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Abstract

The de-facto standard for fixing bugs in mod-
els post training is to finetune the model on
additional annotated data, or patch the model
with tenuous if-else rules. In contrast, humans
can often use natural language as a tool for pro-
viding corrective feedback to each other. In
this work, we explore using natural language
patches from users to fix bugs in NLP mod-
els. Our overall approach uses a gating head
to softly combine the original model output
with a patch-conditioned output from an inter-
preter head. Both of these heads are trained
by inserting a patch finetuning stage between
training and deployment, where the training
objective is based on synthetically generated
inputs and patches. Surprisingly, we show that
this synthetic patch training phase is enough to
enable patching inputs on real data—on two
data slices from a sentiment analysis dataset,
we show that 1 to 5 language patches can im-
prove performance by ~1-4%. Next, on an ad-
versarial relation extraction diagnostic test set,
we improve F1 by over 30% with just 6 patches.

1 Introduction

Despite the prevalence of bugs or undesirable be-
haviors in NLP models (Ribeiro et al., 2020), the
problem of fixing such bugs is less well understood.
Suppose a user identifies two bugs in a sentiment
analysis model: it fails to identify low star ratings
as sufficient conditions for a negative prediction,
and it doesn’t understand colloquial usage of the
word ‘bomb’ (Figure 1). In order to fix such bugs,
the user may collect additional data for finetuning,
a tedious and computationally demanding process
that can lead to shortcuts such as “if the word bomb
is in the review, it is positive” or “the number 2 in-
dicates a negative review”. Similarly, rule-based
patches (Figure 1b) lead to brittleness, as these rely
on word matching rather than the right abstractions.

In this work, we propose natural language
patches as an approach to fixing bugs. Natural

(a) Model developer identifies bugs
in trained model

Rule-based language
patching  patching

Jow star 2 stars, but our waitress Wendy was really nice

rating Two stars for the place, but the ambience is great X

usage The restaurant was a bit noisy, and our waiter totally bombed

The restaurant was a bit noisy, but the tacos were bomb
of bomb {

The food is bomb! gets a little busy during night though
The place looked like a bomb had exploded X

(b) Model developer writes patches as

Brittle If-Else Rules Natural Language

def patch_1(x):
if ‘2 star’ in x:

If review gives 2 stars,

return negative then label is negative

else:
EetuznimodeN(x) If food is described as
def patch_2(x): bomb, then food is good
if ‘bomb’ in x.split(‘ '):
x = x.replace(‘bomb’, ‘good’)
return model (x)

(c) Incorporating Language Patches
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Fix(f,z,1p) = g(z,c) - Z(z,q) + [1 — g(z,0)] - f(z)
does patch \ incorporating original output
apply? patch info

Figure 1: While rule-based patches rely on hard pattern
matches, a language patch can use the right abstractions.

language makes it easy for users to express a patch
with the right abstraction, without having to specify
exactly how the condition is applied, e.g. “If food is
described as bomb, then food is good" is applied
to “The tacos were bomb” and “Pizza was just the
bomb!”. Our modeling approach includes a gating
head to soft-predict whether the patch should be
applied (e.g. “food is described as bomb”), and
a conditioning head to predict a new output when
the patch applies, combining the consequent (e.g.
“food is good”) with the original input. Both heads
are trained on synthetic data in a step between train-
ing and deployment, such that new patches can be
applied at test-time without further training, and
can be user-specific (with a shared base model).



Our controlled experiments indicate that natu-
ral language patches are applied correctly when
the condition is met, and do not change predic-
tions when it does not — even for abstract condi-
tions where rule-base patches would be infeasible
or very difficult. This is also the case for test-time
patches that are very different than the ones used in
the synthetic training data. We show how a small
set of simple patches can be used to fix bugs (and
thus improve performance) on real benchmarks for
two different tasks, despite the synthetic nature of
the patch tuning phase. On two data slices from
the Yelp reviews dataset, we show that 1 to 5 lan-
guage patches can improve performance by ~1-4%.
Finally, on an adversarial relation extraction diag-
nostic test set, 6 patches improve F1 by over 30%.

2 Setup

We are given a text classifier (the model) f that
maps an input text x to a probability distribution
over its output space, f(z) = Pr(y | ). In our
setting, this model is riddled with bugs—defined as
any behavior inconsistent with the user’s preference
or the “ground truth". We use a library of user
provided patches P = {lp1,Ip2,...,Ip:} to fix
these bugs. In this work, each [p; is of the from “If
c;, then ¢;”, where c; denotes the condition under
which the patch is to be applied, and g; refers to
the consequence of applying it. Given the original
output f(x), the updated output is Fix(f, x, P).

3  Our Approach

We start with a model f consisting of a classifi-
cation head on top of an encoder. Our approach
consists of two finetuning stages. In the Task Fine-
tuning stage, we are given a dataset {z;,y;} of
labeled examples from some task which we use to
train f through standard supervised learning. Next,
in the Patch Finetuning stage, we use the learnt
encoder and learn a gating head g (initialized ran-
domly) and an interpreter head 7 initialized with
the classification head.

For the latter stage, we write a small set of patch
templates covering the kinds of patches users might
want to write for their own application (see Table 5
in Section A for templates used for our sentiment
analysis results). Based on these templates, we
instantiate a small number of patches along with
synthetic labeled examples. This gives us a dataset
{xi,vi, lp;}, where each [p; consists of a condition
¢c; as well as a consequence ¢;.

Intuitively, g computes the probability that the
condition specified by Ip = (c,q) is true for a
given input x as g(z, ¢). The interpreter model Z
computes a new distribution over the label space,
that conditions on = and the consequence q. This
is then combined with the original model output
f(x) using the above gating probability.

The interpreter head 7 is trained to model Pr(y; |
x;, q;) through standard log-likelihood maximiza-
tion. The gating head g is trained via noise con-
trastive estimation to maximize

log g(xi i) — Y

Cj ENEG(;)

log g(l‘l) Cj)a

where NEG(x;) is a randomly sampled set of
negative conditions for x;.

Applying Patches. Finally, a single patch [p =
(¢,q), can be applied to any input x as
le(f’ X, lp):g(xac) I(£7Q) (D

+[1 =gz, )] f(x)

To extend the above to leverage a library of
patches P = {ip1,Ips,...,Ip:}, we find the patch
that is “most relevant” for the given input and use
that to update the model’s output,

Ip* = argmaxg(z,c;) ()
lp;eP

Fix(f, x, P) = Fix(f, x, Ip") 3)
4 Experiments

Applications. We apply our method to binary
sentiment analysis and relation extraction. For re-
lation extraction, we consider the Spouse dataset
from Hancock et al. (2018), where the task is to
determine whether two entities are married or not
given a textual context about them.

Patch Types. We consider two categories of
patches (see Figure 2 and Table 5 for examples).
Override patches are of the form “If cond, then
label is [" i.e. they override the model’s predic-
tion on an input if the corresponding condition is
true. For these patches, we do not learn the in-
terpreter head (since Z(x, q) is given as [). Next,
Feature-based patches are of the form “If cond,
then feature’, i.e. they provide the model with a
contextual feature “hint” in natural language, e.g.
in Figure 2 the feature is “food is good”. For these
patches, the model needs to learn how to integrate
the hints with the original data, and thus we train
both the gating head and the interpreter head.



Patches used

Override: If food is described as {rword}, then label is negative
Feature-based: If food is described as {gword}, then food is good

Feature-based: If food is described as {gword}, then food is bad

(a) Patch applies and important
The {food} at the restaurant was {word}.
The restaurant has bad service but the {food} was really {word}.

The restaurant has {word} food.

(b) Patch does not apply or not important:

The {service} was {word}. other words
The restaurant has {word2} {food}. or aspects

context

The {food} at the restaurant was not {word}. negated
| did not think that the {food} at the restaurant was {word}.

The {food} was {word}, but everything

else was really bad. applies but shouldn’t

Everything else was really bad change prediction

even though {food} was {word}.

{food} = [pizza, tacos, fries, ...]
{service} = [waiter, manager, bartender, ...]
{rword} = [unusual, weird, surprising, ...]
{gword} = [zubin, wug, muxy, ...]
{word} = {rword} for override patches / {gword} for interpretive patches

Figure 2: (a) We construct datasets based on checklists
to study how well our approach can leverage abstrac-
tions in language patches. (b) To control for spurious
shortcuts such as copying words from the patch or per-
forming simple string lookups, we also construct corre-
sponding control datasets.

Dataset ORIGINAL ORIGINAL+PF PATCHED
|-Food-Abstraction 59.1 59.9 100.0
|-Food-Abstraction (Control) 71.06 56.8 56.8
O-Food-Abstraction 50 50 85.4
O-Food-Abstraction (Control) 375 61.3 61.3

Table 1: We see significant improvements when the
patches apply, and no changes when they do not apply
or are unimportant. These improvements do not accrue
if we simply finetune on synthetic data (Original + PF)

4.1 Sentiment Analysis

We fix bugs in a T5-large (Raffel et al., 2019)
model trained on the Stanford Sentiment Treebank
dataset (Socher et al., 2013). We report accura-
cies of the original model with only task finetuning
(ORIGINAL) as well as the model obtained after
patch finetuning (ORIGINAL+PF), to isolate the
gains of natural language patches from those in-
duced by training on additional synthetic data.

4.1.1 Patching with abstract conditions

To study the ability of our approach to patch
with abstract conditions, we construct synthetic
datasets (Fig. 2) based on CheckList (Ribeiro et al.,
2020). We construct analogous datasets for both

override (O-Food-Abstraction) as well as feature-
based patches (I-Food-Abstraction). For O-Food-
Abstraction, we generate inputs with negative ad-
jectives that the base model makes errors on. For
I-Food-Abstraction, we use gibberish adjectives to
get a large collection of words for which the model
doesn’t know the sentiment. To control for spuri-
ous behaviors such as copying label words from
the patch, performing string lookups or ignoring
negated contexts, we construct a control dataset
O-Food-Abstraction (Control). Additionally for
feature-based patches, we want to ensure that the
patch doesn’t change behavior when it’s not impor-
tant e.g. an input of the form "The food was word,
but everything else was really bad" can be classifed
as negative without knowing the meaning of word.
Thus, in I-Food-Abstraction (Control), we also in-
clude inputs where the patch might apply but is not
important. Finally, we write a set of patches to use
on both of these datasets (Fig. 2).

Results. From Table 1, we first note that on both
I-Food-Abstraction and O-Food-Abstraction,
ORIGINAL+PF is either worse or only marginally
better than ORIGINAL. This is by design, since we
ensure that the patch finetuning data is sufficiently
different from the dataset we evaluate on. Next, we
observe that our patches with abstract conditions,
are able to boost model performance by 35-41
accuracy points — i.e., the model recognizes that
“pizza”, “tacos”, etc are “food”. At the same
time, comparing ORIGINAL+PF and the patched
model, we see that these patches do not affect
model predictions on any of the control datasets
(i.e. “waiter” is not “food”, negations are parsed
appropriately, etc). These results indicate that our
patching mechanism is able to handle abstract
conditions accurately, and that patching does not
work via simple shortcuts.

4.1.2 Patching on real data

Override Patches. We use the following three
benchmarks derived from real world datasets. For
Yelp-Aspect, we use patches of the form “if aspect
is good / bad, then label is positive / negative”
where aspect is food or service. To obtain labels,
we manually annotate a subset of 500 examples
with food and service specific sentiment e.g “The
food was good, service not so much" would be
labeled as service: 0, food: 1. These aspect spe-
cific labels are then used to obtain the ground truth
for each patch, such that the ground truth label of



Setting ORIGINAL ORIGINAL+PF PATCHED
Yelp-Aspect 94.7 93.6 95.7
Yelp-Stars 93.2 93.6 9.5
ClothingReviews 89.6 88.9 90.1

Table 2: Using Override Patches on real data.

Setting ORIGINAL ORIGINAL+PF PATCHED
Yelp-bomb 88.2 88.2 93.5
Yelp-clothes-dope 90.5 90.1 95.2
Yelp-the-shit 84.4 84.4 90.6
Yelp-omg 92.8 91.1 94.6
Yelp-wtf 100.0 929 96.4
Yelp-Colloquial (Overall) 89.1 88.6 934

Table 3: Using Feature-based Patches on real data

an input is the original label if the patch condi-
tion is false, and the override label associated with
the patch otherwise.We report the average perfor-
mance from patching with each of these 4 patches
(since these patches are not mutually exclusive)
Yelp-stars consists of all examples in Yelp with
the word ‘star’ present. For this subset, we use
a single patch “If review gives 0, 1, 2 stars, then
label is negative”. Finally, we use the “Women’s E-
commerce Clothing Reviews" dataset from Zhong
et al. (2021) and add two patches: “If review men-
tions phrases like needs to be returned, then label
is negative”, “If fit is boxy, then label is negative”.
For these last two benchmarks, we use the original
labels in the dataset. Language patches improve
performance by 0.5-1.3 accuracy points (Table 2).

Feature-based Patches. We focus on supplying
contextual meanings of colloquial terms in Yelp,
for which our model has somewhat low accuracy.
To do so, we construct Yelp-Colloquial, consisting
of all examples that have the terms {dope, wtf, omg,
the shit, bomb}. We then write a patch correspond-
ing to each of these terms (details in Section A).
From Table 3, we see an overall improvement of
+4.3 accuracy points on Yelp-Colloquial.

4.2 Spouse Relation Extraction

We observe that the Spouse training data is such
that the majority of positive examples correspond
to opposite-sex couples. We expect this to cause
the model to exhibit a strong over-dependence on
whether the two entities have different sex.

To test this, we construct a dataset using Check-
Lists (Ribeiro et al., 2020) in which the sex of the
two entities provides no signal for the ground truth
label. On this dataset, we observe a large deteriora-

Model Fl1
ORIGINAL 59.2
ORIGINAL+PF 63.7
b If p1 is the cousin of po, then label is negative 65.1
g If p1 and py went on a honeymoon, then label is positive 82.6
> If py has kids with ps, then label is positive 75.4
5 If p; divorced p2, then label is negative 66.8
%Q If p1 has tied the knot with pa, then label is positive 81.8
B
> If p; and po are coworkers, then label is negative 63.7
Pspouse (Using all patches) 91.6

Table 4: Using Override Patches on the diagnostic test
set. Over-dependence on sex of the two entities causes
the base model to struggle. A small number of language
patches, however, are able to fix this.

tion in model performance compared to the Spouse
validation set. To mitigate this, we write a set of 6
override patches Pypouse. Importantly, in the patch
training phase (details in Table 6 of Appendix A),
we maintain the correlation between sex and the
label (thus we expect ORIGINAL+PF to not be sig-
nificantly better than ORIGINAL). From results in
Table 4, we observe that patching is able to improve
performance by +32.4 accuracy points.

5 Related Work and Discussion

High level language feedback has been used for
training fewshot image classifiers (Mu et al., 2020;
Andreas et al., 2018) and text classifiers (Zaidan
and Eisner, 2008; Srivastava et al., 2018; Camburu
et al., 2018; Hancock et al., 2018; Murty et al.,
2020).These works are concerned with reducing la-
beled data requirements with language supervision
or providing additional knowledge, while our set-
ting involves using language as a corrective tool. In
a setting more similar to ours, Talmor et al. (2020)
introduce a system that can incorporate factual
knowledge at test time on synthetic tasks. Cao
et al. (2021); Mitchell et al. (2021); Meng et al.
(2022) also consider editing factual knowledge in
models at inference time. Instead of focusing on
factual knowledge, we show that free-form lan-
guage patches can be used to fix bugs on real data,
to better align model behavior with the end user.

Training models on biased data often leads to
various bugs that are surfaced when models are
tested on challenging, out-of-distribution examples.
This work suggests a human-in-the-loop model de-
bugging paradigm that is powerful and expressive
(owing to the use of natural language) while requir-
ing no fine-tuning on carefully curated additional
data or writing brittle if-else rules.
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A Appendix

A.1 Low-level Implementation Details

We use T5-large (Raffel et al., 2019) as imple-
mented in the transformers library (Wolf et al.,
2020) for all our experiments. Both the gating and
interpreter heads are separate decoders learnt on top
of a shared encoder and all of these components are
initialized with the corresponding T5-large weights.
An input z is presented as: “Input: =", and any ad-
ditional context ¢ (c or q) is presented as: “Prompt:
1. Input: z". The label probabilities are computed
as the conditional probability of the word “posi-
tive" and “negative" respectively. We use standard
hyperparameters i.e use a learning rate of le-4 and
use a linear warmup scheduler which ramps up the
learning rate from O to le-4 over 100 steps. To
prevent catastrophic forgetting on the original task
during patch finetuning, we multi-task learn the
patch finetuning loss along with the original task
loss.

Patches used for Yelp-Colloquial. We used
the following patches for fixing bugs on Yelp-
Colloquial:

* “If clothes are described as dope, then
clothes are good.”

e “If food is described as the shit, then food
is good.”

* "If food is described as bomb, then food is
good.”

* “If something is described as wtf, then some-
thing is bad.”

* “If something is described as omg, then
something is good.”

* "“If food is described as shitty, then food is
bad.”

* “If something is described as bomb, then
something is good.”



Template Examples

Override: |If aspect is good, then label eq: If service is good, then label is positive
is positive eq: If food is good, then label is positive

Patches Override: If aspect is bad, then label is eq: If service is bad, then label is negative

' negative es: If ambience is bad then label is negative

Override: If review contains words like ey: If review contains words like zubin, then label is positive
word, then label is positive es: If review contains words like excellent, then label is positive
Override: |f review contains words like eg: If review contains words like wug, then label is negative
word, then label is negative e7: If review contains words like really bad, then label is negative

eg: If food is described as above average, then food is good
Feature-based: If aspect is described as eg: If food is described as wug, then food is bad
word, then aspect is good / bad e10: If food is described as zubin, then service is good

e11: If service is described as not great, then service is bad

The service at the restaurant was really good. e, e3

The EEEERE at the restaurant was HHj The food at the restaurant was wug. eg, eg

. The restaurant had really bad service. ez, es, e11
Inputs The restaurant had EH] ESREER The restaurant had zubin ambience. e4, e1g

The aspectl was adjl, the aspect2 The food was good, the ambience was bad. e;, e3, ej
was adj2 The service was good, the food was not good. eg, e

The aspectl was adjl but the aspect2 The food was good, but the service was really bad. e7, e, eg
was really adj2 The ambience was bad, but the food was really not wug. e3, eg

The aspectl was really adjl even The food was really bad even though the ambience was excellent. e5, e7, eg
though aspect2 was adj2 The food was really zubin, even though the service was bad e4, ejg, eg

Table 5: Patch and Input templates used for the Patch Finetuning stage for the sentiment analysis task. We divide
our patches into 2 categories: Override and Feature-based (see Section 4 for more details). For each input, we
provide examples of some positive and negative patches. The simplistic nature of these templates makes them easy
to write without access to additional other data sources or lexicons.

Examples

ep: Personl divorced Person2
e1: Personl has kids with Person2
Patches eo: Personl is the parent of Person2
e3: Personl and Person2 are engaged
e4: Personl and Person2 are just friends or coworkers

e5: Personl or Person2 is not human

Personl and Person2 have a kid named Person3. e, e2
Personl and Person2 have a kid named Person3. eg, ej
Inputs Personl proposed to Person2. The event was witnessed by Personl’s best friend Person3. e3, ey
Personl proposed to Person2. The event was witnessed by Personl’s best friend Person3. e4, eq

Personl has decided to divorce Person2. They have a child named Person3. eg, e3
Personl has decided to divorce Person2. They have a child named Person3. e3, eg

Personl works at location. e5, eq

Table 6: Patches along with a subset of inputs used for the Patch Finetuning stage for the Spouse relation extraction
task. For each input, we highlight the two entities and provide examples of some positive and negative patches.



