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Figure 1. Left: the Reality-linked 3D Scenes dataset (R3DS) fills a gap between synthetic 3D scenes and reconstructions of real-world
environments by providing 3D scene proxies linked to real-world panoramas from Matterport3D (three example panoramas and 3D scenes
shown). Right: our dataset contains scenes with higher density and completeness compared to prior datasets, and provides additional
annotations such as object support (what objects or architectural elements support other objects), and matching object sets (e.g., pairs of
the same nightstand).

Abstract
We introduce the Reality-linked 3D Scenes (R3DS)

dataset of synthetic 3D scenes mirroring the real-world
scene arrangements from Matterport3D panoramas. Com-
pared to prior work, R3DS has more complete and densely
populated scenes with objects linked to real-world obser-
vations in panoramas. R3DS also provides an object sup-
port hierarchy, and matching object sets (e.g., same chairs
around a dining table) for each scene. Overall, R3DS con-
tains 19K objects represented by 3,784 distinct CAD mod-
els from over 100 object categories. We demonstrate the
effectiveness of R3DS on the Panoramic Scene Understand-
ing task. We find that: 1) training on R3DS enables better
generalization; 2) support relation prediction trained with
R3DS improves performance compared to heuristically cal-
culated support; and 3) R3DS offers a challenging bench-
mark for future work on panoramic scene understanding.

1. Introduction

Datasets of 3D indoor environments are increasingly used
for research on scene understanding [1, 3, 14], embodied

AI [2, 10, 12], and scene generation [8, 13]. However, con-
structing 3D scene datasets is time-consuming and require
expertise. Compared to reconstruction based on 3D scans,
synthetic 3D scenes are complete and easy to manipulate
but often do not match the statistics of real-world spaces and
are artificially “clean”. There have been some attempts to
create “synthetic” replicas of real world by matching CAD
models to objects in scans [10, 12]. These efforts have been
limited in scale and often result in partial and sparsely pop-
ulated synthetic counterparts of the real environments.

We design a framework that allows users to author 3D
scenes from RGB panoramas and create R3DS: a dataset of
‘Reality-linked’ 3D Scenes. Each 3D scene in our dataset
is a complete proxy of an environment from the Matter-
port3D [3] dataset, representing both the 3D architecture
and the objects. Thus, each scene is linked to a real space,
with correspondences established between each object ob-
servation and the synthetic object. These reality-linked
scenes reflect denser real-world arrangements of objects.

Compared to prior efforts such as Scan2CAD [1]
and CAD-Estate [7], our dataset provides more complete
scenes, with salient observed objects being captured in the
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Figure 2. Dataset comparison. (Top) shows different views of a scene annotated in R3DS. Comparison with previous datasets (bottom)
shows (1) R3DS has more complete scenes than the previous datasets; (2) Objects in R3DS are properly supported by either architecture or
other objects unlike the others (e.g. floating objects with no proper support); (3) R3DS is annotated using the same 3D model for objects
arranged together (chairs by the dining table, couches arranged together).

layout. Moreover, we provide a support hierarchy defining
what objects are placed on other objects and specify sets of
identical objects such as dining chairs around a table, allow-
ing for creating realistic variations of the scene by swapping
the entire set to a different chair design.

We demonstrate the value of our dataset by using it for
the Panoramic Scene Understanding task. We show that
leveraging the denser layouts and support hierarchy infor-
mation in our scenes leads to improved object detection per-
formance and better generalization compared to training us-
ing other datasets previously used for this task.

In summary, we make the following contributions:
• We design a framework for efficient construction of syn-

thetic scenes from real panoramas and use it to create
R3DS: a dataset of reality-linked 3D scenes.

• R3DS provides more complete and realistic scenes with
correspondences between real and synthetic objects, and
object-object support relations.

• We show that the more complete layouts and support rela-
tions in our dataset enable better performance and gener-
alization in the Panoramic Scene Understanding task, and
that our dataset offers a challenging benchmark for future
work in scene understanding.

2. The R3DS Dataset

We describe the construction of the R3DS dataset and
present a statistical analysis of the scenes it contains. Fig-
ure 1 shows example annotations from our dataset.

We collect annotations for 20 Matterport3D houses with
808 panoramas in total. We discard panoramas taken on
stairs or outside a house, since they have a limited number
of objects that can be placed. After filtering we have 769
panoramas for our analysis and experiments. For 73 panora-
mas, we collect two sets of annotations for each, to obtain
a total of 842 annotated object arrangements across 22 dif-
ferent Matterport3D region types. The panoramas with two
annotations serve as a test of annotator consistency and add
diversity. In total, R3DS contains 19,050 object instances
from 3,784 unique 3D CAD models spanning over 110 fine-
grained object categories. Table 1 shows a comparison of
overall statistics with previous 3D indoor scene datasets.
See the supplement for statistics about annotated objects.

Compared to prior datasets that align CAD models to
real-world scenes, R3DS is more complete, providing an-
notated object support hierarchies and matching object in-
stances. CAD-Estate [7] annotates RGB videos with in-
complete 3D objects and partial architectural room layouts
under limited view. This results in annotations of objects
floating mid-air and not properly supported. Scan2CAD [1]
also lacks support structure without providing clean 3D ar-
chitecture. See examples in Fig. 2. In contrast, our R3DS
scenes have an accurate support hierarchy by construction.
OpenRooms [6] augments Scan2CAD with room layouts
representing the architecture. However, the architecture in
R3DS is more complex and realistic, especially due to in-
clusion of more doors (1.92 doors per room in R3DS vs 0.67
in OpenRooms).



Dataset Source CAD Alignment Type Houses/Rooms Panos #CAD #Objects #Cat Ave Obj Ave Cat Sup Match

Scan2CAD [1] ScanNet [4] Annotator scan - / 1506 ✗ 3,049 14,225 35 9.4 4.1 ✗ ✗
OpenRooms [6] ScanNet [4] Scan2CAD [1] scan - / 1288 ✗ 2,651 16,014 38 12.4 6.3 ✗ ✗
ReplicaCAD [12] Replica [11] Artist recreation scan - / 105∗ ✗ 92 2,293 44 21.8 14.4 ✗ ✗
CAD-Estate [7] RealEstate10K [17] Annotator video 19,512 ✗ 12,024 100,882 49 6.3 3.4 ✗ ✗

Replica-Pano [5] Replica [11] Heuristic pano - / 27 2700 - - 25 - - ✗ ✗
iGibson-DPC [14] iGibson [10] Heuristic pano 15 / 100 1500 500 26,998 57 17.9 10.2 ✗ ✗
R3DS (Ours) Matterport3D [3] Annotator pano 20 / 370 842 3,784 19,050 110 22.9 10.4 ✓ ✓

Table 1. Comparison with 3D indoor scene datasets aligned with real-world images, videos, or scans. Our R3DS dataset contains
more densely populated annotations compared to other datasets, with objects from 110 different categories. We report the unique models
(#CAD), object categories (#Cat), object instances (#Objects) as well as average number of objects and object categories per annotation.

Evaluation of CAD object annotation quality is non-
trivial as the ‘ground truth’ from the semantically annotated
3D reconstructions is itself imperfect. We measured how
closely our annotated CAD objects conform to the real ob-
jects using the average 2D IoU between CAD object mask
and ground truth 2D mask. R3DS is at 42.6% vs 38.5% for
Scan2CAD, across 8 common object categories (bed, sofa,
chair, cabinet, tv/monitor, table, shelving, bathtub).

Of the datasets previously used for Panoramic Scene
Understanding, Replica-Pano [5] has not been released,
and iGibson-DPC [14] is the only dataset with synthetic
panoramic images annotated with 3D objects and room lay-
out. iGibson-DPC is built on scenes from iGibson [9] by
randomly replacing objects with different models from the
same category and rendering using the iGibson simulator to
render panoramas. The selection and placement of objects
in iGibson-DPC is based on heuristic algorithms, while
our R3DS is manually annotated and placed 3D models
are verified in terms of match and alignment to the object
masks. Moreover, iGibson-DPC contains unrealistic object
arrangements (e.g., floating TV in Fig. 2).

3. Experiments

We showcase the value of R3DS on the Panoramic Scene
Understanding (PanoSun) task [5, 14, 15]. Given an in-
put RGB panorama, the goal is to estimate the room lay-
out, detect objects in 2D, estimate their 3D oriented bound-
ing boxes and also reconstruct 3D object meshes. We train
and evaluate DPC [14] on the iGibson-DPC (IG) [5, 9, 14],
Structured3D (S3D) [16], and R3DS datasets. We consider
three variants of R3DS based on the input panorama: R3DS-
real where we use the Matterport3D panoramas, R3DS-
syn where we use rendered panoramas (at the same camera
poses) from the annotated synthetic scenes, and R3DS-mix
where we combine the two types of panoramas and dou-
ble the available data. Our experiments show that methods
trained on R3DS data benefit from its realism and general-
ize better when evaluated on photorealistic images. We also
investigate the role of object support hierarchy information
in improving performance. See the supplement for details
about metrics.

Te
st Train 3D detection ↑ Collision ↓ Attachment F1 ↑

IoU mAP mesh arch obj wall floor ceil

IG

IG 27.5 30.3 1.662 2.594 53.1 76.8 95.0 86.2
IG+R3DS 24.0 30.2 1.404 2.254 59.7 64.1 94.6 2.7
R3DS-real 17.3 13.4 0.242 1.456 38.8 64.0 92.8 0.0
R3DS-syn 23.2 14.2 0.480 1.938 48.5 46.7 93.8 28.6
R3DS-mix 21.6 15.6 0.434 1.248 43.1 67.2 90.1 9.8

S3
D

IG 19.5 3.5 1.016 2.651 50.9 68.7 90.8 11.6
IG+R3DS 19.7 7.0 0.868 2.089 52.0 67.4 91.2 1.8
R3DS-real 18.4 7.1 0.600 2.598 45.0 61.6 89.7 0.7
R3DS-syn 19.0 4.8 0.644 2.561 49.3 49.7 91.2 2.4
R3DS-mix 19.6 7.5 0.463 1.673 47.8 64.1 87.2 0.9

IG 15.6 5.9 0.575 1.959 53.8 50.7 51.2 0.0
IG+R3DS 17.5 14.1 0.281 1.267 49.5 61.6 58.6 0.0
R3DS-real 16.4 15.0 0.226 1.562 44.0 57.3 58.9 0.0
R3DS-syn 14.0 8.4 0.390 1.664 54.1 40.6 49.1 0.0R

3D
S

R3DS-mix 17.6 15.8 0.171 1.007 48.5 58.3 60.1 0.0

Table 2. Cross-dataset evaluation for the Panoramic Scene Un-
derstanding task. We evaluate 3D detections with class-agnostic
IoU and mAP at IoU of 0.15, and report object collisions. The
highlighted rows indicate the most challenging scenario.

3.1. Results

1) Does R3DS help DPC generalize to real images? Since
the original DPC work only trained and evaluated on syn-
thetic data, it is unclear how well it performs on realistic
panoramic imagery. We hypothesize that training on R3DS
will lead to better performance. We separately show results
on 3D object detection and scene relatioin classsification.

Object detection. For 3D object detection, we train DPC
on different data settings and conduct a cross-dataset eval-
uation (see Tab. 2). To investigate how models perform
on out-of-distribution scenes, we evaluate models on Struc-
tured3D, as its images are near-realistic. To explore whether
DPC training benefits from R3DS given the same amount
of data, we create a special data input IG+R3DS that com-
bines iGibson and R3DS panoramas by randomly replacing
half (500) of iGibson data with R3DS-real data. The re-
sults show that IG+R3DS performs almost the same as IG
with fewer collisions on iGibson, but it remarkably outper-
forms IG on the test set of R3DS and S3D by 8.2 and 3.5 im-
provements on 3D mAP, respectively. It also averages 0.221
fewer mesh collisions. There are noticeable performance
gaps on iGibson for models trained on R3DS data likely due
to the data domain shift. Among the three variants of R3DS



3D detection Collision ↓ Support F1 ↑
Train IoU↑ mAP↑ mesh arch obj floor ceil

IG 14.2 5.2 0.703 1.639 4.1 85.3 0.0
S3D 16.4 10.0 0.112 1.226 3.1 86.8 0.0
IG+S3D 17.1 9.7 0.133 1.162 3.3 84.8 0.0

Table 3. Performance of models trained on three synthetic datasets
(IG, S3D, and IG+S3D) evaluated on the R3DS-full dataset, where
“full” indicates all 840 panoramas are used for testing.

data, R3DS-mix outperforms the others on all three test sets
regarding 3D IoU and 3D mAP with the fewest mesh and
architecture collisions. Although R3DS-syn underperforms
on R3DS and S3D test sets, it achieves better performance
than IG with even less data.

Scene relation classification. We report F1 scores for
identifying attachment relationships of objects to other ob-
jects and architecture elements (see Tab. 2). We note that
models trained with synthetic renderings perform better
than those trained on real images. That is because syn-
thetic renderings present cleaner and simpler scenes with
fewer objects than real world and simpler illumination such
that DPC finds it easier to learn object-object and object-
architecture relations. Also, note that the predictions of
object-ceiling attachments can be extremely low because
few objects are attached to the ceiling in the ground truth
data. We show qualitative examples in the supplement.
2) Is R3DS a challenging, high-quality test set? How
would a model trained on pure synthetic data perform on
complex real data (R3DS)? Due to its modest scale, we
propose using R3DS as a challenging, high-quality test set.
Specifically, we evaluate the synthetic-to-real performance
of DPC by training on iGibson and/or Structured3D and
testing on all panoramas in R3DS-real. Table 3 shows that
a model trained with Structured3D performs the best (10.0
3D mAP and 0.112 mesh collision) as it observes the most
photo-realistic images. DPC benefits from the synthetic
data for higher bounding box IoUs, since it possesses accu-
rately aligned 3D bounding box and more unoccluded ob-
jects. However, mAP performance is lower due to worse
object recognition ability. All models struggle to predict
correct object-wise support relations but do a better job of
predicting object-floor support relations.
3) Are R3DS support relations helpful for PanoSun?
We investigate whether the support relationships between
objects provided in our R3DS scene hierarchy help boost
performance of holistic scene understanding. We augment
DPC’s Relation Scene-GCN module with additional sup-
port relation prediction branches. Besides obtaining explic-
itly annotated scene support relations from R3DS, it is also
possible to compute heuristic support relations from object
bounding boxes. Specifically, an object is supported by an-
other if their bounding boxes intersect within tolerance dis-
tance of 0.1m and the centroid of the former object is higher

3D detection Collision ↓ Support F1 ↑
Train Supp. IoU↑ mAP↑ mesh arch obj floor ceil

R3DS-real
none 16.4 15.0 0.226 1.562 - - -
heur 16.2 14.1 0.219 1.329 3.2 69.9 0.0
anno 16.6 15.9 0.349 1.404 38.5 94.4 0.0

R3DS-syn
none 14.0 8.4 0.390 1.664 - - -
heur 14.6 7.8 0.281 1.301 4.6 82.9 52.6
anno 14.3 8.2 0.349 1.219 32.0 95.0 0.0

R3DS-mix
none 17.6 15.8 0.171 1.007 - - -
heur 19.2 17.7 0.151 1.267 3.6 83.7 0.0
anno 18.6 18.2 0.158 1.308 12.0 96.2 85.8

Table 4. Performance on R3DS-real of DPC models trained on
variants of R3DS with different support relation settings. We com-
pare the original model without support (none) against models su-
pervised with support that is heuristically computed (heur) or an-
notated from R3DS (anno).

than that of the latter. Support by wall/floor/ceiling is cal-
culated in the same way without the height judgment. This
definition is similar to how DPC defines object attachment.
Table 4 shows that incorporating support relation prediction
indeed influences the performance of DPC. Heuristic sup-
port information may worsen 3D object detection (mAP in
R3DS-real and R3DS-syn), but it eliminates mesh collisions
the most. Learning support relations from R3DS annota-
tions leads to a 2.4 improvement on mAP in R3DS-mix, al-
though the classification F1 score is low.

4. Conclusion

We introduced the R3DS dataset. R3DS provides more
complete, densely populated, and richly annotated synthetic
3D scene proxies of real-world environments with linked
panoramic images. We showed the usefulness of R3DS on
the Panoramic Scene Understanding task. Our experiments
demonstrate the value of realistic synthetic recreations in
this task, in particular through the use of object support in-
formation. While we focused on the PanoSun task, R3DS
can also be useful for other tasks such as single-view shape
retrieval, single-view object pose estimation, and panoramic
scene graph prediction.
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