Published in Transactions on Machine Learning Research (04/2025)

Formal Verification of Graph Convolutional Networks with
Uncertain Node Features and Uncertain Graph Structure

Tobias Ladner tobias.ladner@tum.de
Michael Eichelbeck michael.eichelbeck@tum.de
Matthias Althoff althoff@tum.de

School of Computation, Information and Technology
Technical University of Munich, Germany

Reviewed on OpenReview: |https: //openreview. net/ forum? id=B6y120t0cP

Abstract

Graph neural networks are becoming increasingly popular in the field of machine learning
due to their unique ability to process data structured in graphs. They have also been
applied in safety-critical environments where perturbations inherently occur. However, these
perturbations require us to formally verify neural networks before their deployment in safety-
critical environments as neural networks are prone to adversarial attacks. While there
exists research on the formal verification of neural networks, there is no work verifying the
robustness of generic graph convolutional network architectures with uncertainty in the node
features and in the graph structure over multiple message-passing steps. This work addresses
this research gap by explicitly preserving the non-convex dependencies of all elements in the
underlying computations through reachability analysis with (matrix) polynomial zonotopes.
We demonstrate our approach on three popular benchmark datasets.

1 Introduction

A graph neural network extends the typical notion of feedforward neural networks to graph inputs (Kipf
& Welling;, [2017)). Each node in the graph is associated with a feature vector, which is iteratively updated
by exchanging information with neighboring nodes using their feature vectors over multiple message-passing
steps. They have shown to achieve state-of-the-art results in a variety of fields (Wu et al.l 2020)), including
advances in drug discovery (Zhang et al.[2021)), recommender systems in social networks (Ying et al., [2018)),
and have also been applied in safety-critical environments such as power grids (Wang et al.l |2022} |Stock
et al.l [2022; [Wu et al., [2022b)) and cooperative autonomous driving (Chen et al., |2021)).

However, it is well known that neural networks are sensitive to adversarial attacks (Goodfellow et al., 2015)),
where minor perturbations to the input can lead to unexpected predictions. Adversarial examples have also
extensively been studied for graph neural networks (Dai et al., 2018; (Gunnemann, [2022)), where both the
node features and the graph structure can be perturbed. As graph neural networks are a generalization
of many other network architectures to non-Euclidean input data (Bronstein et all |2017)), the existence of
adversarial examples is not surprising. Thus, neural networks need to be formally verified before they can
be safely deployed (Brix et al., 2023; [Konig et al., [2024]).

This is particularly important for safety-critical cyber-physical systems. For example, accurate state es-
timation is essential for the safe control of power grids, as inappropriate power injections might lead to
blackouts (Primadianto & Lul, 2017)). Graph neural networks have been demonstrated for grid parameter
identification (Wang et al., [2022)) and real-time state estimation (Stock et al.,|2022; Wu et al.| 2022b)), where
uncertainties come from unmodelled environment interactions (Bhattarai et all [2017), manipulation of a
few network node sensor readings or, in the extreme case, on the destruction of transmission infrastruc-
ture (Liang et al., 2017} [Kosut et al.,|2011)). Similar scenarios also occur in cooperative autonomous driving
when graph neural networks are applied (Chen et al, 2021)), where distances to other cars are inherently

https://openreview.net/forum?id=B6y12Ot0cP

Published in Transactions on Machine Learning Research (04/2025)

uncertain and features can be adversarially manipulated to favor their own car. Using formally verified graph
neural networks would leverage the capabilities of graph neural networks in safety-critical scenarios.

1.1 Related Work

Most state-of-the-art verifiers only consider standard, feedforward neural networks (Brix et al. 2023} [Konig|
et al.L : These can generally be categorized into complete and incomplete algorithms (Kénig et al.l
2024). Complete algorithms (Huang et al) 2017} [Katz et all, 2017) compute the exact output of a neural
network given perturbations on the input. This allows one to either verify given specifications or to extract
a counterexample. However, it has been shown that verifying a neural network with ReLU activations
requires solving an exponential number of linear subproblems as this problem is NP-hard (Katz et al. 2017).
Thus, many existing verifiers use incomplete but sound algorithms (Brix et al) 2023), which can verify
given specifications by relaxing the problem; however, this relaxation might prevent them from extracting a
counterexample when the specification could not be verified. These verifiers can again be categorized into
optimization-based approaches and approaches using reachability analysis.

Optimization-based approaches formulate relaxed constraints for the activation functions in a neural network.
This relaxed problem is then solved using satisfiability modulo theories (SMT) or mixed integer programming
(MIP) solvers (Zhang et al.l|2018; Katz et al.||2019; Miiller et al.l 2022; Tjeng et al.||2019; Dutta et al., 2018),
or symbolic interval propagation (Henriksen & Lomuscio, [2020; Singh et al.,|2019; Brix & Noll, 2020). These
algorithms can be improved using branch-and-bound strategies (Bunel et al., [2020), where the problem is
divided into simpler subproblems. For example, one can split ReLU neurons into their linear parts (Botoeval
et al.l [2020; [Singh et al. 2018b)). Such branch-and-bound strategies (Wang et al., 2021} [Ferrari et al. [2022}
Shi et al., 2023) are currently the dominant strategies in state-of-the-art verifiers (Brix et al., 2023).

On the other hand, one can use reachability analysis to verify a neural network by computing an enclosure
of the output set. This is realized by propagating the perturbed input set through each layer of the neural
network and bounding all approximation errors. Early approaches propagate convex set representations
through neural networks, such as intervals (Pulina & Tacchella, 2010) and zonotopes (Gehr et al.l 2018} |[Singh|
. Non-convex set representations can improve the verification results as the exact output set can
be non-convex due to the nonlinearities within the network. These approaches use Taylor models
let al. [2021} Bogomolov et al) 2019; Huang et al., 2022)), star sets (Bakl [2021; Lopez et all [2023), and
polynomial zonotopes (Kochdumper et al. 2023} |Ladner & Althoff, 2023)) to verify neural networks. Branch-
and-bound strategies are also used in approaches using reachability analysis (Xiang et al. [2018]).

To the best of our knowledge, there exist only a few approaches considering the formal verification of
graph neural networks. As with feedforward neural networks (Katz et al., |2017)), the theoretical limits of
the graph neural networks verification problem have been discussed (Salzer & Lange) 2023)). Thus, most
existing methods for verifying graph neural networks again employ incomplete but sound algorithms: Some
approaches (Zigner & Glinnemannl 2019} |[Bojchevski & Giinnemannl [2019) formulate uncertainty in the semi-
supervised node classification setting as an optimization problem, where uncertain node features
|Gtinnemann), 2019) and uncertainty in the graph structure (Bojchevski & Gunnemann} 2019) are considered
separately. The network architecture in the latter approach only has a single, slightly altered message-passing
step. This approach is extended to restrict both the global and the local uncertainty of the graph
. Another approach verifies uncertain node features in graph neural networks for job
schedulers by unrolling them into feedforward neural networks and verifies them using reachability analysis.
It is also worth mentioning that probabilistic guarantees can be achieved using randomized smoothing (Jia
let all [2020; [Bojchevski et all, [2020), and one can try to defend adversarial attacks (Jin et all [2020b));
however, these approaches do not provide formal guarantees. Thus, such approaches are not directly usable
in safety-critical environments where one has to guarantee safety.

1.2 Contributions

Our contributions are as follows:

Published in Transactions on Machine Learning Research (04/2025)

Uncertain node
features C R¢ — > H

Figure 1: Graph G with uncertain node features and uncertain graph structure.

e We present the first approach to verify graph convolutional networks with uncertain node features
and an uncertain graph structure as input over multiple message-passing steps (Fig. . The con-
sidered architecture of the graph convolutional network is generic and can have any element-wise
activation function.

o We explicitly preserve the non-convex dependencies of all involved variables through all layers of the
graph neural network using (matrix) polynomial zonotopes.

e The resulting verification algorithm has polynomial time complexity in the number of uncertain
input features and in the number of uncertain edges.

e« We demonstrate our approach on three popular benchmark datasets with added perturbations on
the node features and the graph structure.

This work is structured as follows: In Sec. we introduce all required preliminaries and the problem
statement, followed by defining the matrix variant of polynomial zonotopes in Sec. Our verification
approach is described in Sec. [d} We first show that graph-based layers in neural networks can be computed
exactly using matrix polynomial zonotopes with only uncertain input features. The required adaptations
when also the graph structure is uncertain are described subsequently. Finally, we show experimental results
in Sec. [§l and draw conclusions in Sec. [6l

2 Background

2.1 Notation

We denote scalars and vectors by lowercase letters, matrices by uppercase letters, and sets by calligraphic
letters. The i-th element of a vector v € R™ is written as v(;). The element in the i-th row and j-th column
of a matrix A € R™*™ is written as A(; ;), the entire i-th row and j-th column are written as A; .y and
Ay j), respectively. The concatenation of A with a matrix B € R™*° is denoted by [A B] € R (m+0) The
empty matrix is written as []. We denote with I, the identity matrix of dimension n € N. The symbols
0 and 1 refer to matrices with all zeros and ones of proper dimensions, respectively. Given n € N, we use
the shorthand notation [n] = {1,...,n}. The cardinality of a discrete set D is denoted by |D|. Let D C [n],
then A(p,.) denotes all rows i € D in lexicographic order; this is used analogously for columns. Let S C R"
be a set and f: R™ — R™ be a function, then f(S) = {f(z) | + € S}. An interval with bounds a,b € R" is
denoted by [a,b], where a < b holds element-wise.

2.2 Neural Networks

Let us introduce the neural network architectures we consider in this work. We start by stating a general
formalization of a neural network and, afterward, several types of layers.

Published in Transactions on Machine Learning Research (04/2025)

k' Message Passing Steps Non-Graph-Based Layers
‘ Global Pooling J

Input

Output
X, g— - —LgC LT — ... —I§E —s . — [MN S LACTL . sy

Figure 2: Example architecture of a graph neural network.

Definition 1 (Neural Networks (Bishop & Nasrabadi, 2006, Sec. 5.1)). Let x € R™ be the input of a neural
network ® with x layers, its output y = ®(x) € R™ is obtained as follows:

hO =,
hi = Li(hk-1), k € [x],
y = hN7

where Ly : R™-1 — R™ represents the operation of layer k.

Standard, non-graph-based neural networks are usually composed of alternating linear layers and nonlinear
activation layers:

Definition 2 (Linear Layer). A linear layer is defined by the operation
hie = L™ (hj—1) = Wihg—1 + b,

with weight matrix Wy, € R™*" =1 qnd bias vector by, € R™*.

Definition 3 (Activation Layer). An activation layer is defined by the operation
hi, = LT (hi—1) = ¢r(hr-1),
where ¢i(+) is the respective element-wise nonlinear activation function, e.g., sigmoid or ReLU.

Graph neural networks generalize standard neural networks and additionally take a graph G = (N, &) as an
input, where N/ C N denotes the set of nodes and £ C N x N the set of edges of G. For each node i € N,
we associate a feature vector X(; .y € R!*¢0 with ¢y input features, as illustrated in Fig. These feature
vectors of all]JAV| nodes are stacked vertically to obtain the input feature matrix X € RWVIxeo - Graph neural
networks contain message-passing layers in which neighboring nodes exchange information (Fig. . In this
work, we consider the well-established graph convolutional layer (Kipf & Welling), [2017)), which combines a
node-level linear layer and a message-passing layer:

Definition 4 (Graph Convolutional Layer (Kipf & Welling, [2017, Eq. 2)). Given are a weight matrix
W e R*=1%% an adjacency matriz A € RWIXINT of o graph G, and an input Hy,_; € RNIXex—1 Let
A=A+ L) be the adjacency matriz with added self-loops and D= diag(lfl) e RWVIXINT pe the diagonal
degree matriz. The computation for a graph convolutional layer k is computed as

Hy = L§C(Hy_1,G) = D2 AD™ 3 Hy_ W

The term P = D~ 2 AD~ 2 computes the message passing between nodes. The adjacency matrix A can also
be a weighted adjacency matrix for graphs with scalar edge weights (Kipf & Welling}, 2017, Sec. 7.2). Please
note that activation layers (Def. [3)) work identical for matrix inputs Hy instead of vectors hy.

Please note that related verification approaches considering uncertamty in the graph structure (Bojchevski
& Giimnemann, [2019; Jin et al., [2020a) consider D~' A instead of D~ 3 AD™ 2 in their message passing step.
This is justified by the argument that it corresponds to the personalized page rank matrix, which has a
similar spectrum. However, without appropriate approximation errors, the verification of the original graph
neural network remains unknown using this modification.

Published in Transactions on Machine Learning Research (04/2025)

Depending on the use case, we let a graph neural network ® return a node-level or graph-level output. For
a node-level output, the output is simply the feature matrix of the last layer: ¥ = ®(X,G) € RWVIxex
For a graph-level output, we aggregate all node feature vectors into a single graph feature vector. Thus,
y = ®(X,G) € R"~. This is realized using a pooling layer, which is computed as follows:

Definition 5 (Global Pooling Layer). A global pooling layer aggregates all node feature vectors Hy_1 €
RWIXex—1 within a graph G into a single graph feature vector hy, € R%~1 as follows:

h = LY (Hy_1,G) = ¥ (Hy_1),

where i (-) denotes a permutation invariant aggregation function across all nodes, e.g., sum, mean, or
maximum.

For example,
Gr(Hy—1) = (1Hp-1)" (1)

computes a summation across all nodes in a global pooling layer k. For graph neural networks with a
graph-level output, there can be regular linear and activation layers after the pooling layer (Fig. |2).

2.3 Set-Based Computing

We verify neural networks using continuous sets. For an input set X C R™ of a neural network @, the exact
output set Y* = ®(X) is computed by

M= X,
HZ = Lk’(HZ—l)a ke [’%]7 (2)
V= He

Polynomial zonotopes are a well-suited set representation to verify graph neural networks due to their
polynomial computational complexity of the required operations. We briefly introduce polynomial zonotopes
and all required operations here and give details and an example on this set representation in Appendix [A]

Definition 6 (Polynomial Zonotope (Kochdumper & Althoff, 2020)). Given an offset ¢ € R™, a generator
matriz of dependent generators G € R™ " a generator matriz of independent generators Gy € R™* 9, and
an exponent matriz E € Nth with an identifier id € NP, a polynomial zonotop PZ = {(¢,G,G1,E)p, is
defined as

h D q
PZ={c+y. (H O‘kE(k’“>G<wi> +> BiGrcy) | aw By € [-1,1]
i=1 \k=1 Jj=1

The identifier id is used to keep track of the dependencies of the factors aj between different polynomial
zonotopes. Given two polynomial zonotopes PZ1 = (c1,G1,G11,E1) p,, P22 = (c2,G2,Gr1 2, E2) p,, CR™,
the Minkowski sum is computed by (Kochdumper & Althoft] 2020, Prop. 8)

PZidPZy={x1+22 | 21 € PZ1, 23 € P25}

3
— <cl +e2,[Gr Gol, [Gr1 Grpal, {E(;l 52} >, !
PZ

and given A € R™*" b € R™, the affine map is computed by (Kochdumper & Althoff, 2020, Prop. 9)

APZ1+b= {AJJ +b | xr € 7321} = <A(21 —|—b,AG1,AG171,E1>PZ. (4)

1 As in [Kochdumper| (2022)), we adapt the definition from [Kochdumper & Althoff| (2020) and do not integrate the offset c
into the generator matrix G and omit the identifier vector almost always for simplicity.

Published in Transactions on Machine Learning Research (04/2025)

(a) Steps 1 & 2 (b) Steps 3 & 4 (c) Steps 5 & 6

Output
Output
Output

Input Input Input

—o(x)

Set Bounds —— Polynomial —— Approximation error

Figure 3: Main steps of enclosing a nonlinear layer. Step 1: Evaluate nonlinear function element-wise. Step 2:
Find bounds of the input set. Step 3: Find an approximating polynomial. Step 4: Find the approximation
error. Step 5: Evaluate polynomial over the input set. Step 6: Add the approximation error.

2.4 Verification of Feedforward Neural Networks

Finally, we briefly introduce the main steps to propagate a polynomial zonotope through a standard, non-
graph-based neural network (Def. . Since the set propagation through a neural network cannot be
computed exactly in general, we have to enclose the output of each layer:

Proposition 1 (Image Enclosure (Kochdumper et al. 2023, Sec. 3)). Let Hip—1 2 Hj_; C R™* be an
input set to layer k, then
Hy, = enclose(Ly, Hi—1) 2 Hj C R"*

computes an outer-approximative output set. If the layer k is nonlinear (Def. @, the output Hy, has at most
ng more generators than Hy_1.

Using polynomial zonotopes, the output of a linear layer can be computed exactly ; however, the output
of activation layers needs to be enclosed to obtain a sound outer approximation. We summarize the six
main steps to enclose a nonlinear layer next and visualize them in Fig. B} As we only consider element-wise
activation functions, we can enclose each neuron individually (step 1). In step 2, we find bounds for our
input set. Next, we approximate the activation function using a polynomial (step 3) and find an appropriate
approximation error (step 4). Finally, the chosen polynomial is evaluated over the input set (step 5), and
the output is enclosed using the approximation error (step 6), where one generator for each neuron of the
current layer is added using . While we have depicted the steps in Fig. [3| using a polynomial of order one,
higher-order polynomials can be used to obtain a tighter enclosure (Ladner & Althofl] |2023) using multiple
applications of Prop. [6]

2.5 Problem Statement

Given an uncertain graph G = (N, &) with nodes N’ C N and edges € = £* UE C N x A consisting of fixed
edges £* and uncertain edges £, an uncertain input feature matrix X ¢ RIWI*¢ g graph neural network @,
and an unsafe set S C R™ where n, denotes the dimension of the output of ®, we want to compute an

outer-approximative output set) such that it encloses the output for all possible graph inputs:
VECE: ®(X,(N,E UE)) CY.
We can then verify the given specification by showing that:
yns=»0.

Please note that the threat model considers the case where an attacker only has access to a limited number of
edges £. For example, an attacker partially controls the infrastructure of a power grid and can thus destroy

certain connections. Therefore, we cannot be sure if the edges & are present, leading to 2/l possible graph
inputs with uncertain node features.

Published in Transactions on Machine Learning Research (04/2025)

3 Matrix Polynomial Zonotopes

Before we present our approach, we introduce an extension to polynomial zonotopes to address a key challenge
in the set-based evaluation of graph neural networks: Graph convolutional layers require a matrix Hy_1 €
RWIxek-1 a5 input (Def. , which means that uncertainty must be represented as a set of matrices. In
particular, set-based evaluation requires propagating uncertain matrices Hrp_1 C RV Ixer—1 through all
layers, which we want to represent as polynomial zonotopes; however, a (standard) polynomial zonotope
cannot represent a set of matrices (Def. @ To overcome this limitation, we define its matrix variant and
a few required operations on them in this section. While our focus is on verifying graph neural networks,
matrix polynomial zonotopes are generic and have applications beyond this domain.

Definition 7 (Matrix Polynomial Zonotope). Given an offset C € R"*™ dependent generators G €
Rxmxh - independent generators Gy € R™ ™X49. and an exponent matriz E € Nth with an identifier
id € NP, a matriz polynomial zonotope PZ = (C,G,Gr, E)p, C R™ ™ is defined as

h p q
PZ =L C+ Z(H O‘k:(ky)>G(-,-,i) + ZﬁjGI(""j) oy, B € [—1, 1]

i=1 \k=1 j=1

Please note that the sum in Def. [7] adds matrices instead of vectors (Def. [6]), and each element of the
set PZ C R™™ ig a matrix: VX € PZ: X € R"™™. Thus, matrix polynomial zonotopes are a gen-
eralization of standard polynomial zonotopes. The Minkowski sum of two matrix polynomial zonotopes

PZ,=(C1,G1,G11,E1)p,, P25 = (Cs,G2,G1 2, E2) p,, CR™™ is computed analogously to (3):
PZ, @ PZy= {Xl + X9 | X1 ePZq, Xy € PZQ}

5
- <C'1 + Cs, [Gl Gz}a [Gl,l GI,2]7 {Eol 32] >,)
PZ

where the concatenation of the generators is along the last dimension. Given the matrices 4; € R¥*", A, €
R™*k and the vectors b; € RFX™ by € R"*F an affine map is computed analogously to (4)):

APZi+b = {AlX + by | X € 'PZl} = <A101 =+ b17A1G17A1GI,1aE1>pZa (6&)

PZ1As+ by ={XAy+by | X € PZ1} = (C1As + b2, G1A2,G11A2, E) oy (6b)
where the matrix multiplications are broadcast across all generators. Reshaping and transposing a matrix
polynomial zonotope are computed by applying the respective operation on the center and each generator,
respectively. In particular, reshaping a matrix polynomial zonotope into a vector by stacking it column-wise
results in a standard polynomial zonotope, which we indicate by a vector decoration (). This allows us,
for example, to seamlessly use a matrix polynomial zonotope Hy_1 C RVI*¢—1 during the enclosure of an
activation layer k by first reshaping it: Hjp_1 C RWIex -1 then obtain H; C RVl using Prop. |1, and
finally reshape it back to its original shape: H;, C RVIxex,

During the verification of graph neural networks, we also require the multiplication of two matrix polynomial
zonotopes, which can be computed without inducing additional outer approximations.

Lemma 1 (Multiplication of Matrix Polynomial Zonotopes). Given two matriz polynomial zonotopes My =
<C’1,G1, [],E1>PZ C Rk, M, = <C’2,G2, [],E2>PZ C R¥>™ with hy, ho generators, respectively, and a
common identifier, then their multiplication is obtained by

Mz = My B My = {(MyMy) | My € My, My € My}
—(c]6 G G . Gl [[E B B Eh1]>PZ c RV,
where
C=CCo, Gi=G1Co, Go=0C1Go, Gi=Gy.. G2y Ei=Eyy -1+E, Yiel[h]

The matriz multiplications are broadcast across all generators. The output Mz has O(h1hs) generators.

Published in Transactions on Machine Learning Research (04/2025)

Proof. See Appendix O

This operation is a generalization of the multiplication of two zonotopes (Althoff et all 2011, Eq. (10))
and also has a connection to the quadratic map operation of polynomial zonotopes (Prop. @ Please visit
Appendix [A] and the proof in Appendix [B] for details. Additionally, we discuss the efficient implementation
of this operation on a GPU in Appendix [C]

4 Formal Verification of Graph Convolutional Networks

In this section, we demonstrate how to generalize the verification of standard neural networks (Kochdumper
et al., 2023} Ladner & Althofl]2023)) to graph convolutional networks. We start by (i) explaining how to verify
graph neural networks that have only uncertain node features, and then (ii) describe the adaptations where,
additionally, the graph structure is unknown. Moreover, we show (iii) how a subgraph can be efficiently
extracted in cases where not the entire graph is relevant to verify the specification. Please follow Sec.
along with this section for the exact equations and the required adaptations made here if the inputs are sets.

4.1 Verification with Uncertain Node Features

Uncertainty in the node features requires us to define how the graph-specific layers can be enclosed for an
uncertain input. Using matrix polynomial zonotopes, the enclosure of a graph convolutional layer (Def.
does not induce any additional outer approximation.

Proposition 2 (Enclosure of Graph Convolutional Layer). Given are a weight matriz W), € Re-1%¢
a graph G = (N, £), and an input Hi_1 C RWIxer—1 represented as a matriz polynomial zonotope. Let
A € RNIXINT be the adjacency matriz of G, A = A+ Linry, and let D = diag(1A4) € RVIXWI be the diagonal
degree matriz. The exact output of a graph convolutional layer k in Def. [} is computed by

Hi = LSC(kaﬁ = D‘%AD_%’Hk,ka.
Proof. See Appendix [B] O

The enclosure of a pooling layer (Def. with a summation as aggregation function as in is obtained
analogously.

Proposition 3 (Enclosure of Summation Pooling Layer). Given a graph G and an input Hy_1 C RWVIxer—1
represented as a matriz polynomial zonotope, the exact output of a pooling across all nodes via summation
is computed by

My = L (Hi-1,G) = (1Hp—1) "
Proof. See Appendix O

Thus, the graph-based layers can be computed without inducing additional outer approximations using
matrix polynomial zonotopes when we only have uncertain node features.

4.2 Verification with Uncertain Graph Structure

Verifying graph neural networks becomes more difficult if the presence of some edges is unknown in an
uncertain graph G. This case requires us to enclose the outputs of all possible graph inputs (Sec. . We
enclose these outputs by computing an outer-approximative output set of an equivalent graph with uncertain
edge weights: Let G have fixed edges £* and uncertain edges £. Then, we set the edge weight to 1 for edges
in £* and to the mterval [0, 1] for edges in &. This uncertainty requires a set-based evaluation of the message
passing P = 3AD"z in graph convolutional layers (Def. |4). In particular, we now have an uncertain

Published in Transactions on Machine Learning Research (04/2025)

0.8 \
Inverse square root z = /2
—— Approx. polynomial p(z)
5 0.6 —— Approx. error d
&
=
@)
0.4
! ! ! ! ! ! ! ! ! !

!
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
Input x

Figure 4: Enclosure of the inverse square root function. The x-axis corresponds to the degree of a node in
~ ~ _ 1
Dgiag @, and the y-axis to the respective entry in Ddiafg (10)).

(weighted) adjacency matrix A C RWIXINT containing the respective edge weights, which in turn leads to
an uncertain degree matrix D ¢ RIWIXIVI and eventually, an uncertain message passing

P* =D 2 AD 3. (7)

Please note that the same applies if the graph has uncertain scalar edge weights. Subsequently, we detail the
required steps to compute an enclosure of the message passing P O P* using matrix polynomial zonotopes
(Def. . Please compare these steps with the definition of a graph convolutional layer (Def. . We construct
the uncertain adjacency matrix as a matrix polynomial zonotope A C RVI*WI where each generator of A
corresponds to one uncertain edge. Then,

A=A+[‘N| (8)

adds self-loops to the adjacency matrix. Analogously to Prop. |3} we compute the diagonal entries of the
degree matrix D by summing across all rows of A using @:

Daiag = (1LA) . (9)

To obtain 75_%, we note that the inverse of a diagonal matrix is given by the inverse of each entry on
the main diagonal. Additionally, we are required to compute the square root of each entry individually.
However, polynomial zonotopes are not closed under these operations. Thus, we enclose the output of the
inverse square root function using Prop. The function is already applied element-wise, hence, it suffices
to provide an appropriate approximation error:

Lemma 2 (Approximation Error of Inverse Square Root). Given a polynomial p(x) = ax +b approzimating

the inverse square root f(x) = x~2 on the domain [l,u] C Ry, then the mazimum approzimation error is

d = max |f(z) —p(x)| = |f(z") — p(z7)],

z€([l,u]

where
z* e {z, \3/(1/2a)2,u} N [l u).
Proof. See Appendix O

An example of the enclosure of the inverse square root function for a polynomial found via regression is shown
in Fig.[4l A tighter enclosure can be obtained using higher-order polynomials (Ladner & Althoff] [2023) (see
also Appendix [D.2.1)). Thus, we can enclose the diagonal entries of the degree matrix using Prop.

~ 1

a1 - 1
Ddijg = enclose (:c —> $7%7Ddiag)) Ddi‘jg’ (10)

Published in Transactions on Machine Learning Research (04/2025)

_1
2

and place the entries 13diag on the main diagonal of

~ ~_ 1 ~
D} —aiag(Dyl,) 2 D (11)

_1
2

This is computed by first projecting D c RWI into a higher-dimensional space with zeros in the new

dimensions:

diag

-
=

1 ~_1 N2
D72 = Iy Dy, C RV, (12)
where K = {1, |N]+2,...,|NV|*} contains the indices of the diagonal entries of a diagonal matrix, and then
reshaping the polynomial zonotope to obtain D2 c RVNIXIWI. Ty obtain the entire uncertain message

passing P, we compute the matrix multiplication on the involved matrix polynomial zonotopes D=3 and A
using Lemma

Proposition 4 (Enclosure of Uncertain Message Passing). Given an uncertain adjacency matriz A with h
generators, then . o,
P=D:20ALD 2 D P,

encloses the message passing with O(h®) generators.
Proof. See Appendix O

After obtaining the uncertain message passing P, we can enclose the output set of a graph convolutional
layer as follows:

Proposition 5 (Enclosure of Graph Convolutional Layer). Given are a weight matriz Wy, € R-1%% qn
uncertain graph G, and an uncertain input Hy_, € RWNIXs—1 with hy generators. Let P < RNIXINT pe the
uncertain message passing according to Prop. 4| with O(h3) generators. The output for a graph convolutional
layer k (Def. [4l) is enclosed by

Hy = enclose(LSc,Hk_h'P) = (PUHp_1)W, C LEC(’Hk_l,g),

with O(hyh3) generators.
Proof. See Appendix O

Our approach defines the enclosure layer-wise and thus realizes an arbitrary concatenation of the considered
layers. To demonstrate the polynomial time complexity in the number of uncertain edges and input features
for an entire graph neural network with multiple message-passing steps, let us consider the architecture
visualized in Fig. 2] Alg. [I] computes the enclosure of the output set as follows: The graph neural network
has k'’ message-passing steps, each consisting of one graph convolutional layer and one activation layer (lines
to @ For networks with a node-level output, the output of the last message-passing step is directly the
output of the network. For networks with a graph-level output, the output is passed to a global pooling
layer and optionally followed by standard, non-graph-based layers (lines [11] to . With this algorithm, we
can state the main theorem of this work:

Theorem 1. Given a neural network ® with k layers and k' message passing steps, an uncertain graph
G = (N, &) with |N| nodes and h, uncertain edges, and an uncertain input X C RWIXeo with hy, generators,
then Alg. [1 satisfies the problem statement in Sec.[2.5. The number of generators of the computed output
enclosure Y is given by:

hy € (’)(hg"l(hw + |N|emax) + (k — 2/4/)nmax)7

where Cmax = MaXy/ e[y Coks denotes the mazimum number of features within the graph layers and nmax =
maXye(2x'42,..,x} Mk denote the mazimum number of output neurons of the non-graph-based layers after the
global pooling layer.

Proof. See Appendix [B] O

10

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 1 Enclosing the Output of a Graph Neural Network

Require: Neural network ®, number of layers «, number of message passing steps ', input set X, graph G.

1: Ho < X

2: P < Compute message passing based on G > Prop. [

3: for k' =2,...,2+' do > Graph-based layers

4: Hyr—q1 enclose(LSEl,Hk/_g,P) > Prop.

5: Hyr +— enclose(L?/CT,Hkul) > Prop.

6: end for

7. if kK = 2k’ then > Graph-level output

8: Y <+ H,

9: else > Node-level output
10: How 11 LSEH(HQ,{/, g) > Global pooling layer, Prop.
11: for k =2k"+2,26' +4,...,k do > Standard, non-graph-based layers
12: Hy + LEN(Hyq) > Def.
13: Hit1 enclose(L?fir,'Hk) > Prop.
14: end for
15: Y+ He
16: end if
17: return Enclosure of output set Y D V*

Please note that all involved operations on polynomial zonotopes to compute the output set) (affine map @,
Minkowski sum , and multiplication of (matrix) polynomial zonotopes (Lemma [1)) have polynomial time
complexity (Kochdumper] [2022] Tab. 3.2), and that the time complexity is dominated by the number of
generators resulting from the applied multiplication of matrix polynomial zonotopes (Lemma [1)). Thus, it
follows directly from Thm. [I] that Alg. [[| has polynomial time complexity in the number of uncertain input
features h, and uncertain edges h. compared to an exponential complexity when all 2"¢ possible graphs need
to be verified individually. While our approach is exponential in the number of message-passing steps x’, we
want to stress that ' is usually small to avoid over-smoothing (Chen et al., [2020)). To further improve the
scalability of our approach, the number of generators can be limited using order reduction methods (Ladner
& Althoft] 2024} [Kochdumper], 2022, Prop. 3.1.39) at the cost of additional outer approximations (see also
Appendix . Additionally, we want to stress that many involved operations can be parallelized and
efficiently be computed on a GPU (Appendix |C)).

Let us demonstrate our approach for verifying graph neural networks by a small example:

Example 1. Let ® be a neural network with input X, graph G, and output Y computed by two layers:

H, = L§°(X,G),

with W1 = W2 = IQ.
Y = L§9(H1, 9),

The input graph G = (N, £) is chosen as

V-{0@6) -{0-006 006}

and the input features for each node are

T T X
0.9,1.1 1 1)
X(LA) = [} 5 X(gf) = X(gf) = . Thus, X = X(Qﬂ.)
[0.9,1.1] 1
X(s..
(37)
Let us now consider the presence of the edge @f@ as unknown during the evaluation of Y* = ®(X,G).
Thus, the uncertainty of the features of node @ is passed to node @ after one message passing step if the

edge @—@ is present (in Hi = LFC(X,G)), and after two steps otherwise (in Y* = LS (H1,G) via @)

11

Published in Transactions on Machine Learning Research (04/2025)

(a) Graph G (b) Message passing P (c) Hidden Hy of @ (d) Output Y of @
0.6 T T T T T T T T
1.05 B 1.05 -
0.4 1
o SR 18 1)
= 02} 1 =
& T0.95 | -+ >~ 095} 8
0 n 0.9 — 0.9 ~D .
! ! ! ! ! ! ! ! ! !
0.35 0.4 09 095 1 1.05 0.9 095 1 1.05
P2 Hiz,1) Y3,1)
— Exact with @—@ — Exact without @—@ — Enclosure uncertain @—@
— Subset with @7@ Subset without @7@ - - - Enclosure interval arithmetic

Figure 5: Visualization of Example |1} Our approach allows a tight enclosure of the output with uncertain
input graph G.

Example [1] is visualized in Fig. 5} The input set X’ given as an interval is converted to a (matrix) polyno-
mial zonotope (Kochdumper} 2022, Prop. 3.1.10). We can obtain the exact output set for either case by
propagating the respective graph through the network (purple and green) as well as their enclosure using
our approach (Thm. [l blue). Please note that we explicitly preserve the dependencies between the consid-
ered sets via the identifier vector of a matrix polynomial zonotope (Def. @ We can visualize the preserved
dependencies in the enclosure of the uncertain edge: By plugging —1 and 1 into the dependent factor ay
corresponding to the uncertain edge, we obtain the subset (Kochdumper} [2022, Prop. 3.1.43) corresponding
to the respective case (orange and yellow). This demonstrates the tightness of our approach.

Additionally, we show the respective message passing P from node @ to the nodes @ and @ for each
case (purple and green) as well as their enclosure (blue), where we use a polynomial of order 2 to enclose

ﬁ(;fg in . While the message passing from node @ to @ trivially becomes 0 if we remove that edge,
the message passing from node @ to @ also changes due to the normalization during the computation
of P through the degree matrix. Moreover, we want to point out that the enclosure P is a non-convex,
slightly bent stripe. Please note that the enclosure of the output) can also be non-convex in general. For
comparison, we include an enclosure of the uncertain message passing P* using interval arithmetic
in Fig. |5l We omit the enclosure of H} and V* using interval arithmetic as the obtained intervals
are so large that the results using our approach described above would be barely visible, even for this small

example. This large outer approximation comes from the lost dependencies between all involved variables.

4.3 Subgraph Verification

For a graph neural network with node-level output, we are not always required to propagate the entire
graph through all layers of the network. Given a node of interest and a network with ' message passing
steps, we are only required to verify the subgraph within the (' + 1)-hop neighborhood as all other nodes
do not influence the considered node (Ziigner & Giinnemann, [2019)). We require (s’ + 1) hops due to the
normalization through the degree matrix in the message passing (Def. [d). The (s’ 4+ 1)-hop neighborhood
can easily be found using a breadth-first search on the given graph with the considered node as the root
node. The graph and the respective feature matrix can be reduced as follows:

Corollary 1 (Subgraph Selection). Given an input Hi_q € RWIXer—1 to g layer k, the message passing
~ 1

P =D 24D 3 ¢ RVIXIVI of a graph G, and the node indices K of a subgraph G', we can construct a
projection matric M = In\x,.) such that

H; = MH,_, P' = MPMT,

contain the input and the message passing corresponding to the subgraph.

12

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Properties of the benchmark datasets.

Name Classification #Graphs #Nodes #FEdges #Node features #Classes Perturbation

min/max min/max Co Ny €
Enzymes graph-level 600 11/66 34/186 21 6 0.001
Proteins graph-level 1,113 4/238 10/869 4 2 0.001
Cora, node-level 1 2,708 10,556 1,433 7 0
Proof. See Appendix O

After each graph convolutional layer (Def. , we can further reduce the graph as the number of remaining
message-passing steps decreases. This can be achieved by implicitly adding projection layers computing
Cor. [I]after each graph convolutional layer. After the last graph convolutional layer, we can remove all nodes
except for the considered node, as no information is exchanged between nodes from that point onward. This
approach can also be naturally extended to multiple nodes of interest by considering all of them during the
breadth-first search. As the selection of the subgraph only requires left and right matrix multiplications,
Cor. [1f can also be computed if the input Hj_; € RWIXe -1 or the message passing P ¢ RVIXIVI are
uncertain and represented by a matrix polynomial zonotope using @

5 Experimental Results

We use the MATLAB toolbox CORA (Althoff, |2015) to verify graph neural networks, where we generalize
the existing approach of verifying neural networks using polynomial zonotopes (Kochdumper et al., [2023;
Ladner & Althoff, [2023) to the graph domain. All computations were performed on an Intel Core Gen.
11 i7-11800H CPU @2.30GHz with 64GB memory. Further evaluation details can be found in Tab. [I] and
Appendix [D] along with an ablation study of each component of our approach.

Subsequently, we (i) demonstrate that verification of graph neural networks on two benchmark datasets
(Enzymes (Schomburg et al.l [2004)) and Proteins (Borgwardt et al.| [2005)), (ii) compare our approach to a
naive approach enumerating all possible graph inputs, and (iii) test the scalability of our approach to large
graph inputs taken from a third dataset (CoraE| (Yang et al.l [2016; [McCallum et al.; |2000])). We repeat each
experiment 50 times with different graphs sampled from the respective dataset.

5.1 Verfiying Graph Neural Networks

In our first experiment, we examine the number of verified graphs with uncertain node features and uncertain
graph structure by our approach (Fig. @ The graphs are sorted by their size in ascending order, and
we state the number of uncertain edges & relative to the total number of edges of a graph for better
comparability across differently sized graphs. Surprisingly, we are able to verify more instances in the
Proteins dataset than in the Enzymes dataset although the former contains larger graphs (Tab. . This
indicates that the networks trained on larger graphs are more formally robust against graph structure
perturbations despite the normalization of the perturbation to the graph size. We omit a comparison to
interval bound propagation (Jaulin et al., |2001) here as such results in large outer-approximations due to
the lost dependencies as also shown in Example[I] To verify the specifications, excessive branch-and-bound
computations would have to be performed, which quickly exceeds reasonable timeouts. This highlights the
necessity to maintain the dependencies during the set propagation.

5.2 Comparison to Graph Enumeration

In our second experiment, we evaluate the time complexity on graphs with uncertain node features and
uncertain graph structure. For this experiment, we iteratively increase the number of uncertain edges &,

2The identical names of the toolbox CORA and the dataset Cora are coincidental, with no relation between the two.

13

Published in Transactions on Machine Learning Research (04/2025)

(a) Enzymes (b) Proteins

X x
n 0.8]
§ gr":‘feae’(ye’ei
& 0% | §
2 0.4 6P
&
= 0.2 1 N
o
> o | \ 0 \ \ \ \
0 200 400 600 800 1,000 1,200 0 500 1,000 1,500 2,000 2,500
Cumulative verification time [s] Cumulative verification time [s]
—— €] =0.0% o |€|=01% 1€l =05% —©o—|§|=1.0% —©|& =5.0%

Figure 6: Verified instances of the Enzymes dataset and the Proteins dataset, where the number of uncertain
edges |€| is relative to the total number of edges |£] in the graph. The dotted lines marked with an x indicate
an upper bound of verifiable instances found via adversarial attacks (Appendix |D.1J).

(a) Enzymes (b) Proteins
E 60 T T 60 T T
~
=@
o 40 B 40
E
=
g
L 20 = 20 -
=
I
o
S|
g 9 ‘ 1 . | 0 \
- 0 2 4 6 8 0 2 4 6 8
Number of uncertain edges g Number of uncertain edges £
—— Graph enumeration —— Our approach

Figure 7: Time comparison of our approach with computing all possible graphs individually, where we
normalized the verification time by the number of nodes [N of the verified graphs.

and compare it to enumerating all 2/¢/ possible graphs based on the uncertain edges and verifying them
individually. As illustrated in Fig. [7] the verification time using enumeration quickly explodes due to its
exponential time complexity, whereas the verification time of our approach remains low due to its polynomial
time complexity (Thm. . Specifically, for |E] = 9, the verification time is reduced by 96%.

5.3 Scalability Through Subgraph Verification

In our third experiment, we demonstrate the scalability of our approach by applying it on the Cora dataset.
For this dataset, we do not use a perturbation radius (¢ = 0) as the input data is binary and thus pertur-
bations do not have an intuitive justification. As this dataset has a node-level output, we can dynamically
remove nodes that do not influence a considered node throughout the verification process (Sec. [4.3). How-
ever, we want to stress that, on average, about half of the nodes have to be considered initially, as the
graph is highly connected. The verification results for two graph neural networks with different numbers of
message-passing steps (k' = 2 and ' = 3) are shown in Fig. We obtain high verification rates despite
the large size of the graph of the Cora dataset (Tab. . Please note that for a fixed number of perturbed
edges, the verification time varies significantly despite always verifying a node on the same graph. This is
primarily due to the dynamic subgraph extraction being able to remove many nodes and, thus, obtaining a
7x speed up in computation time. Additionally, dynamically reducing the size after each message passing

14

Published in Transactions on Machine Learning Research (04/2025)

S

n 0.8}

Q #

g

3 0.

~ 04

ket

G 0.2

> 0 ! ! ! ! ! 0t ! ! ! ! ! ! !

0 100 200 300 400 500 600 0 200 400 600 800 1,000 1,200 1,400 1,600
Cumulative verification time [s] Cumulative verification time [s]

—o— €] =0.0% o |€]=01% €l =05% —©—|f|=1.0% —© | =5.0%

Figure 8: Verified instances of the Cora dataset with different numbers of message-passing steps, where the
number of uncertain edges |£] is relative to the total number of edges || in the graph.

step allows us to verify 2-3 times larger graphs measured in the number of nodes that need to be considered
at the input of the network.

6 Conclusion

We present the first formal verification approach for graph convolutional networks, where both the node
features and the graph structure can be uncertain. The considered network architecture is generic, may have
arbitrary element-wise activation functions, and, for the first time, can be verified over multiple message-
passing steps. This is realized by generalizing existing verification approaches using polynomial zonotopes
to graph neural networks. The use of (matrix) polynomial zonotopes allows us to preserve the non-convex
dependencies of the involved variables and efficiently compute all underlying operations, resulting in an
overall polynomial time complexity in the number of uncertain edges and uncertain input features. We
demonstrate our approach using illustrative examples and an experimental evaluation on three benchmark
datasets obtaining three key observations: Firstly, it is important to maintain the dependencies throughout
the set propagation for tight enclosures during the verification of graph neural networks. Secondly, the
polynomial time complexity of our approach enables the verification of graphs with uncertain node features
and uncertain graph structure in reasonable computational times. Lastly, the computation time can be
further accelerated on graph neural networks with node-level outputs by dynamically extracting the relevant
subgraphs after each message passing step. We hope that our work will inspire future research on more
complex network architectures.

Acknowledgments

This work was partially supported by the project FAI (No. 286525601), the project SFB 1608 (No.
501798263), and the project SAFARI (No. 458030766), all funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG). We also want to thank our colleagues Florian Finkeldei, Lukas
Koller, and Mark Wetzlinger for their revisions of the manuscript.

References

Matthias Althoff. An introduction to CORA 2015. In Proceedings of the Workshop on Applied Verification
for Continuous and Hybrid Systems, pp. 120151, 2015.

Matthias Althoff, Bruce H Krogh, and Olaf Stursberg. Analyzing reachability of linear dynamic systems

with parametric uncertainties. Modeling, Design, and Simulation of Systems with Uncertainties, pp. 6994,
2011.

15

Published in Transactions on Machine Learning Research (04/2025)

Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement. In NASA
Formal Methods Symposium, pp. 19-36, 2021.

Bishnu P. Bhattarai, Jake P. Gentle, Porter Hill, Tim McJunkin, Kurt S. Myers, Alex Abbound, Rodger
Renwick, and David Hengst. Transmission line ampacity improvements of AltaLink wind plant overhead
tie-lines using weather-based dynamic line rating. In IEEE Power € Energy Society General Meeting,
2017.

Christopher M. Bishop and Nasser M. Nasrabadi. Pattern recognition and machine learning, volume 4. 2006.

Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling. JuliaReach:
A toolbox for set-based reachability. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control, pp. 39—-44, 2019.

Aleksandar Bojchevski and Stephan Giinnemann. Certifiable robustness to graph perturbations. In Advances
in Neural Information Processing Systems, volume 32, 2019.

Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Giinnemann. Efficient robustness certificates for
discrete data: Sparsity-aware randomized smoothing for graphs, images and more. In International Con-
ference on Machine Learning, volume 119, pp. 1003-1013, 2020.

Karsten M. Borgwardt, Cheng S. Ong, Stefan Schonauer, S. V. N. Vishwanathan, Alex J. Smola, and Hans-
Peter Kriegel. Protein function prediction via graph kernels. In Bioinformatics, volume 21, pp. i47-i56,
2005.

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. Efficient verifi-
cation of relu-based neural networks via dependency analysis. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3291-3299, 2020.

Christopher Brix and Thomas Noll. Debona: Decoupled boundary network analysis for tighter bounds and
faster adversarial robustness proofs. In arXiv preprint arXiv:2006.09040, 2020.

Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson. The fourth international verifi-
cation of neural networks competition (VNN-COMP 2023): Summary and results. In arXiv preprint
arXiv:2312.16760, 2023.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: Going beyond Euclidean data. In IEEE Signal Processing Magazine, volume 34, pp. 18-42, 2017.

Rudy Bunel, Ilker Turkaslan, Philip Torr, Mudigonda P. Kumar, Jingyue Lu, and Pushmeet Kohli. Branch
and bound for piecewise linear neural network verification. In Journal of Machine Learning Research,
volume 21, pp. 1-39, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 3438-3445, 2020.

Sikai Chen, Jigian Dong, Paul Ha, Yujie Li, and Samuel Labi. Graph neural network and reinforcement
learning for multi-agent cooperative control of connected autonomous vehicles. volume 36, pp. 838-857,
2021.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In International Conference on Machine Learning, volume 80, pp. 1115-1124, 2018.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis for
deep feedforward neural networks. In NASA Formal Methods Symposium, pp. 121-138, 2018.

Claudio Ferrari, Mark N. Mueller, Nikola Jovanovi¢, and Martin Vechev. Complete verification via multi-
neuron relaxation guided branch-and-bound. In International Conference on Learning Representations,
2022.

16

Published in Transactions on Machine Learning Research (04/2025)

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
Vechev. AI2: Safety and robustness certification of neural networks with abstract interpretation. In IEEE
Symposium on Security and Privacy, pp. 3-18, 2018.

Tan Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In International Conference on Learning Representations, 2015.

Stephan Giinnemann. Graph neural networks: Adversarial robustness. In Graph Neural Networks: Founda-
tions, Frontiers, and Applications, pp. 149-176, 2022.

Patrick Henriksen and Alessio Lomuscio. Efficient neural network verification via adaptive refinement and
adversarial search. In Furopean Conference on Artificial Intelligence, volume 325, pp. 2513-2520. 2020.

Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. POLAR: A polynomial arithmetic framework
for verifying neural-betwork controlled systems. In Automated Technology for Verification and Analysis,
pp. 414-430, 2022.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural networks.
In International Conference on Computer Aided Verification, pp. 3-29, 2017.

Radoslav Ivanov, Taylor Carpenter, James Weimer, Rajeev Alur, George Pappas, and Insup Lee. Verisig 2.0:
Verification of neural network controllers using Taylor model preconditioning. In International Conference
on Computer Aided Verification, pp. 249-262, 2021.

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Interval analysis. 2001.

Jinyuan Jia, Binghui Wang, Xiaoyu Cao, and Neil Z. Gong. Certified robustness of community detection
against adversarial structural perturbation via randomized smoothing. In Proceedings of The Web Con-
ference, pp. 2718-2724, 2020.

Hongwei Jin, Zhan Shi, Venkata J. S. A. Peruri, and Xinhua Zhang. Certified robustness of graph convolution
networks for graph classification under topological attacks. In Advances in Neural Information Processing
Systems, volume 33, pp. 8463-8474, 2020a.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 66-74, 2020b.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An efficient SMT
solver for verifying deep neural networks. In International Conference on Computer Aided Verification,

pp. 97-117, 2017.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah,
Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, David L. Dill, Mykel J. Kochenderfer, and Clark Barret.
The Marabou framework for verification and analysis of deep neural networks. In International Conference
on Computer Aided Verification, pp. 443-452, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Niklas Kochdumper. Eztensions of polynomial zonotopes and their application to verification of cyber-physical
systems. PhD thesis, Technische Universitdt Miinchen, 2022.

Niklas Kochdumper and Matthias Althoff. Sparse polynomial zonotopes: A novel set representation for
reachability analysis. In IEEE Transactions on Automatic Control, volume 66, pp. 4043-4058, 2020.

Niklas Kochdumper, Christian Schilling, Matthias Althoff, and Stanley Bak. Open- and closed-loop neural
network verification using polynomial zonotopes. In NASA Formal Methods Symposium, pp. 16-36, 2023.

17

Published in Transactions on Machine Learning Research (04/2025)

Matthias Konig, Annelot W. Bosman, Holger H. Hoos, and Jan N. van Rijn. Critically assessing the state
of the art in neural network verification. In Journal of Machine Learning Research, volume 25, pp. 1-53,
2024.

Anna-Kathrin Kopetzki, Bastian Schiirmann, and Matthias Althoff. Methods for order reduction of zono-
topes. In IEEE Conference on Decision and Control, pp. 5626-5633, 2017.

Oliver Kosut, Liyan Jia, Robert J. Thomas, and Lang Tong. Malicious data attacks on the smart grid. IEEFE
Transactions on Smart Grid, 2(4):645-658, 2011.

Tobias Ladner and Matthias Althoff. Automatic abstraction refinement in neural network verification us-
ing sensitivity analysis. In Proceedings of the 26th ACM International Conference on Hybrid Systems:
Computation and Control, pp. 1-13, 2023.

Tobias Ladner and Matthias Althoff. Exponent relaxation of polynomial zonotopes and its applications
in formal neural network verification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 21304-21311, 2024.

Gaoqi Liang, Junhua Zhao, Fengji Luo, Steven R. Weller, and Zhao Yang Dong. A review of false data
injection attacks against modern power systems. IEEE Transactions on Smart Grid, 8(4):1630-1638,
2017.

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV 2.0: The neural
network verification tool. In International Conference on Computer Aided Verification, pp. 397-412, 2023.

Andrew K. McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction of
internet portals with machine learning. In Information Retrieval, volume 3, pp. 127-163, 2000.

Mark N. Miiller, Gleb Makarchuk, Gagandeep Singh, Markus Piischel, and Martin Vechev. PRIMA: General
and precise neural network certification via scalable convex hull approximations. In Proceedings of the
ACM on Programming Languages, volume 6, pp. 1-33, 2022.

Anggoro Primadianto and Chan-Nan Lu. A review on distribution system state estimation. IEEE Transac-
tions on Power Systems, 32(5):3875-3883, 2017.

Luca Pulina and Armando Tacchella. An abstraction-refinement approach to verification of artificial neural
networks. In International Conference on Computer Aided Verification, pp. 243-257, 2010.

Marco Sélzer and Martin Lange. Fundamental limits in formal verification of message-passing neural net-
works. In International Conference on Learning Representations, 2023.

Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn, and Di-
etmar Schomburg. BRENDA, the enzyme database: Updates and major new developments. In Nucleic
Acids Research, volume 32D, pp. 431-433, 2004.

Zhouxing Shi, Qirui Jin, Jeremy Z. Kolter, Suman Jana, Cho-Jui Hsieh, and Huan Zhang. Formal verifica-
tion for neural networks with general nonlinearities via branch-and-bound. In 2nd Workshop on Formal
Verification of Machine Learning, 2023.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. Fast and effective
robustness certification. In Advances in Neural Information Processing Systems, volume 31, 2018a.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. Boosting robustness certification of
neural networks. In International Conference on Learning Representations, 2018b.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. An abstract domain for certifying
neural networks. In Proceedings of the ACM on Programming Languages, volume 3, pp. 1-30, 2019.

Simon Stock, Markus Dressel, Davood Babazadeh, and Christian Becker. Application of physics-based graph
convolutional network in real-time state estimation of under-determined distribution grids. In IEEE PES
Innovative Smart Grid Technologies Conference Europe, 2022.

18

Published in Transactions on Machine Learning Research (04/2025)

Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer
programming. In International Conference on Learning Representations, 2019.

Shigi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Jeremy Z. Kolter. Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network verification. In Advances in Neural Information Processing Systems, volume 34, 2021.

Zhiwei Wang, Min Xia, Min Lu, Lingling Pan, and Jun Liu. Parameter identification in power transmission
systems based on graph convolution network. IEEE Transactions on Power Delivery, 37(4):3155-3163,
2022.

Haoze Wu, Clark Barrett, Mahmood Sharif, Nina Narodytska, and Gagandeep Singh. Scalable verification
of GNN-based job schedulers. In Proceedings of the ACM on Programming Languages, volume 6, pp.
1036-1065, 2022a.

Zhaoyu Wu, Qi Wang, and Xuefei Liu. state estimation for power system based on graph neural network.
In IEEE 5th International Electrical and Energy Conference, 2022b.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A comprehensive
survey on graph neural networks. In IEFE Transactions on Neural Networks and Learning Systems,
volume 32, pp. 4-24, 2020.

Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and verifica-
tion for multilayer neural networks. In IEEE Transactions on Neural Networks and Learning Systems,
volume 29, pp. b777-5783, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International Conference on Machine Learning, volume 48, pp. 40-48, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery € Data Mining, pp. 974-983, 2018.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in Neural Information Processing
Systems, volume 31, 2018.

Xiao-Meng Zhang, Li Liang, and Lin Liu. Graph neural networks and their current applications in bioinfor-
matics. In Frontiers in Genetics, volume 12, 2021.

Daniel Zigner and Stephan Giinnemann. Certifiable robustness and robust training for graph convolutional
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 246-256, 2019.

19

Published in Transactions on Machine Learning Research (04/2025)

Appendix

A On Polynomial Zonotopes

(a) (b)

g o 1 & osf .
1l n 0 .
| | | | | |
-1 0 1 —1 0 1
Z(1) Z(1)
——PZ —— PZ =quadMap(PZ,PZ,Q) -Samples

Figure 9: Visualization of the quadratic map using the polynomial zonotope PZ from Appendix

In this section, we provide further details on polynomial zonotopes (Def. |§[) Uncertain inputs are often
constructed by some f.-ball with radius ¢ around a vector x € R™ (Brix et al| [2023). For n = 3, a
polynomial zonotope representing this ball is given by

1 00 100 1 0 0
X<x,0 1 o|,]|,]0 1 0> =Sz+al |0 +ad |1 +ad (0| | ax€[-1,1]p. (13)
00 1 00 1 0 1

PZ 0

Please note that each generator defines a line segment and the entire set is given by the Minkowski sum
of each line segment. From this also follows the computation of the Minkowski sum as this operation
simply adds more of these line segments to the set.

However, such a set can also be represented using many other set representations. The benefit of polynomial
zonotopes over other set representations becomes apparent if the represented set is non-convex, which occurs
when nonlinear functions — as in neural networks — are evaluated over the input set. Conceptually, applying
a nonlinear function bends the line segments by adding dependencies between generators:

Let us consider the set {[a1 a}+0.1a, aﬂT | a1, a2 € [-1,1]} C R? visualized in Fig. @a This set can be
represented as a polynomial zonotope as follows:

0] [t 0 0 0
PZ_<0,010.1 0l, ,[1302}>. (14)
0010
ol o o o 1 by

As we cannot evaluate a general nonlinear function over the input set, the nonlinear function is often
approximated using polynomials and the approximation error is bounded. The polynomial evaluation is
computed using repeated executions of the quadratic map, which can be evaluated exactly for polynomial
zonotopes and introduces dependencies between generators.

Proposition 6 (Quadratic Map (Kochdumper} 2022, Prop. 3.1.30)). Given two polynomial zomotopes
PZy = (c1,G1,[|, E1)py, C R™, PZy = (c2,G2,[|, E2)py, C R™ with hy and hy generators, respec-
tively, a common identifier vector, and Q = (Q1,...,Qn), Q; € R™*"2_ then the quadratic map is computed

20

Published in Transactions on Machine Learning Research (04/2025)

as follows:
xlTQLTQ
PZ = quadMap(PZ1,PZ2,Q) = : x1 € P21, 29 € P2y
2] Qrs
= <E, |:G\1 @2 él éh}, [}, [El FEs El Eh]>PZ CRFL,
where
¢l Qica ¢ Q1 G ¢ Q1G G ;@G>
c=1 1 |, Gi= P Ge= L] Gi= : :
¢l Qnca 3 Qn Gi ¢l QnGo Gl ;QaG2

and E; = Ey + By j)1, j € [h1]. The output PZ has O(hyhsy) generators.

Please note that the quadratic map operation is defined for polynomial zonotopes with a common identifier
vector. We can adjust two polynomial zonotopes with different identifiers by extending the exponent matrix
accordingly (Kochdumper}, 2022, Prop. 3.1.5). In this work, we only use matrices in Q with entries consisting
of zeros and ones, which effectively selects which dimensions of the polynomial zonotopes are multiplied as
part of a quadratic map.

For example, the set {[o (a?+0.1a2)2}—r| ai,ay € [—1,1]} C R? visualized in Fig. |§|b can be computed
from PZ using the quadratic map with Q = {Q1, @2}, where

0 0 1 0 0O

@Q:=10 0 0], Q=10 1 0f. (15)
0 0 O 0 0 O

Thus,

T
PZ = quadMap(PZ,PZ, Q) = { BTg;ﬂ

iblo 4o om [0 720,

where we compacted P Z by removing zero-length generators and adding generators whose dependent factors
have equal exponents.

vepz) »

B Proofs

We include all proofs from the main body in this section in the order of appearance.

Lemma 1 (Multiplication of Matrix Polynomial Zonotopes). Given two matriz polynomial zonotopes My =
<C’1,G1, [],E1>PZ CR™F M, = <C'2,G2, [],E2>PZ C R¥>™ with hy, ho generators, respectively, and a
common identifier, then their multiplication is obtained by

Mg =M EOM;y = {(MlMg) | My, e My, M, € MQ}
= <C7 |:é1 é\(2 él s éhl]v []7 [El E2 El oo Eh1]>PZ C Rnxmv

where
C=0CCy Gi=GCy Gy=0C1Gy Gi= Gi(,..)G2s Ei=FEi;-1+Ey, Vi€ [h].

The matriz multiplications are broadcast across all generators. The output Mz has O(h1hs) generators.

21

Published in Transactions on Machine Learning Research (04/2025)

Proof. The result M3 is obtained as follows:

M3 =M My = {(MlMQ) | M, € Ml, My € Mz}

hy p p
<Cl + Z (H afl(k,i)) G1(~,.,i)> Cy + Z (H 2(k,j)> Gy ap € [-1,1]

i=1 \k=1 k=1

h1 P ha P
{0102 +> (H Fa, ‘>> Gi(.,.Ca + Z (H B2tk ”) CiGy(.,. j)
—— —

=1 \k=1 = k=1
—=C -G, =Gy
h1 }Lz P
E1(k,i)+ B2k, j)
+) I e)Gy Gagy | o € [-1,1] ¢
i=1 j=1 \k=1
=G, E

The number of generators follows directly from the size of @1, G5 and G;.

O

An efficient implementation of Lemma [I] is given in Appendix [C] Please note that Lemma [I] is a special
case of the quadratic map (Prop.7 where we first vectorize the given matrix polynomial zonotopes to
3)

My C R™* and My C RF™ (Sec. |3), and then compute

Mz = quadMap(Ml,Mz, Q) Cc R™™,

with Q = (lel, Q2,17 ey Qn,ly Q1’2, ey Qn,m) Let vy = [Z R n(k — 1)] and w; =
[k(j —1)+1 ... k(j—1)+k| be the respective indices involved to compute the (i, j)-th entry, then

Qi,j = sparse(vi, Wy, nk, km) S R(k)x (km)
with ones in positions (v;),w;«)), VI € [k], and zeros otherwise. Finally, the result M3 is re-written as a

matrix polynomial zonotope Mg C R™*™,

Proposition 2 (Enclosure of Graph Convolutional Layer). Given are a weight matriz W), € Re-1%¢
a graph G = (N, £), and an input Hy_1 - RVIxer—1 represented as a matriz polynomial zonotope. Let
A € RNIXINT be the adjacency matriz of G, A = A+ Iy, and let D= dlag(lA) e RVIXINT be the diagonal
degree matriz. The exact output of a graph convolutional layer k in Def. [} is computed by

Hy = LEC(Hy_1) = D 2 AD 2 M1y W),
Proof. As the graph convolutional layer is composed of a left and a right matrix multiplication, the compu-
tation is exact using @ O

Proposition 3 (Enclosure of Summation Pooling Layer). Given a graph G and an input Hp—1 C RWVIxer—1
represented as a matrix polynomial zonotope, the exact output of a pooling across all nodes via summation
is computed by

Hi = LgT (Hp-1,G) = AHr—1)"

Proof. As the pooling layer is computed by a left matrix multiplication, the computation is exact using @
O

Lemma 2 (Approximation Error of Inverse Square Root). Given a polynomial p(x) = ax+b approzimating
1
the inverse square root f(x) = 2~ 2 on the domain [l,u] C Ry, then the mazimum approximation error is

d= max |f(z) —p(x)] = [£(@") = p(z")];

)

22

Published in Transactions on Machine Learning Research (04/2025)

where
x* e {l, W,u} N1, ul.

Proof. The maximum approximation error d it at the extreme point:

d
L (@)~ p@) =0
1 3 0
— ——xTz—a=
2
= 273 =—2a
= x = \/(1/20)%,
or on a boundary point I, w if the extreme point lies outside [I, u] due to monotonicity. O

Proposition 4 (Enclosure of Uncertain Message Passing). Given an uncertain adjacency matriz A with h
generators, then

P=D:0AED 2z D P,

encloses the message passing with O(h®) generators.

Proof. The enclosure is computed using a set-based evaluation of the message passing in Def. using 7
and Lemma These steps are computed using affine maps @ and matrix multiplications of polynomial
zonotopes (Lemma , which are exact, and the enclosure of Dgjag using Prop. [1f with the approximation
error in Lemma [2] which is outer-approximative. Thus, the enclosure of the message passing is sound.

Number of generators: Affine maps do not increase the number of generators @ The enclosure of ﬁdiag
in adds one generator for each node with an uncertain degree (Prop. , which are at most 2h as each
uncertain edge in A has two adjacent nodes. Finally, two applications of the matrix multiplication on matrix
polynomial zonotopes (Lemma (1)) obtains the O(h®) generators of P. O

Proposition 5 (Enclosure of Graph Convolutional Layer). Given are a weight matriz Wy, € R-1%% qn
uncertain graph G, and an uncertain input Hy_1 € RNIX—1 with hy generators. Let P < RNIXINT pe the
uncertain message passing according to Prop. 4| with O(h3) generators. The output for a graph convolutional
layer k (Def. 4l) is enclosed by

Hy = enclose(Lch,Hk_h'P) = (PUHp_1)W, C LEC(Hk_l,g),

with O(h1h3) generators.

Proof. The enclosure follows directly from the enclosure of the message passing (Prop. [4)), the matrix mul-
tiplication on polynomial zonotopes (Lemma |1]), and the affine map @ Given the number of generators of
Hy—1 and P, the number of generators of H;, follows from Lemma [T} O

Theorem 1. Given a neural network ® with k layers and k' message passing steps, an uncertain graph
G = (N, &) with |N'| nodes and h, uncertain edges, and an uncertain input X C RWIXco with h, generators,
then Alg. [1] satisfies the problem statement in Sec.[2.5. The number of generators of the computed output
enclosure Y is given by:

h, € o(hzﬁ’ (ha + |Nemax) + (5 — 2/{’)nmax>,
where Cmax = MaXy/ e[y Cok denotes the mazimum number of features within the graph layers and nmax =

maXye(2x'42,...,x} Mk denote the mazimum number of output neurons of the non-graph-based layers after the
global pooling layer.

23

Published in Transactions on Machine Learning Research (04/2025)

Proof. The problem statement is satisfied as each step to compute) is either exact (Prop.) or outer-
approximative (Prop.[4] Prop.[5| and Prop. , and the specification can be checked as in previous approaches
using polynomial zonotopes (Kochdumper et al., |2023; Ladner & Althoff] 2023|). The message passing P has
O(h?) generators (Prop. . The enclosure of a nonlinear layer adds at most one generator for each output
neuron (Prop. [1). The global pooling layer (Prop. [3) and linear layers do not change the number of
generators. Thus, the number of generators of) in Alg. [I] is:

%’ message passing steps (lines [3] to @ (lines to
3 1 -

hy € O(K o hhe 4 Nl) Wleaw—2) + Wleaw +5 D0 e
— k=2k'+2 o~
(Prop. [5) (Prop. N (Prop.

1
= O (h2)" ho + (h3)" "M Nlea + -+ + (B2) [N eaw -2 + [N |eaw + 5 2 ”k)
k=2r’+2

Polynomial of order x’/—1

1 K
O(“he 4+ (3" 1 max |New t3 Z nk)

k'€2K/
E[] k=2k’"+2

N

W 1 < ~
c O<h2 <hx + krel'l[g;(/] |N|02k’> + 5 Z nk> = Hy

k=2'+2
Next, we simplify the term by bounding the number of output neurons with their maximum:

] 3K’ 1 &
Hy g O<he (hfﬂ + |NcmaX) + 5 Z Nmax

k=2Kr'+2
- O(hi’ﬁ/(hz + |N|Cmax) + (/f - 25/)nmax>7

which shows that hy € #H, C O(hg"’(hx + [V emax) + (% — 2,.4)”%). 0

Corollary (Subgraph Selection). Given an input Hi_q € RWIXes—1 to g layer k, the message passing
P =D"2AD"2 ¢ RNIXIVI of a graph G, and the node indices K of a subgraph G', we can construct a
projection matriz M = I xx,.) such that

H, ,=MH,_, P =MPMT,

contain the input and the message passing corresponding to the subgraph.

Proof. The statement follows directly from the construction of the projection matrix M, where nodes that
are not in G’ are removed. O

C Efficient Matrix Multiplication Implementation of Matrix Polynomial Zonotopes

We want to stress that Lemma [I] can be efficiently computed using matrix broadcasting, as effectively the
center matrix and each generator matrix from one set is multiplied with the center matrix and each generator
matrix of the other set. Let us restate Lemma [I] here for convenience:

Lemma 1 (Multiplication of Matrix Polynomial Zonotopes). Given two matriz polynomial zonotopes My =
<Cl,G17 [],E1>PZ CR™F M,y = <CQ7G2, [],E2>PZ C R¥*™ with hy, ho generators, respectively, and a
common identifier, then their multiplication is obtained by

Mz =M EOM;y = {(MlMg) | My, € My, M,y € Mz}
:<C’7 [@1 62 él éhl},[],[El E2 El Eh1]>PZ CR”Xm’

24

© 00 N O O W N

NONONN NN NN BE R R R e e e e
N O Ok W RO © 0NN U R W NN RO

Published in Transactions on Machine Learning Research (04/2025)

where
C = 0102, él = Gng, @2 = C1G2, éz = Gl(.7.,i)G2, E,, = El(.ﬂ') -1+ FEs, Vi € [hl]
The matriz multiplications are broadcast across all generators. The output M3 has O(hihs) generators.

The following code shows the efficient implementation of this multiplication using broadcasting in MATLAB
syntax.

Variable names as in Lemma 1:
Ml: Cl1 (n,k), Gl (n,k,hl), E1 (p,hl)
M2: C2 (k,m), G2 (k,m,h2), E2 (p,h2)

o° o oo

% prepare for quadratic map computation such that

% all matrices have the form (n,k,m,hl,h2) and (p,hl,h2), respectively.
Cl = reshape(Cl,n,k,1);

Gl = reshape(Gl,n,k,1,hl1,1);

El = reshape(El,p,hl,1);

C2 = reshape(C2,1,k,m);
G2 = reshape(G2,1,k,m,1,h2);
E2 = reshape(E2,p,1,h2);

% compute matrix multiplication through broadcasting

C_bar = sum(Cl . C2,2); % (n,1,m)
Gl_hat = sum(Gl .x C2,2); % (n,1,m,hl)
G2_hat = sum(Cl .x G2,2); % (n,1,m,1,h2)
G_bar = sum (Gl .x G2,2); % (n,1,m,hl,h2)
E_bar = E1 + E2; % (p,hl,h2)

% reshape back to correct dimensions
C_bar = reshape(C_bar,n,m);

Gl_hat = reshape(Gl_hat,n,m,hl);
G2_hat = reshape(G2_hat,n,m,h2);
G_bar = reshape(G_bar,n,m,hlxh2);
E_bar = reshape (E_bar,p,hlxh2);

The broadcasting in lines 16-20 is also parallelizable and can be efficiently computed on a GPU, which further
enhances the computation of the multiplication of matrix polynomial zonotopes.

D Evaluation Details and Further Experiments

D.1 Evaluation Setup

Please recall the problem statement (Sec. : Given a graph neural network ®, an uncertain graph G =
(N, €) with nodes N/ C N and edges £ = £* UE C N x N consisting of fixed edges £* and uncertain

edges g , and uncertain node features X € RWI*¢ we compute an enclosure of the output) using Alg.
The specification S is then verified as in previous works (Kochdumper et al.,|2023; Ladner & Althoff] 2023)).

We demonstrate our approach on three benchmark graph datasets: The first two, Enzymes and Proteins,
represent protein structures tailored for the task of protein function classification (Schomburg et al., [2004;
Borgwardt et al., 2005). The third dataset, Cora, represents a citation network with several classes of
publications (Yang et al.,[2016; McCallum et al.| 2000)). The main properties of each dataset are summarized
in Tab.[I} All graph neural networks considered here are as described in Alg.[I} where we have three message-
passing steps (k' = 3) and tanh activation unless stated otherwise. The number of input and output neurons

25

Published in Transactions on Machine Learning Research (04/2025)

depends on the number of node features and classes of the dataset (Tab. 7 respectively, and the networks
have 64 neurons per node in hidden layers.

To evaluate our approach on the datasets, we perturb the node features and graph structure as follows: We
normalize all node features and perturb them using the same perturbation radius e € R4 on all features.
Given a flattened input X € RWI“ our input set then becomes

= <)?,61|M_CO,[],IW|,CO>PZ c RWIo, (17)
which we can reshape to a matrix polynomial zonotope & C RWIx¢o The partitioning of the edges into fixed
edges £* and uncertain edges £ is as follows: To preserve the structure of the input graphs, the set of fixed
edges £* always contains a spanning tree of the graph, and we make the presence of some remaining edges

unknown and, thus, part of the uncertain edges £ depending on the respective experiment. The spanning
tree is constructed using a breadth-first search, with the root node being the one with the highest degree

(e.g., node @ in Fig. .

In our experiments, we perturb the edges independently of each other. Thus, the resulting uncertain adja-
cency matrix A is constructed analogous to . However, one can also construct an uncertain adjacency
matrix with dependencies. For example, consider an undirected graph with three nodes. We can model that
node @ has to be connected with either @ or @ (xor-relation) and a fixed edge @—@ with the following
matrix polynomial zonotope:

0 05 05 0 -05 05
A:<0.5 0 1|,]-05 0o o], ,[1]>. (18)

05 1 0 0.5 0 0 Pz

Due to the different signs within the generator, either the edge @7@ or the edge @f@ is present.
Similarly, other constraints can be modeled in the set representation itself as well. This can be used to
model budget constraints as was done in related work (Bojchevski & Gunnemann, 2019, Sec. 4.1). Please
note that Alg. [1] remains unchanged as only the uncertain adjacency matrix A (and thus the uncertain
message passing P via Prop.) is updated.

We evaluate all experiments over 50 runs with graphs sampled from the respective dataset. Due to the
exponential time complexity of the enumeration method, we repeated these runs only 20 times. We use a
rather small perturbation radius e = 0.001 on the Enzymes and Proteins dataset as we have found that the
graph neural networks are not robust for larger radii, and counterexamples can easily be found.

While our approach is able to verify many instances, not all instances are verified. However, not all instances
are indeed verifiable. Thus, we provide an upper bound of verifiable instances by extracting counterex-
amples of a given instance. This is achieved by enumerating all possible graphs and applying a gradient-
based adversarial attack (fast gradient sign method (Goodfellow et al., 2015)) on the node features for each
graph |Giinnemann/ (2022). For large graphs with many uncertain edges, it is not feasible to enumerate all
possible graphs. Thus, we only check at most 10,000 graphs for each instance, and select those which differ
the most from the original graph.

D.2 Ablation Study

We analyze the approximation errors induced by each component of our approach in more detail. In partic-
ular, we investigate (i) the size of the approximation error during the enclosure of the inverse square root
function while computing the uncertain message passing (Prop. 4) and (ii) the outer approximation induced
by different order reduction techniques to limit the number of generators.

D.2.1 Approximation Error of Inverse Square Root Function

Let us first analyze the outer approximation induced by the enclosure of the inverse square root function.

Please recall that the input corresponds to the degree of a node in Dgjag @, and the output to the respective
L1

entry in D ;% (10). Enclosures can be obtained by approximating the function using a polynomial and

26

Published in Transactions on Machine Learning Research (04/2025)

0.5
—— Inverse square root z~ /2
A —— Approx. error d = 0.0092
0.4 —— Approx. error d = 0.0016 | |
- Approx. error d = 0.0007
£ 03| :
o
0.2 =
0.1 ‘ ‘ ‘ !]
10 20 30 40 50 60 70 80
Input x

Figure 10: Approximation errors of inverse square root enclosure at different input domains. The x-axis

- L1
corresponds to the degree of a node in Dgjag @D, and the y-axis to the respective entry in Dgiag (10). Please
note that for nodes with larger degrees, linear approximations are usually sufficient to obtain tight enclosures.

(a) Linear polynomial (b) Quadratic polynomial (c¢) Cubic polynomial
1 T 1 T 1 T
0.8 |- -1 08} -1 08}
-
3. N
5 06 0.6 |- ~ =
o —
04| 04| T
0.2 : ‘ 0.2 : ‘ 0.2 : ‘
2 4 6 2 4 6 2 4 6
Input x Input x Input x
— Inverse square root z—1/2 — Approx. error d = 0.024 — Approx. error d = 0.006 Approx. error d = 0.001

Figure 11: Approximation errors of inverse square root enclosure for different orders of the approximation
polynomial. Higher-order polynomials enable tight enclosures at the cost of additional generators.

computing the corresponding approximation error (Prop. . Tighter enclosures can be obtained using
higher-order polynomials at the cost of additional generators (Ladner & Althoff] 2023)). Fortunately, higher-
order polynomials are usually not required for larger graphs as the degrees of the nodes become much larger
and a linear polynomial can approximate the function quite well. We illustrate this in Fig. where the
approximation error becomes smaller with increasing node degree despite larger uncertainty. For smaller
inputs, we illustrate in Fig. [[1] how higher-order polynomials return tighter enclosures.

Finally, let us evaluate the influence of the enclosure of the inverse square root function during the uncertain
message-passing computation (Prop. @) on the output set). Ideally, we would like to measure the relative
volume of the obtained output set) with respect to the volume of the exact output set V*. However,
computing V* is computationally infeasible (Katz et al) [2017). We approximate the volume of Y* by
ignoring the approximation errors to obtain an approximative output set Vapprox, i-€., do not perform step
6 in Fig. As the volume of a polynomial zonotope is also hard to compute, we use the volume of the
enclosing zonotope (Kochdumper| 2022, Prop. 3.1.14) instead. Then, the relative volume Vo of Y with
respect t0 Vapprox 18 computed as follows (Kopetzki et all 2017, Sec. IV-A):

VetV Vappros) = (“(y)))/ (19)

vol (yapprox

27

Published in Transactions on Machine Learning Research (04/2025)

Table 2: Influence of approximation errors in uncertain message-passing computations depending on the
number of steps &', swith V;¢ indicating the relative volume of the output set ([19).

Dataset K’ Viel Verified instances [%] Verification time [s]
1 1.0336%0.0169 92.00 3.36+3.59
2 1.0573+0.0441 94.00 16.20£13.90
3 1.1310+0.1354 90.00 53.06+£42.58
4 1.1417£0.1460 90.00 115.63+£72.96

Enzymes 5 1.2191+0.1442 74.00 184.58+101.29
6 1.2756+0.1616 82.00 179.92+76.00
7 1.5455+0.7611 64.00 276.424+124.37
8 1.8605+1.3858 72.00 258.53+102.45
9 2.1041+£1.2579 58.00 349.204+132.92
10 2.0582£1.7807 54.00 398.554+148.96

where V] is normalized by the number of output dimensions n,, for better comparability between all datasets.
The closer V,q is to 1, the less contribute the approximation errors of the inverse square root enclosure to
the final output set. We present V¢ averaged over 50 graph inputs for ten models trained on the Enzymes
dataset with up to 10 message passing steps «’ in Tab. 2 While the approximation errors accumulate over
the layers of a graph neural network, the overall contribution to the output set is modest and other factors
such as the uncertainty in the node features are more dominant. Thus, most uncertain input graphs remain
verifiable even for many message passing steps x’ with reasonable verification times.

D.2.2 Approximation Error of Order Reduction Techniques

Let us also take a closer look at different order reduction techniques. Order reduction is applied to remain
computationally feasible for large sets with many generators at the cost of additional outer approximation,
where the order of a polynomial zonotope PZ C R™ with h generators is defined as p = "/n. Please note
that barely any order reduction techniques exist for polynomial zonotopes (Ladner & Althofl, 2024)), and
order reduction is achieved by applying them on the zonotope enclosure of the smallest generators instead
(Kochdumper], 2022, Prop. 3.1.39). We evaluate two techniques here: box enclosure (Box) (Kopetzki et al.,
2017, Sec. II-A) and one based on principal component analysis (PCA) (Kopetzki et al., 2017, Sec. III-
A), which are visualized in Fig. Additionally, we combine them with a preprocessing step (ExpRelax)
for polynomial zonotopes to reduce the outer approximation induced by the zonotope enclosure (Ladner
& Althoft, |2024])), which is based on relaxing the exponents of the dependent factors aj of a polynomial
zonotope (Def. [6).

We apply each order reduction technique to 50 output sets) obtained on all datasets and networks. In
Tab. 3] we show the relative volume Vie1(Vreq, V) of each reduced set Vieq with respect to Y for different
orders p. The box enclosure obtains tighter results on the Enzymes and Proteins dataset, wheras the PCA
enclosure is tighter on the Cora dataset. For all datasets and order reduction techniques, the ExpRelax
preprocessing slightly improves the result at the cost of additional computation time. However, we want to
stress that the chosen orders p are very small and one usually uses higher values for p during the verification
of neural networks, for which the difference between the individual techniques becomes less noticeable. We
also notice that for some values in Tab. [3] V} is smaller than 1, which might indicate that the respective
order reduction is not outer-approximative. However, as mentioned above, we cannot compute the volume of
a polynomial zonotope directly and rather compute the volume of the enclosing zonotope instead. Applying
the respective order reduction seems to improve this zonotope enclosure, resulting in a smaller volume for

yrcd than y

28

Published in Transactions on Machine Learning Research (04/2025)

Z(2)
Z(6)

Z(1)

—Y

Z(5)

Box enclosure PCA enclosure

Figure 12: Visualization of different order reduction techniques applied on a 7-dimensional output set)
obtained on the Cora dataset. The relative volume with respect to) is Vi = 3.4505 for the box enclosure
and V; = 1.0638 for the PCA enclosure.

Table 3: Relative volume V¢ for different order reduction techniques, where the respective output set) is
reduced to order p.

p=2 p=15

Dataset k' Order Reduction Viel Time [s] Viel Time [s]
Box 1.001040.0017 0.03940.034 1.001540.0019 0.032+0.019
. , Box+ExpRelax 0.99970.0027 1456:£0.445 1.0003+0.0020 1.401:0.216
NZymes PCA 1.1465+0.0868 0.03640.015 1.1450+0.0947 0.03140.013
PCA+ExpRelax 1.146140.0871 1.534:+0.409 1.142140.0981 1.453+0.348
Box 1.004540.0084 0.00740.008 1.006840.0108 0.007+0.005
Protei , BoxtExpRelax 0.9954:0.0156 0.075:0.028 0.99770.0163 0.074+0.031
roteins PCA 1.028740.1073 0.00740.006 1.041040.1013 0.007-0.004
PCA+ExpRelax 1.027640.1003 0.090+£0.061 1.029540.0960 0.0820.038
Box 1.129540.1732 0.02040.007 1.790441.0787 0.007+0.003
o , Box+ExpRelax 1.1260:£0.1741 0.100£0.179 1.7815:£1.0836 0.071%0.099
ora PCA 1.0398+0.0632 0.02340.018 1.082640.1193 0.00840.006
PCA-+ExpRelax 1.0366:£0.0580 0.12240.190 1.0796+0.1178 0.0860.118
Box 1.159440.1570 0.03040.029 2.077941.0363 0.015+0.012
o , Box+ExpRelax L1497:0.1501 (0.591:£0.813 2.0661+1.0447 0.516:0.799
ora PCA 0.952140.0958 0.03540.028 0.9590+0.1208 0.018+0.014
PCA-+ExpRelax 0.9457+0.0933 0.59740.857 0.9541+0.1163 0.504-0.658

29

	Introduction
	Related Work
	Contributions

	Background
	Notation
	Neural Networks
	Set-Based Computing
	Verification of Feedforward Neural Networks
	Problem Statement

	Matrix Polynomial Zonotopes
	Formal Verification of Graph Convolutional Networks
	Verification with Uncertain Node Features
	Verification with Uncertain Graph Structure
	Subgraph Verification

	Experimental Results
	Verfiying Graph Neural Networks
	Comparison to Graph Enumeration
	Scalability Through Subgraph Verification

	Conclusion
	On Polynomial Zonotopes
	Proofs
	Efficient Matrix Multiplication Implementation of Matrix Polynomial Zonotopes
	Evaluation Details and Further Experiments
	Evaluation Setup
	Ablation Study
	Approximation Error of Inverse Square Root Function
	Approximation Error of Order Reduction Techniques

