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Abstract

The de-facto standard for fixing bugs in mod-001
els post training is to finetune the model on002
additional annotated data, or patch the model003
with tenuous if-else rules. In contrast, humans004
can often use natural language as a tool for pro-005
viding corrective feedback to each other. In006
this work, we explore using natural language007
patches from users to fix bugs in NLP mod-008
els. Our overall approach uses a gating head009
to softly combine the original model output010
with a patch-conditioned output from an inter-011
preter head. Both of these heads are trained012
by inserting a patch finetuning stage between013
training and deployment, where the training014
objective is based on synthetically generated015
inputs and patches. Surprisingly, we show that016
this synthetic patch training phase is enough to017
enable patching inputs on real data—on two018
data slices from a sentiment analysis dataset,019
we show that 1 to 5 language patches can im-020
prove performance by ~1-4%. Next, on an ad-021
versarial relation extraction diagnostic test set,022
we improve F1 by over 30% with just 6 patches.023

1 Introduction024

Despite the prevalence of bugs or undesirable be-025

haviors in NLP models (Ribeiro et al., 2020), the026

problem of fixing such bugs is less well understood.027

Suppose a user identifies two bugs in a sentiment028

analysis model: it fails to identify low star ratings029

as sufficient conditions for a negative prediction,030

and it doesn’t understand colloquial usage of the031

word ‘bomb’ (Figure 1). In order to fix such bugs,032

the user may collect additional data for finetuning,033

a tedious and computationally demanding process034

that can lead to shortcuts such as “if the word bomb035

is in the review, it is positive” or “the number 2 in-036

dicates a negative review”. Similarly, rule-based037

patches (Figure 1b) lead to brittleness, as these rely038

on word matching rather than the right abstractions.039

In this work, we propose natural language040

patches as an approach to fixing bugs. Natural041

Figure 1: While rule-based patches rely on hard pattern
matches, a language patch can use the right abstractions.

language makes it easy for users to express a patch 042

with the right abstraction, without having to specify 043

exactly how the condition is applied, e.g. “If food is 044

described as bomb, then food is good” is applied 045

to “The tacos were bomb” and “Pizza was just the 046

bomb!”. Our modeling approach includes a gating 047

head to soft-predict whether the patch should be 048

applied (e.g. “food is described as bomb”), and 049

a conditioning head to predict a new output when 050

the patch applies, combining the consequent (e.g. 051

“food is good”) with the original input. Both heads 052

are trained on synthetic data in a step between train- 053

ing and deployment, such that new patches can be 054

applied at test-time without further training, and 055

can be user-specific (with a shared base model). 056
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Our controlled experiments indicate that natu-057

ral language patches are applied correctly when058

the condition is met, and do not change predic-059

tions when it does not – even for abstract condi-060

tions where rule-base patches would be infeasible061

or very difficult. This is also the case for test-time062

patches that are very different than the ones used in063

the synthetic training data. We show how a small064

set of simple patches can be used to fix bugs (and065

thus improve performance) on real benchmarks for066

two different tasks, despite the synthetic nature of067

the patch tuning phase. On two data slices from068

the Yelp reviews dataset, we show that 1 to 5 lan-069

guage patches can improve performance by ~1-4%.070

Finally, on an adversarial relation extraction diag-071

nostic test set, 6 patches improve F1 by over 30%.072

2 Setup073

We are given a text classifier (the model) f that074

maps an input text x to a probability distribution075

over its output space, f(x) = Pr(y | x). In our076

setting, this model is riddled with bugs—defined as077

any behavior inconsistent with the user’s preference078

or the “ground truth". We use a library of user079

provided patches P = {lp1, lp2, . . . , lpt} to fix080

these bugs. In this work, each lpj is of the from “If081

cj , then qj” , where cj denotes the condition under082

which the patch is to be applied, and qj refers to083

the consequence of applying it. Given the original084

output f(x), the updated output is Fix(f , x, P ).085

3 Our Approach086

We start with a model f consisting of a classifi-087

cation head on top of an encoder. Our approach088

consists of two finetuning stages. In the Task Fine-089

tuning stage, we are given a dataset {xi, yi} of090

labeled examples from some task which we use to091

train f through standard supervised learning. Next,092

in the Patch Finetuning stage, we use the learnt093

encoder and learn a gating head g (initialized ran-094

domly) and an interpreter head I initialized with095

the classification head.096

For the latter stage, we write a small set of patch097

templates covering the kinds of patches users might098

want to write for their own application (see Table 5099

in Section A for templates used for our sentiment100

analysis results). Based on these templates, we101

instantiate a small number of patches along with102

synthetic labeled examples. This gives us a dataset103

{xi, yi, lpi}, where each lpi consists of a condition104

ci as well as a consequence qi.105

Intuitively, g computes the probability that the 106

condition specified by lp = (c, q) is true for a 107

given input x as g(x, c). The interpreter model I 108

computes a new distribution over the label space, 109

that conditions on x and the consequence q. This 110

is then combined with the original model output 111

f(x) using the above gating probability. 112

The interpreter head I is trained to model Pr(yi | 113

xi, qi) through standard log-likelihood maximiza- 114

tion. The gating head g is trained via noise con- 115

trastive estimation to maximize 116

log g(xi, ci)−
∑

cj∈NEG(xi)

log g(xi, cj), 117

where NEG(xi) is a randomly sampled set of 118

negative conditions for xi. 119

Applying Patches. Finally, a single patch lp = 120

(c, q), can be applied to any input x as 121

Fix(f , x, lp) = g(x, c) · I(x, q) (1) 122

+ [1− g(x, c)] · f(x) 123

To extend the above to leverage a library of 124

patches P = {lp1, lp2, . . . , lpt}, we find the patch 125

that is “most relevant" for the given input and use 126

that to update the model’s output, 127

lp∗ = argmax
lpi∈P

g(x, ci) (2) 128

Fix(f , x, P ) = Fix(f , x, lp∗) (3) 129

4 Experiments 130

Applications. We apply our method to binary 131

sentiment analysis and relation extraction. For re- 132

lation extraction, we consider the Spouse dataset 133

from Hancock et al. (2018), where the task is to 134

determine whether two entities are married or not 135

given a textual context about them. 136

Patch Types. We consider two categories of 137

patches (see Figure 2 and Table 5 for examples). 138

Override patches are of the form “If cond, then 139

label is l” i.e. they override the model’s predic- 140

tion on an input if the corresponding condition is 141

true. For these patches, we do not learn the in- 142

terpreter head (since I(x, q) is given as l). Next, 143

Feature-based patches are of the form “If cond, 144

then feature” , i.e. they provide the model with a 145

contextual feature “hint” in natural language, e.g. 146

in Figure 2 the feature is “food is good”. For these 147

patches, the model needs to learn how to integrate 148

the hints with the original data, and thus we train 149

both the gating head and the interpreter head. 150

2



Figure 2: (a) We construct datasets based on checklists
to study how well our approach can leverage abstrac-
tions in language patches. (b) To control for spurious
shortcuts such as copying words from the patch or per-
forming simple string lookups, we also construct corre-
sponding control datasets.

Dataset ORIGINAL ORIGINAL+PF PATCHED

I-Food-Abstraction 59.1 59.9 100.0
I-Food-Abstraction (Control) 71.06 56.8 56.8
O-Food-Abstraction 50 50 85.4
O-Food-Abstraction (Control) 37.5 61.3 61.3

Table 1: We see significant improvements when the
patches apply, and no changes when they do not apply
or are unimportant. These improvements do not accrue
if we simply finetune on synthetic data (Original + PF)

4.1 Sentiment Analysis151

We fix bugs in a T5-large (Raffel et al., 2019)152

model trained on the Stanford Sentiment Treebank153

dataset (Socher et al., 2013). We report accura-154

cies of the original model with only task finetuning155

(ORIGINAL) as well as the model obtained after156

patch finetuning (ORIGINAL+PF), to isolate the157

gains of natural language patches from those in-158

duced by training on additional synthetic data.159

4.1.1 Patching with abstract conditions160

To study the ability of our approach to patch161

with abstract conditions, we construct synthetic162

datasets (Fig. 2) based on CheckList (Ribeiro et al.,163

2020). We construct analogous datasets for both164

override (O-Food-Abstraction) as well as feature- 165

based patches (I-Food-Abstraction). For O-Food- 166

Abstraction, we generate inputs with negative ad- 167

jectives that the base model makes errors on. For 168

I-Food-Abstraction, we use gibberish adjectives to 169

get a large collection of words for which the model 170

doesn’t know the sentiment. To control for spuri- 171

ous behaviors such as copying label words from 172

the patch, performing string lookups or ignoring 173

negated contexts, we construct a control dataset 174

O-Food-Abstraction (Control). Additionally for 175

feature-based patches, we want to ensure that the 176

patch doesn’t change behavior when it’s not impor- 177

tant e.g. an input of the form "The food was word, 178

but everything else was really bad" can be classifed 179

as negative without knowing the meaning of word. 180

Thus, in I-Food-Abstraction (Control), we also in- 181

clude inputs where the patch might apply but is not 182

important. Finally, we write a set of patches to use 183

on both of these datasets (Fig. 2). 184

Results. From Table 1, we first note that on both 185

I-Food-Abstraction and O-Food-Abstraction, 186

ORIGINAL+PF is either worse or only marginally 187

better than ORIGINAL. This is by design, since we 188

ensure that the patch finetuning data is sufficiently 189

different from the dataset we evaluate on. Next, we 190

observe that our patches with abstract conditions, 191

are able to boost model performance by 35-41 192

accuracy points – i.e., the model recognizes that 193

“pizza”, “tacos”, etc are “food”. At the same 194

time, comparing ORIGINAL+PF and the patched 195

model, we see that these patches do not affect 196

model predictions on any of the control datasets 197

(i.e. “waiter” is not “food”, negations are parsed 198

appropriately, etc). These results indicate that our 199

patching mechanism is able to handle abstract 200

conditions accurately, and that patching does not 201

work via simple shortcuts. 202

4.1.2 Patching on real data 203

Override Patches. We use the following three 204

benchmarks derived from real world datasets. For 205

Yelp-Aspect, we use patches of the form “if aspect 206

is good / bad, then label is positive / negative” 207

where aspect is food or service. To obtain labels, 208

we manually annotate a subset of 500 examples 209

with food and service specific sentiment e.g “The 210

food was good, service not so much" would be 211

labeled as service: 0, food: 1. These aspect spe- 212

cific labels are then used to obtain the ground truth 213

for each patch, such that the ground truth label of 214
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Setting ORIGINAL ORIGINAL+PF PATCHED

Yelp-Aspect 94.7 93.6 95.7
Yelp-Stars 93.2 93.6 94.5
ClothingReviews 89.6 88.9 90.1

Table 2: Using Override Patches on real data.

Setting ORIGINAL ORIGINAL+PF PATCHED

Yelp-bomb 88.2 88.2 93.5
Yelp-clothes-dope 90.5 90.1 95.2
Yelp-the-shit 84.4 84.4 90.6
Yelp-omg 92.8 91.1 94.6
Yelp-wtf 100.0 92.9 96.4

Yelp-Colloquial (Overall) 89.1 88.6 93.4

Table 3: Using Feature-based Patches on real data

an input is the original label if the patch condi-215

tion is false, and the override label associated with216

the patch otherwise.We report the average perfor-217

mance from patching with each of these 4 patches218

(since these patches are not mutually exclusive)219

Yelp-stars consists of all examples in Yelp with220

the word ‘star’ present. For this subset, we use221

a single patch “If review gives 0, 1, 2 stars, then222

label is negative” . Finally, we use the “Women’s E-223

commerce Clothing Reviews" dataset from Zhong224

et al. (2021) and add two patches: “If review men-225

tions phrases like needs to be returned, then label226

is negative” , “If fit is boxy, then label is negative” .227

For these last two benchmarks, we use the original228

labels in the dataset. Language patches improve229

performance by 0.5-1.3 accuracy points (Table 2).230

Feature-based Patches. We focus on supplying231

contextual meanings of colloquial terms in Yelp,232

for which our model has somewhat low accuracy.233

To do so, we construct Yelp-Colloquial, consisting234

of all examples that have the terms {dope, wtf, omg,235

the shit, bomb}. We then write a patch correspond-236

ing to each of these terms (details in Section A).237

From Table 3, we see an overall improvement of238

+4.3 accuracy points on Yelp-Colloquial.239

4.2 Spouse Relation Extraction240

We observe that the Spouse training data is such241

that the majority of positive examples correspond242

to opposite-sex couples. We expect this to cause243

the model to exhibit a strong over-dependence on244

whether the two entities have different sex.245

To test this, we construct a dataset using Check-246

Lists (Ribeiro et al., 2020) in which the sex of the247

two entities provides no signal for the ground truth248

label. On this dataset, we observe a large deteriora-249

Model F1

ORIGINAL 59.2
ORIGINAL+PF 63.7

U
si

ng
si

ng
le

pa
tc

h If p1 is the cousin of p2, then label is negative 65.1
If p1 and p2 went on a honeymoon, then label is positive 82.6
If p1 has kids with p2, then label is positive 75.4
If p1 divorced p2, then label is negative 66.8
If p1 has tied the knot with p2, then label is positive 81.8
If p1 and p2 are coworkers, then label is negative 63.7

Pspouse (Using all patches) 91.6

Table 4: Using Override Patches on the diagnostic test
set. Over-dependence on sex of the two entities causes
the base model to struggle. A small number of language
patches, however, are able to fix this.

tion in model performance compared to the Spouse 250

validation set. To mitigate this, we write a set of 6 251

override patches Pspouse. Importantly, in the patch 252

training phase (details in Table 6 of Appendix A), 253

we maintain the correlation between sex and the 254

label (thus we expect ORIGINAL+PF to not be sig- 255

nificantly better than ORIGINAL). From results in 256

Table 4, we observe that patching is able to improve 257

performance by +32.4 accuracy points. 258

5 Related Work and Discussion 259

High level language feedback has been used for 260

training fewshot image classifiers (Mu et al., 2020; 261

Andreas et al., 2018) and text classifiers (Zaidan 262

and Eisner, 2008; Srivastava et al., 2018; Camburu 263

et al., 2018; Hancock et al., 2018; Murty et al., 264

2020).These works are concerned with reducing la- 265

beled data requirements with language supervision 266

or providing additional knowledge, while our set- 267

ting involves using language as a corrective tool. In 268

a setting more similar to ours, Talmor et al. (2020) 269

introduce a system that can incorporate factual 270

knowledge at test time on synthetic tasks. Cao 271

et al. (2021); Mitchell et al. (2021); Meng et al. 272

(2022) also consider editing factual knowledge in 273

models at inference time. Instead of focusing on 274

factual knowledge, we show that free-form lan- 275

guage patches can be used to fix bugs on real data, 276

to better align model behavior with the end user. 277

Training models on biased data often leads to 278

various bugs that are surfaced when models are 279

tested on challenging, out-of-distribution examples. 280

This work suggests a human-in-the-loop model de- 281

bugging paradigm that is powerful and expressive 282

(owing to the use of natural language) while requir- 283

ing no fine-tuning on carefully curated additional 284

data or writing brittle if-else rules. 285
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A Appendix356

A.1 Low-level Implementation Details357

We use T5-large (Raffel et al., 2019) as imple-358

mented in the transformers library (Wolf et al.,359

2020) for all our experiments. Both the gating and360

interpreter heads are separate decoders learnt on top361

of a shared encoder and all of these components are362

initialized with the corresponding T5-large weights.363

An input x is presented as: “Input: x", and any ad-364

ditional context i (c or q) is presented as: “Prompt:365

i. Input: x". The label probabilities are computed366

as the conditional probability of the word “posi-367

tive" and “negative" respectively. We use standard368

hyperparameters i.e use a learning rate of 1e-4 and369

use a linear warmup scheduler which ramps up the370

learning rate from 0 to 1e-4 over 100 steps. To371

prevent catastrophic forgetting on the original task372

during patch finetuning, we multi-task learn the373

patch finetuning loss along with the original task374

loss.375

Patches used for Yelp-Colloquial. We used376

the following patches for fixing bugs on Yelp-377

Colloquial:378

• “If clothes are described as dope, then379

clothes are good.”380

• “If food is described as the shit, then food381

is good.”382

• “If food is described as bomb, then food is383

good.”384

• “If something is described as wtf, then some-385

thing is bad.”386

• “If something is described as omg, then387

something is good.”388

• “If food is described as shitty, then food is389

bad.”390

• “If something is described as bomb, then391

something is good.”392
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Template Examples

Patches

Override: If aspect is good, then label
is positive

e0: If service is good, then label is positive
e1: If food is good, then label is positive

Override: If aspect is bad, then label is
negative

e2: If service is bad, then label is negative
e3: If ambience is bad then label is negative

Override: If review contains words like
word, then label is positive

e4: If review contains words like zubin, then label is positive
e5: If review contains words like excellent, then label is positive

Override: If review contains words like
word, then label is negative

e6: If review contains words like wug, then label is negative
e7: If review contains words like really bad, then label is negative

Feature-based: If aspect is described as
word, then aspect is good / bad

e8: If food is described as above average, then food is good
e9: If food is described as wug, then food is bad
e10: If food is described as zubin, then service is good
e11: If service is described as not great, then service is bad

Inputs

The aspect at the restaurant was adj The service at the restaurant was really good. e0, e3
The food at the restaurant was wug. e6, e9

The restaurant had adj aspect The restaurant had really bad service. e7, e2, e11
The restaurant had zubin ambience. e4, e10

The aspect1 was adj1, the aspect2
was adj2

The food was good, the ambience was bad. e1, e3, e1
The service was good, the food was not good. e0, e1

The aspect1 was adj1 but the aspect2
was really adj2

The food was good, but the service was really bad. e7, e1, e0
The ambience was bad, but the food was really not wug. e3, e9

The aspect1 was really adj1 even
though aspect2 was adj2

The food was really bad even though the ambience was excellent. e5, e7, e8
The food was really zubin, even though the service was bad e4, e10, e0

Table 5: Patch and Input templates used for the Patch Finetuning stage for the sentiment analysis task. We divide
our patches into 2 categories: Override and Feature-based (see Section 4 for more details). For each input, we
provide examples of some positive and negative patches. The simplistic nature of these templates makes them easy
to write without access to additional other data sources or lexicons.

Examples

Patches

e0 : Person1 divorced Person2
e1 : Person1 has kids with Person2
e2 : Person1 is the parent of Person2
e3 : Person1 and Person2 are engaged
e4 : Person1 and Person2 are just friends or coworkers
e5 : Person1 or Person2 is not human

Inputs

Person1 and Person2 have a kid named Person3. e1, e2
Person1 and Person2 have a kid named Person3. e2, e1

Person1 proposed to Person2. The event was witnessed by Person1’s best friend Person3. e3, e4
Person1 proposed to Person2. The event was witnessed by Person1’s best friend Person3. e4, e0

Person1 has decided to divorce Person2. They have a child named Person3. e0, e3
Person1 has decided to divorce Person2. They have a child named Person3. e2, e0

Person1 works at location. e5, e0

Table 6: Patches along with a subset of inputs used for the Patch Finetuning stage for the Spouse relation extraction
task. For each input, we highlight the two entities and provide examples of some positive and negative patches.
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