
Expressive Sign Equivariant Networks for Spectral Geometric Learning

Derek Lim 1 Joshua Robinson 1 Stefanie Jegelka 1 Haggai Maron 2

Abstract
Recent work has shown the utility of developing
machine learning models that respect the structure
and symmetries of eigenvectors. These works pro-
mote sign invariance, since for any eigenvector v
the negation −v is also an eigenvector. However,
we show that sign invariance is theoretically lim-
ited for tasks such as building orthogonally equiv-
ariant models and learning node positional encod-
ings for link prediction in graphs. In this work, we
demonstrate the benefits of sign equivariance for
these tasks. To obtain these benefits, we develop
novel sign equivariant neural network architec-
tures. Our models are based on a new analytic
characterization of sign equivariant polynomials
and thus inherit provable expressiveness proper-
ties. Controlled synthetic experiments show that
our networks can achieve the theoretically pre-
dicted benefits of sign equivariant models.

1. Introduction
The need to process eigenvectors is ubiquitous in machine
learning and the computational sciences. For instance, there
is often a need to process eigenvectors of operators associ-
ated with manifolds or graphs, principal components (PCA)
of arbitrary datasets, and eigenvectors arising from implicit
or explicit matrix factorization methods. However, eigenvec-
tors are not merely unstructured data—they have rich struc-
ture in the form of symmetries (Ovsjanikov et al., 2008).

Specifically, eigenvectors have sign and basis symmetries.
An eigenvector v is sign symmetric in the sense that the
sign-flipped vector −v is also an eigenvector of the same
eigenvalue. Basis symmetries occur when there is a re-
peated eigenvalue, as then there are infinitely many choices
of eigenvector basis for the same eigenspace. Prior work
has developed neural networks that are invariant to these
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symmetries (Lim et al., 2023).

The goal of this paper is to demonstrate why sign equivari-
ance can be useful and to characterize fundamental expres-
sive sign equivariant architectures. Our first contribution is
to show that sign equivariant models are a natural choice for
several applications, whereas sign invariant architectures
are provably insufficient for these applications. First, we
show that sign and basis invariant networks are theoreti-
cally limited in expressive power for learning multi-node
representations in graphs because they learn structural node
embeddings that are known to be limited for multi-node
tasks (Srinivasan & Ribeiro, 2019; Zhang et al., 2021). In
contrast, we show that sign equivariant models can bypass
this limitation by maintaining positional information in node
embeddings. Furthermore, we show that sign equivariance
combined with PCA can be used to parameterize expressive
orthogonally equivariant point cloud models, thus giving an
efficient alternative to PCA-based frame averaging (Puny
et al., 2022; Atzmon et al., 2022).

The second contribution of this work is to develop the first
sign equivariant neural network architectures, with prov-
able expressiveness guarantees. To develop our models,
we derive a complete characterization of the sign equivari-
ant polynomial functions. The form of these equivariant
polynomials directly inspires our equivariant neural net-
work architectures. Further, our architectures inherit the
theoretical expressive power guarantees of the equivariant
polynomials. Synthetic experiments in link prediction and
n-body problems support our theory and demonstrate the
utility of sign equivariant models.

1.1. Background

Let f : Rn×k → Rn×k be a function that takes eigenvectors
v1, . . . , vk ∈ Rn of an underlying matrix as input, and out-
puts representations f(v1, . . . , vk). We often concatenate
the eigenvectors into a matrix V =

[
v1, . . . , vk

]
∈ Rn×k,

and write f(V ) as the application of f . For simplicity, in
this work we assume the eigenvectors come from a symmet-
ric matrix, so they are taken to be orthonormal.

Sign and basis symmetries. Eigenvectors have symmetries,
because there are many possible choices of eigenvectors of
a matrix. For instance, if v is a unit-norm eigenvector of a
matrix, then so is the sign-flipped −v. If v1, . . . vm are an
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orthonormal basis of eigenvectors for the same eigenspace
(meaning they all have the same eigenvalue), then there are
infinitely many other choices of orthonormal basis for this
eigenspace; these other choices of basis can be written as
V Q, where V = [v1 . . . vm] ∈ Rn×m and Q ∈ O(m) is an
arbitrary orthogonal matrix (Lim et al., 2023).

Sign equivariance means that if we flip the sign of an
eigenvector, then the corresponding column of the output
of a function f has its sign flipped. In other words, letting
diag({−1, 1}k) represent all k × k diagonal matrices with
−1 or 1 on the diagonal, f is sign equivariant if

f(V S) = f(V )S for all S ∈ diag({−1, 1}k). (1)

Permutation equivariance is often also a desirable property
of our functions f . We say that f is permutation equivariant
if f(PV ) = Pf(V ) for all n × n permutation matrices
P . For instance, eigenvectors of matrices associated with
simple graphs of size n have such permutation symmetries,
as the ordering of nodes is arbitrary.

2. Applications of Sign Equivariance
2.1. Multi-Node Representations and Link Prediction

In link prediction and multi-node prediction tasks, we typ-
ically want to learn structural node-pair representations,
meaning adjacency-permutation equivariant functions that
give a representation for each pair of nodes (Srinivasan
& Ribeiro, 2019) (see Appendix B.2 for more discussion).
One method to do this is to use a graph model such as a
standard GNN to learn node representations zi, and then
obtain a node-pair representation for (i, j) as some func-
tion fdecode(zi, zj) of zi and zj . However, this approach is
limited because standard GNNs learn structural node en-
codings that assign the same representation to automorphic
nodes (Srinivasan & Ribeiro, 2019; Zhang et al., 2021). This
can be problematic since automorphic nodes can be far apart
in the graph, so we may want to assign them to the different
clusters (Srinivasan & Ribeiro, 2019).

One way to surpass the limitations of structural node en-
codings is to use positional node embeddings, which can
assign different values to automorphic nodes. Intuitively,
positional encodings capture information such as distances
between nodes and global position of nodes in the graph
(see (Srinivasan & Ribeiro, 2019) for a formal definition).
Laplacian eigenvectors are an important example of node
positional embeddings that capture much useful information
of graphs (Chung, 1997).

Pitfalls of sign and basis invariance. When processing
eigenvectors of matrices associated with graphs, invariance
to the symmetries of the eigenvectors has been found use-
ful (Dwivedi et al., 2022; Lim et al., 2023), especially for

f( ): R h R⊤

f( ): R h R⊤

Figure 1: Using sign equivariant functions h to parameterize
orthogonally equivariant f(X) = h(XRX)R⊤

X . We first
transform X via RX into an orientation that is unique up
to sign flips, then process XRX using the sign equivariant
model h, and finally reintegrate orientation information back
into the output via R⊤

X .

graph classification tasks. However, we show that exact
invariance to these symmetries removes positional infor-
mation, and thus the outputs of sign invariant or basis in-
variant networks are in fact structural node encodings (see
Appendix B.2).1 Hence, eigenvector-symmetry-invariant
networks cannot learn node representations that distinguish
automorphic nodes:

Proposition 2.1. Let f : Rn×k → Rn×dout be a permuta-
tion equivariant function, and let V = [v1, . . . , vk] ∈ Rn×k

be k orthonormal eigenvectors of an adjacency matrix A.
Let nodes i and j be automorphic, and let zi and zj ∈ Rdout

be their embeddings, i.e, the ith and jth row of Z = f(V ).

• If f is sign invariant and the eigenvalues associated with
the vl are distinct, then zi = zj .

• If f is basis invariant and v1, . . . , vk are a basis for some
number of eigenspaces of A then zi = zj .

A novel link prediction approach via sign equivariance.
The problem zi = zj arises from the sign/basis invariances,
which remove crucial positional information. We instead
propose using sign equivariant networks (as in Section 3)
to learn node representations zi = f(V )i,: ∈ Rk. These
representations zi maintain positional information for each
node thanks to preserving sign information. Then we use a
sign invariant decoder fdecode(zi, zj) = fdecode(Szi, Szj)
for S ∈ diag({−1, 1}k) to obtain node-pair representations.
For instance, the commonly used fdecode = MLP(zi ⊙ zj),
where ⊙ is the elementwise product, is sign invariant. When
the eigenvalues are distinct, this approach has the desired
invariances (yielding structural node-pair representations)
and also maintains positional information in the node em-
beddings; see Appendix B.2 for a proof of the invariances.
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2.2. Orthogonal Equivariance

For various applications in modelling physical systems, we
desire equivariance to rigid transformations. We say that a
function f : Rn×k → Rn×k is orthogonally equivariant if
f(XQ) = f(X)Q for any Q ∈ O(k), where O(k) is the set
of orthogonal matrices in Rk×k. Orthogonal equivariance
imposes infinitely many constraints on the function f . Sev-
eral works have approached this problem by reducing to a
finite set of constraints using so-called Principal Component
Analysis (PCA) based frames (Puny et al., 2022; Atzmon
et al., 2022).

PCA-frame methods take an input X ∈ Rn×k, compute
orthonormal eigenvectors RX ∈ O(k) of the covariance
matrix cov(X) = (X − 1

n11
⊤X)⊤(X − 1

n11
⊤X) (as-

sumed to have distinct eigenvalues), then average outputs
of a base model h for each of the 2k sign-flipped inputs
XRXS, where S ∈ diag({−1, 1}k). We instead suggest
using a sign equivariant network to efficiently parameterize
an efficient O(k) equivariant model. For a sign equivariant
network h, we define our model f to be

f(X) = h(XRX)R⊤
X . (2)

See Figure 1 for an illustration. Our approach only requires
one forward pass through h, whereas frame averaging re-
quires 2k forward passes through a base model. The fol-
lowing proposition shows that f is O(k) equivariant, and
inherits universality properties of h.

Proposition 2.2. Consider a domain X ⊆ Rn×k such that
each X ∈ X has distinct covariance eigenvalues, and let
RX be a choice of orthonormal eigenvectors of cov(X)
for each X ∈ X . If h : X ⊆ Rn×k → Rn×k is sign
equivariant, and if f(X) = h(XRX)R⊤

X , then f is well
defined and orthogonally equivariant.

Moreover, if h is from a universal class of sign equivariant
functions, then the f of the above form universally approxi-
mate O(k) equivariant functions on X .

3. Sign Equivariant Polynomials and Networks
3.1. Sign Equivariant Polynomials

Consider polynomials p : Rn×k → Rn′×k that are
sign equivariant, meaning p(V S) = p(V )S for S ∈
diag({−1, 1}k). We can show (in Appendix C) that a poly-
nomial p is sign equivariant if and only if it can be written
as the elementwise product of a simple (linear) sign equiv-
ariant polynomial and a general sign invariant polynomial,
followed by another linear sign equivariant map.

Theorem 3.1. A polynomial p : Rn×k → Rn′×k is sign

1When there are repeated eigenvalues, sign invariant embed-
dings maintain some positional information.

equivariant if and only if it can be written

p(V ) = W (2)
(
(W (1)V )⊙ pinv(V )

)
(3)

for sign equivariant linear W (2) and W (1), and a sign
invariant polynomial pinv : Rn×k → Rn′×k.

3.2. Sign Equivariance without Permutation
Symmetries

Using Theorem 3.1, we can now develop sign equivariant
architectures. We parameterize sign equivariant functions
f : Rn×k → Rn′×k as a composition of layers fl, each of
the form

fl(V ) = [W
(l)
1 v1, . . . ,W

(l)
k vk]⊙ SignNetl(V ), (4)

in which the W
(l)
i : Rn → Rn′

are arbitrary linear maps,
and SignNetl : Rn×k → Rn′×k is sign invariant (Lim
et al., 2023). In the case of n = n′ = 1, there is a simple
universal form: we can write a sign equivariant function
f : Rk → Rk as f(v) = v ⊙ MLP(|v|), where |v| is the
elementwise absolute value. These two architectures are
universal because they can approximate sign equivariant
polynomials.

Proposition 3.2. Functions of the form v 7→ v ⊙MLP(|v|)
universally approximate continuous sign equivariant func-
tions f : Rk → Rk.

Compositions f2 ◦ f1 of functions fl as in equation 4 uni-
versally approximate continuous sign equivariant functions
f : Rn×k → Rn′×k.

3.3. Sign Equivariance and Permutation Equivariance

To add permutation equivariance to our neural network ar-
chitecture from Section 3.2, we use it within the frame-
work of DeepSets for Symmetric Elements (DSS) (Maron
et al., 2020). For a hidden dimension size of df , each layer
fl : Rn×k×df → Rn×k×df of our DSS-based sign equivari-
ant network takes the following form on row i:

fl(V )i,: = f
(1)
l (Vi,:) + f

(2)
l

(∑
j ̸=i

Vj,:

)
, (5)

where f
(1)
l and f

(2)
l are sign equivariant functions as in

Section 3.2. Sometimes we take df = 1, in which case we
can use the simpler Rk → Rk sign equivariant networks
(v⊙MLP(|v|)) as f (1)

l and f
(2)
l . If we have graph informa-

tion, then we can do message-passing by changing the sum
over j ̸= i to a sum over a neighborhood of node i. DSS has
universal approximation guarantees (Maron et al., 2020), but
they only apply for groups that act as permutation matrices,
whereas the sign group {−1, 1}k does not. Hence, the uni-
versal approximation properties of our proposed DSS-based
architecture are still an open question.
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Table 1: Link prediction test AUC (Section 4.1).

Model Erdős-Rényi Barabási-Albert

GCN (constant input) .497±.06 .705±.01
SignNet .498±.00 .707±.00
V ⊤
i,:Vj,: .570±.01 .597±.01

MLP(Vi,: ⊙ Vj,:) .614±.02 .651±.03
Sign Equivariant .751±.00 .773±.01

4. Experiments
4.1. Link Prediction in Nearly Symmetric Graphs.

We test our models in a synthetic link prediction task. First,
we either generate an Erdős-Rényi or Barabási-Albert ran-
dom graph H of 1000 nodes. Then we form a larger graph
G containing two disjoint copies of H , along with 1000
uniformly-randomly added edges. Without the random
edges, each node in one copy of H is automorphic to a
node in the other copy, so we expect many nodes to be
nearly automorphic with the randomly added edges.

In Table 1, we show the link prediction performance of sev-
eral models that learn structural edge representations. The
methods that use eigenvectors have a sign invariant final pre-
diction for each edge. GCN (Kipf & Welling, 2017) where
the node features are all ones and SignNet (Lim et al., 2023)
both completely fail on the Erdős-Rényi task (these two
models map automorphic nodes to the same embedding),
while our sign equivariant model outperforms all methods.
We also try two eigenvector baselines that maintain node
positional information, but do not update eigenvector repre-
sentations: taking the dot product V ⊤

i,:Vj,: to be the logit of a
link existing, or learning a simple decoder MLP(Vi,:⊙Vj,:).
Both perform substantially worse than our sign equivariant
model, which shows that updating eigenvector representa-
tions is important here. See Appendix E.2 for more details.

4.2. Orthogonal Equivariance in n-body Problems
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Figure 2: Sign equivariant model versus frame averaging
model for n-body experiments in varying dimensions, in
terms of runtime (left) and MSE (right)

In this section, we test the ability of our sign equivariant
models to parameterize orthogonally equivariant functions
on point clouds, as outlined in Section 2.2. For this pur-
pose, we consider simulating n-body problems, following
the setup in Fuchs et al. (2020) and building on the code

from Puny et al. (2022), except that we generalize their
three-dimensional experiments to general d ≥ 3.

Figure 2 illustrates the runtime and MSE. The sign equivari-
ant model scales well with dimension—the time-per-epoch
is nearly constant as we increase the dimension. In con-
trast, frame averaging suffers from the expected exponential
slowdown with dimension, and runs out of memory on a
32GB V100 GPU for d = 11. Considering the MSE, the
equivariant model’s performance closely follows that of
frame averaging: the sign equivariant model has an MSE
of .00646 (compared to .00575 of frame averaging), which
means that the sign equivariant model outperforms all of the
other methods tested in Puny et al. (2022).
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A. Related Work
Structural and Positional Representations. Especially for link prediction, the need for structural node-pair representa-
tions that are not obtained from structural node representations has been discussed in several works (Srinivasan & Ribeiro,
2019; Zhang et al., 2021; Cotta et al., 2023). As such, various methods have been developed for learning structural node-pair
representations that incorporate node positional information. SEAL and other labeling-trick based methods (Zhang & Chen,
2018; Zhang et al., 2021) use added node features depending on the node-pair that we want a representation of. This is
empirically successful in many tasks, but typically requires a separate subgraph extraction and forward pass through a GNN
for each node-pair under consideration. Distance encoding (Li et al., 2020) uses relative distances between nodes to capture
positional information. PEG (Wang et al., 2022) similarly maintains positional information by using eigenvector distances
between nodes in each layer of a GNN, but does not update eigenvector representations. Identity-aware GNNs (You et al.,
2021) and Neural Bellman-Ford Networks (Zhu et al., 2021) learn pair representations by conditioning on a source node
from the pair.

Eigenvectors as Graph Positional Encodings. When using eigenvectors of graphs as node positional encodings for
graph models like GNNs and Graph Transformers, many works have noted the need to address the sign ambiguity of the
eigenvectors. This is often done by encouraging sign invariance through data augmentation—the signs of the eigenvectors are
chosen randomly in each iteration of training (Dwivedi et al., 2022; Kreuzer et al., 2021; Mialon et al., 2021; Kim et al., 2022;
He et al., 2022; Müller et al., 2023). In contrast, SignNet (Lim et al., 2023) enforces exact sign invariance, by processing
eigenvectors with a sign invariant neural architecture; this approach has been taken by some recent works (Rampasek et al.,
2022; Geisler et al., 2023; Murphy et al., 2023).

Equivariant Neural Network Design. Equivariant neural network architectures have been proposed for various types
of data and symmetry groups. A common paradigm is to interleave equivariant linear maps and equivariant pointwise
nonlinearities (Wood & Shawe-Taylor, 1996; Cohen & Welling, 2016; 2017; Ravanbakhsh et al., 2017; Maron et al., 2018;
Kondor & Trivedi, 2018; Finzi et al., 2021; Bronstein et al., 2021); this is often used when the group acts as some subset
of the permutation matrices. However, the sign group does not act as permutation matrices, and as we explained above
this approach is not expressive for sign equivariant models. More similarly to our approach, many equivariant machine
learning works heavily leverage invariant or equivariant polynomials (or other equivariant nonlinear functions). These
works include polynomials as operations within a network (Thomas et al., 2018; Puny et al., 2023), add polynomials as
features (Yarotsky, 2022; Villar et al., 2021), build networks that take a similar form to equivariant polynomials (Villar et al.,
2021), and/or analyze neural network expressive power by determining which equivariant polynomials a given architecture
can compute (Zaheer et al., 2017; Segol & Lipman, 2019; Maron et al., 2019; Puny et al., 2023).

B. Applications of Sign Equivariance
B.1. Edge Representations and Link Prediction

B.1.1. PROOF OF PROPOSITION 2.1

Proposition 2.1. Let f : Rn×k → Rn×dout be a permutation equivariant function, and let V = [v1, . . . , vk] ∈ Rn×k be k
orthonormal eigenvectors of an adjacency matrix A. Let nodes i and j be automorphic, and let zi and zj ∈ Rdout be their
embeddings, i.e, the ith and jth row of Z = f(V ).

• If f is sign invariant and the eigenvalues associated with the vl are distinct, then zi = zj .

• If f is basis invariant and v1, . . . , vk are a basis for some number of eigenspaces of A then zi = zj .

Proof. We only prove the basis invariance claim, as the sign invariance claim is a special case; basis invariance is sign
invariance when eigenvalues are distinct.

Let P ∈ Rn×n be a permutation matrix associated to an automorphism that maps node i to node j, so PAP⊤ = A
and Pei = ej , where el is the lth standard basis vector. Let Vt = [vr1 , . . . , vrdt ] be the matrix whose columns are the
eigenvectors vrl that are associated to eigenvalue λi. The columns of Vt are thus an orthonormal basis for the eigenspace
associated to λt. Note that for any of these eigenvectors, we have

A(Pvrl) = PAP⊤(Pvrl) = PAvrl = Pλivrl = λt(Pvrl), (6)
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so Pvrl is also an eigenvector of A with eigenvalue λt. As P is orthogonal, note that Pvr1 , . . . , Pvrdt is still an orthonormal
basis of the eigenspace. Thus, there exists an orthogonal matrix Qt ∈ Rdt×dt such that PVt = VtQt—see Lim et al. (2023).

Repeat the above argument to get such a Qt for each of the eigenbases V1, . . . , Vl. We can then see that

zj = f(V1, . . . , Vl)j,:

= f(V1Q1, . . . , VlQl)j,: basis invariance
= f(PV1, . . . , PVl)j,: choice of Qt

= (Pf(V1, . . . , Vl))j,: permutation equivariance
= f(V1, . . . , Vl)i,: choice of P
= zi.

So we are done.

B.2. Sign Invariance and Structural Node or Node-Pair Encodings

In this section, we show that when the eigenvalues λ1, . . . , λk are distinct, then sign invariant functions of the orthonormal
eigenvectors v1, . . . , vk give structural node or node-pair representations. This can also be generalized in a straightforward
way to larger tuples of nodes beyond pairs, though we only consider nodes and node-pairs for ease of exposition. First, we
give formal definitions.

Definition B.1 (Structural Representations (Srinivasan & Ribeiro, 2019)). Let A ∈ Rn×n be the adjacency matrix of a
graph on node set {1, . . . , n}.

A function f : Rn×n → Rn is a node structural representation if f(PAP⊤) = Pf(A) for all n× n permutation matrices
P .

A function f : Rn×n → Rn×n is a node-pair structural representation if f(PAP⊤) = Pf(A)P⊤ for all n× n permutation
matrices P .

Importantly, these structural representations are permutation equivariant functions of adjacency matrices, not arbitrary
matrices. For each adjacency matrix A, let V (A) = [v1(A), . . . , vk(A)] be a choice of orthonormal eigenvectors for the
first k eigenvalues λ1(A), . . . , λk(A). We assume in this section that these first k eigenvalues are distinct for all A under
consideration, so V (A) is defined up to sign flips. Let h : Rn×k → Rn be a permutation equivariant function of sets, so
h(PX) = Ph(X) for all permutations matrices P . Then of course h(PV (A)) = Ph(V (A)), but this does not make h a
node structural encoding. This is because A 7→ h(V (A)) is in general not a well-defined function of the adjacency, since the
choice of V (A) is not well-defined (the choices of sign are arbitrary). If we constrain h to not depend on the signs (sign
invariance), or to depend on the signs in a predictable way (sign equivariance), then we can compute structural node or
node-pair encodings from eigenvectors.

We capture these observations in the below proposition. First, we define three types of functions:

• Let fnode : Rn×k → Rn be sign invariant and permutation equivariant; that is, fnode(Pv1s1, . . . , Pvksk) =
Pfnode(v1, . . . , vk) for si ∈ {−1, 1} and P a permutation matrix.

• Let fdecode : R2×k → R be sign invariant; that is, fdecode(Szi, Szj) = fdecode(zi, zj) for S ∈ diag({−1, 1}k).

• Let fequiv : Rn×k → Rn×k be a permutation equivariant and sign equivariant function; that is, fequiv(PV (A)S) =
Pfequiv(V (A))S for S ∈ diag({−1, 1}k) and P a permutation matrix.

Proposition B.2. Let A ⊆ Rn×n denote the matrices with distinct first-k eigenvalues. For A ∈ A, let V (A) =
[v1(A), . . . , vk(A)] be a choice of orthonormal eigenvectors of A, associated to the first-k (distinct) eigenvalues
λ1(A), . . . , λk(A). Then

(a) The map qnode : A → Rn given by qnode(A)i = fnode (fequiv(V (A)))i is well-defined and gives a structural node
representation.

(b) The map qpair : A → Rn×n defined by qpair(A)i,j = fdecode (fequiv(V (A))i,:, fequiv(V (A))j,:) is well-defined and
gives a structural node-pair representation.
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Note that the identity mapping V (A) 7→ V (A) is permutation equivariant and sign equivariant, so using fnode or fdecode
directly on eigenvectors also gives structural representations. The statement (b) means that our link prediction pipeline with
sign equivariant node features and sign invariant decoding produces structural node-pair representations.

Proof. Part (a) We first show that qnode : A → Rn is well-defined. Suppose we had another choice of eigenvectors, so the
eigenvectors we input are V (A)S for some S ∈ diag({−1, 1}k). Then

fnode (fequiv(V (A)S)) = fnode (fequiv(V (A))S) = fnode (fequiv(V (A)) , (7)

where the first equality is by sign equivariance, and the second equality by sign invariance. Thus, the value of qnode(A) is
unchanged.

Now, let P be any permutation matrix. Then for each eigenvector vi(A), i ∈ [k], we have (PAP⊤)Pvi(A) = PAvi(A) =
λi(A)Pvi(A), so Pvi(A) is an eigenvector of PAP⊤ associated to λi(A) = λi(PAP⊤). Hence, we denote vi(PAP⊤) =
Pvi(A) (the choice of sign does not matter as q does not depend on the sign. Now, we have that

qnode(PAP⊤) = fnode
(
fequiv(V (PAP⊤))

)
(8)

= fnode (fequiv(PV (A))) (9)
= Pfnode (fequiv(V (A))) (10)
= Pqnode(A) (11)

where the second to last equality is by permutation equivariance of fnode and fequiv.

Part (b) That qpair : A → Rn×n is well-defined follows from a similar argument to the qnode case. Let P be a permutation
matrix, and σ : [n] → [n] its underlying permutation. We compute that

qpair(PAP⊤)i,j = fdecode
(
fequiv(V (PAP⊤))i,:, fequiv(V (PAP⊤))j,:

)
(12)

= fdecode (fequiv(PV (A))i,:, fequiv(PV (A))j,:) (13)
= fdecode ([Pfequiv(V (A))]i,:, [Pfequiv(V (A))]j,:) (14)

= fdecode
(
fequiv(V (A))σ−1(i),:, fequiv(V (A))σ−1(j),:

)
(15)

= qpair(A)σ−1(i),σ−1(j) (16)

= (Pqpair(A)P⊤)i,j (17)

B.2.1. SIGN EQUIVARIANCE IS PROVABLY MORE EXPRESSIVE FOR LINK PREDICTION

Our arguments in Section 2.1 explain why we can expect sign equivariant models to be more powerful than sign invariant
models in link prediction. To give a theoretically rigorous explanation, here we provide an example where sign equivariant
models can provably compute more expressive link representations than sign invariant models.

Consider a cycle graph C2k for some even length 2k, where k ≥ 3. All nodes are automorphic in this graph, so any model
based on structural node representations must assign the same representation to each node-pair. For instance, consider the
eigenvalue −2 of the adjacency matrix, which is a simple eigenvalue with eigenvector [1,−1, 1,−1, . . . , 1,−1] (Lee et al.,
1992). Then a sign invariant model will lose the sign information and map each node to the same encoding, which means
that each node-pair will also have the same encoding. However, a sign equivariant model can preserve the sign of each node
(for instance by learning the identity function). Then for any pair of nodes that are one hop away, it can take a dot product to
compute the pair representation −1, whereas it can take a dot product between any nodes that are two hops away to compute
the pair representation 1. Of course, using more eigenvectors would allow for more complex representations to be computed.

B.3. Proof of Proposition 2.2, Orthogonal Equivariance via Sign Equivariance

Proposition 2.2. Consider a domain X ⊆ Rn×d such that each X ∈ X has distinct covariance eigenvalues, and let RX be
a choice of orthonormal eigenvectors of cov(X) for each X ∈ X . If h : X ⊆ Rn×d → Rn×d is sign equivariant, and if
f(X) = h(XRX)R⊤

X , then f is well defined and orthogonally equivariant.
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Moreover, is h is from a universal class of sign equivariant functions, then the f of the above form universally approximate
O(k) equivariant functions on X .

Proof. First, we show that f is well defined. RX is only unique up to sign flips, as RXS is an orthonormal set of eigenvectors
of cov(X) for S ∈ diag({−1, 1}k). However, no matter the choice of signs, f(X) takes the same value, since

h(XRXS)(RXS)⊤ = h(XRXS)S⊤R⊤
X (18)

= h(XRX)SS⊤R⊤
X sign equivariance (19)

= h(XRX)R⊤
X . (20)

Next, we show that f is O(k) equivariant. Let Q ∈ O(k) be any orthogonal matrix. Note that

cov(XQ) =

(
XQ− 1

n
11⊤XQ

)⊤ (
XQ− 1

n
11⊤XQ

)
= Q⊤cov(X)Q. (21)

Thus, Q⊤RX is an orthonormal set of eigenvectors of cov(XQ). This means that there is a choice of signs S ∈
diag({−1, 1}k) such that Q⊤RXS = RXQ. Hence, we have that

f(XQ) = h(XQRXQ)R
⊤
XQ (22)

= h(XQQ⊤RXS)(Q⊤RXS)⊤ (23)

= h(XRX)SS⊤R⊤
XQ sign equivariance (24)

= h(XRX)R⊤
XQ (25)

= f(X)Q⊤, (26)

so f is O(k) equivariant.

Universal Approximation. Our proof of the universality of this class of functions builds on the proof of the universality
of frame averaging (Puny et al., 2022). Let ftarget be a continuous O(k) equivariant function and let ϵ > 0 be a desired
approximation accuracy. Then ftarget is also sign equivariant (as the sign matrices S ∈ diag({−1, 1}k) are orthogonal).

Hence, by sign equivariant universality, we can choose a sign equivariant h such that ∥h(X)− ftarget(X)∥ < ϵ for all
X ∈ X (where ∥·∥ is the Frobenius norm). Define the O(k) equivariant f(X) = h(XRX)R⊤

X . Then for all X ∈ X we
have that

∥ftarget(X)− f(X)∥ =
∥∥ftarget(X)− h(XRX)R⊤

X

∥∥ (27)

=
∥∥ftarget(X)RXR⊤

X − h(XRX)R⊤
X

∥∥ RX orthogonal (28)

=
∥∥ftarget(XRX)R⊤

X − h(XRX)R⊤
X

∥∥ orthogonal equivariance (29)
= ∥ftarget(XRX)− h(XRX)∥ RX orthogonal (30)
< ϵ. (31)

So f approximates ftarget within ϵ accuracy on X , and we are done.

C. Characterization of Sign Equivariant Polynomials
In this Appendix, we characterize the form of the sign equivariant polynomials. This is useful, because for a finite group,
equivariant polynomials universally approximate equivariant continuous functions (Yarotsky, 2022); thus, if a model
universally approximates equivariant polynomials, then it universally approximates equivariant continuous functions. Using
equivariant polynomials to analyze or develop equivariant machine learning models has been done successfully in many
contexts (Zaheer et al., 2017; Yarotsky, 2022; Segol & Lipman, 2019; Dym & Maron, 2021; Maron et al., 2019; 2020; Villar
et al., 2021; Dym & Gortler, 2022; Puny et al., 2023).
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C.1. Sign Equivariant Linear Map Characterization

Here, we prove a result characterizing the form of the equivariant linear maps.

Lemma C.1. A linear map W : Rn×k → Rn′×k is sign equivariant if and only if it can be written as

W (X) =
[
W1X1 . . . WkXk

]
(32)

for some linear maps W1, . . . ,Wk : Rn → Rn′
, where Xi ∈ Rn is the ith column of X ∈ Rn×k.

Proof. For one direction, suppose W can be written as in equation 32. To see that W is sign equivariant, note that for any
S ∈ diag({−1, 1}k), we have

W (XS) =
[
s1W1X1 . . . skWkXk

]
=

[
W1X1 . . . WkXk

]
S = W (X)S. (33)

For the other direction, let W be a sign equivariant linear map. For any i′ ∈ [n′] and j′ ∈ [k], we can write the action of W
as

W (X)i′,j′ =

n∑
i=1

k∑
j=1

W i,j
i′,j′Xi,j , (34)

where W i,j
i′,j′ ∈ R are coefficients representing the linear map. Let c ̸= j′ be a column that is not j′. Further, for any row

l ∈ [n], let X̃ ∈ Rn×k be such that X̃l,c = 1, and X̃ is zero elsewhere. Then we have that

W (X̃)i′,j′ = W l,c
i′,j′ . (35)

Now, let S ∈ diag({−1, 1}k) have a −1 in the j′th column and a 1 elsewhere. Then X̃S = X̃ . This implies that

W l,c
i′,j′ = W (X̃)i′,j′ (36)

= W (X̃S)i′,j′ (37)

= −W (X̃)i′,j′ (38)

= −W l,c
i′,j′ , (39)

where in the second to last equality we used sign equivariance. This implies that W l,c
i′,j′ = 0.

Hence, for any i′ ∈ [n′], j′ ∈ [k′], we have that W (X)i′,j′ only depends on Xj′ , so we are done.

C.2. Sign Invariant Polynomials Rk → R

For simplicity, we start with the case of sign invariant polynomials p : Rk → R. The sign equivariant polynomials take a
very similar form. We can write any polynomial from Rk to R in the form

p(v) =

D∑
d1,...,dk=0

Wd1,...,dk
vd1
1 · · · vdk

k (40)

for some coefficients Wd1,...,dk
∈ R and some D ∈ N. Sign invariance tells us that for any S = diag(s1, . . . , sk) ∈

diag({−1, 1}k), we must have

D∑
d1,...,dk=0

Wd1,...,dk
vd1
1 · · · vdk

k = p(v) = p(Sv) =

D∑
d1,...,dk=0

Wd1,...,dk
sd1
1 · · · sdk

k vd1
1 · · · vdk

k . (41)

This holds for any v ∈ Rk, so for all choices of d1, . . . , dk we must have

Wd1,...,dk
= sd1

1 · · · sdk

k Wd1,...,dk
, for all (s1, . . . , sk) ∈ {−1, 1}k. (42)

10
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Note that sdi
i = 1 if di is an even number. Hence, there are no constraints on Wd1,...,dk

if all di are even. On the other hand,
suppose dj is odd for some j. Let si = 1 for i ̸= j and sj = −1. Then the constraint says that Wd1,...,dk

= −Wd1,...,dk
, so

we must have Wd1,...,dk
= 0. To summarize, we have

Wd1,...,dk
=

{
free di even for each i

0 else
(43)

Where being free means that the coefficient may take any value in R. Thus, any sign invariant p only has terms where each
variable vi is raised to an even power. It is also easy to see that any polynomial p where each variable vi is raised to only
even powers is sign invariant, so we have the following proposition:
Proposition C.2. A polynomial p : Rk → R is sign invariant if and only if it can be written

p(v) =

D∑
d1,...,dk=0

Wd1,...,dk
v2d1
1 · · · v2dk

k , (44)

for some coefficients Wd1,...,dk
∈ R and D ∈ N.

In other words, p is sign invariant if and only if there exists a polynomial q : Rk → R such that p(v) = q(v21 , . . . , v
2
k).

C.3. Sign Equivariant Polynomials Rk → Rk

The case of sign equivariant polynomials p : Rk → Rk is very similar. For l ∈ [k], the lth output dimension of any
polynomial p : Rk → Rk can be written

p(v)l =

D∑
d1,...,dk=0

W(l)
d1,...,dk

vd1
1 · · · vdk

k , (45)

where W(l)
d1,...,dk

∈ R are coefficients (note the extra l index, so there are k times more coefficients than in the invariant case).
By sign equivariance, we have

sl · p(v)l = p(Sv)l (46)

sl ·
D∑

d1,...,dk=0

W(l)
d1,...,dk

vd1
1 · · · vdk

k =

D∑
d1,...,dk=0

W(l)
d1,...,dk

sd1
1 · · · sdk

k vd1
1 · · · vdk

k . (47)

As this holds for all inputs v ∈ Rk, we have the following constraints on the coefficients:

slW
(l)
d1,...,dk

= sd1
1 · · · sdk

k W(l)
d1,...,dk

(48)

W(l)
d1,...,dk

= sl · sd1
1 · · · sdk

k W(l)
d1,...,dk

, (49)

where we use the fact that sl = 1/sl since sl ∈ {−1, 1}. If dj is odd for j ̸= l, then similarly to the invariant case, we can
take si = 1 for i ̸= j and sj = −1 in the above equation to see that W(l)

d1,...,dk
= 0. If dl is even, then dl + 1 is odd, so we

have that W(l)
d1,...,dk

= 0 by the same argument. Thus, we must have

W(l)
d1,...,dk

=

{
free dl odd, and di even for each i ̸= l

0 else
. (50)

Thus, the lth entry p(v)l only contains monomials of the term v2d1
1 · · · v2dl+1

l · · · v2dk

k , where each term besides vl is raised
to an even power. We can factor out a vl and write such terms as vl · v2d1

1 · · · v2dk

k . It is also easy to see that any polynomial
with monomials only of this form is sign equivariant. Thus, we have proven Proposition C.3.
Proposition C.3. A polynomial p : Rk → Rk is sign equivariant if and only if it can be written

p(v)l = vl ·

 D∑
d1,...,dk=0

W(l)
d1,...,dk

v2d1
1 · · · v2dk

k

 . (51)

In vector format, p is sign equivariant if and only if it can be written as p(v) = v ⊙ pinv(v) for a sign invariant polynomial
pinv : Rk → Rk.
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C.4. Sign Equivariant Polynomials Rn×k → Rn′×k

Finally, we will handle the case of polynomials p : Rn×k → Rn′×k equivariant to diag({−1, 1}k). This is the case we most
often deal with in practice, when we have input V =

[
v1 . . . vk

]
for k eigenvectors vi ∈ Rn of some n× n matrix. For

a ∈ [n′] and b ∈ [k], the (a, b)th output of a polynomial Rn×k → Rn′×k is

p(V )a,b =

D∑
di,j=0

W(a,b)
d

n∏
i=1

k∏
j=1

V
di,j

i,j , (52)

where the sum ranges over di,j ∈ {0, . . . , D} for i ∈ [n] and j ∈ [k], and d = (d1,1, . . . , dn,1, d1,2, . . . , dn,k) is a shorthand
to index coefficients W(a,b)

d ∈ R. By sign equivariance, we have that:

sb · p(V )a,b = p(V S)a,b (53)

sb ·
D∑

di,j=0

W(a,b)
d

n∏
i=1

k∏
j=1

V
di,j

i,j =

D∑
di,j=0

W(a,b)
d sd̃1

1 · · · sd̃k

k

n∏
i=1

k∏
j=1

V
di,j

i,j , (54)

where d̃j =
∑n

i′=1 di′,j is the number of times that an entry from column j of V appears in the product
∏n

i=1

∏k
j=1 V

di,j

i,j .
As this holds over all V , we thus have that

W(a,b)
d = sb · sd̃1

1 · · · sd̃k

k · W(a,b)
d . (55)

By analogous arguments to the previous subsections, if d̃j is odd for j ̸= b, we have that the W(a,b)
d = 0. Likewise, if d̃b is

even, we have W(a,b)
d = 0. Thus, the constraint on W is

W(a,b)
d =

{
free

∑
i di,b odd, and

∑
i di,j even for each j ̸= b

0 else
. (56)

In particular, this means that the only nonzero terms in the sum that defines p(V )a,b have an even number of entries from
column j for j ̸= b, and an odd number of entries from column b. Thus, each term can be written as Vid,b · pinv(V )d for
some index id ∈ [n] and sign invariant polynomial pinv. Moreover, it can be seen that any polynomial that only has terms of
this form is sign equivariant. Thus, we have shown the following proposition:

Proposition C.4. A polynomial p : Rn×k → Rn′×k is sign equivariant if and only if it can be written as

p(V )a,b =

D∑
di,j=0

W(a,b)
d Vid,b · pinv(V )d, (57)

where pinv is a sign invariant polynomial, the sum ranges over all d, and id ∈ [n] for each d.

Now, we show that this implies Theorem 3.1. In particular, we will write p in the form

p(V ) = W (2)
(
(W (1)V )⊙ qinv(V )

)
, (58)

for sign equivariant linear maps W (2) and W (1), and a sign equivariant polynomial qinv. To do so, let D̃ denote the
number of all possible d that the sum in equation 57 ranges over. We take W (1) : Rn×k̃ → RD̃n′×k and W (2) :

RD̃n′×k → Rn′×k. These sign equivariant linear maps have to act independently on each column of their input, so
W (1)V = [W

(1)
1 v1, . . .W

(1)
k vk] for linear maps W

(1)
i : Rn → RD̃n′

. We define W
(1)
b to be the linear map such that

(W
(1)
b vb)d,a = W

(a,b)
d Vid,b for a ∈ [n′]. For the sign invariant polynomial qinv, we take qinv(V )d,a = pinv(V )d.

Finally, we define W (2) to compute the sum in equation 57. In particular, for X = [x1, . . . , xk] ∈ RD̃n′×k we write
W (2)X = [W

(2)
1 x1, . . . ,W

(2)
k xk], where (W (2)

b xb)a =
∑

d xid,b. It can be seen that with these definitions of W (2),W (1),
and qinv, we have written p in the desired form.
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D. Sign Equivariant Architecture Universality
In this section, we prove Proposition 3.2 on the universality of our proposed sign equivariant architectures, which we restate
here:
Proposition 3.2. Functions of the form v 7→ v ⊙MLP(|v|) universally approximate continuous sign equivariant functions
f : Rk → Rk.

Compositions f2 ◦ f1 of functions fl as in equation 4 universally approximate continuous sign equivariant functions
f : Rn×k → Rn′×k.

We prove the two statements of the proposition in the next two subsections.

D.1. Universality for functions Rk → Rk

Proof. Let X ⊆ Rk be a compact set, let ϵ > 0, and let ftarget : X → Rk be a continuous sign equivariant function that we
wish to approximate within ϵ. Choose a sign equivariant polynomial p that approximates ftarget to within ϵ/2 on X . By
compactness, we can choose a finite bound B > 0 such that |vi| < B for all v ∈ X .

By Proposition C.3, we can write p(v)l = vl ·
∑D

d1,...,dk=0 Wd1,...,dk
v2d1
1 · · · v2dk

k . By the universal approxima-
tion theorem for multilayer perceptrons, we can choose a MLP : X → Rk such that approximates q(v) =∑D

d1,...,dk=0 Wd1,...,dk
v2d1
1 · · · v2dk

k up to ϵ/(2B). Note that q(|v|) = q(v), so v 7→ MLP(|v|) also approximates q
within ϵ/(2B) accuracy.

Thus, for all v ∈ X , we have that

|f(v)i − p(v)i| = |vi ·MLP(|v|)i − vi ·
D∑

d=1

Wd1,...,dk
v2d1
1 · · · v2dk

k | (59)

= |vi||MLP(|v|)i −
D∑

d=1

Wd1,...,dk
v2d1
1 · · · v2dk

k | (60)

≤ B · |MLP(|v|)i −
D∑

d=1

Wd1,...,dk
v2d1
1 · · · v2dk

k | (61)

< ϵ/2, (62)

so ∥f − p∥∞ < ϵ/2 on X and we are done by the triangle inequality.

D.2. Universality for functions Rn×k → Rn′×k

Recall that each layer of our sign equivariant network from Rn×k → Rn′×k takes the form

fl(V ) = [W
(l)
1 v1, . . . ,W

(l)
k vk]⊙ SignNetl(V ).

Proof. Let X ⊆ Rn×k be compact, and let ftarget : X → Rn′×k be a continuous sign equivariant function that we
wish to approximate. Since X is compact, we can choose a finite bound B > 0 such that |Vij | < B for all V ∈ X .
Let p : X ⊆ Rn×k → Rn′×k be a sign equivariant polynomial that approximates ftarget up to ϵ/2 accuracy. Using
Proposition C.4, we can write

p(V )a,b =

D∑
di,j=0

W(a,b)
d Vid,b · pinv(V )d,

for some sign invariant polynomials pinv(V )d. We will have one network layer f1 approximate the summands, and have the
second network layer f2 compute the sum.

First, we absorb the coefficients W(a,b)
d into the sign invariant part, by defining the sign invariant polynomial qinv(V )d,a,b =
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W(a,b)
d pinv(V )d, so we can write

p(V )a,b =

D∑
di,j=0

Vid,b · qinv(V )d,a,b.

Now, let dhidden ∈ N denote the number of all possible d that appear in the sum, multiplied by n′. We define f1 : X →
Rdhidden×k as follows. As SignNet (Lim et al., 2023) universally approximates sign invariant functions on compact sets, we
can let SignNet1 : X → Rdhidden×k be a SignNet that approximates qinv(V ) up to ϵ/(2B) accuracy, so

|SignNet1(V )(d,a),b − qinv(V )d,a,b| <
ϵ

2B · dhidden
. (63)

For b ∈ [k], we also define the weight matrices W (1)
b ∈ Rdhidden×n of the layer by letting the (d, a)th row (W

(1)
b )(d,a),: for

any a ∈ [n] only be nonzero in the idth index, where it is equal to 1. Thus,

(W
(1)
b vb)(d,a) = Vid,b. (64)

Hence, the first layer takes the form

f1(V )(d,a),: =
[
Vid,1 · SignNet1(V )(d,a),1 . . . Vid,k · SignNet1(V )(d,a),k

]
∈ Rk. (65)

Now, for the second layer, we let SignNet(V )i,j = 1 for all i ∈ [n], j ∈ [k], which can be represented exactly. Then for
each column b ∈ [k] we will define weight matrices W (2)

b such that (W (2)
b )a,(d,i) = 1 if a = i and is 0 otherwise. Then we

can see that
f2 ◦ f1(V )a,b =

∑
d

Vid,b · SignNet1(V )(d,a),b. (66)

To see that this approximates the polynomial p, for any V ∈ X we can bound

|p(V )a,b − f2 ◦ f1(V )a,b| =

∣∣∣∣∣∑
d

Vid,b ·
(
qinv(V )d,a,b − SignNet1(V )(d,a),b

)∣∣∣∣∣ (67)

≤
∑
d

|Vid,b|
∣∣(qinv(V )d,a,b − SignNet1(V )(d,a),b

)∣∣ (68)

≤ B
∑
d

∣∣(qinv(V )d,a,b − SignNet1(V )(d,a),b
)∣∣ (69)

< B
∑
d

ϵ

2Bdhidden
(70)

≤ ϵ

2
(71)

By the triangle inequality, f2 ◦ f1 is ϵ-close to ftarget, so we are done.

E. Experimental Details
E.1. Miscellaneous Experimental Details

We ran the experiments on a HPC server with CPUs and GPUs. Each experiment was run on a single NVIDIA V100 GPU
with 32GB memory. The runtimes for some of our experiments are included in the main paper. Our codes for our models
and experiments will be open-sourced and permissively licensed.

E.2. Link Prediction in Nearly Synthetic Graphs

The base graphs H we generate are Erdös-Renyi (Erdos & Rényi, 1963) or Barabási-Albert (Barabási & Albert, 1999) graphs
with 1000 nodes. We use NetworkX (Hagberg et al., 2008) to generate and process the graphs. The Erdös-Renyi graphs
have edge probability p = .05 and the Barabási-Albert graphs have m = 20 new edges per new node. Let V = [v1, . . . , vk]
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be Laplacian eigenvectors of the graph. We take k = 16 in these experiments. The unlearned decoder baseline simply takes
the predicted probability of a link between i and j to be proportional to the dot product of the eigenvectors embeddings of
node i and node j; this has no learnable parameters. In other words, the node embeddings zi and zj are taken to be Vi,: and
Vj,: respectively, and the edge prediction is z⊤i zj . The learned decoder baseline takes the same zi and zj , but takes the edge
prediction to be MLP(zi ⊙ zj). Every other method learns node embeddings zi and zj , and takes the edge prediction to be
z⊤i zj .

Each model is restricted to around 25,000 learnable parameters (besides the Unlearned Decoder, which has no parameters).
We train each method for 100 epochs with an Adam optimizer (Kingma & Ba, 2015) at a learning rate of .01. The
train/validation/test split is 80%/10%/10%, and is chosen uniformly at random.

E.3. Details on n-body Simulations

We follow the experimental setting and build on the code of Puny et al. (2022) (no license as far as we can tell) for the
n-body learning task. The code for generating the data stems from Kipf et al. (2018) (MIT License) and Fuchs et al. (2020)
(MIT License). There are 3000 training trajectories, 2000 validation trajectories, and 2000 test trajectories. We modify the
data generation code to apply to general dimensions d > 3. We do not change any of the scaling factors in doing so. For
each dimension d, we use the same hyperparameters for both the frame averaging model and the sign equivariant model.

Appendix Citations
Barabási, A.-L. and Albert, R. Emergence of scaling in random networks. In Science, pp. 509–512. American Association

for the Advancement of Science, 1999.
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