
Published as a conference paper at ICLR 2022

TAMING SPARSELY ACTIVATED TRANSFORMER WITH
STOCHASTIC EXPERTS

Simiao Zuo†∗, Xiaodong Liu�, Jian Jiao�, Young Jin Kim�, Hany Hassan�, Ruofei Zhang�,
Tuo Zhao† and Jianfeng Gao�
†Georgia Institute of Technology �Microsoft
{simiaozuo,tourzhao}@gatech.edu,
{xiaodl,jian.jiao,youki,hanyh,bzhang,jfgao}@microsoft.com

ABSTRACT

Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can eas-
ily scale to have outrageously large amounts of parameters without significant
increase in computational cost. However, SAMs are reported to be parameter in-
efficient such that larger models do not always lead to better performance. While
most on-going research focuses on improving SAMs models by exploring meth-
ods of routing inputs to experts, our analysis reveals that such research might not
lead to the solution we expect, i.e., the commonly-used routing methods based
on gating mechanisms do not work better than randomly routing inputs to ex-
perts. In this paper, we propose a new expert-based model, THOR (Transformer
witH StOchastic ExpeRts). Unlike classic expert-based models, such as the
Switch Transformer (Fedus et al., 2021), experts in THOR are randomly acti-
vated for each input during training and inference. THOR models are trained
using a consistency regularized loss, where experts learn not only from train-
ing data but also from other experts as teachers, such that all the experts make
consistent predictions. We validate the effectiveness of THOR on machine trans-
lation tasks. Results show that THOR models are more parameter efficient in
that they significantly outperform the Transformer and MoE models across var-
ious settings. For example, in multilingual translation, THOR outperforms the
Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as
that of a state-of-the-art MoE model (Kim et al., 2021) that is 18 times larger.
Our code is publicly available at: https://github.com/microsoft/
Stochastic-Mixture-of-Experts.

1 INTRODUCTION

Large neural network models have shown to be effective in many natural language processing tasks
such as machine translation (Lewis et al., 2020; Conneau & Lample, 2019), natural language un-
derstanding (Devlin et al., 2019; Liu et al., 2019; He et al., 2020), and natural language generation
(Radford et al., 2019; Brown et al., 2020). These models are usually densely activated. That is, a
model uses all its parameters to process all inputs. One drawback of these models is the prohibitive
training cost. Moreover, the extreme size drastically reduces inference speed, further limiting the
models’ practicality.

To address these issues, sparsely activated models (SAMs, Shazeer et al. 2017) have been proposed.
A SAM adaptively selects a subset of its parameters for different inputs during model training and
inference. This makes it possible to train SAMs that are an order of magnitude larger than densely
activated models without significant increase in computational cost. For example, the sparsely acti-
vated GShard (Lepikhin et al., 2020) consists of over 600 billion parameters and the Switch Trans-
former (Fedus et al., 2021) 1.5 trillion parameters, while GPT-3 (Brown et al., 2020), which is
arguably the largest densely activated model, consists of only 175 billion parameters.

The building block of SAMs is the expert layer, which contains an attention mechanism and multi-
ple feed-forward neural networks (FFNs) in parallel. Each FFN is referred to as an expert. During

∗Work was done during an internship at Microsoft.

1

https://github.com/microsoft/Stochastic-Mixture-of-Experts
https://github.com/microsoft/Stochastic-Mixture-of-Experts

Published as a conference paper at ICLR 2022

training, an input is routed to a fixed number of experts, such that the number of floating point op-
erations (FLOPs) of one forward pass remains constant, regardless of the total number of experts.
Thus, training SAMs is much more cost-efficient than training densely activated models. For exam-
ple, training of Switch-large (Fedus et al., 2021) and that of T5-large (Raffel et al., 2019) require the
same forward FLOPs, despite that the former is 35 times larger (26.3 vs. 0.74 billion parameters).

However, SAMs have been reported to be parameter inefficient. For example, although the Switch-
large model is 35 times larger than T5-large, its performance on the GLUE benchmark (Wang et al.,
2019a) is only slightly better (88.5 vs. 87.8). There are also cases where the performance of SAMs
is even worse than smaller densely activated models. For example, the performance of Switch-
large is worse than T5-large on the ARC Reasoning Challenge (66.0 vs. 68.8) (Clark et al., 2018).
In another example, although GShard (Lepikhin et al., 2020) shows substantial gains over densely
activated models, a diminishing return with larger number of parameters has been observed.

Most on-going research has focused on improving SAMs by developing effective routing methods.
Since only a subset of model parameters (i.e., experts) are updated for each input during training,
we need to decide which experts to be activated given an input. Existing works (Shazeer et al.,
2017; Lepikhin et al., 2020; Fedus et al., 2021; Yang et al., 2021) use a gating network for input
routing. However, the gating mechanism suffers from the notorious load imbalance issue: the gate’s
weight could collapse such that nearly all the inputs are routed to the same expert. Therefore, many
methods are proposed to mitigate this issue, such as noisy gating (Shazeer et al., 2017), expert
capacity (Lepikhin et al., 2020), load balancing loss (Lepikhin et al., 2020; Fedus et al., 2021), and
k Top-1 gating (Yang et al., 2021). However, these routing methods have not been proved effective
to make SAMs more parameter efficient. To understand why SAMs are not parameter efficient, we
analyze the performance of several classic MoE models. Our analysis reveals that a SAM does not
always outperform a densely activated model of a similar size, confirming the results reported in
Yang et al. (2021). Moreover, we also observe that the widely-used routing method based on the
gating mechanism does not work better than randomly routing inputs to experts,

Inspired by our findings, we propose a new SAM, THOR (Transformer witH StOchastic ExpeRts).
Unlike classic SAMs, such as the Switch Transformer, experts in THOR are randomly activated
(with no need of any gating mechanism) for each input during training and inference. THOR models
are trained by minimizing both the cross-entropy loss and a consistency regularization term, such
that experts can learn not only from training data but also from other experts as teachers so that all
the experts make consistent predictions.

To validate the effectiveness of THOR, we have conducted extensive experiments on machine
translation using three settings: low-resource, rich-resource, and multilingual. Results show that
THOR models outperform state-of-the-art MoE models by an average of 2 BLEU score on twelve
low-resource translation tasks. In the rich-resource setting, THOR achieves new state-of-the-art
results on the two widely-used translation benchmarks, WMT’16 En-De and WMT’14 En-Fr. On
multilingual translation tasks, the THOR model with 300 million parameters achieves 2 BLEU score
improvement over a state-of-the-art MoE model of the same size. Moreover, our model achieves
state-of-the-art results on these tasks — the same BLEU score that is achieved by the Z-code MoE
model (Kim et al., 2021) with 5.5 billion parameters (18 times larger).

2 BACKGROUND

Transformer. The Transformer (Vaswani et al., 2017) model has demonstrated its superior perfor-
mance in many sequence-to-sequence natural language processing tasks, such as neural machine
translation. The model contains an encoder and a decoder. The encoder consists of multiple encoder
layers, each having an identical structure. An encoder layer employs a self-attention mechanism and
a feed-forward neural network (FFN). The decoder is similarly constructed, except for an additional
cross-attention mechanism in each decoder layer.

Sparsely Activated Models. The building block of SAMs is the expert layer, which is similar to the
Transformer layer. Each of these expert layers contain an attention mechanism and multiple FFNs
in parallel, where each FFN is referred to as an expert. Let {Ei}Ni=1 denote the experts, and N
denotes the total number of experts. A gating mechanism decides to which expert(s) an input should
be routed. At each expert layer, given an input vector x ∈ Rd, where d is the embedding dimension,
the gate value of routing x to expert Ei is

pi(x) = [Softmax (Wgx)]i , (1)

2

Published as a conference paper at ICLR 2022

where Wg ∈ RN×d is the trainable weight matrix of the gating mechanism. Given the gate values
{pi(x)}Ni=1, we select the top-K experts to form an activated set of experts T ⊂ {1 · · ·N}, where
|T | = K. Then the output xout of the expert layer is

xout =
∑
i∈T

pi(x)Ei(x). (2)

Notice that in Eq. 2, input x only activates K instead of N experts, where K � N , e.g., K = 2 and
N = 2048 in GShard (Lepikhin et al., 2020). This implies that the number of FLOPs required for
one forward pass does not increase with the number of experts N . Therefore, SAMs can scale to an
enormous size without any significant increase in training time and inference time.

The gate weight matrixWg (Eq. 1) is trained together with the rest of the model parameters. Because
there is no constraint on the learned weights, it is possible that Wg collapses such that one row
dominates, i.e., all the inputs are routed to one expert. This problem is referred to as load imbalance.
Existing works adopt various ad-hoc heuristics to mitigate this issue, e.g., adding Gaussian noise
to Eq. 1 (noisy gating, Shazeer et al. 2017), limiting the maximum number of inputs that can be
routed to an expert (expert capacity, Lepikhin et al. 2020), imposing a load balancing loss (Lepikhin
et al., 2020; Fedus et al., 2021), and using linear assignment (Lewis et al., 2021). There are other
works that remove the gating mechanism such that load imbalance is no longer an issue, e.g., by
incorporating hash functions (Roller et al., 2021). Besides the load imbalance issue, there are also
heated discussions on how to construct T in Eq. 2. For example, Shazeer et al. (2017); Lepikhin
et al. (2020); Yang et al. (2021) conjecture that routing inputs to K > 1 experts is necessary, while
Fedus et al. (2021) argue that using K = 1 is sufficient and more computationally efficient.

3 ANALYSIS OF SPARSELY ACTIVATED MODELS

We investigate behavior of the gating mechanism of several classic MoE models. We conduct exper-
iments on a multilingual translation task, {De, Vi}→ En. More details are presented in Appendix A.

We consider two MoE models proposed in Shen et al. (2019), referred to as MoE(dec) and MoE(tok),
respectively, and three variants of the Switch Transformer proposed in Fedus et al. (2021). The
number of experts is set to two for all the MoE models. We compare them with the Transformer
(Vaswani et al., 2017) model of the same model size.

Figure 1 shows the validation losses and BLEU scores of three models: Transformer, MoE(dec),
and MoE(tok). We see that the two MoE models perform very similarly, and neither outperforms
the Transformer by a significant margin.

To interpret the results of Figure 1, we examine the load of each expert and the confidence scores
of routing inputs to different experts. An expert’s load is defined as the proportion of inputs that are
assigned to it. For an input that is routed to an expert, its routing confidence score (output of the
gating mechanism) determines the level of preference, e.g., if the routing confidence score is 0.5,
then the gate has no preference for either expert. For each expert, we compute the average routing
confidence score over all the inputs assigned to it.

Figure 2 shows that after the early stage of training (i.e., the first 200 iterations), the gate weight
collapses and nearly all the inputs are routed to expert 2. Also, the average routing confidence score
of expert 2 is close to 1.0, which means that the gate strongly prefers expert 2 to expert 1. In this
case, only one of the experts is sufficiently trained. Figure 3 depicts a different scenario, where the
inputs are randomly dispatched to the experts. Notice that after approximately 4000 iterations, the
two experts are equally loaded, and the probabilities of assigning any input to expert 1 and expert 2
are almost identical, indicating that the gating mechanism has no preference for either expert.

We have identified two behaviors of the gating mechanism: load imbalance and random routing.
The former is also reported in recent papers (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2021). We further investigate the Switch Transformer (Fedus et al., 2021), which is a state-of-the-
art MoE variant that incorporates various methods to resolve the load imbalance issue. In addition,
because behavior of the gating mechanism in the Switch Transformer mimics random routing (see
Appendix A), we examine the effect of discarding the gate and randomly assigning inputs to experts.
Figure 4 demonstrates the validation losses and BLEU scores of the Transformer and three variants
of the Switch Transformer, where inputs are routed according to tokens (referred to as Switch(t)),
sentences (Switch(s)), or are routed randomly (Switch(r)). Similar to the results in Figure 1, we

3

Published as a conference paper at ICLR 2022

Figure 1: Validation results of
MoE(dec) and MoE(tok).

Figure 2: Gating mechanism of MoE(dec). Left: average rout-
ing confidence; Right: load of experts.

Figure 3: Gating mechanism of MoE(tok). Left: average
routing confidence; Right: load of experts.

Figure 4: Performance of three vari-
ants of the Switch Transformer.

see that the four models perform similarly. This shows that even after we alleviate load imbalance,
model performance is not improved (i.e., the Switch Transformers do not outperform the vanilla
Transformer), and the performance of the Switch Transformer does not vary much among different
routing methods, including random routing.

We remark that in this paper, we focus on natural language processing tasks, in particular neural ma-
chine translation. There are other works in different research fields (e.g., computer vision) that draw
different conclusions than ours (Riquelme et al., 2021). We attribute this to the intrinsic differences
between image classification and language generation, e.g., each input in the former belongs to a
clearly-defined category, while no such knowledge exists in the latter.

In summary, the experiments reveal

• A sparsely activated model does not always outperform a densely activated model of the
same model size.

• The widely-used routing method based on the gating mechanism does not work better than
randomly routing inputs to experts.

4 THOR: TRANSFORMER WITH STOCHASTIC EXPERTS

The ineffectiveness of the gating mechanism, as shown in our experiments, motivates us to propose
a new expert-based model, THOR (Transformer witH StOchastic ExpeRts). In THOR, a pair of
experts are randomly selected and activated in each layer during a training iteration, and then all the
inputs in a batch are processed using the same pair of experts. Our method drastically simplifies
model design, and has two additional advantages. First, it eliminates the load imbalance issue be-
cause randomly selecting a pair of experts in each iteration allows each expert to have a fair chance
to be sufficiently trained. The ad-hoc heuristics, such as the load balancing loss, as discussed in
Section 2, are no longer needed. Second, unlike the gating mechanism, THOR does not introduce
any additional model parameters.

One problem of THOR is that without a gating mechanism, experts need to be randomly selected
during inference, and we may obtain inconsistent inference results due to different random seeds.
For example, on a Czech-to-English translation dataset, our experiments show that randomness can
result in a 0.5 BLEU score difference.

To address this issue, we introduce a consistency regularizer in the training objective of THOR.
Concretely, let N denotes the number of experts, L the number of layers, and El

i an activated expert

4

Published as a conference paper at ICLR 2022

Figure 5: Illustration of a training iteration with stochastic experts. For conciseness, we show a
model with only one Transformer layer.

(which is a FFN) in layer l, where 1 ≤ i ≤ N and 1 ≤ l ≤ L. We use p = f(x; {El
i}Ll=1) to

indicate the prediction probability of input x using the model f where experts {El
i}Ll=1 are activated.

Figure 5 illustrates one training iteration. Notice that instead of activating one expert for each
layer in an iteration, we select to activate a pair of experts in THOR. As a result, we obtain two
prediction probabilities produced by the two selections, respectively: p1 = f(x; {El

i}Ll=1)) and
p2 = f(x; {El

j}Ll=1)). Then, the training objective of THOR with respect to training samples (x, y)
in the dataset D is

min
∑

(x,y)∈D

`(x, y) = CE(p1; y) + CE(p2; y) + αCR(p1; p2),

where CR(p1; p2) =
1

2
(KL(p1‖p2) + KL(p2‖p1)) .

(3)

Here, CE is the cross-entropy loss, the consistency regularizer CR is defined as the average of the
two Kullback–Leibler (KL) divergence terms, and α is a hyper-parameter that controls the strength
of the regularizer. In mini-batch SGD training, we randomly sample a pair of experts to activate
at each layer for each batch. During inference, we can also randomly select an expert to activate
at each layer for each input, similar to that in training. We can also use different expert-selection
methods, such as expert-ensemble, as to be discussed in Section 5 (Table 5).

The THOR training objective of Eq. 3 forces all the experts to minimize training errors while mak-
ing the same predictions as much as possible. Thus, in each training step, each expert optimizes its
parameters by learning from both the training data (via minimizing the cross-entropy loss) and its
paired expert as a teacher (via minimizing the KL divergence). Although these experts are learned
to make consistent predictions, they converge to different (local) optima given the randomness in-
troduced in training, e.g., initialization, mini-batch SGD, random routing, etc. Thus, every expert
learns from a set of diverse teachers during the course of training, which helps to improve model’s
performance. In addition, by penalizing experts that yield inconsistent predictions from the others,
the consistency regularizer also helps reducing the variance of model prediction.

THOR is conceptually similar to dropout (Srivastava et al., 2014) since both methods route an input
to some randomly selected sub-net components (i.e., experts in THOR and neurons in dropout).
However, THOR differs from dropout in several important aspects, making it a better choice for
efficient training and serving of large-scale neural models. First, THOR can be applied to both
training and inference, while dropout is only used for training. Second, THOR is shown to be more
robust in large-scale model training than dropout. For example, our models are less likely to overfit
with the increase in the number of experts (see Figure 9). Third, THOR leads to a sparse model

5

Published as a conference paper at ICLR 2022

that is more structured than that of dropout, such that a large-scale THOR model can be much more
easily trained using GPU clusters, e.g., by putting different experts on different GPUs in parallel.

5 EXPERIMENTS

We evaluate THOR on neural machine translation. We adopt three settings: low-resource trans-
lation, rich-resource translation, and multilingual translation. For low-resource and rich-resource
translation, we train all the models using Fairseq1 (Ott et al., 2019). For multilingual translation, we
use DeepSpeed MoE2 (Kim et al., 2021) to implement the MoE models. All the experiments are con-
ducted on NVIDIA V100 GPUs. Additional experiments, including model scale-up and comparison
of inference speed, are deferred to Appendix D.

5.1 BASELINE

We use two baselines in the experiments.

• Transformer (Vaswani et al., 2017) achieves superior performance in many sequence-to-
sequence learning tasks, such as neural machine translation.

• Switch Transformer (Fedus et al., 2021) is a state-of-the-art MoE model, which employs a
gating mechanism to route inputs and uses a load balancing loss to reduce load imbalance.

To verify the effectiveness of the imposed consistency regularizer in Eq. 3, we also compare
THOR with Transformer models trained using two popular regularization methods. We remark
that these two methods share similar computational costs with THOR, i.e., they also require two
forward passes in each training iteration.

• SMART (Jiang et al., 2020) utilizes a smoothness inducing adversarial regularizer to pe-
nalize the worst case difference between predictions of a clean input and a perturbed input.

• R3F (Aghajanyan et al., 2020) uses a regularizer to reduce representational collapse. The
method has shown to be effective in various natural language processing tasks.

All the methods are trained for the same number of FLOPs in the experiments for fair comparison.

5.2 LOW-RESOURCE TRANSLATION

We use six language pairs: English to Vietnamese, English to German, and English to French from
IWSLT; English to Romanian, English to Latvian, and English to Czech from Europarl3. Dataset
statistics are summarized in Table 6 (Appendix B).

Table 1: Experimental results on low resource datasets. The best result on each dataset is in bold.

En-Vi Vi-En En-De De-En En-Fr Fr-En

Transformer (Vaswani et al., 2017) 31.3 29.4 28.1 34.8 39.2 38.1
SMART (Jiang et al., 2020) 32.5 30.5 29.3 35.8 40.0 38.8
R3F (Aghajanyan et al., 2020) 32.2 30.7 29.2 35.7 39.7 38.9
Switch (Fedus et al., 2021) 31.7 29.5 28.4 34.6 39.1 38.2

THOR 34.0 33.0 31.1 37.8 40.7 40.0

En-Ro Ro-En En-Lv Lv-En En-Cs Cs-En

Transformer (Vaswani et al., 2017) 23.5 25.0 13.6 15.8 16.1 20.4
SMART (Jiang et al., 2020) 24.6 25.7 14.2 16.3 16.7 21.4
R3F (Aghajanyan et al., 2020) 23.8 25.8 14.4 16.3 16.8 21.6
Switch (Fedus et al., 2021) 23.8 24.4 13.8 16.1 16.1 20.6

THOR 25.2 27.1 15.2 17.4 17.6 22.4

1https://github.com/pytorch/fairseq
2https://github.com/microsoft/DeepSpeed
3https://www.statmt.org/europarl

6

https://github.com/pytorch/fairseq
https://github.com/microsoft/DeepSpeed
https://www.statmt.org/europarl

Published as a conference paper at ICLR 2022

To evaluate THOR with different model sizes, we use the Transformer-base (Vaswani et al.,
2017) architecture on Europarl datasets, and a smaller model on IWSLT datasets. Compared with
Transformer-base, the smaller model decreases the hidden dimension from 2048 to 1024, and de-
creases the number of heads from 8 to 4 with the dimension of each head doubled. We use two
experts for the expert-based models. We remark that even though THOR increases the number of
parameters, its inference speed (in terms of FLOPs) is the same as Transformer-base because only
one expert is activated for each input. Interested readers refer to Appendix C for more details.

The experimental results in Table 1 show that performance of the Switch Transformer is on par
with the vanilla Transformer, e.g., its average BLEU score on the 12 datasets is 26.3, the same as
the Transformer. The results confirm that SAMs do not outperform densely activated models with
similar model sizes. In contrast, THOR achieves more than 1.0 BLEU score improvement over the
Switch Transformer in all the 12 tasks. THOR also significantly outperforms the models trained
using the two competing regularization methods, SMART and R3F.

5.3 RICH-RESOURCE TRANSLATION

We use two widely adopted rich-resource transla-
tion benchmarks: English to German translation
from WMT’16 and English to French translation
from WMT’14. The former dataset consists of
4.5 million training sentence pairs, and the latter
36 million pairs. We follow the pre-processing
steps in Ott et al. (2018).

To evaluate THOR , We use the Transformer-big
architecture (Vaswani et al., 2017) and we set the
number of experts for both THOR and the Switch
Transformer to 4. Interested readers refer to Ap-
pendix C for more details.

Table 2 reports the BLEU scores and the sacre-
BLEU scores (Post, 2018) of different mod-
els. We see that THOR achieves new state-of-
the-art results in the setting where neither data
augmentation nor pre-trained language model
is used. Specifically, THOR lifts the previ-
ous state-of-the-art (Liu et al., 2020b;c) by 0.3
BLEU score on the En-De translation task and
0.1 BLEU score on the En-Fr translation task.
THOR also significantly outperforms the models
trained using the other two regularization meth-
ods, SMART (Jiang et al., 2020) and R3F (Agha-
janyan et al., 2020). Similar to what is observed
in low-resource translation, the Switch Trans-
former (Fedus et al., 2021) does not outperform
the vanilla Transformer (Ott et al., 2018).

Table 2: BLEU and sacreBLEU scores on
WMT’14 En-Fr and WMT’16 En-De. Re-
sults of Jiang et al. (2020), Aghajanyan et al.
(2020), and Fedus et al. (2021) are from our
implementation.

BLEU En-De En-Fr

Vaswani et al. (2017) 28.4 41.8
Ott et al. (2018) 29.3 43.2
Wang et al. (2019b) 29.6 —
Wu et al. (2019a) 29.7 43.2
So et al. (2019) 29.8 41.3
Jiang et al. (2020) 29.8 43.4
Wu et al. (2019b) 29.9 43.3
Aghajanyan et al. (2020) 29.4 43.3
Liu et al. (2020c) 30.1 43.8
Fedus et al. (2021) 29.3 43.0

THOR 30.4 43.8

sacreBLEU En-De En-Fr

Ott et al. (2018) 28.6 41.4
Jiang et al. (2020) 29.1 41.5
So et al. (2019) 29.2 —
Aghajanyan et al. (2020) 29.0 41.5
Liu et al. (2020c) 29.5 41.8
Fedus et al. (2021) 28.6 41.1

THOR 29.6 41.9

5.4 MULTILINGUAL TRANSLATION

We have collected 10 language pairs from WMT datasets, and built a 64k-entry dictionary for all
the languages. The detailed statistics are summarized in Table 7 (Appendix B). Please refer to Kim
et al. (2021) for more details. We do not use multi-task learning or additional monolingual data in
the experiments.

We use the following model architecture: the embedding dimension is set to 768 and the hidden
dimension for the FFN is set to 3072; we use 12 encoder layers and 6 decoder layers, where each
layer has 12 attention heads, and the dimension of each head is 64. We set the number of experts to
4 for both THOR and the Switch Transformer.

Table 3 reports the average BLEU score of translating English to other languages, translating other
languages to English, and the overall score of the 20 tasks. We see that compared with the Switch

7

Published as a conference paper at ICLR 2022

Transformer of the same size (i.e., 300 million parameters), our model achieves a 2-point improve-
ment in the overall BLEU score. In addition, our model is far more parameter efficient than the
Switch Transformer. The THOR model with 300 million parameters achieves the same BLEU score
(24.4) that is achieved by the Switch Transformer with 5.5 billion parameters, which is more than
18 times larger.

Table 3: Multilingual translation results. Here “E” means the number of experts.

En→Others Others→En Average

Switch (32E, 5.5B) — — 24.4
Switch (4E, 300M) 20.3 24.6 22.4
THOR (4E, 300M) 21.4 27.4 24.4

Figure 6 shows BLEU scores in all the 20 translation tasks. Notice that THOR outperforms the
baseline on 17 out of the 20 tasks. The improvement is in general more significant on the tasks
with smaller datasets. For example, our model achieves BLEU score improvement of 4.7 and 6.7 on
Gu-En (85k) and Hi-En (264k), respectively. On the tasks with larger datasets, the improvement ob-
tained by our model is less substantial, but still significant, e.g., +0.9 BLEU score on Cs-En (10M)
and +1.1 Fi-En (4.8M). For the only three tasks where our model underperforms the baseline, the
gaps are small, e.g., −0.4, −0.2, and −0.4 BLEU scores on En-Cs, En-De, and En-Fr, respectively.

Figure 6: Details of multilingual translation results.

5.5 ABLATION EXPERIMENTS

Training Objective. We examine the relative contributions of the three loss terms used in the
THOR training objective of Eq. 3: CE1, CE2 and CR. The result in Table 4 shows that the con-
sistency regularizer CR is crucial to the model performance, and that dropping one of the two CE
terms leads to only very small BLEU score loss since the two cross-entropy terms play the same role
in training.

Inference Methods. We compare three inference methods: (1) Dispatch(s) uses sentence-
level random routing, where all tokens in one sentence are routed to the same expert; (2)
Dispatch(t) uses token-level random routing, where tokens within a sentence are routed to
different experts; (3) Ensemble, where each sentence is routed to all the N experts, and the N
hidden representations in each layer are averaged. Note that the number of FLOPs is larger for
Ensemble because we need to run forward pass for each input through N experts. Table 5 shows
that Dispatch(s) and Dispatch(t) perform similarly, and Ensemble yields the best BLEU
score with a cost of longer inference time.

8

Published as a conference paper at ICLR 2022

Table 4: Effect of the three loss
terms in training object of Eq. 3,
tested on Cs-En translation.

Loss terms BLEU

CE1 +CE2 +CR 22.4
CE1 +CR 22.2
CE1 +CE2 20.8
CE1 20.6

Table 5: Performance and costs of
three inference methods, tested on Cs-
En translation.

BLEU time

Dispatch(s) 22.4 ×1
Dispatch(t) 22.4 ×1
Ensemble 22.6 ×N

Figure 7: Effect of the consis-
tency regularization strength
α on Cs-En translation.

Figure 8: Violin plot of per-
formance consistency on Cs-
En translation.

Figure 9: BLEU vs. model
size on De-En translation.

Regularization strength. To investigate the effect of the regularization strength α, we run ex-
periments on the Cs-En translation dataset in the low-resource setting. Figure 7 shows that model
performance is not very sensitive to α as long as the value is large enough, say α > 2.0.

Consistency of Model Prediction. We study the variance of model prediction due to the use
of randomly activated experts during inference. We compare THOR and the Switch Transformer,
where we remove the trained gate during inference. For each model, we compute the variance of
model prediction based on 20 runs. As shown in Figure 8, THOR makes more consistent predic-
tions than Switch Transformer due to the use of the consistency regularizer for model training. The
variance of THOR is below 0.002, whereas the variance of Switch Transformer is 0.008, four times
larger. We remark that by removing the trained router from the Switch Transformer, model perfor-
mance only marginally decreases (from 20.6 to 20.4). This further indicates that a trained router
may not be better than a random router.

Overfitting. We compare the THOR model and the Transformer model regarding how likely they
overfit the training data when the model size increases. We run experiments on the De-En data in
the low-resource setting, where the dropout rate of the FFNs in the Transformer is selected such that
the number of parameters trained in one iteration is the same as the THOR model. As shown in
Figure 9, THOR does not show any sign of overfitting — we observe a consistent improvement in
BLEU score as we increase the number of experts from 2 to 8. In contrast, the Transformer model’s
performance deteriorates as we increase the hidden dimension of its FFN from 2k to 8k. We remark
that we also observe the overfitting phenomenon on larger datasets, e.g., the Transformer overfits on
the Cs-En dataset when we set the hidden dimension of its FFN to 16k.

6 CONCLUSION

We present a new expert-based sparsely activated model, THOR. Unlike existing SAMs, such as
the Switch Transformer, experts in THOR are randomly activated for each input during training
and inference. THOR models are trained using a consistency regularized loss, where every expert
learns not only from training data but also from other experts as teachers so that all the experts make
consistent predictions. As a result, not only can large-scale THOR models be trained and served as
efficiently as classic MoE models, THOR models also demonstrate a better generalization capability
in that they are more parameter-efficient, less likely to overfit, make more consistent predictions,
and achieve better results consistently across different settings. We validate the effectiveness of
THOR via a comprehensive empirical study on machine translation. In all the three settings (i.e.,
low-resource, rich-resource, and multilingual translation), THOR models significantly outperform
the vanilla Transformer, and Switch Transformer, a state-of-the-art MoE model.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We thank Rukmini Lyer, Kevin Duh, Hao Cheng, Chunyuan Li, Johannes Gehrke, colleagues from
Microsoft Bing Ads team and Microsoft Research for their valuable discussions and comments.

REFERENCES

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, and Sonal
Gupta. Better fine-tuning by reducing representational collapse. ArXiv preprint, abs/2008.03156,
2020. URL https://arxiv.org/abs/2008.03156.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv preprint, abs/1803.05457, 2018. URL https://arxiv.org/abs/1803.05457.

Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 7057–7067, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Min-
nesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. ArXiv preprint, abs/2101.03961, 2021. URL https:
//arxiv.org/abs/2101.03961.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. ArXiv preprint, abs/2006.03654, 2020. URL https://arxiv.
org/abs/2006.03654.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. SMART:
Robust and efficient fine-tuning for pre-trained natural language models through principled reg-
ularized optimization. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 2177–2190, Online, 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.197. URL https://aclanthology.org/2020.
acl-main.197.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and ef-
ficient moe training for multitask multilingual models. ArXiv preprint, abs/2109.10465, 2021.
URL https://arxiv.org/abs/2109.10465.

10

https://arxiv.org/abs/2008.03156
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/1803.05457
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c04c19c2c2474dbf5f7ac4372c5b9af1-Abstract.html
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://aclanthology.org/2020.acl-main.197
https://aclanthology.org/2020.acl-main.197
https://arxiv.org/abs/2109.10465

Published as a conference paper at ICLR 2022

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. ArXiv preprint, abs/2006.16668, 2020. URL https:
//arxiv.org/abs/2006.16668.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://aclanthology.org/2020.acl-main.703.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. ArXiv preprint, abs/2103.16716, 2021. URL
https://arxiv.org/abs/2103.16716.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020a. URL https://openreview.net/forum?id=rkgz2aEKDr.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the dif-
ficulty of training transformers. In Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 5747–5763, Online, 2020b. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.463. URL https://
aclanthology.org/2020.emnlp-main.463.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural ma-
chine translation. ArXiv preprint, abs/2008.07772, 2020c. URL https://arxiv.org/abs/
2008.07772.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv preprint, abs/1907.11692, 2019. URL https://arxiv.org/abs/1907.
11692.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 1–9, Brus-
sels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-6301.
URL https://aclanthology.org/W18-6301.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics
(Demonstrations), pp. 48–53, Minneapolis, Minnesota, 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-4009. URL https://aclanthology.org/N19-4009.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pp. 186–191, Brussels, Belgium, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.
org/W18-6319.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. ArXiv preprint, abs/1910.10683, 2019. URL https://arxiv.org/abs/
1910.10683.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://aclanthology.org/2020.acl-main.703
https://arxiv.org/abs/2103.16716
https://openreview.net/forum?id=rkgz2aEKDr
https://aclanthology.org/2020.emnlp-main.463
https://aclanthology.org/2020.emnlp-main.463
https://arxiv.org/abs/2008.07772
https://arxiv.org/abs/2008.07772
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/W18-6301
https://aclanthology.org/N19-4009
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683

Published as a conference paper at ICLR 2022

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
arXiv preprint arXiv:2106.05974, 2021. URL https://arxiv.org/abs/2106.05974.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large
sparse models. ArXiv preprint, abs/2106.04426, 2021. URL https://arxiv.org/abs/
2106.04426.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.
org/P16-1162.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E.
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=B1ckMDqlg.

Tianxiao Shen, Myle Ott, Michael Auli, and Marc’Aurelio Ranzato. Mixture models for diverse
machine translation: Tricks of the trade. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 5719–5728. PMLR, 2019. URL http://proceedings.mlr.press/v97/
shen19c.html.

David R. So, Quoc V. Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 5877–5886. PMLR, 2019. URL http://proceedings.
mlr.press/v97/so19a.html.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 2818–2826. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.308. URL https:
//doi.org/10.1109/CVPR.2016.308.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019a. URL https://openreview.net/forum?id=
rJ4km2R5t7.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S.
Chao. Learning deep transformer models for machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 1810–1822, Florence,
Italy, 2019b. Association for Computational Linguistics. doi: 10.18653/v1/P19-1176. URL
https://aclanthology.org/P19-1176.

12

https://arxiv.org/abs/2106.05974
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/2106.04426
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://openreview.net/forum?id=B1ckMDqlg
http://proceedings.mlr.press/v97/shen19c.html
http://proceedings.mlr.press/v97/shen19c.html
http://proceedings.mlr.press/v97/so19a.html
http://proceedings.mlr.press/v97/so19a.html
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://aclanthology.org/P19-1176

Published as a conference paper at ICLR 2022

Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael Auli. Pay less attention
with lightweight and dynamic convolutions. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019a. URL
https://openreview.net/forum?id=SkVhlh09tX.

Lijun Wu, Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, Jianhuang Lai, and Tie-Yan
Liu. Depth growing for neural machine translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pp. 5558–5563, Florence, Italy, 2019b.
Association for Computational Linguistics. doi: 10.18653/v1/P19-1558. URL https://
aclanthology.org/P19-1558.

An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang,
Jiamang Wang, Yong Li, et al. Exploring sparse expert models and beyond. ArXiv preprint,
abs/2105.15082, 2021. URL https://arxiv.org/abs/2105.15082.

13

https://openreview.net/forum?id=SkVhlh09tX
https://aclanthology.org/P19-1558
https://aclanthology.org/P19-1558
https://arxiv.org/abs/2105.15082

Published as a conference paper at ICLR 2022

A ANALYSIS OF SPARSELY ACTIVATED MODELS

A.1 TRAINING DETAILS

We consider two Mixture-of-Experts (MoE) models proposed in Shen et al. (2019), which are de-
noted “MoE(dec)” and “MoE(tok)”. In the first variant, each expert is a separate Transformer de-
coder. In the second variant, each expert is a different token, i.e., if we route the input to expert one,
then we replace the 〈bos〉 (begin-of-sentence) token in the input sentence with a 〈expert1〉 token.
Note that embeddings of these expert tokens are trained together with the rest of the model parame-
ters. These models are equipped with an expectation-maximization optimization framework. Such a
framework facilitates computing the probability of assigning an input to a specific expert according
to the gating mechanism. Please refer to Shen et al. (2019) for details about these models.

We use a multilingual translation setting, where we adopt two datasets: De-En from IWSLT’14 and
Vi-En from IWSLT’15. For each dataset, we use byte pair encoding (BPE, Sennrich et al. 2016) with
10, 000 merge operations for pre-processing. Then we concatenate the two pre-processed datasets.
We learn a separate dictionary for En and {De+Vi}, which resulted in approximately 9k and 12k
vocabularies, respectively.

For training, we use Adam (Kingma & Ba, 2015) as the optimizer and we set the learning rate to
0.001. We set the batch size to be equivalent to 64k tokens, e.g., we use 8k tokens per GPU with 8
GPUs. Other training details follow the Fairseq4 implementation. For inference, we use a beam size
of 5 and a length penalty of 1.0.

A.2 ADDITIONAL RESULTS

We also plot the average routing confidence score and the load of experts for Switch(s) and Switch(t),
similar to Figure 2 and Figure 3. We first investigate the Switch Transformer without the load
balancing loss.

Figure 10: Switch(s) w/o load balancing. Left: average routing confidence; Right: load of experts.

Figure 11: Switch(t) w/o load balancing. Left: average routing confidence; Right: load of experts.

4https://github.com/pytorch/fairseq/blob/master/examples/translation/

14

https://github.com/pytorch/fairseq/blob/master/examples/translation/

Published as a conference paper at ICLR 2022

Figure 10 shows the results for Switch(s) without the load balancing loss, where we route inputs to
experts on the sentence-level. We see that after about 10k training iterations, the average routing
confidence score of expert 1 and expert 2 becomes similar, and both of these scores are around 0.60.
Moreover, the load of the experts are not balanced, i.e., there is a 10% difference in the loads (55%
vs. 45%). We conclude that behavior of the gating mechanism of Switch(s) is similar to Figure 3,
i.e., the gate is essentially randomly routing inputs to experts without any preference.

Figure 11 shows the results for Switch(t) without the load balancing loss, where we route inputs to
experts on the token-level, i.e., different tokens within the same sentence may be routed to different
experts. Similar to the Switch(s) case, the average routing confidence score of both of the two
experts converges to around 0.55. This indicates that the gate do not prefer any expert given an
input. Moreover, the load of the experts are not balanced, the same as in Figure 10. Based on
these observations, we conclude that behavior of the gating mechanism of Switch(t) is also random
routing.

Figure 12: Switch(s) w/ load balancing. Left: average routing confidence; Right: load of experts.

Figure 13: Switch(t) w/ load balancing. Left: average routing confidence; Right: load of experts.

Figure 12 and Figure 13 show behavior of the gating mechanism of Switch(s) and Switch(t) equipped
with the load balancing loss, respectively. We see that the load balancing loss indeed balances the
load for both Switch(s) and Switch(t), e.g., there is a less than 0.4% imbalance for Switch(s) and less
than 0.2% imbalance for Switch(t). In comparison, the imbalance is around 10% for the two Switch
Transformer variants without the load balancing loss. Also, similar to the case without the load bal-
ancing loss, the average routing confidence score converges to around 0.60 for Switch(s) and around
0.55 for Switch(t). Based on the observations, we conclude that behavior of the gating mechanism
is still random routing when Switch(s) and Switch(t) are equipped with the load balancing loss.

B DATASETS

Statistics of low-resource datasets are shown in Table 6. The English-Vietnamese, English-German,
and English-French datasets are from5 IWSLT’14, ’15, and ’16, respectively. The training data of

5https://iwslt.org/

15

https://iwslt.org/

Published as a conference paper at ICLR 2022

English-Romanian, English-Latvian, and English-Czech are from Europarl6, and the validation and
testing data are from WMT’17.

Statistics and data sources used in the multilingual translation task are shown in Table 7.

Table 6: Statistics of low resource translation datasets.

En-Vi En-De En-Fr En-Ro En-Lv En-Cs

Train 117,055 160,239 218,256 390,746 591,631 619,029
Validation 5,098 7,283 8,453 1,900 1,949 2,902
Test 1,268 6,750 1,133 1,999 2,001 3,005

Table 7: Statistics of multilingual translation datasets. The other language in the translation tasks is
English (En) for all the datasets.

Language Czech (Cs) German (De) Estonian (Et) Finnish (Fi) French (Fr)

Data source WMT’19 WMT’19 WMT’18 WMT’19 WMT’15
Samples 10,273,696 4,613,192 695,227 4,838,576 9,999,995

Language Gujarati (Gu) Hindi (Hi) Latvian (Lv) Romanian (Ro) Turkish (Tr)

Data source WMT’19 WMT’14 WMT’17 WMT’16 WMT’18
Samples 85,688 264,199 1,444,235 540,562 182,269

C TRAINING DETAILS

C.1 LOW RESOURCE TRANSLATION

We build a joined dictionary for the source and target languages for each dataset. To facilitate this,
we use byte pair encoding (BPE) with 10, 000 and 40, 000 split operations for the IWSLT and the
WMT datasets, respectively. Other pre-processing steps follow the Fairseq implementation.

For training, the regularization strength is chosen to be α = 5.0. We set the batch size to be
equivalent to 32k tokens, i.e., if we have four GPUs, then we set the number of tokens on each GPU
to be 4k and accumulate gradients for two steps. We use Adam as the optimizer with β1 = 0.9,
β2 = 0.98, and we set the learning rate to be 0.0015. We train the model for 40k steps, and we test
the model that yield the highest validation BLEU. For validation and testing, we use a beam size 5
and a length penalty 1.0. Other training and inference details follow the Fairseq implementation.

C.2 RICH RESOURCE TRANSLATION

Strength of the consistency regularizer is set as α = 2.0. We use Adam (Kingma & Ba, 2015) as the
optimizer with β1 = 0.9, β2 = 0.98, and the learning rate is chosen as 0.001. For inference, we use
a beam size 4 and a length penalty 0.6 for En-De; we use a beam size 10 and a length penalty 1.0
for En-Fr. Other post-processing steps follow Ott et al. (2018). We report both the BLEU score and
the sacreBLEU score (Post, 2018), where the latter is a safer token-agnostic version of BLEU.

C.3 MULTILINGUAL TRANSLATION

For training, we set the batch size to be equivalent to 1.6 million tokens, e.g., 4096 tokens per GPU
with 24 GPUs, and we accumulate gradients for 16 steps. We use RAdam (Liu et al., 2020a) as the
optimizer with parameters β1 = 0.9 and β2 = 0.98. The learning rate is set to be 0.05. Also, we set
the dropout ratio to be 0.1, and we use label smoothed cross entropy (Szegedy et al., 2016) with a
smoothing factor 0.1. The regularization strength is set to be α = 4.0. For inference, we use a beam
size 5 and a length penalty 1.0.

6https://www.statmt.org/europarl/

16

https://www.statmt.org/europarl/

Published as a conference paper at ICLR 2022

D ADDITIONAL EXPERIMENTS

We further test behavior of THOR and the Switch Transformer when we increase the number of
experts. To avoid overfitting, we use a small model (Transformer-IWSLT) on the WMT’16 En-De
translation dataset. In this experiment, the Transformer model has 48M parameters, models with 2,
16, and 64 experts have 55M , 143M , and 456M parameters, respectively.

Figure 14: Effects of the number of experts on WMT’16 En-De translation. Left: training perplexity
(lower the better) with respect to wall-time (measured in GPU hours); Right: validation BLEU
(higher the better) after training for 180 GPU hours with respect to the number of experts, where the
size of Transformer does not change.

Figure 14 demonstrates the results. In Figure 14 (left), notice that the Switch Transformer trains
faster than the vanilla Transformer, and this scaling property is more significant when we increase
the number of experts.

From Figure 14 (right), we see that with 2 experts, the Switch Transformer behaves slightly worse
the vanilla Transformer in terms of validation BLEU. However, when we increase the number of
experts, performance of the Switch Transformer continues to improve and outperforms the vanilla
Transformer with the same number of FLOPs. This indicates that in order for a sparsely activated
model to outperform a densely activated one, we need to scale the former to contain much more
parameters than the latter. Our observations are consistent with existing literature (Lepikhin et al.,
2020; Fedus et al., 2021). For example, in Fedus et al. 2021, the sparsely activated Switch-base
outperforms the densely activated T5-base using the same number of FLOPs. However, the former
is more than 30 times larger (7.5 billion vs. 0.22 billion parameters).

Our method is more parameter efficient than the conventional methods. From Figure 14 (right), we
see that THOR significantly outperforms the vanilla Transformer and the Switch Transformer even
with only 2 experts. Moreover, when we increase the number of experts, performance of THOR also
improves.

We also compare inference speed of Transformer, Switch Transformer, and THOR in Table 8. Note
that for THOR , we use the Dispatch(s) method in Table 5. Note that the inference speed of
Switch Transformer and THOR is slower than the vanilla Transformer because of the computation
and communication overhead induced by input routing. Such an overhead is more noticeable when
the number of experts is large. We remark that in Fedus et al. 2021, the speed of Switch-base is
about half of T5-base (780 vs. 1600 samples per second).

Table 8: Inference speed (tokens/second).

Transformer Switch THOR
experts — 2 16 64 2 16 64

Speed 15.2k 15.0k 10.4k 7.4k 15.1k 10.6k 7.5k

17

	Introduction
	Background
	Analysis of Sparsely Activated Models
	THOR: Transformer with Stochastic Experts
	Experiments
	Baseline
	Low-Resource Translation
	Rich-Resource Translation
	Multilingual Translation
	Ablation Experiments

	Conclusion
	Analysis of Sparsely Activated Models
	Training Details
	Additional Results

	Datasets
	Training Details
	Low Resource Translation
	Rich resource Translation
	Multilingual Translation

	Additional Experiments

