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Abstract

Preventing private data leakage is crucial in federated learning. Existing secure
aggregation (SA) protocols, which are the core protocols for privacy-preserving
federated learning, require clients to synchronize at multiple points, meaning
they must wait for other clients to send their messages before proceeding. This
synchronization ensures that inputs can be aggregated without compromising
privacy, while also accounting for client dropouts and message delays.
This work presents PICASO, abbreviated from Per Iteration Client At most Syn-
chronizes Once, a novel SA protocol minimizing synchronization overhead in
privacy preserving federated learning, aligning its communication pattern more
closely with that of non-private federated learning. PICASO requires a single server
and a collector, similar to the non-colluding two-server model used in the Mozilla
Firefox browser. However, the collector in PICASO is stateless and performs
significantly less work than the server, allowing it to function as a lightweight com-
putational device. PICASO outperforms previous works like SecAgg, SecAgg+,
MicroSecAgg, and Flamingo with server runtime under 1 second for large clients.
PICASO demonstrates viability by training various models on different datasets.
We also present improvements over state-of-the-art algorithms in two key areas -
detecting and removing malicious clients, and secure aggregation for heterogeneous
datasets. Overall, PICASO achieves an efficient, secure, and flexible federated
learning solution minimizing synchronization needs.

1 Introduction

Federated learning (FL) enables collaborative machine learning without sharing client data, by
aggregating local model updates at a central coordinator. However, recent works show that training
data can still be compromised from model updates alone [26, 49, 39], making secure aggregation
(SA) crucial for privacy-preserving FL. SA computes the sum of user inputs while keeping individual
inputs private. Like in traditional FL, the server typically selects a set of n clients for each iteration
with the server repeating the process until the model converges. Typically, a new set of clients
are chosen per iteration Note that the number of clients n can range from a hundred to tens of
millions [31] and similarly the number of model parameters m can scale to millions [7]. The goal
is to securely train a global model. SA protocols need to be robust to client dropouts. Furthermore,
SA algorithms typically work over integers or field elements while the weights produced by an ML
model are floating point values. Therefore, one often needs to quantize the weights and show that the
model produced by the SA protocols still preserve accuracy.

SecAgg [7] introduced a practical solution for privacy-preserving horizontal federated learning. The
protocol’s core idea involves pairwise masking seeds su,v shared between clients u, v P U , where U
is the set of all users. Each client u masks its input using

ř

vău su,v ´
ř

vąu su,v . Note that a client
v ă u would generate its mask by subtracting su,v . Therefore, it is easy to see that the pairwise masks
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cancel out in aggregation, i.e.,
ř

uPU p
ř

vău su,v ´
ř

vąu su,vq “ 0. While a particular user u maybe
offline, the remaining clients would still have used their pairwise mask with u in the aggregation.
Therefore, su,v for an offline u and any online v needs to be secret shared with other clients to allow
the server to reconstruct su,v and then remove the mask. Unfortunately, a server could label an online
client u as offline which would give the server su,v, allowing it to unmask an online user’s inputs.
Therefore, a client also uses a self-mask su to mask its inputs. This su is also secret-shared and is
reconstructed should u be online. As is obvious, SecAgg involves multiple rounds of computation
such as to establish pairwise masks, secret share the masks, sending the masked inputs, and then
reconstructing the sum. Therefore, for n clients and a vector of size m, the protocol requires Opn2mq

computation on the part of the aggregator, Opmnq for each client. Subsequent works have focused
on reducing the complexity through various assumptions and techniques. Here the vector m can be
viewed as the number of parameters in the model, i.e., the inputs to the secure aggregation algorithm.

This work aims to address a critical scalability issue with existing SA algorithms. Prior works often,
including SecAgg that was described above, require clients to synchronize their participation with
others, an artifact of techniques where clients mask their inputs but must share masks with a quorum
of clients to facilitate unmasking, if the client was unavailable later. This expensive ritual of sharing
masks induces a bottleneck absent in non-private training, where clients simply train the model and
send updates without additional synchronization.

Our main contribution is PICASO, a secure aggregation protocol where each client synchronizes
at most once per training iteration. The key idea is that in iteration ℓ, client i masks its input xi by
computing yi “ xi ` GenerateMaskpki, ℓq, where ki is its private key. Client i sends yi to the server
and GenerateMaskpki, ℓq to a separate "collector" party. Our model supports dynamic selection of a
collector per training iteration . They are stateless and run a deterministic computation, simpler than
the server’s own computation. A simple way of choosing a collector would be to use a randomness
beacon [17] and the Algorithm 1 from Flamingo [37, Lines 2-5]. The collector aggregates the masks
from all clients and sends their sum to the server. The server then reconstructs

ř

i xi using the masked
inputs and the sum of masks. Unlike SecAgg (and its subsequent works), PICASO does not require
sending masks to multiple parties or secret sharing, reducing synchronization overhead. It only needs
to synchronize to identify the collector for that iteration. Looking ahead, the collector acts can be
viewed as a single "decryptor" [37] or “committee member” [33], receiving information from clients,
condensing it, and communicating the result to the server for secure aggregation (Figure 1a). In other
words, PICASO utilizes one intermediate party while SecAgg employed n with subsequent works
employing log n intermediate parties.

Asymptotically, PICASO’s client computation cost is Opmq, where m is the input vector length (e.g.,
the number of weights of the model), while the server and collector computation cost is Opmnq,
where n is the number of clients (Table 2). PICASO offers several attractive features:

• Dropout tolerance: Any number of selected clients can opt out without increasing computa-
tional burden on remaining clients or requiring additional interaction.

• Collusion resistance: Privacy of honest users’ inputs is preserved even if an adversary
corrupts any number of clients and the aggregator.

• Scalability and dynamism: New clients can join without an expensive setup phase, needing
only public parameters and the aggregator’s iteration key.

• Enhanced privacy: Input privacy is maintained against both collector and aggregator, pro-
vided they do not collude. The collector can change in each iteration, facilitated by a
randomness beacon which in tern prevents server manipulation.

We also microbenchmark PICASO, comparing with the state-of-the-art secure aggregation algorithms
to demonstrate competitive performance. For example, PICASO’s server computation time is ă 1s,
even for large number of clients besting prior work. We also conduct extensive experiments on FL
benchmark datasets to demonstrate that PICASO preserves performance, while guaranteeing privacy.

Further, PICASO can easily be extended to offer:

• a constant-round protocol to detect and remove malicious clients (i.e., sending inconsistent
or incorrect messages), improving on the state-of-the-art ACORN which requires Oplog nq

rounds where n is the number of clients.
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(a) The PICASO system model operates in iterations.
Each iteration begins with the server sending a mes-
sage to initiate the process (Message 0). In response,
clients train the model on their local data, obtain
updates, and mask the input. Concurrently, clients
communicate with both the server and the collector
(Message 1): masked input is sent to the server, while
auxiliary information is transmitted to the collector.
Upon receiving information from all clients, the col-
lector combines these into a single value. Finally,
this consolidated data is sent to the server (Message
2), concluding the iteration.

Ĝ

Group Order

p ¨ ŝ

G :“ xg “ f ¨ hy

cyclic subgroup

p ¨ s

H :“ xhy “ txp : x P GuF :“ xfy

F : p
H : s

factors as

(b) A brief overview of the class group framework
we employ. Here, pG is group, whose order is ps ¨ p,
such that ps and p are co-prime. Further, s divides ps
and is the order of the group G, which is generated
by g and is denoted as G :“ xgy. Similarly, H is
a subgroup of G, generated by h whose order is s,
while F has order p and is generated by f . We have
g “ f ¨h. Further, ps (and s) is unknown but an upper
bound s̄ is known. The last property we will rely on
is that discrete logarithm is efficient in the subgroup
F.

Figure 1: The backbone of PICASO - the communication system model and the CL framework.

• a secure aggregation protocol supporting heterogeneous datasets via robust stochastic aver-
aging [34], which improves upon DReS-FL [47] as DReS-FL requires the entire dataset to
be secret shared among clients, which we avoid.

1.1 Related Work

Secure Aggregation Using Differential Privacy and Homomorphic Encryption. Federated
learning with differential privacy allow clients to add noise to their data. This has been deployed
by major tech companies [18, 1]. However, research shows that such data perturbation may reduce
accuracy. Our secure aggregation can be composed with DP to mask noisy local inputs [30]. Moreover,
BatchCrypt [55] employed homomorphic encryption (HE), building on earlier work. However, it
required all clients to use the same key, posing a significant privacy risk.

SA using Multiparty Computation. Secure multiparty computation (MPC) preserves privacy and
accuracy by computing over encrypted data. Early works on Private Stream Aggregation [48] focused
on secure summing of streaming data. Following SecAggBonawitz et al. [7], Federated Learning
protocols with dropout resilience were developed, but multiple interaction rounds increased dropout
risk. Subsequent works [5, 4, 37, 35, 52, 50, 57, 29, 54, 36, 33] have focused on reducing the number
of intermediate parties to log n, or reusing the masked secret sharing across multiple iterations to
reduce round count. This is summarized in Table 1 where we compare various protocols with respect
to the following properties: (a) the number of rounds of interaction, (b) whether it can tolerate client
dropouts, (c) on whether the aggregate value can be efficiently recovered, (d) public setup for security
assumption, and (e) number of intermediate parties needed to help with the aggregation.

Two-Server Setting. The two-server setting with two non-colluding servers [16, 3, 44] are already
being considered for standardization by IETF [41] and used by Mozilla Firefox. These schemes
face challenges with long inputs due to increased communication and computation demands. Our
approach assumes no server-collector collusion, a weaker assumption as the collector changes in each
iteration and performs less computation. We include a concrete comparison of these works in the full
version.
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Table 1: Comparison of various Secure Aggregation Algorithms based on MPC.
# Rounds Dropout Efficient Public # Additional

Resilience Aggregation Setup Parties

[48] 1 ✗ ✗ ✓ 0
[28] 1 ✗ ✓ ✗ 0
[6] 1 ✗ ✗ ✗ 0
[32] 1 ✓ ✓ ✗ 1
SecAgg[7] 3 ✓ ✓ ✓ n
SecAgg+[5] 3 ✓ ✓ ✓ log n
MicroSecAgg[25] 1+2 ✓ ✗* ✓ log n
LERNA[33] 1+2 ✓ ✓ ✓ log n
Flamingo[37] 1+2 ✓ ✓ ✓ log n
PICASO 1 ✓ ✓ ✓ 1

Table 2: Comparison of asymptotic complexity of some secure aggregation protocols. Note that in
PICASO, the collector performs Opmnq computation and communication.

Client Server

Computation Communication Computation Communication

SecAgg[7] Opmn ` n2q Opm ` nq Opmn2q Opmn ` n2q

SecAgg+[5] Opm log n ` log2 nq Opm ` log nq Opn log2 n ` mn log nq Opmn ` n log nq

SASH[35] Opm ` n2q Opm ` nq Opm ` n2q Opmn ` n2q

PICASO Opmq Opmq Opmnq Opmnq

2 System Model and Relevant Background

We consider a federated learning framework, as shown in Figure 1a. There exist n clients, with each
client Ci owning a dataset Di. The server holds the ML model Θ. In FL, the server first senders Θ to
clients, and each client trains its local dataset on Di to generate the updated weights mi. Meanwhile,
the server computes the average of these model updates tmiu to update its global model to Θ1. In the
next iteration Θ1 is sent back for the next update. The goal is to use the collector to ensure that the
weights mi remain secret while still allowing the server to compute the average, and thereby the new
model Θ1.

Threat Model. Our threat model follows the long line of prior works whereby an adversary can: (a)
corrupt the server or the collector, (b) corrupt clients which enables the adversary to choose the client
inputs for an iteration. The goal is to ensure that the honest users’ inputs remain private with only
their sum being leaked. Our protocols are described in this setting, like all prior work. Note that prior
works such as Flamingo [37], or LERNA [33] did not guarantee privacy when all the intermediate
parties collude with each other. Similarly, we allow for the collector to corrupt clients and guarantee
the security against a corrupted collector. If the server and collector collude at an iteration, however,
there is no privacy for that iteration.1 Importantly, our collector can change from every iteration to
iteration and is selected by a randomness beacon using an algorithm similar to how the set is chosen
in Flamingo [37, Algorithm 1]. This is similar to how validators are chosen in some proof of stake
blockchains [22].

Modeling Security. We model security against both a corrupt server and a corrupt collector. A
corrupt server can adaptively compromise clients and collude with them, issue arbitrary encryption
messages for honest parties in any iteration, and receive the collector’s combined information at
each iteration, but cannot corrupt the collector. The adversary selects honest clients H1, . . . ,Ht

and provides two input sets: tx1, . . . , xtu and tx1
1, . . . , x

1
tu, where

ř

xi “
ř

x1
i. The challenger

randomly selects and encrypts one set for the target time period τ . The adversary’s goal is to determine
which set was chosen with probability significantly exceeding 1/2.

Meanwhile, for privacy against a corrupt collector, the adversary receives individual communication
sent by the clients to the collector. It can corrupt clients and also issue encryption queries, as before.
It cannot corrupt the server but can adaptively issue the above queries. The challenge is the same as
for a corrupt server - to distinguish between honest user inputs. Since it does not receive the final
result, the challenge sets need not have the same sum.

1In such a case the server can learn the individual client model updates. To protect against such an attack the
best that the clients can do is to add differential private noise to their updates.
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CL Framework. Cryptographic protocols often use cyclic groups G of prime order q, generated
by gq, i.e., G :“ t1, gq, . . . , g

q´1
q u. The Discrete Logarithm (DL) Assumption [2] states that given

X P G, finding x where gxq “ X is computationally infeasible.2 The Decisional Diffie-Hellman
(DDH) Assumption [8] posits that given gq, g

x
q , g

y
q , distinguishing gxyq from a random element in G

is computationally infeasible.

The CL Framework [12–15, 10] introduces the idea of a composite order group, where the order is
unknown, but there is a subgroup of known prime order where the discrete logarithm computation is
easy. This framework utilizes the group where DL is easy to ensure correctness and eventual message
recovery, and the group where DL is hard to achieve security. The framework is summarized in
Figure 1b.

The security property relies on a modified DDH assumption (Definition 1) involving indistinguisha-
bility between elements from groups G and H within a composite order group. While their orders
are unknown, upper bounds exist. The input space is in F, and the key space in H. Distributions DG

and DH are based on these upper bounds, with DG (resp. DH ) being statistically indistinguishable
from G’s (resp. H’s) exponent space. Typically, DH :“ 0, . . . , B ´ 1 where B “ 240 ¨ s where s̄ is
the upperbound of the order of H, shown by [53] to be 2´40-close to uniform. The security property
relies on a modification of the DDH assumption (see Definition 1), where the indistinguishability is
between elements from two different groups, G and H, within the composite order group. However,
the orders of G and H are unknown, but there are upper bounds on their orders.

Definition 1 (DDH-f Assumption). Let ppG,G,H,F, s̄q be the class group as defined in Figure 1b.
Then, the following two distributions are computationally indistinguishable, i.e., there is no “efficient”
attacker who can distinguish whether it is the first or the second distribution that a sampled value
comes from, with a probability greater than half. Here, x, y Ð$ DH , u Ð$ Z{pZ

tph, hx, hy, hxyu «c tph, hx, hy, hxy ¨ fuu

We refer the readers to Bouvier et al. [9] and Tucker [53] for a detailed exposition on class groups,
techniques, and its extensive use in cryptography. They also survey the utility of CL framework in
building other cryptographic primitives.

3 PICASO

We begin by describing an additively homomorphic masking algorithm. We then instantiate this in the
CL framework. This is a generalization of the version presented in the introduction. We then present
our complete description of PICASO and formally prove it secure in the random oracle model.

3.1 Homomorphic Masking Algorithm

Let ki denote the secret key of Client i. Let k0 denote the secret key of the aggregator. Further, for
iteration ℓ, let pki,ℓ (resp. pk0,ℓ) denote the public key of client i (resp. the server) for iteration ℓ.
Then, we require the following properties of our algorithm GenMask:

• The masking function can be computed using two different ways, i.e., GenMaskppki,ℓ, k0q “

GenMaskppk0,ℓ, kiq

• Homomorphic over public key space, i.e.,
śn

i“1 GenMaskppki,ℓ, k0q “

GenMaskp
śn

i“1 pkj,ℓ, k0q

Further, we require that the generated mask is pseudorandom, i.e., GenMaskppk0,ℓ, kiq appears
random provided the adversary cannot compute the mask on its own which requires the knowledge of
ppk0,ℓ, kiq or ppki,ℓ, k0q.

Construction 1 (Homomorphic Masking Algorithm). Let H : t0, 1u
˚

Ñ H be a hash function that
maps strings to the unknown order subgroup of G.3 Then, for secret key ki Ð$ DH for i “ 0, . . . , n,
we can define, for iteration ℓ, pki,ℓ :“ Hpℓqki and the mask value as maski,ℓ :“ Hpℓqk0¨ki

2Small x are recoverable, as in [25, 48, 6].
3Note that for our purposes we can simply begin by hashing the input to an element in DH , and then raising

the group generator h to this value. This is because the knowledge of the discrete logarithm is not detrimental.
However, [45] present additional methods to hash into a group of unknown order, in a way that the discrete
logarithm is unknown.
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We now show that the construction satisfies the required properties:

• maski,ℓ “ Hpℓqk0¨ki “ pkk0i,ℓ “ pkki0,ℓ

• maski,ℓ ¨ maskj,ℓ “ Hpℓqk0pki`kjq “ ppki,ℓ ¨ pkj,ℓq
k0

For a particular iteration ℓ, an adversary is either given Hpℓq, pk0,ℓ, pki,ℓ,maski,ℓ or
Hpℓq, pk0,ℓ, pki,ℓ, U where U Ð$ G. This follows from the DDH-f assumption, which we define in
Definition 1. Looking ahead, this pseudorandom mask will be used to mask the client input and
thereby guaranteeing privacy.

3.2 Formal Description of PICASO

We first informally describe the protocol. At iteration ℓ, the server sends a message identifying
clients who are participating in that round of interaction. In this message, it also includes its
iteration public key pk0,ℓ. Client i, with its input xi,ℓ, first encodes it as fxi,ℓ . Recall that f is
the generator of the cyclic, prime-order group F where discrete logarithm is easy, i.e., given this
encoding, there exists an efficient algorithm that outputs xi,ℓ. Once encoded, it computes the mask
maski,ℓ “ GenMaskppk0,ℓ, kiq. It sends to the server the masked input cti,ℓ “ maski,ℓ ¨ fxi,ℓ .
Meanwhile, it also sends to the collector pki,ℓ.

The collector simply multiplies all of the clients’ iteration public keys to compute AUXℓ “
ś

pki,ℓ.
AUXℓ is sent to the server. The server does the following: multiplies all of the masked inputs

ś

cti,ℓ
and divides it by GenMaskpAUXℓ, k0q. It then applies the efficient discrete logarithm to compute the
aggregate. Formally, we present in Construction 2.
Construction 2 (PICASO Protocol for iteration ℓ). The protocol description is as follows:

• One-Time Setup Phase:
Transparent Setup is executed and outputs pp “ ppG,F, p,DH ,DG, s̄, g, h, f,H : t0, 1u

˚
Ñ Hq

• Begin Iteration: Server, with key k0, computes pk0,ℓ “ Hpℓqk0 and sends to the chosen clients and
collector.

• Encryption Phase: Each online client Ci P OLℓ with key ki and input xi,ℓ does the following:

– Compute maski,ℓ :“ GenMaskppk0,ℓ, kiq
– Compute masked input cti,ℓ “ fxi,ℓ ¨ maski,ℓ
– Compute public key pki,ℓ “ Hpℓqki

– Ci ÑServer: cti,ℓ
– Ci ÑCollector: pki,ℓ

• Collection Phase: Collector computes AUXℓ “
ś

iPOLℓ
pki,ℓ.

CollectorÑServer: AUXℓ

• Aggregation Phase: Server computes:

– Compute Yℓ :“
ś

iPOLℓ
cti,ℓ

– Compute Xℓ :“ GenMaskpAUXℓ, k0q

– Compute Sumℓ :“ Yℓ{Xℓ

– Take discrete log of Sumℓ, which is efficient.

We omit the proof due to space constraints. However, the intuition for security comes from the fact
that: (a) the honest user’s key is chosen by the honest user and is unknown to the adversary, (b) for
such a random key, the mask generated is indeed pseudorandom under the DDH-f assumption, and
(c) such a pseudorandom mask will blind the honest client’s inputs.
Remark 1. Observe that it is possible that the client’s communication to either the server or the
collector is dropped due to network issues. In this situation, the collector’s information relayed to the
server does not yield correct aggregate. To handle such situation, the server and the collector can
engage in one additional round of communication, per iteration. In this round, the collector first sends
a list of clients from whom it has received communication. The server respond with the intersection
of the collector’s list with its own list of clients. Finally, the collector “collects” only with respect to
this set of clients.
Remark 2. Note that each pki,ℓ is pseudorandom, if ki is unknown. However, masking only with
pki,ℓ is insufficient for security against the collector. This is because the collector receives the masked
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Figure 2: Measure of Server and Client Computation Time as a function of number of clients across
various aggregation algorithms.
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Figure 3: Performance Measurement of PICASO for FL Tasks.

input (masked by pki,ℓ) and pki,ℓ for ever honest client i. Therefore, the collector can easily recover
the input. This prompts the need for a server’s iteration public key, generated as a function of its
secret key k0.

4 Experiments

In this section, we perform different experimentation to demonstrate the efficiency, accuracy, and
privacy of PICASO. All our experiments were carried out on an Apple M1 Pro CPU with 16 GB of
unified memory, without any multi-threading or related parallelization. More details can be found in
the supplementary material.

Microbenchmarking Secure Aggregation. We benchmark the client and server computation time
of our protocol against existing state-of-the-art solutions, including [7], [5], MicroSecAgg [25], and
PICASO. Additionally, we compare our results with specific parameter choices from prior work,
such as grouping operations (clients share inputs with 50 or 100 parties) and offline rate (parties can
go offline during the protocol). These settings are not applicable to PICASO. Our reported timing is
taken as a mean of 20 iterations.

As shown in Figure 2, our client computation time is significantly better than [7] and [5], and
comparable to MicroSecAgg. However, unlike MicroSecAgg, our protocol does not incur offline
waiting times due to multiple rounds of participation. For instance, when there are 100 clients,
MicroSecAgg requires at least 30ms of offline time, which increases with more clients. Additionally,
MicroSecAgg limits input size to achieve server efficiency, supporting only small model updates or
quantized large model updates. Figure 2 demonstrates that PICASO’s server running time is under 1
second, thanks to a single-round protocol with efficient aggregate recovery. This outperforms all other
protocols. Any additional communication required to capture Remark 1 has a negligible impact on
computation time, as it only involves gathering the list of clients and communicating with the collector.
SASH [35] combines the secure aggregation protocol SecAgg [7] with a seed-homomorphic PRG
to enhance efficiency for encrypting large input vectors. However, their performance is dominated
by SecAgg, which we significantly outperform. Combining SASH with PICASO could achieve
efficient round communication and improved server computation time, optimizing for input size
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scaling. Finally, PICASO requires 56 bytes of bandwidth for each of the following: server public
key, masked input, while requiring 32 bytes for client’s iteration public key sent to the collector, and
information sent to the server from the collector.

Benchmarking FL Models. We train a logistic regression model on Kaggle Credit Card Fraud
Dataset [43]. Figure 3 shows PICASO’s MCC versus clear learning for varying clients and iterations.
With the accuracy multiplier, PICASO’s MCC is very close to clear learning and even outperforms
sometimes. The highly unbalanced dataset demonstrates PICASO can achieve strong performance
even in challenging real-world scenarios. We then train a vanilla multi-layer perceptron (MLP)
classifier on three datasets: MNIST, CIFAR-100. The details of the datasets, including quantization
and license can be found in the supplementary material.The MLP accuracy, as a function of the
iteration, is plotted in Figure 3. Our experiments demonstrate that PICASO preserves accuracy, while
ensuring the privacy of client data. Note that vanilla MLP classifiers do not typically offer good
performance for CIFAR datasets, but note that the goal of our experiments was to show that PICASO
does not impact accuracy.

5 Extensions to PICASO

Robustness. PICASO requires clients to send iteration public keys to the collector and masked
inputs to the server, potentially allowing malicious actors to disrupt aggregation by using inconsistent
keys. While secure aggregation has been widely studied, less focus has been on detecting and
mitigating malicious behavior. Prior works in this domain are limited to:

• ACORN [4]: Offers a constant-round version detecting malicious behavior (aborting on
detection) and a non-constant round version removing malicious inputs.

• RoFL [36] and ACORN: Use zero-knowledge proofs (e.g., Bulletproofs [11] and improve-
ments [21]) to prevent malicious input injection.

The latter requires that the secure aggregation algorithm still proceeds, after having removed malicious
clients. Indeed, PICASO ensures privacy of inputs, even if the server is corrupt and chooses to corrupt
various users. Similarly, against corrupt collector who can corrupt users and inject messages into the
system. In this section, we show how to augment PICASO to detect and remove malicious clients as
described above. In Algorithm 3, we only present the additional proving steps by the client and the
verification steps for the collector. In the construction, C is representative of the challenge space and
integer A is chosen as a function of the size of C . We refer the reader to [10, §5.2] for details about
the proof system and its correctness. Here, A is set to be an integer such that the size of challenge
space C :“ |C | is negligibly small when compared to A ,i.e., C{A is negligible.

Signatures can be employed to ensure the collector transmits only client-authenticated information to
the server, mitigating malicious collector behavior. Our protocol can be enhanced with range-proof
techniques from ACORN [4]. Notably, our inputs are encoded in prime-order subgroup F, which
can be composed with standard Pedersen commitments [42] using a prime order cyclic subgroup G
where the DDH assumption holds.
Construction 3 (Additional Steps in Robust-PICASO). We assume that there is an hash function H :
t0, 1u

˚
Ñ C . Here, A :“ 240 ¨ |DH | ¨ C and rAs :“ t0, . . . , A ´ 1u. We set C to be 2128.

Proof Generation: Each online client Ci

• Sample rk Ð$ rAs, rx Ð$ t0, . . . , p ´ 1u

• Compute t1 :“ Hpℓqrk , t2 :“ pkrk0,ℓ ¨ frx

• Compute ch :“
Hpℓ, pki,ℓ, cti,ℓ, t1, t2, pk0,ℓq

• Compute sk :“ rk `ch ¨ki, sx :“ rx `ch ¨

xi,ℓ mod p
• Set proofi :“ psk, sx, chq

• Ci ÑServer: cti,ℓ
• Ci ÑCollector: pki,ℓ, cti,ℓ, proofi

Proof Verification: For each Ci in OLℓ the collector:

• Receive:ppki,ℓ, cti,ℓ, proofi “

psk, sx, chqq

• Compute t1
2 :“ pksk0,ℓ ¨ fsx ¨ ct´ch

i,ℓ

• Compute t1
1 :“ pHpℓqq

sk ¨ Hpℓq´ch

• Compute ch1 :“
Hpℓ, pki,ℓ, cti,ℓ, t

1
1, t

1
2, pk0,ℓq

• if ch ‰ ch1 then
OLℓ :“ OLℓztiu
Add pproofi, cti,ℓ, pki,ℓq to list M

• Compute AUXℓ :“
ś

iPOLℓ
pki,ℓ

• CollectorÑServer:
AUXℓ, tcti,ℓuiPOLℓ

,M

8



Heterogeneity in Data Distribution. Data-centric methods [56, 40, 27] aim to align local and
global distributions while preserving privacy, using techniques like sharing raw, synthesized, or
augmented data. However, these approaches may compromise local data privacy [46]. Privacy-
preserving machine learning can be achieved through secret sharing schemes such as homomorphic
encryption (HE) [20, 23] and multiparty computation (MPC) [38]. However, HE is computationally
expensive, and MPC faces scalability issues. Recent frameworks [51] utilize Lagrange coding and
polynomial approximations to address these challenges in federated learning settings. RSA [34] is
a class of stochastic sub-gradient methods for distributed learning robust to Byzantine workers. It
mitigates the effects of incorrect messages due to malicious behavior, communication failures, or
uneven data distribution by incorporating a regularization term in the objective function. At each
iteration k, clients compute parameter updates based on local data, prior local models, and global
parameters. The client and server updates are:

Client: xk`1
i “ xk

i ´ ηk
´

∇F pxk
i , ξ

k
i q ` λsignpxk

i ´ wk
q

¯

Server: wk`1
“ wk

´ ηk

¨

˝∇f0pwk
q ` λ

ÿ

iPrns

signpwk
´ xk

i q

˛

‚

where η is the learning rate, ξ is a local dataset sample, F p¨, ¨q is the loss function, fℓ2p¨q is the robust
regularization term, λ weights the robustness term, sign is element-wise, and rns is the client set.

Secure Aggregation with RSA. As pointed out by Franzese et al. [19], the only information
needed by the server to aggregate is signpwk ´ xk

i q. In other words, the clients simply need to supply
the server with a vector with elements in t´1, 1u. Furthermore, representing -1 as a 0 yields the
following property: 2 ¨

řn
i“1 vi ´ n “

řn
i“1 ui where ui P t´1, 1u and vi “ 0 iff ui “ ´1. In

summary, the server has to perform aggregation over binary vectors. PICASO can be used to perform
this securely, with only the client having to prove that the masked input is either 0 or 1. Such a proof
is efficient and we describe below. We present the additional steps to be performed by the clients
and the server in Construction 4, where the client proving that it has encrypted either a value of 0 or a
value of 1. This is an adaptation of Groth and Kohlweiss [24] to the CL Framework. We omit the
proof due to space constraints but it follows earlier results from Braun et al. [10].
Construction 4 (Secure, Byzantine-Robust Secure Aggregation with PICASO). We assume that
there is an hash function H : t0, 1u

˚
Ñ C . Here, A :“ 240 ¨ |DH | ¨ C and rAs :“ t0, . . . , A ´ 1u.

Proof Generation: Each online client Ci is en-
crypting xi,ℓ P t0, 1u where cti,ℓ :“ pkki0,ℓ ¨ fxi,ℓ

• Sample
rk, r

1
k Ð$ rAs, rx Ð$ t0, . . . , p ´ 1u

• Compute t1 :“ pkrk0,ℓ ¨ frx , t2 :“ pk
r1
k

0,ℓ ¨

frx¨xi,ℓ

• Compute ch :“
Hpℓ, pki,ℓ, cti,ℓ, t1, t2, pk0,ℓq

• Compute sx :“ rx ` ch ¨ xi,ℓ mod p
• Compute sk :“ rk ` ch ¨ ki, , s

1
k :“

r1
k ` pch ´ sxq ¨ ki

• Set proofi :“ psk, s
1
k, sx, chq

• Ci ÑServer: cti,ℓ, proofi
• Ci ÑCollector: pki,ℓ

Proof Verification: Server does: For client i in
OLℓ:

• Receive: ppki,ℓ, cti,ℓ, proofi “

psk, s
1
k, sx, chqq

• Compute t1
1 :“ ct´ch

i,ℓ ¨ fsx ¨ pksk0,ℓ

• Compute t1
2 :“ ctsx´ch

i,ℓ ¨ pk
s1
k

0,ℓ

• Compute ch1 :“
Hpℓ, pki,ℓ, cti,ℓ, t

1
1, t

1
2, pk0,ℓq

• if ch ‰ ch1 then
OLℓ :“ OLℓztiu

6 Conclusion

We introduce PICASO, a secure aggregation protocol designed for the two-server setting, where
clients only communicate once with the servers, in contrast to previous protocols that require multiple
synchronization rounds. We show that PICASO preserves accuracy, while guaranteeing privacy. Our
encryption time increasing proportionally with the length of vector. While this is expected, our use of
group expoentiations makes the process slower. A possible direction for future research is to apply
the SASH framework [35] with PICASO, which reduces number of group exponentiations.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper sets out to solve a critical problem in prior work on secure aggrega-
tion. In this work, we demonstrate how to reduce the synchronization by employing one
additional party. We demonstrate experiments to show competitive performance over prior
work. In addition, we also train machine learning models to justify that our protocol can be
used for its intended purpose.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a conclusion paragraph that draws attention to some of the limitations
while identifying how they can be remedied in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper introduces all the necessary theoretical framework and assumptions
for security of the construction. There’s detailed proof deferred to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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Justification: The protocols are well detailed, including the parameter settings for our
classifier. We use publicly available ABIDES framework to simulate real-life networking
situations. For our class group operations, we take the BICYCL framework that is open-
source and bind it to Python.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Unfortunately, there was no support for supplementary material upload. How-
ever, we are happy to furnish the anonymized code for interested reviewers.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail the quantization metrics along with the choice of datasets with the
test-train splits. Our choice of training algorithms are vanilla versions, with no customized
hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our running time experiments report the mean of 30 iterations, for various
choices of number of clients. Meanwhile, we present the accuracy values, as a function of
iterations for various datasets. At each iteration, the data is randomly split.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the system settings of the device on which experiments are performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper complies with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The work focuses on privacy of client-held data. This is surveyed in the
introduction and motivates why privacy-preserving federated learning is important and its
positive impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not use any of the stated models or data sources.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The experiments have only used publicly available datasets with their license
details specified in a tabular column.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We are not releasing any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There were no human subjects involved in this project.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have any research with human subjects that forms a part of this
work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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