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Abstract

The goal of aligning language models to human preferences requires data that
reveal these preferences. Ideally, time and money can be spent carefully collecting
and tailoring bespoke preference data to each downstream application. However, in
practice, a select few publicly available preference datasets are often used to train
reward models for reinforcement learning from human feedback (RLHF). While
new preference datasets are being introduced with increasing frequency, there are
currently no existing efforts to measure and compare these datasets. In this paper,
we systematically study preference datasets through three perspectives: scale, label
noise, and information content. We propose specific metrics for each of these
perspectives and uncover different axes of comparison for a better understanding
of preference datasets. Our work is a first step towards a data-centric approach
to alignment by providing perspectives that aid in training efficiency and iterative
data collection for RLHF.

1 Introduction

Reinforcement learning from human feedback (RLHF) is typically the final stage of the modern large
language model (LLM) training pipeline Achiam et al. [2023], Touvron et al. [2023], Groeneveld
et al. [2024]. The reward models necessary for RLHF algorithms are predominantly trained from
datasets of pairwise preferences Bai et al. [2022], Ouyang et al. [2022]. While a substantial number
of works have focused on new algorithms for learning from preference data to better train reward
models Moskovitz et al. [2023], Zheng et al. [2023], Dong et al. [2024], Xiong et al. [2024], relatively
few works have examined qualities of these datasets themselves. At the very minimum, all of these
pairwise datasets of human preferences contain examples with 1) a prompt, 2) two responses, and 3)
an annotation of which response is preferred. Beyond this basic structure, preference datasets vary
widely in domain (e.g. code, chat, QA, etc.), generation process (e.g. synthetic vs human), collection
procedure (e.g. annotation, prompt generation), and even size (e.g. 10k - 300k examples Zheng et al.
[2023], Cui et al. [2023]).

Ideally, a custom preference dataset for each specific application can be collected, and carefully
labeled by multiple annotators for reward model training. New technical reports that accompany
state-of-the-art language models highlight the importance of preference data quality yet give little to
no details about the preference datasets used DeepSeek-AI et al. [2024], Dubey et al. [2024]. Among
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publicly available preference datasets, there is folk wisdom that more carefully curated datasets are
better, yet no rigorous study or methodology for comparing these datasets exists beyond summary
statistics, such as token count Dong et al. [2024]. Today, little is known about when and why one
preference dataset may be better than another, nor what “better” can mean in the context of these
datasets.

In this paper, we initiate the study of measuring properties of preference datasets for the purpose
of reward model training. A useful measurement should be robust to different base model choices
and applicable to any dataset containing pairwise preferences. To this end, we propose three data-
centric approaches for comparing preference datasets: effective sample size, noise invariance, and
information content. We evaluate both in-distribution performance and domain generalization (i.e.
through a standard reward modeling benchmark) on the induced reward model trained on these
datasets. We validate our results through ablations across different model sizes to demonstrate the
connection between these measurements and subsequent reward model performance. Together, our
work gives three simple but intuitive perspectives for understanding preference datasets that are
broadly applicable to the development of new datasets across domains.

2 Related Work

Data-Centric Methods Scaling laws introduced to describe the relationship between parameters,
data, and compute for pre-training have been widely accepted as the explanation for why larger
models and more data are better for language model training Kaplan et al. [2020], Hoffmann et al.
[2022]. Different approaches for improving data quality and composition have been proposed as
efficient alternatives for indiscriminately training on all available data Penedo et al. [2024], Xie
et al. [2024]. However, the scale of pre-training data vastly eclipses the scale of data used in the
fine-tuning and RLHF stages. Data quality and data selection for reward model training may be more
similar to supervised learning settings than language modeling. In supervised learning and supervised
fine-tuning, careful data selection and pruning have been shown to lower the number of samples
required Paul et al. [2021], Sorscher et al. [2022], Xia et al. [2024]. However, reward models do
differ from the supervised learning setting since they are adapted from these pre-trained base models.
Recent work has studied data scaling for fine-tuning LLMs to find that LLM performance benefits
more from pre-training data scaling than fine-tuning data scaling and the optimal fine-tuning method
is task and data-dependent Zhang et al. [2024a].

Publicly Available Preference Datasets For RLHF preference datasets in particular, early works
collected datasets on the order of tens of thousands of examples for reward model training. For
example, for a summarization task Stienon et al., Stiennon et al. [2020] collected 64k preference
pairs based on Reddit prompts, while the WebGPT Nakano et al. [2021] reward model was trained
with 16k preference pairs based on prompts from existing QA datasets. Subsequent datasets follow
a more general human-assistant format while being much larger (e.g. OpenAssistant Köpf et al.
[2024], HH-RLHF Bai et al. [2022], Stanford Human Preferences Ethayarajh et al. [2022]). However,
these datasets vary drastically in collection procedure. For example, for InstructGPT and HH-RLHF
humans were asked to rank model-generated responses while for OpenAssistant and Stanford Human
Preferences preferences for different human-generated responses were gathered. More recently,
preference datasets where both responses and rankings are synthetically generated have gained
popularity Cui et al. [2023], Daniele and Suphavadeeprasit [2023]. These synthetically constructed
datasets offers more training samples and more diversity in terms of the topics generated. There is
also a movement back to creating smaller but carefully annotated preferences, often with multiple
annotators Wang et al. [2024]. Despite the large variation in practices for generating these different
datasets, there has been little comparison and characterization of how different datasets affect reward
model training.

Challenges of Reward Modeling and Learning from Human Preferences Defining data quality
is complex for preference data since many different tasks may use the same reward model for RLHF.
There are concerns with the representativeness of preferences as well as the alignment between
collected data and the intended objective Lambert and Calandra [2023], Kirk et al. [2024], Chen et al.
[2024]. One suggestion for measuring the effectiveness of reward models is standardized benchmarks
on reward model performance on a variety of common tasks Lambert et al. [2024]. This approach
measures the generalization of a single reward model on different tasks by testing how well each
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reward model performs on scoring the chosen response higher. The top-performing models on this
benchmark leaderboard include models of a variety of sizes from 8B to 340B parameters and a variety
of preference data sizes from 10k to more than 700k examples. Given this mishmash of different
approaches, it is important to understand how to measure preference data quality for the reward
modeling step of RLHF. This work aims to characterize the elements of preference data quality that
inform practical decisions around data generation, annotation, and usage in this setting.

3 Model Agnostic Data Metrics

3.1 Preliminaries

Let x be the prompt, yw be the winning (chosen) response, and yl be the losing (rejected) response.
Let D = {(x, yw, yl)i}ni=1 ∼ D be the dataset of preferences that we will study. Let r : X ×Y → R
be the reward model that maps a (x, y) prompt response pair to a score. In reward modeling, we want
to compare the rewards of two given generations. The Bradley-Terry model defines Yij as a Bernoulli
random variable representing the outcome of whether the completion yi is preferred or wins over the
completion yj . Under this model, Yij ∼ Bernoulli(pij) and the log ratio of the probability that yi
wins over yj is:

log
pij

1− pij
= r(x, yi)− r(x, yj).

If we let yi be the winning completion yw and yj be the losing completion yl, we can then write the
probability of the reward model preferring yw as:

P (yw ≻ yl) =
exp(r(x, yw))

exp(r(x, yl)) + exp(r(x, yw))
.

Following prior work Ouyang et al. [2022], Bai et al. [2022], the probability of the reward model
giving a higher score to the chosen response can then be maximized directly through the following
objective function:

L = −E(x,yw,yl)∼D [log σ(r(x, yw)− r(x, yl))] .

3.2 Datasets and Models

We examine four publicly available preference datasets in our study: Anthropic Helpful-Harmless
(HH-RLHF) Bai et al. [2022], Ultrafeedback (ULTRAFEEDBACK) Cui et al. [2023], LMSYS Arena
Preferences (LMSYS) Chiang et al. [2024], and PKU-SafeRLHF (SAFERLHF) Ji et al. [2024]. These
datasets are selected based on their frequent use in prior works Bai et al. [2022], Dong et al. [2024]2.
For each dataset, we examine their behavior on reward models trained from pre-trained models of
different sizes: 350 million (Opt-350m Zhang et al. [2022]), 1 billion (TinyLlama-1B-3T Zhang
et al. [2024b]), and 7 billion parameters (Llama2-7B and Llama2-7B-Chat Touvron et al. [2023]).
We focus predominately on reward models trained from base models but also include ablations with
fine-tuned versions since the practice around reward model training varies. For example, some papers
train reward models from checkpoints already fine-tuned with instructions and human feedback
(e.g. Llama3-8B-Instruct) Dong et al. [2024]) and other works train reward models directly from
based models Wang et al. [2024], Zheng et al. [2023]. Notably, Ouyang et. al. Ouyang et al. [2022]
remark that similar reward model quality was observed between training on a base 6B model and an
instruction-tuned 6B model. We evaluate both in-domain and generalization performance through
evaluation set accuracy and Rewardbench Lambert et al. [2024] respectively.

4 Experiments

4.1 Scaling: Are larger preference datasets better?

The first perspective we examine is the role of dataset size for different preference datasets. Unlike
scaling laws for pre-training, there is no consensus about how large a preference dataset should
be to train a good reward model. For summarization in particular, Stienon et. al. Stiennon et al.
[2020] estimate that doubling their particular dataset size leads to a 1.1% increase in reward model

2We include dataset details in the supplementary materials
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Figure 1: Scaling behavior when measuring evaluation set accuracy is dataset dependent.
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Figure 2: Comparing RewardBench performance across different datasets for Llama2-7B-chat model.
Increasing the dataset size does not improve performance for most datasets on most tasks.

validation accuracy until 65k examples. In contrast, others have found that even when using 2.9
million examples, reward model accuracy continues to improve Touvron et al. [2023]. While these
differences can be blamed on the dataset composition, the impact of increasing the training set size
across different datasets has not been studied. We examine four datasets that range in size from
30k examples to 200k examples and observe how training dataset size impacts performance. Figure
1 illustrates the impact of scaling on evaluation set accuracy. For all datasets, the larger models
(Llama2-7B, Llama2-7B-chat), gain less from doubling the dataset size. While Llama2-7B-chat is
fine-tuned with RLHF from part of HH-RLHF, this pattern remains even for other datasets that
were released after Llama2-7B-chat. Among datasets, SAFERLHF has the highest average gain per
doubling of the training dataset (2.4-4.7%) for all models.

We also investigate the effect of increasing dataset size on a more general suite of reward model
tasks that might be outside the training distribution using RewardBench Lambert et al. [2024] (Figure
2). Unlike evaluation accuracy, increasing dataset size does not always improve, and sometimes
harms, performance on this benchmark. Some datasets dominate a task across all sample sizes (e.g.
ULTRAFEEDBACK on Chat, HH-RLHF on Reasoning, and SAFERLHF on Safety). This shows
that a small subset of samples (e.g. 10K examples or 10% of a dataset) is already sufficient and that
dataset composition may be more important in achieving good performance than scale. For example,
10k examples from SAFERLHF outperforms 140k examples from HH-RLHF. These results are
model invariant across different reward model sizes. For example, ULTRAFEEDBACK remains the
best dataset for the Chat category across both the 350M and 1B model3.

4.2 Noise Invariance: How robust are reward models to label noise?

Prior works have reported the human agreement with the collected preferences to be 76% for
summarization Stiennon et al. [2020] and 73% inter-annotator agreement for response quality for
general instruction tasks Ouyang et al. [2022]. Ideally, annotator disagreement serves as a filter for
low-quality preference data, however, even if the collection process is unknown, it is still useful to

3See Appendix D.1 for details

4



Base Model HH-RLHF ULTRAFEEDBACK LMSYS SAFERLHF
Opt-350m 88.6% 95.0% 94.9% 92.6%
TinyLlama-1B 90.1% 95.4% 95.4% 94.4%
Llama2-7B 78.9% 93.3% 94.6% 84.9%
Llama2-7B-chat 92.7% 93.6% 92.4% 90.7%

Table 1: Percentage of total evaluation accuracy achieved with 30% of labels flipped for each dataset for
different sized reward models. ULTRAFEEDBACK and LMSYS are particularly noise invariant but all datasets
are fairly robust to label flipping.
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Figure 3: The impact of noise on reward model confidence P (yw ≻ yl) on ULTRAFEEDBACK for RewardBench.
We see that as the noise rate (% of flipped labels) increases, the probability of the winning response being chosen
concentrates around 0.5. This phenomenon is similar across all models and datasets to different extents.

understand how much noise there might be in the preference dataset. In image classification tasks,
neural networks are robust to label noise Rolnick et al. [2017]. In these settings, a random label is
used instead of the true label in multiclass classification. In the context of preference data, we can
model label noise as the flipping of the chosen response with the rejected response. We can define: p
as the noise rate and add random label noise by constructing a dataset:

(x, yw, yl) =

{
(x, yl, yw) w.p. p

(x, yw, yl) w.p. 1− p.

Table 1 shows the percentage of the peak evaluation set accuracy achieved when 30% of labels are
flipped. Overall, we find that reward model performance remains unaffected by label flipping until
30-40% of labels are flipped. The same pattern is observed on RewardBench tasks across all models4.

Explaining Noise Invariance: The Role of Noise in Reward Model Confidence We can look at
the underlying prediction probabilities to further understand why introducing label noise does not
significantly affect performance both on the evaluation set and the RewardBench tasks. Since accuracy
for both sets of metrics is calculated through expected binary outcomes (i.e. E(x,yw,yl)∼D [1[ŷ = yc]]
where ŷ = argmaxy∈{yw,yl} r(x, y)), we can use the Bradley-Terry model to calculate P (yw ≻ yl)
and investigate how these distributions change. As the noise rate increases, the distribution of
probabilities (e.g. P (yw ≻ yl)) becomes more concentrated around 0.5 (Figure 3). This pattern is
consistent across different reward model sizes and datasets. Across different datasets, Figure 5 shows
that when label noise is introduced, HH-RLHF and LMSYS collapses quicker to P (yw ≻ yl) ≈ 0.5
than other datasets. This suggests that there might be a higher level of baseline noise in the HH-RLHF
labels that results in more uncertain predictions. This pattern is again consistent across different
reward model sizes.

To precisely characterize model confidence, we can measure the expected calibration error (ECE)
of reward model outputs Guo et al. [2017]. However, in the Bradly-Terry model, using P (yw ≻ yl)
directly as model confidence results in perfect accuracy when P (yw ≻ yl) > 0.5. The only prior
work we could find that measures calibration in reward models uses max{P (yw ≻ yl), P (yl ≻ yw)}
as the confidence of the model Pikus et al. [2023]. To properly measure calibration, we can write
each evaluation pair as (x, y1, y2, z) and split it into (x, yw, yl, z = 1) and (x, yl, yw, z = 0). Then
to calculate the calibration error we can use P (z = 1) := P (y1 ≻ y2) as model confidence and plot
the count of z = 1 as the accuracy (see Figure 6). The overall ECE is equivalent to the max method
from prior work but now we have confidence values in the entire interval of [0, 1] instead of just

4Full plots and more details can be found in Appendix D.2
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Figure 4: (Left) Distribution of cosine similarity of response pairs for different datasets. The HH-RLHF
dataset contains much more similar response pairs (e.g. (yw, yl)) than the ULTRAFEEDBACK dataset. (Right)
The evaluation set accuracy for training different models with “high information” or low response similarity data
compared to a random sample. The benefits of “high information” are most salient in the smallest model.

[0.5, 1]. As label noise increases, we observe lower calibration error (e.g. ECE=0.183 no noise to
ECE=0.086 30% label noise for ULTRAFEEDBACK) (see Section A for more details).

4.3 Information Content: Are high contrast responses necessary for reward model learning?
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Figure 5: Empirical CDF of P (yw ≻ yl) for differ-
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RewardBench. When there is no noise, some datasets
induce a more confident distribution even with the same
number of training examples. As more noise is added, all
probabilities shift towards 0.5 and the datasets become
indistinguishable

A major dichotomy in how preference datasets
are generated is whether the responses are
human-written or sampled from large language
models. For example, the Anthropic Helpful-
Harmless (HH-RLHF) dataset contains re-
sponse pairs generated from responses from
LLMs of the same family Bai et al. [2022].
In contrast, the Stanford Human Preference
Dataset (SHP) dataset is gathered from pairs
of (presumably human) Reddit responses Etha-
yarajh et al. [2022]. As responses are more
similar in quality, prior work has found that
human annotation agreement reduces these re-
sponses Touvron et al. [2023]. While the relative
informativeness of an example for training a re-
ward model is likely model-dependent, since
the models used for reward model training vary
in training data, a minimal level of contrast be-
tween the chosen and rejected response is likely
a prerequisite for valuable examples in prefer-
ence datasets. Given the differences in response generation, we can compare and contrast different
datasets by computing the cosine similarity between embeddings of responses (i.e. 1−dcos(yw, yl))5.
Figure 4 shows that the HH-RLHF dataset has many more similar response pairs than ULTRAFEED-
BACK. To understand the impact of training with high-information examples, we created a threshold
of 0.8 in cosine similarity and designated the examples with a smaller similar as “high information".
Fixing the training set size, we compared the performance of training the high-information examples
to a random sample. Surprisingly, the results vary by model and dataset. For the larger models
(i.e. 1B+ parameters), there is little difference between the high information and random training
sets of the same size. However, for the smaller 350 million parameter model, we see that the high
information examples often resulted in a better evaluation accuracy (Figure 4).

5 Discussion

Our work investigates three aspects of preference datasets to identify dataset differences and connect
these differences to downstream performance on both in- and out-domain tasks. Firstly, we find

5We use all-MiniLM-L6-v2 from Sentence Transformer to generate embeddings. We investigated a suite of
different sentence embeddings and found them to be highly correlated.

6



that while preference datasets vary in size, a larger dataset is not better than a smaller dataset that
is more relevant to the task. Furthermore, increasing dataset size gives only marginal gains for
in-domain evaluation accuracy and may even hinder performance on out-of-domain tasks. Future
work introducing new preference datasets should report the marginal gain of using the entire dataset
on different models compared to using just 10-25% of the dataset.

Secondly, we find all four of the preference datasets we examine to be extremely noise invariant. We
attribute this observation to label noise introducing more uncertainty in reward model predictions
rather than prediction reversal. This suggests that better preference datasets can tolerate a higher level
of label noise. Future work introducing new preference datasets should report the noise invariance of
a dataset and the calibration error induced in the downstream reward model.

Lastly, we find that preference datasets vary widely in the distribution of similarity of response
pairs. The performance improvements of training from high information or dissimilar response pairs
depends on the underlying reward model. An extreme case is if the underlying language model has
undergone RLHF policy learning using a preference dataset, then the relative value or information of
this dataset should be lower for reward modeling. Recent work has proposed that learning policies
from on-policy data outperforms methods using out-of-distribution data Tajwar et al. [2024]. Future
work should define and investigate on-policy data for reward model learning in the context of RLHF.
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Reliability Diagram for UltraFeedback Llama2-7B-chat

Figure 6: Reliability diagram illustrating expected calibration error (ECE) at different levels of noise
for ULTREAFEEDBACK on RewardBench examples. More noise decreases calibration error.

A Noise: Calibration and Reward Modeling

Thus far, very few works have explored the notion of calibration in reward models. For pairwise
preferences, we can think of a reward model as a binary predictor where the notion of calibration is
rather natural. Expected calibration error, while suffering from real drawbacks Błasiok et al. [2023],
is the most commonly used metric for measuring miscalibration Guo et al. [2017]. To compute
calibration error, bins can created such that for a bin Bm, the confidence of the bin is just averaged
the predicted probability:

conf(Bm) =
1

Bm

∑
i∈Bm

p̂i,

and the accuracy of bin Bm is the average accuracy of samples in the confidence bin range:

acc(Bm) =
1

Bm

∑
i∈Bm

1[ŷi = yi],

where yi is the predicted label. In this setup, a perfectly calibrated predictor would have matching
confidence and accuracy for each bin. In other words, the expected calibration error is the difference
between the accuracy and confidence in each bin:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

A problem arises when computing this quantity for reward models on preference data if p̂i is naively
taken to be p̂i = P (ywi ≻ yli). This is because by definition, if P (ywi ≻ yli) > 0.5, ŷi = yi. This
means that zero calibration error can only be achieved through P (ywi

≻ yli) ∈ {0, 1} with a perfect
predictor.

The only prior work that studies calibration in reward models suggests computing the model proba-
bility as Pikus et al. [2023]:

p̂i = max{P (ywi
≻ yli), P (yli ≻ ywi

)}.

This gives the right intuition that if p̂i ≈ 0.5: we should be very uncertain of the outcome. However,
this approach restricts p̂i ∈ [0.5, 1]. Thus, we suggest an alternative approach in creating another
random variable z ∈ {0, 1} to randomize the label outcomes so that each example has the following
format (x, y1, y2, z). Each example, (x, yw, yl) becomes the following two examples: (x, yw, yl, z =
1) and (x, yl, yw, z = 0). Now we have the confidence of a bin as:

conf(Bm) =
1

Bm

∑
i∈Bm

Pr[zi = 1] = Pr(y1 ≻ y2)

and the accuracy of a bin as:

acc(Bm) =
1

Bm

∑
i∈Bm

zi
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Figure 7: Comparing evaluation accuracy data fraction vs performance fraction, SAFERLHF is the
slowest to achieve > 95% of total accuracy, requiring at least 50% of the dataset. In comparison,
other datasets like HH-RLHF only require 10-25% of the dataset depending on the model.

This approach gives us the reliability diagram in Figure 6. We can see that as label noise increases,
calibration error decreases. A trivial predictor can achieve zero ECE by always predicting the average
of the labels. The figure shows that as a dataset approaches 50% noise, Pr[zi = 1] collapses to
values near 0.5 for all examples. We encourage future work to continue investigating the calibration
of reward models through our proposed method.

This transformation we suggest can be done in five simple lines of code:

1 p_chosen = sigmoid(w_rewards - l_rewards) #P(yw > yl)
2 chosen_labels = np.ones(len(p_chosen))
3 p_rejected = 1-p_chosen
4 rejected_labels = 1-chosen_labels
5 # Some function that computes the ece given probabilities and true

labels
6 compute_ece(y_pred=np.concatenate ([p_chosen , p_rejected ]),
7 y_true=np.concatenate ([ chosen_labels , rejected_labels ]))

B Scale: Percentile Saturation

Our work compares preference datasets of vastly different sizes. In our main paper, we present two
approaches, the scaling law approach of looking at how the performance of each dataset changes with
increasing data (Figure 1) and the benchmarking approach where we plot the performance of different
datasets for each task (Figure 2). Here we would like to present a third choice of data saturation
curves. On the y-axis we plot the percentage of total performance achieved and on the x-axis we
plot the percentage of total data used. This allows us to compare the data efficiency of datasets. In
Figure 7, the first observation we can make is that while the shape of the slope of each line becomes
flatter with large models, the ordering of datasets remains the same. This allows us to observe that
across models of vastly different sizes, SAFERLHF is a dataset that is not very redundant. This is not
an artifact of dataset size since LMSYS is approximately the same size.

C Dataset and Experiment Details

Our work looks at 4 different openly available preference datasets. We excluded preference datasets
collected or derived from Reddit data due to recent restrictions with respect to terms of service.
Specifically, the four datasets we used came from the following hugging face dataset URLs:

• HH-RLHF: Anthropic/hh-rlhf

• ULTRAFEEDBACK: RLHFlow/UltraFeedback-preference-standard

• LMSYS lmsys/lmsys-arena-human-preference-55k

• SAFERLHF RLHFlow/PKU-SafeRLHF-30K-standard

To ensure minimal data discrepancies between models, we filtered out examples longer than 512
tokens according to each model tokenizer. We also removed ties from the LMSYS dataset.
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Figure 8: Distribution of Cosine Similarity of winning and losing responses across datasets. HH-
RLHF contains many more similar pairs than other datasets
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Figure 9: The evaluation set accuracy for training different models with “high information” or low
response similarity data compared to a random sample. The benefits of “high information” are most
salient in the smallest model.

C.1 Response Pair Distances

For computing distances between responses, we compared several different sentence embeddings.
We compared instruction embeddings Su et al. [2022], retrieval embeddingsNussbaum et al. [2024],
as well as general-purpose embeddingsLan [2019], Reimers and Gurevych [2019]. We found that
cosine and Euclidian distances derived from all of them were highly correlated. Thus, we used a
general-purpose pre-trained model: all-MiniLM-L6-v2. Using embeddings from this model,
Figure 8 shows the contrast in response similarity between different datasets. We see that HH-RLHF
contains many more similar winning-losing response pairs compared to other datasets. Furthermore,
even though LMSYS responses are generated from a much more diverse set of models than the
other three datasets, there are still more similar responses than dissimilar responses. We expect
forum-based preference datasets such as Stanford Human Preferences to follow a vastly different
distribution of response similarity.

Designating a threshold of 0.8 in similarity, we consider examples that are below 0.8 to be high
information. Training on a subset of high-information examples, we compare the downstream
performance with a random sample of the training set. While our initial hypothesis may be that
training with high information examples would benefit downstream performance, we see that this
is only true for small models such as opt350m (Figure 9). One explanation for this effect is that
the embeddings used are trained with only 1B pairs on a ≤33M6 parameter model. Once reward
models are adapted from base modes with billions of parameters trained with trillions of tokens, these
metrics of similarity might not be useful. An alternative explanation is that the value or information
content of pairs of examples may depend on the base model itself. Future work should investigate
model-dependent data valuation for preference data.

6https://huggingface.co/microsoft/MiniLM-L12-H384-uncased
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Figure 10: Comparing RewardBench performance across different datasets for Llama2-7B Model.
Increasing the dataset size is insufficient to close the performance gap between datasets the best
dataset depends on the evaluation task within RewardBench.
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Figure 11: Comparing RewardBench performance across different datasets for TinyLlama-1B Model.
Increasing the dataset size is insufficient to close the performance gap between datasets the best
dataset depends on the evaluation task within RewardBench.

D Complete Results

D.1 Dataset Scaling

In the main text we show the OOD performance for the Llama2-7B-Chat model. We also include the
Llama2-7B base model (Figure 10) where we see the same pattern of ULTRAFEEDBACK dominating
the chat category and SAFERLHF dominating the safety category of Rewardbench. For smaller
models, Figure 11, shows a similar pattern for TinyLlama-1B and Figure 12. In these smaller models,
the advantage of the SAFERLHF is even more stark.
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Figure 12: Comparing RewardBench performance across different datasets for OPT350M Model.
Increasing the dataset size is insufficient to close the performance gap between datasets the best
dataset depends on the evaluation task within RewardBench.
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Figure 13: Comparing RewardBench performance across different datasets for Llama2-7B-chat
reward model for different levels of label noise. Performance is relatively stable until 30% of labels
have been flipped.
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Figure 14: Comparing RewardBench performance across different datasets for Llama2-7B reward
model for different levels of label noise. Performance is relatively stable until 30% of labels have
been flipped.

D.2 Noise Invariance

We also include plots of the effect of dataset label noise on Rewardbench tasks. For all of the models,
the Chat and Safety tasks are not significantly affected until 40% of the labels are flipped. For the Chat
Hard and reasoning tasks, most of the models we train are not good enough to examine differences
properly. It is also interesting that we do not observe cross-over behavior; no dataset starts with a
worse performance and improves over a different dataset at a higher level of noise.
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Figure 15: Comparing RewardBench performance across different datasets for TinyLlama-1B reward
model for different levels of label noise. Performance is relatively stable until 30% of labels have
been flipped.
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Figure 16: Comparing RewardBench performance across different datasets for Opt-350m reward
model for different levels of label noise. Performance is relatively stable until 30% of labels have
been flipped.
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