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ABSTRACT

The electrochemical reduction of atmospheric CO2 into high-energy molecules
with renewable energy is a promising avenue for energy storage that can take ad-
vantage of existing infrastructure especially in areas where sustainable alternatives
to fossil fuels do not exist. Automated laboratories are currently being developed
and used to optimize the composition and operating conditions of gas diffusion
electrodes (GDEs), the device in which this reaction takes place. Improving the ef-
ficiency of GDEs is crucial for this technology to become viable. Here we present
a modeling framework to efficiently explore the high-dimensional parameter space
of GDE designs in an active learning context. At the core of the framework is an
uncertainty-aware physics model calibrated with experimental data. The model
has the flexibility to capture various input parameter spaces and any carbon prod-
ucts which can be modeled with Tafel kinetics. It is interpretable, and a Gaussian
process layer can capture deviations of real data from the function space of the
physical model itself. We deploy the model in a simulated active learning setup
with real electrochemical data gathered by the AdaCarbon automated laboratory
and show that it can be used to efficiently traverse the multi-dimensional parame-
ter space.

1 INTRODUCTION

The electrolysis of atmospheric CO2 using renewable electricity is an alternative way to store energy
that could allow sectors with limited sustainable alternatives (e.g. aviation, marine, chemical indus-
try) to reach carbon neutrality faster (Breyer et al., 2019; Zanatta, 2023). Electrolyzers take CO2 as
input and convert it into valuable chemicals such as carbon monoxide (CO), ethylene (C2H4), and
ethanol (C2H5OH) (Chen et al., 2024). This reaction takes place in a part of the device called the
gas diffusion electrode (GDE) whose performance depends on many variables from chemical com-
position and processing parameters to the choice of the operating conditions, and its optimization is
challenging.

Here, we present a physics-based framework for CO2 reduction that can be utilized for the Bayesian
optimization of GDE designs in automated self-driving labs. The framework uses an analytical one-
dimensional continuum model for the GDE cathode which is based on the work by Blake et al.
(2021). We implemented the model in differentiable PyTorch code and extended it to multi-product
reactions. 1 Certain latent parameters of the model which cannot be experimentally measured are
inferred from the data. This data-driven analytical model is then used as the mean function of a
Gaussian process (GP). The benefit of this hybrid model is twofold: the GP learns a correction to
the physics model, and it provides an uncertainty measure to use in Bayesian optimization.

We demonstrate the use of the model on the experimental data collected from AdaCarbon platform,
which consists of a team of seven robots that work together to accelerate the fabrication, character-
ization and testing of multiple GDEs of varying catalytic compositions. (Soni et al., 2025) As key
contributions, we (1) present a physics-based framework for multi-product CO2 reduction reactions,
(2) which is interpretable and uncertainty-aware; (3) demonstrate the use of the model in simulated
pool-based active learning with real experimental data.

1Code is available at github.com/igrega348/CO2-catalysis
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Figure 1: a) Schematic of the analytical model of the cathode. CO2 dissolves in the electrolyte
as it enters the porous catalyst layer. The concentration profile of CO2 (c/c0) is indicated on the
schematic. Gaseous reaction products leave the system while other molecules and ions are dissolved
in the electrolyte and in equilibrium. b) The analytical model is embedded in a data-driven frame-
work (ML-Ph) where non-observable parameters are inferred from the data. c) The ML-Ph model is
used as the mean function of a Gaussian process to enable uncertainty-aware predictions.

2 METHODS

Data structure and model inputs We operate with a GDE dataset collected from a self-driving
laboratory, AdaCarbon (Soni et al., 2025). AdaCarbon is a platform comprising seven robotic mod-
ules for automated GDE fabrication and characterization, along with an Automated Test Cell capa-
ble of performing zero-gap CO2 electrolysis. We used this platform to fabricate and test 90 GDEs
(30 unique GDEs, tested in triplicate), with varying compositions of Cu-Ag metals and Nafion-
Sustainion ionomer bilayers, aiming to enhance ethylene selectivity.

The available per-sample attributes in the dataset are AgCu ratio xAg, Nafion volume vNaf , Sustanion
volume vSus and catalyst mass loading m. As a pre-processing step, we calculate the thickness of
the catalyst layer corresponding to zero porosity as L0 = m/(ρ̄A) where ρ̄ is the mass-averaged
density given by

ρ̄ = (1− xAg)ρCu + xAgρAg

This way we obtain the set of 5 input variables xAg, vNaf , vSus,m,L0. There are two output vari-
ables: the Faradaic efficiencies with respect to CO and ethylene, FECO and FEC2H4

, respectively.

In addition to the per-sample attributes, there are further parameters which characterize the operating
conditions of the CO2 reduction system which is run at steady-state conditions. The values of
these parameters and other assumed physical constants are listed in the Appendix. Notably, the
predictions of the model are very sensitive to certain parameters which are not readily available
from the experiments (e.g. porosity of the cathode ε, radius of particles r, diffusion coefficient Kdl).
We employ an MLP with layer dimensionality [5, 64, 64, 64, 6], ReLU nonlinearities and dropout
with p = 0.1 between the layers to map from the five per-sample input variables to the six per-
sample inputs to the physical model (ε, r,Kdl, θ1, θ2, θ3). In addition to the per-sample inputs, there
are 6 trainable parameters in the model which do not depend on sample attributes. These are the
Tafel reaction constants i∗i , αi which are defined in the Appendix.

Differentiable inverse solver In the basic operation, the model takes the cathode voltage along
with the inputs as mentioned above and solves for concentrations of products, current densities and
the associated Faradaic efficiencies. In our experiments, however, it is the cathode current rather than
cathode voltage which is imposed. Moreover, in the current experimental setup the cathode voltage
is not measured (only the voltage across the entire cell could be measured). Therefore, given the
current state of the model parameters and inputs, the outputs are calculated for a set of 1000 voltages
ranging between −1.25V and 0V. We then find the operating point as a linear interpolation of the
2 voltages which provide the overall current closest to the target value of I = 233mAcm−2. This
procedure is efficient, enables backpropagation of gradients to the MLP, and proves empirically
stable.
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Figure 2: a,b) Parity plots over test set for Faradaic efficiency of ethylene and CO, respectively for
the GP+Ph model. Error bars are ±σ. Colors represent independent trials in 5-fold cross-validation.
c) Maximum FE in the training pool as a function of step number in simulated active learning.

Uncertainty-aware model In order to use the model in Bayesian optimization of experiments,
every prediction needs to come with an associated uncertainty measure. We experiment with two
frameworks: (i) model ensembling and (ii) Gaussian process (GP) with embedded physics mean
function. The ensembles are trained with a bagging approach whereby each of the N = 50 models
has access to a fraction m = 1/3 of the data during training. At inference time, predictions are
obtained from each model independently and variance of the predictions is used as the resulting
uncertainty. In the GP with embedded physics mean function, a single physics model is used as the
mean function and GP covariance kernel is trained on top of it to provide an uncertainty measure at
inference time.

3 RESULTS

3.1 UNCERTAINTY-AWARE PREDICTIONS

As outlined in Section 2, we experiment with two approaches: (i) model ensembling (Ph ensemble)
and (ii) Gaussian process with physics mean function (GP + Ph). In addition, we consider two other
models: (i) ensemble of MLPs (MLP ensemble) and (ii) constant-mean Gaussian process (GP). Both
these models are trained end-to-end with 5 inputs (xAg, vNaf , vSus,m,L0) and 2 outputs (Faradaic
efficiency with respect to carbon monoxide and ethylene, FECO and FEC2H4 , respectively).

Table 1 shows the negative log likelihood and mean average error for the two-target predictions of
both CO2 and C2H4 Faradaic efficiencies. Of the four evaluated approaches, the Gaussian process
with embedded physics mean function performs best on both metrics. Figure 2a,b shows the parity
plots over withheld test set for the GP+Ph model. In all five runs of the 5-fold validation, the
predicted values are close to the true values and the predicted uncertainty is well calibrated.
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Figure 3: a,b) Histograms of inferred particle radius r and porosity ε for our dataset. c) Electrode
reaction kinetics parameters α and i∗. Vertical bars show ranges of values reported in the literature
(Bui et al., 2022) on Cu substrates. Red stars show values inferred for our dataset (mixture of Cu
and Ag substrates). d) Faradaic efficiencies and surface coverage parameters θi for a virtual xAg

sweep. Shaded bands indicate dropout-enabled variance (Gal & Ghahramani, 2016).
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Table 1: Negative log likelihood (NLL), mean average error (MAE) and acceleration factor (AF) for
the benchmark of 4 models.

Model NLL ↓ MAE ↓ AF ↑

Benchmark MLP ensemble −1.4± 0.3 0.045± 0.02 2.0
GP −1.5± 0.4 0.048± 0.01 2.9

Ours Ph ensemble −1.5± 0.3 0.048± 0.01 3.2
GP + Ph −1.9± 0.3 0.025± 0.01 3.1

3.2 INTERPRETABILITY OF THE MODEL

Certain non-observable parameters of the model (e.g. porosity ε, particle radius r) are per-sample
while others (e.g. electrode reaction kinetics) are shared across samples. Characteristics of the
inferred parameters are displayed in Fig. 3a,b. Values of particle radius r and porosity ε are in
sensible ranges (40 nm < r < 65 nm, 0.5 < ε < 0.8). In Fig. 3c we plot the inferred values of
electrode reaction kinetics αi and i∗i and we compare them to the values reported in the literature
(Bui et al., 2022). Note that unlike reaction potentials ηi which are physical constants depending
on the molecule formation energies, there is a large variability in values of αi and i∗i reported in the
literature. Nonetheless, our inferred values fall within the acceptable ranges.2

Finally, the analytical model allows for physical interpretability of internal parameters. In a “virtual
experiment”, we vary the AgCu ratio while keeping all other variables at their mean values. The
Faradaic efficiencies change accordingly and we observe that internally the inferred per-sample
values of surface coverages θi indicate that reactions switch from preferential ethylene production
on copper-rich surfaces (θC2H4

> θCO at xAg ∼ 0) to carbon monoxide production on silver-rich
surfaces (θC2H4

< θCO at xAg ∼ 1) (Figure 3d).

3.3 SIMULATED POOL-BASED ACTIVE LEARNING

We carry out simulated active learning for maximization of ethylene Faradaic efficiency. All avail-
able data points are split into 2 pools: training pool and candidate pool. The models are calibrated
using the data from the training pool and the next candidate is proposed from the candidate pool
based on the acquisition function (here expected improvement). Once a data point is selected, it is
included in the training pool for the next round of model calibration. See Appendix for more details.

In Figure 2c we plot the maximum Faradaic efficiency over the training pool as a function of acqui-
sition step. The shaded bands correspond to variability over 100 independent trials. It is clear that
the models with embedded physics perform better than the pure GP while an MLP ensemble has
the worst performance. In Table 1 we include the acceleration factor (AF) with respect to random
sampling. The ensemble of MLPs is on average 2× more efficient than random sampling while the
other three models are approximately 3× more efficient.

4 CURRENT LIMITATIONS AND OUTLOOK

In this work, we developed a physics-based data-driven model for gas diffusion electrodes where
non-observable parameters are inferred from experimental data. We have shown that the model
can capture multi-product reactions with CO and ethylene products, but it is easily extensible to
other carbon products. We carried out simulated pool-based active learning to evaluate the capacity
of the framework to guide automated experiments. The Gaussian process (GP) augmented with a
physics model achieves best performance. While the performance gain over standard GP is small,
more experiments are needed to verify how the models perform in real scenarios with continuous
optimization domain. Moreover, the physics-based model provides physical understanding and ex-
plainability not found in black-box ML models. In this work we focused on optimization deployed
on a specific robot, but we are working on expanding the capabilities for other systems.

2The plotted range of reported values of α corresponds to copper cathodes while our cathodes are a mixture
of copper and silver. Reported values of αCO on silver cathodes are higher.
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A APPENDIX

A.1 SENSITIVITY ANALYSIS

The analytical model provides a detailed view of the micro-environment at the cathode. In Figure 4a
we plot the dependence of various parameters on the half-cell voltage with respect to the reversible
hydrogen electrode VRHE for a representative set of parameters. As cathode voltage becomes in-
creasingly more negative, the overall cathode current i increases exponentially (as governed by
Tafel kinetics). Faradaic efficiencies FEC2H4

and FECO first increase but then begin to drop again
below VRHE ∼ −0.5. This behavior is well known in the literature (Blake et al., 2021) and is due
to the excessive production of OH ions from hydrogen evolution, the environment becoming highly
alkaline (see the associated increase in pH) and the associated reduction in the solubility of CO2in
the electrolyte, CO2,sol.

We now vary the input parameters of the model and observe the associated change in the output
Faradaic efficiency for ethylene, FEC2H4

(Fig. 4b). Sensitivity of FE to parameter x is defined as

∂FE
FE
∂x
x

=
∂FE

∂x

x

FE

where the derivative ∂FE
∂x is estimated numerically by taking small deviations around x. The pa-

rameters with largest sensitivity are electrode kinetics parameters, αi. For instance, a 1% change in
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Figure 4: a) Dependence of selected quantities on half-cell voltage VRHE. b) Sensitivity of ethylene
Faradaic efficiency to model parameters.

αC2H4 will result in 9.4% change in FEC2H4
. An important observation is that many parameters

which are not readily observable in experiments (e.g. αi, i
∗
i , θi, ε,KDL) have a deciding impact on

the output Faradaic efficiency. For this reason, we implement a data-driven approach in which we
infer these latent parameters from the data.

A.2 DETAILS OF THE PHYSICS MODEL

The following three reactions are assumed to take place at the cathode:
2H2O+ 2e− −→ H2 + 2OH− (1)

CO2 +H2O+ 2e− −→ CO+ 2OH− (2)

2CO2 + 8H2O+ 12e− −→ C2H4 + 12OH− (3)
The corresponding current densities are expressed using Tafel kinetics with first order dependence
on the local concentration of reactants and exponential dependence on overpotentials ηi:

iH2
= −θ1i

∗
H2

exp

(
−αH2

F

RT
ηH2

)
iCO = −θCOi

∗
CO

cCO2

cref
exp

(
−αCOF

RT
ηCO

)
iC2H4

= −θC2H4
i∗C2H4

cCO2

cref
exp

(
−αC2H4F

RT
ηC2H4

)
The factors i∗H2

, i∗CO, i
∗
C2H4

, αH2
, αCO, αC2H4

are trainable constants. As shown in review by Bui
et al. (2022), the range of reported constants i∗i and αi varies by orders of magnitudes between dif-
ferent works in the literature. Therefore, we argue that it is reasonable to enable these constants to be
trained from data. The competition between the three reactions is captured by coverage parameters
θH2 , θCO, θC2H4 . These are similar to the surface coverage parameters outlined in (Bui et al., 2022)
and introduced by Langmuir (1918). However, we introduce a different framework in which we do
not calculate θi from temperature and voltage, but rather θi are functions of the input parameters
(e.g. AgCu ratio). They sum to 1 which we enforce by softmax. For instance, as shown in Figure 3,
the model trains to shift the balance of the reactions to ethylene on Cu-rich surfaces and to CO on
cathodes without copper.

A.2.1 PHYSICAL CONSTANTS

The nominal surface area of the cathode is A = (1.85 cm)2, the overall current density is i =
233mAcm−2, CO2 is fed from a fixed pressure reservoir with p0 = 2.38 bar at a flow rate of
Q = 30 cm3/min. Flow channel dimensions are 1.5mm× 0.5mm× 20mm.

A.3 CALIBRATION OF MODEL ENSEMBLES

When training ensemble models, we need to choose 2 hyperparameters: the number of models in
the ensemble and the fraction of the data that is seen by each model. We carry out a hyperparameter
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Figure 5: Hyperparameter exploration of model ensembles. Test loss and test negative log likelihood
(NLL) for various data fractions and numbers of models.

sweep for MLP ensemble in which we include 10, 20, 50, 100, 200 models and the data fractions
0.3, 0.4, ..., 0.9. In Figure 5 we plot the test loss and test negative log likelihood for this parameter
sweep. A few interesting observations emerge:

1. Based on test NLL, it is beneficial to include more models, but the gains are negligible
beyond 50 models. Therefore, we select 50 models for the ensembles.

2. As the data fraction fed to each model increases, test loss continues to reduce. However,
variance between model prediction reduces (models become increasingly confident) which
is detrimental to NLL predictions. We select a data fraction of 0.33.

A.4 SIMULATED POOL-BASED ACTIVE LEARNING

All available data points are split into 2 pools: training pool and candidate pool. The models are
calibrated using the data from the training pool and the next candidate is proposed from the candidate
pool based on the expected improvement acquisition function. Since the data were acquired based on
triplets, we follow the same principle in this method. At the start, the training pool contains 3 triplets.
The candidate pool is always evaluated based on triplets. Note that 3 out of 5 input variables are
identical for all points in the triplet. The remaining 2 variables (catalyst mass loading, zero porosity
thickness) are averaged over the three data points in the triplet. Once a triplet is selected, all three
points with their respective individual values of input variables are included in the training pool for
the next round of model calibration.

Acceleration factor is defined as the ratio between the expected number of optimization steps with
random candidate proposal and the corresponding expected number with the given strategy. Note
that for a candidate pool size of n, the expectation for random proposal is (n − 1)/2. We operate
with an initial candidate pool size of n = 27. Therefore, AF = 13/E[N ] where E[N ] is the mean
number of steps needed to get to the maximum FE and for the given strategy.
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