
model and task-specific rewards.

D.3 ADDITIONAL ANALYSIS ON TOOLBENCH

We observe that closed-loop methods typically perform better than tree search-based methods on
the Home Search and Trip Booking datasets. Conversely, for the Google Sheets and Virtual Home
datasets, tree search-based methods perform better. This discrepancy can be attributed to the nature
of feedback provided by the datasets. For instance, the Home Search and Trip Booking datasets offer
precise environmental feedback regarding plan errors (e.g., “Task execution error: ’HomeSearchAPI’
object has no attribute ’set min baths’”), enabling closed-loop systems to effectively modify their
plans. In contrast, the Google Sheets and Virtual Home datasets, with their extensive API function
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calls (108 and 40, respectively), present a notably larger action space than Home Search and Trip
Booking (15 and 20, respectively).

D.4 CASE STUDIES

Q: A toy manufacturer receives an order for 400 toys. 5 workers are available to work on the order. 2 of the 
workers produce 6 toys an hour, and another 2 workers produce 4 toys an hour. They all work on the order during 
their 10-hour shift, and by the end of their shift the manufacturer still needs another 20 toys to be able to 
ship the order. How many toys per hour does the fifth worker produce?

2×6=12 2×6×10=120

2×4=8

(12+8)×100=200 12+8=20400-20=380

200+20=220 400-20=380 400-20-200=180 20-20=0

380-200=180

180/10=18

2×4×10=80

400-20=380 120+80=200

400-20=380 400-20-200=180

ToolChain* Exploration Space

CoT Exploration 
Space

ToolChain* Explored Nodes CoT Solution

ToolChain* Solution Correct Answer

ToolChain* Execution

CoT Execution

… … … …

Problem Description

ToolChain* Exploration

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5

Step 6 Step 7 Step 8 Step 9 Step 10

ToolChain* Execution

CoT Execution

ToolChain* Exploration

ToolChain* Solution

CoT Solution

Correct Answer

Problem Description

Figure 7: Case study comparing Chain-of-Thought and ToolChain∗ on GSM8K dataset. We offer
comparison in exploration space (upper part) and planning ordering (lower part). Given the input
query, ToolChain∗ explores a wide range of potential nodes (blue shadowed area) in the decision
tree, while Chain-of-Thought only explores one direction (red shadowed area). During the planning
process, a chain of thought can fall into a faulty loop or a dead end with a previous incorrect action.
However, ToolChain∗ can gradually abandon the faulty path by increasing the cost after the incorrect
action. This enables it to revise previous actions and jump out of the faulty path to try another plan.

We include additional case studies with visualizations comparing the Chain-of-Thought and
ToolChain∗ on the GSM8K dataset. As shown in Figures 7 and 8, we compare the exploration
space (upper part) and planning ordering (lower part) of both methods on the same problem. Given
the input query, ToolChain∗ explores a wide range of potential nodes (blue) in the decision tree, while
Chain-of-Thought only explores one direction (red). Moreover, from a step-by-step visualization
of the planning process in Figure 7, we notice that chain-of-thought falls into a faulty loop or a
dead end with a previous incorrect action. However, ToolChain∗ can gradually discard the faulty
path by increasing the cost after the incorrect action. This allows our method to re-evaluate and
adjust prior actions, facilitating a shift away from erroneous paths to explore alternative plans. More
importantly, it mitigates the error propagation along the action plan, which usually occurs in linear or
unidirectional solutions (i.e., open- and closed-loop systems).
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Q: Alex, Stan, and Adelwolfe are trying to catch them all, Pokemon that is.  Together they have caught 
339 Pokemon.  Alex has caught 5 more than Stan, and Stan has caught 13 less than 4 times as many as 
Adelwolfe has caught. How many Pokemon has Stan caught?

Adelwolfe: D Stan: S A+S+D=339

Stan: S=4D-13

Alex: 4D-8

Alex: S+5

S=4D-13

S+(S+5)+(4D-13)=339A=(S+13)/4D+(4D-13)+(4D-8)=339

A=S+5

S=4D-13

9D-21=339 2S+4D-8=339

D+5+(4D-13)=339 S+5+(4D-13)+D=339

D=347/5=69.4 S+5D=347

D+(4D-13)+A=339 Alex: S-8

D=40

S=4×40-13=147

S=263

A+5D=352

ToolChain* Exploration Space
CoT Exploration 

Space

ToolChain* Explored Nodes CoT Solution

ToolChain* Solution Correct Answer

ToolChain* Execution

CoT Execution

Problem Description

ToolChain* Exploration

…

…

Figure 8: Case study comparison between Chain-of-Thought and ToolChain∗ on the GSM8K dataset.
The exploration space is illustrated in the upper section, and the planning order is depicted in the
lower section. For a given input query, ToolChain∗ explores an expansive set of potential nodes (blue)
with correct answers, whereas Chain-of-Thought primarily navigates in a singular direction (red).
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Figure 9: Additional time efficiency evaluation on ToolBench and GSM8K. (a) We report additional
average running time in seconds over all instances in the dataset using GPT-4 backbone. (b) We
calculate the average number of valid actions in GSM8K for math reasoning efficiency analysis. In
both cases, ToolChain∗ shows close efficiency to closed-loop systems without a tree structure and
outperforms other tree-search algorithms in terms of efficiency.

D.5 EFFICIENCY DETAILS

In terms of additional efficiency analysis in tool use, we evaluate the running time of ToolChain∗

against all the baselines based on GPT-4, as shown in Figure 9(a). Consistent with our previous
results, ToolChain∗ is faster than the most efficient tree search-based method, Tree-of-Thoughts
(BFS). For the math reasoning task, we conduct efficiency analysis with a number of valid actions
in Figure 9(b). We calculate the average number of valid actions in GSM8K for math reasoning
efficiency analysis. Similarly, ToolChain∗ shows close efficiency to closed-loop systems without a
tree structure and outperforms other tree-search algorithms in terms of efficiency.

From the scaling-up analysis in Figure 10, we can explicitly identify a crucial trade-off between
effectiveness and efficiency in the direct application of tree search-based reasoning methods to
complex tool use scenarios, including ToT-DFS (Yao et al., 2023a), ToT-BFS (Yao et al., 2023a),
and MCTS (Hao et al., 2023a). Compared with ToolChain∗, which quickly converges on with time
efficiency and high-quality solution, the rest tree-based search methods not only suffer from relatively
low success rate (Figure 10(a)), but also struggle with the long running time (Figure 10(b)). This
could be further verified by experimental results in Table 1 and efficiency metrics in Figure 5.
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Figure 10: Scaling analysis of ToT-DFS (Yao et al., 2023a), ToT-BFS (Yao et al., 2023a), MCTS (Hao
et al., 2023a), and ToolChain∗. (a) Performance and (b) running time on Home Search when scaling
up step limitations T .

D.6 ABLATION STUDIES DETAILS

We conduct a detailed analysis of the ablation studies for both the cumulative and future cost functions
in the following, as presented in Table 2. First, experimental results indicate that each element within
both the cumulative and future cost functions enhances the performance of ToolChain∗. This verifies
the efficacy of our proposed cost functions in guiding the search through the decision tree. Second,
dropping either the heuristic components (g1,t, h1,t) or the non-heuristic (g2,t, h2,t) components from
the cumulative or future cost functions results in a decline in performance. Specifically, when the non-
heuristic components are absent, there is an average drop in the success rate of 6.8%; whereas, without
the heuristic components, the decrease is 3.3%. This suggests that in most instances, non-heuristic
components have a more significant impact. This is potentially because heuristic components, relying
on long-term memory, are limited in covering all test cases and may struggle to precisely estimate
the cost of new actions or tasks. In scenarios where environments offer high-quality seed data for
long-term memory (e.g., Virtual Home), the heuristic function plays a more important role. Third,
eliminating either the entire cumulative or future cost results in a marked decline in the success rate.
Relying exclusively on the future cost induces a sharp performance drop of 28.2%, deteriorating
ToolChain∗ to a greedy strategy that favors the shortest solution plans with the least number of actions.
Conversely, if the search is guided only by the cumulative cost, ToolChain∗ essentially mirrors the
behavior of the BFS algorithm, yielding similar performance outcomes.

E ADDITIONAL DATASET: SCIENCE QA

Table 6: Additional results on ScienceQA based on GPT-3.5-turbo.
Models Accuracy

CoT (GPT-3.5-turbo) 78.3
Chameleon (GPT-3.5-turbo) 79.9
ToolChain∗ (GPT-3.5-turbo) 80.7

We evaluate ToolChain∗ in Science Question Answering (ScienceQA) (Lu et al., 2022) dataset on
general reasoning tasks. ScienceQA serves as a diverse benchmark for multi-modal question answer-
ing across an array of scientific topics and contexts. Answering its questions requires a variety of
tools and capabilities, including image captioning, text detection, knowledge retrieval, online resource
searches, and multi-clue visual reasoning. Since ToolChain∗ can function as a plug-and-play planner,
we replace the original naive LLM-based planner in Chameleon with ToolChain∗ for evaluation
purposes. For our experiments, we select the Chain-of-Thought (Wei et al., 2022) and the original
Chameleon (Lu et al., 2023) as reference baselines. When built upon GPT-3.5-turbo as the founda-
tional LLM, ToolChain∗ realizes an accuracy improvement of 0.8% over Chameleon. ToolChain∗

benefits from considering multiple potential paths for execution. However, the performance gain is
limited on the dataset, primarily because the logic behind calling different tools to solve the problem
from the dataset is quite rigid.
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F OPEN-SOURCE LLMS

Table 7: Additional experimental results (success rate) on Virtual Home for tool-use evaluation based
on LLaMA-2 (Touvron et al., 2023) 7B and 13B models.

Models Executable Success Success (E)

LLaMA-2 (7B) 31.0 21.2 -
LLaMA-2 (13B) 30.0 19.8 -

StepLLaMA-2 (7B) 57.0 25.4 29.5
StepLLaMA-2 (13B) 56.0 25.3 27.4

ToolChain∗ (Step-LLaMA-2, 7B) 57.0 28.7 31.0
ToolChain∗ (Step-LLaMA-2, 13B) 96.0 30.0 30.2

Task Setup In this section, we explore the potential of leveraging ToolChain∗ on open-source large
language models. ToolBench (Xu et al., 2023) offers the training data for each of the datasets. The
instructions in the original training data include the task query g and a simple “Action:” prompt
to make the model generate the entire plan p = (a0, a1, · · · , aTg

). However, without any API
documentation or demonstration examples provided in the instructions, generating a comprehensive
plan proves challenging for models. Additionally, we strive to further refine the connections between
adjacent actions in the solution plans within the training data. Thus, we decompose the solution plans
autoregressively, assembling the original task query with the previous t actions as instruction and
treating the (t + 1)-th action in the plan as the solution. More specifically, for step t and the task
query g, the new instructions are in the format of (g, a0, a1, · · · , at). The corresponding solution is
the next-step action at+1. In addition, with the decomposition, the size of training data increases from
∼ 500 to ∼ 4500. With the generated instruction-solution pairs, we fine-tune two StepLLaMA-2
models based on LLaMA-2 (Touvron et al., 2023) 7B and 13B models. As ToolChain∗ can be
applied as a plug-and-play module for agents based on different LLMs, We also equip the fine-tuned
StepLLaMA-2 with ToolChain∗.

Results We evaluate the performance of both StepLLaMA-2 and ToolChain∗ (StepLLaMA-2) on the
Virtual Home dataset and show the results in Table 7. We report the metrics of Executable, Success,
and Success (E). Executable means the proportion of plans that can be executed in VirtualHome
without violating any rules. Success means the proportion of plans that lead to the correct final
state. Success (E) is a variant of Success, which only tests the Success rate on executable plans.
StepLLaMA-2 and ToolChain∗ (LLaMA-2) both outperform the LLaMA-2 models that are directly
tuned on the original training data in ToolBench. In addition, applying ToolChain∗ on StepLLaMA-
2 can bring 4.0% improvement in success rate on average, showing that ToolChain∗ can also be
effective on open-source LLMs.

G ADDITIONAL ANALYSIS ON VALUE FUNCTIONS

Table 8: Additional results on ToolChain∗ with different value functions.
Home
Search

Trip
Booking

Google
Sheets

Virtual
Home

Average

ToolChain* (Self-Evaluation Hao et al. (2023a)) 84.0 83.3 49.9 21.5 59.7
ToolChain* (ToT-Vote Yao et al. (2023a)) 82.0 81.7 53.4 21.0 59.6
ToolChain* 93.0 90.8 61.4 28.6 68.5

To validate the advantage of our proposed value function, we explored various cost function for-
mulations, including self-evaluation prompting LLMs to generate verbalized scores (Hao et al.,
2023a), and vote scores in ’tree-of-thoughts’ (Yao et al., 2023a). Our findings indicated that these
scoring methods were not consistently accurate. We identified two key factors guiding our heuristic
function design: (1) the black-box nature of state-of-the-art LLMs offering limited information for
score formulation, and (2) the observation that similar tasks often share similar logical structures
in their solution plans. Driven by the two motivations, we developed heuristic scores to maximize
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the use of additional information derived from past experiences (Table 8). The results demonstrate
that a combination of LLM-generated scores and heuristic scores yields superior performance. In
the initial stages, due to limited data in the long-term memory, the model predominantly relies on
the LLM-generated scores for generating plans. As the long-term memory expands, the heuristic
functions increase in accuracy, effectively regularizing and refining the LLM-generated scores.

Table 9: Additional results on ToolChain∗ with different value functions using LLaMa-2 (7B).
Virtual Home

ToolChain* (Action Likelihood) 25.7
ToolChain* (Answer Probability) 26.1
ToolChain* (Reward Function) 27.4
ToolChain* 28.7

Furthermore, we have conducted explorations to utilize additional information from open-sourced
LLMs in order to formulate a more precise cost function. These explorations include: (1) action
likelihood, calculated as the product of token log probabilities within an action; (2) answer probability,
determined by the token probability of ’yes’ in response to the question ’Is this action step correct?’;
and (3) a reward-style probability, which applies weight decay based on the length of tokens in the
actions and the total number of actions in a plan. Table 9 presents additional experimental results
using LLaMA-2 (7B). The results indicate that our proposed cost functions outperform other value
functions from open-source LLMs.

H COST ANALYSIS

We provide more detailed information regarding the computational costs of ToolChain∗ (GPT-3.5)
across our datasets in Table 10. It is important to note that the heuristic functions in ToolChain∗

do not require additional LLM calls. Instead, they rely on a long-term memory that stores solution
plans. As for the costs related to the environment or domain simulations, these are primarily included
in the prompts for expansion. This aspect accounts for approximately $7.22. Similar budgetary
considerations apply to recent advances (Yao et al., 2023b; Sun et al., 2023; Yao et al., 2023a) that
also rely on experiments utilizing OpenAI APIs. Additionally, it is worth noting that the cost of using
gpt-3.5-turbo is progressively decreasing within months, making it more affordable in the future.

Table 10: Additional computational costs of ToolChain∗ based on gpt-3.5-turbo.
Costs Expansion Heuristic Functions LLM-based Functions

# LLM Calls per Question 16.44 0 107.31
$ Prompt Cost per Dataset 7.22 0 5.53
$ Completion Cost per Dataset 8.23 0 9.25

I PROMPTS

I.1 TOOL USE: TOOLBENCH

We follow the prompt format from ToolBench (Xu et al., 2023), which consists of API documents,
three-shot in-context demonstration examples, and the query. We utilize the same retriever as the
ToolBench implementation 3 to obtain the pertinent API documents and demonstration examples.

<ToolChain∗ ToolBench> Prompt

{api_docs}
{examples}
Task: {query}
Action:

3https://github.com/sambanova/toolbench/tree/main
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We then provide examples of API documents and demonstrations for each dataset used in our
experiments.

I.1.1 HOME SEARCH

We present five examples of API documents from the Home Search dataset as follows:
<ToolChain∗ HomeSearch Doc> Prompt

# To set home types for search. For home buying, home_types choices are:
"House", "Townhouse", "Condo", "Land", "Multi-family", "Mobile",
"Co-op"; for home renting, home_types choices are: "House",
"Townhouse", "Condo", "Apartment".

API.select_home_type(home_types: List[str])

# To specify whether to search homes for buying or renting. ’value’ can
be chosen from [’buy’, ’rent’]. This function must be called after
setting the location and before setting any other criteria.

API.set_buy_or_rent(value: str)

# To set the maximum commute time in minite
API.set_max_commute_time(value: int)

# To set the minimum home price in dollars
API.set_min_price(value: int)

# To set the maximum home price in dollars
API.set_max_price(value: int)

We also provide one demonstration example from the Home Search dataset:
<ToolChain∗ HomeSearch Demo> Prompt

Task: I want to buy a townhouse, mobile or co-op in Pittsburgh with 4
rooms. My budget is $1385000.

Actions:
API.set_location("Pittsburgh")
API.set_buy_or_rent("buy")
API.select_home_type(["Townhouse", "Mobile", "Co-op"])
API.set_num_beds(4)
API.set_max_price(1385000)
API.search()

I.1.2 TRIP BOOKING

We present five examples of API documents from the Trip Booking dataset below:
<ToolChain∗ TripBooking Doc> Prompt

# To select the transportation type from [’flight’, ’train’, ’bus’,
’cruise’].

API.select_transportation(transportation_type)

# To select the booking type from [’hotels’, ’trip tickets’, ’both’].
API.select_booking_type(booking_type)

# To set the number of child tickets to purchase.
API.set_num_children(value)

# To set the number of adult tickets to purchase.
API.set_num_adults(value)

# To set the location for arrival, given a Loc object.
API.set_destination(Loc)

We also provide one demonstration example from the Trip Booking dataset:
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<ToolChain∗ TripBooking Demo> Prompt

Could you help me find train tickets for 3 children and 5 adults from
Des Moines to Cape Coral on July 07, 2022? My budget is up to 280
per ticket.

Actions:
API.select_booking_type("trip tickets")
API.select_transportation("train")
API.set_num_children(3)
API.set_num_adults(5)
location_from = Loc("Des Moines")
API.set_origin(location_from)
location_to = Loc("Cape Coral")
API.set_destination(location_to)
departure_date = Date(7, 7, 2022)
API.set_departure_date(departure_date)
API.set_max_ticket_price(280)
API.search()

I.1.3 GOOGLE SHEETS

We present four examples of API documents from the Google Sheets dataset as follows:
<ToolChain∗ GoogleSheets Doc> Prompt

# Sets values in a cell range of the sheet.
worksheet.update(range_name, values=None, **kwargs)

# Updates the value of a cell.
worksheet.update_cell(row, col, value)

# Deletes multiple columns from the worksheet at the specified index.
worksheet.delete_columns(start_index, end_index=None)

# Deletes multiple rows from the worksheet at the specified index.
worksheet.delete_rows(start_index, end_index=None)

We also provide one demonstration example from the Google Sheets dataset:
<ToolChain∗ GoogleSheets Demo> Prompt

| Product | Cost | Price |
| beef | 1 | 3 |
| pork | 5 | 4 |
| chicken | 10 | 11 |
| lamb | 3 | 15 |
| duck | 12 | 2 |
| fish | 2 | 100 |

Task: Sets ’Hello world’ in ’A2’ cell
Actions:
worksheet.update(’A2’, ’Hello world’)

Task: Sets ’Hello world’ in ’A2’ cell
Actions:
worksheet.update_cell(2, 1, ’Hello world’)

Task: Updates A2 and A3 with values 42 and 43
Actions:
worksheet.update(’A2:A3’, [[42], [43]])

Task: Updates D2 with values 3
Actions:
worksheet.update(’D2’, 3)

Task: Sum A1:A4 and write the result below A4
Actions:
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worksheet.update(’A5’, ’=SUM(A1:A4)’, raw=False)

Task: Update chicken’s price by 2
Actions:
df = get_as_dataframe(worksheet)
df.loc[df[’Product’] == ’chicken’, ’Price’] += 2
worksheet.clear()
set_with_dataframe(worksheet, df, include_index=False,

include_column_header=True)

I.1.4 VIRTUAL HOME

Below, we present five examples of API documents from the Virtual Home dataset:
<ToolChain∗ VirtualHome Doc> Prompt

# Take a piece of clothes off. ’object’ can only be: [’clothes_jacket’,
’clothes_dress’, ’clothes_hat’, ’shoes’, ’clothes_shirt’,
’clothes_pants’].

Agent.TakeOff(object)

# Scrub an object. ’object’ can only be: [’mop’, ’cup’, ’toilet’,
’plate’, ’soap’, ’sink’, ’spoon’, ’cat’, ’shower’, ’dishwasher’,
’hands_both’, ’drinking_glass’, ’bowl’, ’towel’].

Agent.Scrub(object)

# Rinse an object. ’object’ can only be: [’cup’, ’pot’, ’water’,
’water_glass’, ’sponge’, ’soap’, ’towel’, ’dish_soap’, ’oven’,
’cleaning_solution’, ’knife’, ’spoon’, ’sink’, ’faucet’,
’clothes_underwear’, ’detergent’, ’drinking_glass’, ’hands_both’,
’toilet’, ’shower’, ’rag’, ’plate’, ’bowl’, ’fork’].

Agent.Rinse(object)

# Wash an object. ’object’ can only be: [’face’, ’cup’, ’food_vegetable’,
’dresser’, ’fork’, ’shoes’, ’child’, ’coffee_cup’, ’bed’, ’water’,
’soap’, ’duster’, ’brush’, ’bathtub’, ’toy’, ’cleaning_bottle’,
’hair’, ’sink’, ’razor’, ’hands_both’, ’drinking_glass’, ’table’,
’toilet’, ’basket_for_clothes’, ’shower’, ’dishwasher’, ’plate’,
’bowl’, ’spoon’].

Agent.Wash(object)

# Pull an object. ’object’ can only be: [’table’, ’mop’, ’mouse’,
’chair’, ’clothes_pants’, ’light_bulb’, ’curtain’, ’vacuum_cleaner’,
’mat’, ’cat’, ’food_food’, ’drawing’, ’shoes’, ’centerpiece’,
’sheets’, ’pot’, ’laptop’].

Agent.Pull(object)

We also provide one demonstration example from the Virtual Home dataset:
<ToolChain∗ VirtualHome Demo> Prompt

Task: Put down bags
Actions:
Agent.WalkTo(dining_room)
Agent.WalkTo(food_food)
Agent.Find(food_food)
Agent.Grab(food_food)
Agent.Find(table)
Agent.Put(food_food, table)

I.2 MATH REASONING: GSM8K

Below are the prompts utilized for the math reasoning dataset, GSM8K (Silver et al., 2016):
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<ToolChain∗ GSM8K> Prompt

Please complete the plans to solve the question. Here is several
examples:

Q: Four years ago, Kody was only half as old as Mohamed. If Mohamed is
currently twice 30 years old, how old is Kody?

A: Let’s think step-by-step:
1. We were told that Mohamed is currently twice 30 years old, so he is

currently 30 * 2 = 60 years old.
2. That means that four years ago he must have been 60 - 4 = 56 years

old.
3. Four years ago, Kody was half as old as Mohamed, so Kody must have

been 56 / 2 = 28 years old then.
4. Since Kody was 28 years old four years ago, she must now be 28 + 4 =

32 years old.
5. The answer is 32.

Q: Carla bought 2 bags of mini peanut butter cups on clearance. Each bag
was $6.00 but was 75% off. How much did she spend on 2 bags of candy?

A: Let’s think step-by-step:
1. Each bag was $6.00 but was 75% off. So each bag cost $6.00 *

(1 - 0.75) = $6.00 * 0.25 = $1.50.
2. Carla bought 2 bags. So she spent $1.50 * 2 = $3.00.
3. The answer is 3.

Q: If Pam is currently twice as young as Rena is, and in 10 years Rena
will be 5 years older than her, how old is Pam now?

A: Let’s think step-by-step:
1. Since Rena will be 5 years older than Pam in 10 years, she must be

5 years older than Pam now as well.
2. If Pam is currently twice as young as Rena, that means that Rena is

currently twice as old as Pam is.
3. So if P stands for Pam’s age now and R stands for Rena’s age now,

then we know that R = 2 * P.
4. And since Rena is 5 years older than Pam now, we know that R = P + 5.
5. By substitution, we have P + 5 = 2 * P, which means that P = 5.
6. The answer is 5.

Q: Cappuccinos cost $2, iced teas cost $3, cafe lattes cost $1.5 and
espressos cost $1 each. Sandy orders some drinks for herself and
some friends. She orders three cappuccinos, two iced teas, two
cafe lattes, and two espressos. How much change does she receive
back for a twenty-dollar bill?

A: Let’s think step-by-step:
1. Sandy ordered three cappuccinos, which cost $2 each, so she spent

$2 * 3 = $6 on cappuccinos.
2. She ordered two iced teas, which cost $3 each, so she spent

$3 * 2 = $6 dollars on ice teas.
3. She ordered two cafe lattes, which cost $1.5 each, so she spent

$1.5 * 2 = $3 on cafe lattes.
4. She ordered two espressos, which cost $1 each, so she spent

$1 * 2 = $2 on espressos.
5. So altogether, Sandy spent $6 + $6 + $3 + $2 = $17 on drinks, which

means that sandy will get $20 - $17 = $3 as change.
6. The answer is 3.
[END OF EXAMPLE]
Q: {question}
A: Let’s think step-by-step:
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