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ABSTRACT

Dense feature matching methods aim to estimate a dense correspondence field
between images. Inaccurate correspondence can occur due to the presence of
unmatchable region, highlighting the need for certainty measurement. This is typ-
ically addressed by training a binary classifier to decide whether each predicted
correspondence is reliable. However, deep neural network-based classifiers can
be vulnerable to image corruptions or perturbations, making it difficult to obtain
reliable matching pairs in corrupted scenario. In this work, we propose an eviden-
tial deep learning framework to enhance the robustness of dense matching against
corruptions. We modify the certainty prediction branch in dense matching models
to generate appropriate belief masses and compute the certainty score by taking
expectation over the resulting Dirichlet distribution. We evaluate our method on
a wide range of benchmarks and show that our method leads to improved robust-
ness against common corruptions and adversarial attacks, achieving up to 10.1%
improvement under severe corruptions.

1 INTRODUCTION

Feature matching is an important task in computer vision. It aims to find a set of matching pixel
pairs between two images, based on which two-view geometry, e.g., homography and relative cam-
era pose, can be derived. There are three paradigms to perform feature matching: detector-based
(Lowe, 2004; DeTone et al., 2018; Sarlin et al., 2020), detector-free (Sun et al., 2021) and dense
matching (Truong et al., 2023; Edstedt et al., 2023; 2024). It has been demonstrated that dense
matching methods obtain superior accuracy compared to others on a wide range of geometry esti-
mation benchmarks (Edstedt et al., 2023; 2024). We focus on the dense paradigm in this paper.

Dense feature matching estimates a 2D dense correspondence field for the input image pair. It
typically works in a coarse-to-fine manner, where matches are first predicted at a coarse scale and
subsequently refined at finer scales. As it cannot be guaranteed that every pixel in the two images
are matchable, it is necessary to measure the certainty for each predicted correspondence and to only
use reliable matches for downstream geometry estimation. This is usually formulated as a binary
classification problem, where pixels deemed to have correspondence in the other image (based on
ground truth geometry information) are classified into 1 while unmatchable pixels are classified
into 0 (Melekhov et al., 2019; Edstedt et al., 2023; 2024). The classification probability for class 1
is thus indicating matchability and used as certainty score. When applying to downstream geometry
estimation tasks, a balanced sampling step (Edstedt et al., 2023) is adopted to sample a sparse set
of matches from the dense matching results, where matches with larger certainty score has higher
chance to be selected.

State-of-the-art (SotA) dense feature matching methods are built on deep neural networks, which
have shown to suffer severe performance loss on images under adversarial attacks (Goodfellow
et al., 2014) or common corruptions (Hendrycks & Dietterich, 2019; Michaelis et al., 2019). More-
over, 3D datasets used to train feature matching models are usually much smaller in size than 2D
datasets, which may limit the model robustness to testing data under distribution shift. Previous
benchmarking datasets (Mishkin et al., 2015; Howard et al., 2022) do not consider images under
common corruptions or adversarial attacks, both of which are relevant – the former can happen in
real deployment environment, and the latter provides a worst-case analysis of model robustness.
Our work fills this gap. As shown in Fig. 1, the SotA dense matcher RoMa fails to provide reliable
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certainty estimation in matchable regions when the input images are corrupted by Gaussian noise
or adversarial attacks, resulting in large pose estimation error. In particular, RoMa tends to pro-
duce very low certainty value (e.g., below 0.05) for matchable regions on corrupted images, i.e., the
model over-confidently classifies the pixels as unmatchable. The topic of improving the robustness
of feature matching methods under image corruptions remains largely unexplored in the literature.

Images under adversarial attack Pose estimation error: 5.56◦ Pose estimation error: 0.74◦

Images under Gaussian noise corruption Pose estimation error: 54.82◦ Pose estimation error: 3.16◦

RoMa Ours

Figure 1: SotA dense matcher RoMa fails to provide reliable certainty estimation in matchable
regions (indicated by red circles) when the input images are corrupted by Gaussian noise or adver-
sarial attacks, resulting in large pose estimation error. Our method is able to obtain reliable feature
matches under image corruptions and adversarial attacks. The matching results are visualized by
taking the pixel values from the other image using the estimated correspondences, and weighting by
the estimated certainty.

Having identified unreliable certainty estimation, or over-confidence, as a bottleneck to robust fea-
ture matching, we hypothesize that improved uncertainty estimation will lead to improved feature
matching performance. To this end, we explore evidential deep learning (EDL) for certainty esti-
mation in dense feature matching methods. Instead of providing a direct pointwise estimation of
probability, EDL models second-order probabilities under the framework of subjective logic the-
ory (Josang, 2016). It has been shown to provide improved uncertainty estimation for detecting
out-of-distribution samples and mitigate the over-confidence problem (Sensoy et al., 2018).

Our contributions can be summarized as below:

• We propose an evidential learning framework specifically designed for certainty estimation
in dense feature matching. To the best of our knowledge, this is the first application of EDL
in feature matching tasks.

• We propose to evaluate the robustness of feature matching methods under common image
corruptions and adversarial attacks, which has not been studied in previous work.

• We evaluate our method on both corrupted data and clean data, and show that our method
leads to improved robustness against common corruptions and adversarial attacks without
sacrificing the performance on clean data.

2 RELATED WORK

2.1 FEATURE MATCHING

Feature matching is a long-standing task in computer vision. The detector-based approach first
performs sparse keypoint detection and descriptor extraction, followed by mutual nearest neigh-
bour matching (Lowe, 2004; DeTone et al., 2018) or learning-based matching (Sarlin et al., 2020).
Detector-free approach removes the keypoint detection step and calculates the pairwise similarity
score uniformly over the image grid. Matches are then extracted from the similarity matrix using
mutual-nearest neighbour or optimal transport (Sun et al., 2021). The dense approach (Truong et al.,
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2023; Edstedt et al., 2023; 2024) estimates a 2D flow field, aiming to find all matchable pixel pairs
between the two images.

2.2 CERTAINTY ESTIMATION IN DENSE MATCHING

The flow field predicted by dense matching methods may come with inaccurate correspondences
in unmatchable regions, necessitating a measure of certainty for each predicted correspondence.
DGC-Net (Melekhov et al., 2019) formulates it as a binary classification problem to identify out-
of-view pixels. DKM (Edstedt et al., 2023) and RoMa (Edstedt et al., 2024) also train a binary
classifier where pixels corresponding to the same 3D points are classified as reliable matches. PDC-
Net (Truong et al., 2023) instead formulates dense warping estimation in a probabilistic framework,
where prediction certainty is reflected by the variance of the predicted distribution.

2.3 EVIDENTIAL DEEP LEARNING IN COMPUTER VISION

Since its inception by Sensoy et al. (2018), evidential deep learning has been investigated on a wide
range of computer vision tasks (Gao et al., 2024). As it is originally formulated for classification
problem, its application to image classification task is straightforward. It has been shown to provide
improved uncertainty estimation and detect out-of-distribution samples better than traditional neural
networks (Sensoy et al., 2020; Hu et al., 2021). For object detection task, evidential uncertainty
has been used for mining pseudo-unknown objects (Su et al., 2023). It has also been explored in
segmentation task for uncertainty-guided rectification (Shi et al., 2024).

2.4 ROBUSTNESS ENHANCEMENTS

Most works on enhancing robustness of deep learning models have focused on the robustness to
adversarial examples (Goodfellow et al., 2014). Adversarial training (Madry, 2017; Shafahi et al.,
2019), in which adversarial examples are injected into training data, has shown to withstand strong
attacks. Instead of focusing on adversarial robustness, Hendrycks & Dietterich (2019) proposed
benchmarks to evaluate a classifier’s robustness to 15 types of common corruptions, and proposed to
enhance corruption robustness by histogram equalization and more sophisticated network architec-
tures. Michaelis et al. (2019) extended (Hendrycks & Dietterich, 2019) for benchmarking robustness
in object detection and showed that stylizing training data leads to improved robustness.

3 METHOD

The system diagram of the proposed method is presented in Fig. 2. SotA dense matchers (Edstedt
et al., 2023; 2024) typically consist of a global matcher that predicts a warp at coarse scale, and
warp refiners that refines the warp iteratively at finer scales. A certainty map is predicted along
with the warp to indicate reliable matches. Previously, the certainty map is learnt by minimizing the
binary cross-entropy (BCE) loss. In this work, we propose a deep evidiential learning framework to
learn the certainty map. In the following, we will first briefly describe the existing loss functions for
training dense matchers, followed by details on how we incorporate evidential learning into dense
matchers to train a more robust model.

Global 
Matcher

Coarse Warp

Certainty Map

Coarse 
Features

Fine Features 
Warp 

Refiners

Previous Methods Proposed Method

Dense Warp

Certainty Map

l BCE Loss
e2

Evidential 
Loss

e1

Balanced 
Sampling

Geometry 
Estimation

Figure 2: System diagram of the proposed method.
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3.1 RECAP OF DENSE MATCHERS

Given two images IA and IB, dense matchers predict a dense warp by first performing global match-
ing on coarse-scale features and then refining the estimated warp on fine-scale features. Let XA

denote the pixels in IA, XA
P ∈ XA the subset of pixels having reliable matches in IB, and xgt

indicates the corresponding coordinates in IB for x ∈ XA
P . During training, the model is learned to

minimize the following loss:
L = Lcoarse + Lfine. (1)

The coarse-scale prediction performs global matching and predicts the correspondence for each pixel
in IA and outputs a certainty score for each correspondence. The coarse-scale loss is computed as:

Lcoarse =
1

|XA
P |

∑
x∈XA

P

Lgm(gm(x), xgt) + λ
1

|XA|
∑

x∈XA

LBCE(pconf(x)), (2)

where gm(x) is the predicted correspondence at coarse scale, Lgm is global matching loss, which
can be ℓ2 loss (Edstedt et al., 2023) or cross-entropy loss (Edstedt et al., 2024) depending on the
formulation, LBCE is the binary cross entropy loss, pconf is the certainty score obtained by applying
sigmoid function on logits, and λ = 0.01 is a balanced term.

The fine-scale prediction estimates a residual offset for the warp and certainty score. The resid-
uals are then added to the original estimation and the fine-scale loss is computed on the refined
estimation:

Lfine =
1

|XA
P |

∑
x∈XA

P

Lreg(rw(x), x
gt) + λ

1

|XA|
∑

x∈XA

LBCE(pconf(x)), (3)

where rw(x) is the refined warping coordinates, and Lreg is the regression loss between the pre-
dicted warp and ground truth warp. The fine-scale refinement is typically performed iteratively on
multiple feature scales, and Lfine is computed for each scale and summed up to form the final loss.

3.2 CERTAINTY ESTIMATION BY EVIDENTIAL DEEP LEARNING

The warp predicted by dense matching methods (Edstedt et al., 2024; 2023) may contain inaccurate
correspondences. It is necessary to estimate the certainty of each predicted correspondence and use
those confident ones for downstream geometric matching tasks. In previous methods(Edstedt et al.,
2024; 2023), certainty estimation is modeled as a binary classification problem, where pixels having
reliable matches in IB (i.e., pixels whose projected depth to IB are consistent with the ground truth
depth) are assigned label 1, and pixels not having reliable matches in IB are assigned label 0. The
binary classifier is implemented as neural networks and trained by minimising the cross entropy loss
LBCE as defined in Eq. (2) and Eq. (3).

In this work, we instead employ evidential deep learning for certainty estimation. Evidential learn-
ing considers a classification task as forming a subjective opinion (Josang, 2016) over the class label
space. A subjective opinion can be formalized as an ordered triplet τ = (b, u, r), where b rep-
resents a belief mass distribution over the K categories, u the uncertainty mass and r a base rate
(prior distribution) (Gao et al., 2024). The subjective logic theory establishes a bijection between a
subjective opinion and a Dirichlet distribution D(p|α), where the concentration parameters α can
be obtained from the triplet τ as:

α = bW0/u+ rW0, (4)
where W0 is a positive prior weight.

EDL employs deep neural networks to generate the subjective opinion. More specifically, the net-
work is trained to generate a non-negative evidence vector e ∈ RK

+ , with each element ei represent-
ing the amount of evidence supporting the claim that “the input sample belongs to the i-th category”.
The belief mass and uncertainty mass in the triplet can be computed from the evidence vector as:

bi =
ei∑

j∈[K] ej +W0
, u =

W0∑
j∈[K] ej +W0

. (5)

Substituting bi and u into Eq. (4) gives α = e+ rW0. Sensoy et al. (2018) set the base rate r to be
a uniform distribution, i.e., ri = 1/K, and W0 to be the class number K, which further simplifies
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Eq. (4) and Eq. (5) as:

α = e+ 1, bi =
ei∑

j∈[K] αj
, u =

K∑
j∈[K] αj

. (6)

By training the model to estimate the parameters of the evidential distribution, EDL represents
the prediction of the neural network as a probability density function (PDF), rather than the point
estimate of probability. The concentration parameters α determines the spread of the PDF: the larger
the value of α, the more concentrated the Dirichlet distribution, and the smaller the uncertainty
(Eq. (6)). By modeling second-order probabilities and uncertainty, EDL is able to mitigate the over-
confidence issue of neural network models and provide improved uncertainty estimation (Sensoy
et al., 2018).

We modify the certainty prediction branch of dense matcher to output a two-dimensional evidence
vector e for each pixel x ∈ XA, with e1 representing the amount of evidence supporting the claim
that “the predicted correspondence is reliable” and e2 the amount of evidence supporting the claim
vice-versa. The Dirichlet parameters can then be obtained by Eq. (6). We replace the cross entropy
loss LBCE used in Eq. (2) and Eq. (3) with the squared loss integrated over the Dirichlet distribution
and a Kullback-Leibler (KL) divergence term for regularization:

Lel(x) = Ep∼D(p|α(x))||y(x)− p||2 +KL[D(p|α̃(x))||D(p| < 1, . . . , 1 >)], (7)

where y is the one-hot vector indicating the ground truth class, D(p|α) denotes the Dirichlet dis-
tribution of class probabilities parameterized by α = e + 1, and α̃ = y + (1 − y) ⊙ α is the
Dirichlet parameters after removing the evidence of ground truth class. The KL divergence term
aims to shrink the evidence of non-ground truth class to zero.

With the predicted Dirichlet distribution of class probabilities, the expected probability for each
class is obtained by computing the mean over the Dirichlet distribution (Sensoy et al., 2018):

p(x) =
α(x)

S
, (8)

where S =
∑K

i=1 αi(x) and K = 2. The expected probability for class 1 is then used as certainty
score to indicate the reliability of each predicted correspondence.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model Architecture We use the SotA dense matcher RoMa (Edstedt et al., 2024) as our baseline.
We modify the certainty prediction branch of RoMa to output a 2-dimensional evidence vector for
each pixel, and replace LBCE used in Eq. (2) and Eq. (3) with evidential loss defined in Eq. (7) to
train the network to accumulate evidence.

Training Setup We follow the training setup of RoMa (Edstedt et al., 2024), where the batch size
is 32, encoder learning rate is 10−4, decoder learning rate is 5 · 10−6, and the model is trained for
250,000 iterations. The training image resolution is 560 × 560. For outdoor geometry estimation,
the model is trained on the MegaDepth dataset (Li & Snavely, 2018) using the same training and
test splits as in RoMa. For indoor geometry estimation, the model is trained on a combination of
MegaDepth and ScanNet datasets (Dai et al., 2017a) in a similar fashion as previous works (Edstedt
et al., 2024; Sun et al., 2021).

Test Setup We use the same test setting as RoMa to ensure fair comparison. For balanced sampling,
we use score threshold 0.05 and sample 5,000 matches, the same as DKM and RoMa. When bench-
marking with other methods, we use the released outdoor/indoor model for outdoor/indoor geometry
estimation and follow the default settings.

4.2 BENCHMARK DATASETS

MegaDepth-1500 (Sun et al., 2021) is a popular outdoor benchmark consisting of 1500 image pairs
from scene 0015 and 0022. To evaluate each method’s robustness under image corruptions, we
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create the MegaDepth-1500-C benchmark, where the image pairs in MegaDepth-1500 are distorted
by the 15 corruption types proposed in (Hendrycks & Dietterich, 2019) at five severity levels. The
15 corruption types are sorted into four categories: noise, blur, weather and digital, and are meant
to measure a model’s robustness against corruptions unseen during training. For indoor benchmark,
we adopt the popular ScanNet-1500 (Sarlin et al., 2020) and create the corrupted version ScanNet-
1500-C in a similar way as MegaDepth-1500-C.

4.3 GEOMETRY ESTIMATION ON CORRUPTED DATA

MegaDepth-1500-C Pose Estimation We follow the protocol in (Edstedt et al., 2024; Sun et al.,
2021) to estimate camera pose and report AUC at different thresholds. Fig. 3 presents the AUC@5◦

for each corruption type at each severity level. We observe dense matching methods DKM and RoMa
significantly outperform the detector-free method LoFTR over all corruptions and severity levels.
Our method further improves upon RoMa. For the category of noise corruption (Gaussian noise,
shot noise and impulse noise), we observe larger performance gap at higher severity level, achieving
10.1% improvement for the shot noise corruption at severity level 5. The results averaged over
severity levels and corruption types are reported in Table 1. Our method achieves 2.2% improvement
in mean corruption AUC (mCA) compared to RoMa. Note that on clean data our method achieves
only 0.4% gain over RoMa. The increase in mCA thus indicates improved corruption robustness for
our method.
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Figure 3: AUC@5◦(%) for each corruption type in MegaDepth-1500-C.

MegaDepth-1500 under Adversarial Attacks We further consider adversarial attacks, which is an
extreme type of corruption that perturbs the image in carefully crafted direction and serves as worst-
case analysis for model robustness. Two attacks, Fast Gradient Sign Method (FGSM) (Goodfellow
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Table 1: AUC@5◦(%) averaged over severity levels and corruption types in MegaDepth-1500-C.
The value for each corruption type is the value averaged over severity levels, and mCA is the mean
corruption AUC@5◦ for all 15 corruption types. Models are trained only on clean MegaDepth
images.

Noise Blur Weather Digital
Method Clean mCA Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
LoFTR 52.8 32.2 23.9 26.2 25.0 39.8 37.1 38.4 8.2 14.3 13.5 45.2 48.6 40.3 34.1 48.4 39.4
DKM 60.4 44.3 37.6 40.0 37.0 49.0 48.6 50.4 14.3 32.8 35.8 56.8 58.0 50.3 44.0 57.3 53.1
RoMa 62.6 47.6 43.6 46.2 43.3 49.4 49.9 52.3 13.2 47.3 46.6 57.7 59.3 47.6 44.4 58.1 54.7
Ours 63.0 49.8 49.4 51.9 49.5 49.8 51.9 53.4 14.4 49.5 47.9 58.5 60.5 48.1 46.6 59.2 55.9

et al., 2014) and Projected Gradient Descent (PGD) (Madry, 2017), are investigated. The PGD
attack is computed with 20 iterations. We experiment with different perturbation budgets (ϵ) up
to 1. The attacks are L-infinity norm bounded. The pixel value is in the range [-2.1, 2.6] (the
images are first scaled to [0,1] and then mean-std normalized by using ImageNet mean and std
values). The results are presented in Fig. 4. We observe that the detector-free approach LoFTR
is vulnerable to adversarial attacks, with AUC quickly dropping to zero as ϵ increases. Compared
to DKM, RoMa has better adversarial robustness, probably due to the use of more sophisticated
network architectures. Our method is able to consistently outperform others, achieving up to 4.1%
gain over RoMa for the FGSM attack, and up to 2.1% gain over RoMa for the PGD attack.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

AU
C@

5(
%

)

FGSM

LoFTR
DKM
RoMa
Ours

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

AU
C@

5(
%

)

PGD

LoFTR
DKM
RoMa
Ours

Figure 4: AUC@5◦(%) on MegaDepth-1500 under FGSM and PGD attacks with different ϵ values
(perturbation budgets).

ScanNet-1500-C and ScanNet-1500 under Adversarial Attacks The benchmarking results on
ScanNet-1500-C (with the same corruption settings as MegaDepth-1500-C) and ScanNet-1500 un-
der adversarial attacks (using the same attack settings as MegaDepth-1500) are presented in Table 2
and Fig. 5, respectively. While the advantage of our method over RoMa is less pronounced (refer
to Section 4.5 for the analysis of the underlying reasons), we still achieve up to a 0.6% gain over
RoMa on ScanNet-1500-C, and up to a 0.9% gain for the PGD attack.

Table 2: AUC@5◦(%) averaged over severity levels and corruption types in ScanNet-1500-C. The
value for each corruption type is the value averaged over severity levels, and mCA is the mean
corruption AUC@5◦ for for all 15 corruption types. Models are trained only on clean ScanNet
images.

Noise Blur Weather Digital
Method Clean mCA Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
LoFTR 22.1 12.3 13.2 14.3 13.1 15.3 18.4 16.0 1.8 4.4 2.6 5.3 16.4 6.1 19.2 21.2 17.7
DKM 29.4 22.3 21.8 22.5 21.1 28.6 28.4 28.0 7.9 14.1 9.3 22.5 26.1 22.5 27.3 29.5 25.2
RoMa 31.8 25.9 25.8 26.3 25.4 30.5 30.4 30.1 9.9 22.0 15.4 27.6 29.3 26.1 29.8 31.2 28.4
Ours 32.2 26.3 26.2 26.6 26.1 30.7 30.6 30.5 10.2 22.6 15.5 28.1 29.3 26.7 30.0 31.8 28.8
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Figure 5: AUC@5◦(%) on ScanNet-1500 under FGSM and PGD attacks with different ϵ values
(perturbation budgets).

4.4 GEOMETRY ESTIMATION ON CLEAN DATA

The benchmarking results of our method on the original clean MegaDepth-1500 and ScanNet-1500
benchmarks are presented in Table 3 and Table 4. Our method achieves comparable, or slightly
better performance compared to RoMa, suggesting that the improved robustness of our method does
not sacrifice the performance on clean data.

Table 3: SotA comparison on MegaDepth-1500. Measured in AUC (higher is better).

Method ↓ AUC@→ 5◦ ↑ 10◦ ↑ 20◦ ↑
LightGlue (Lindenberger et al., 2023) ICCV’23 51.0 68.1 80.7
LoFTR (Sun et al., 2021) CVPR’21 52.8 69.2 81.2
PDC-Net+ (Truong et al., 2023) TPAMI’23 51.5 67.2 78.5
ASpanFormer (Chen et al., 2022) ECCV’22 55.3 71.5 83.1
ASTR (Yu et al., 2023) CVPR’23 58.4 73.1 83.8
DKM (Edstedt et al., 2023) CVPR’23 60.4 74.9 85.1
PMatch (Zhu & Liu, 2023) CVPR’23 61.4 75.7 85.7
CasMTR (Cao & Fu, 2023) ICCV’23 59.1 74.3 84.8
RoMa (Edstedt et al., 2024) CVPR’24 62.6 76.7 86.3
Ours 63.0 76.9 86.5

Table 4: SotA comparison on ScanNet-1500. Measured in AUC (higher is better).

Method ↓ AUC@→ 5◦ ↑ 10◦ ↑ 20◦ ↑
SuperGlue (Sarlin et al., 2020) CVPR’19 16.2 33.8 51.8

LoFTR (Sun et al., 2021) CVPR’21 22.1 40.8 57.6
PDC-Net+ (Truong et al., 2023) TPAMI’23 20.3 39.4 57.1
ASpanFormer (Chen et al., 2022) ECCV’22 25.6 46.0 63.3
PATS (Ni et al., 2023) CVPR’23 26.0 46.9 64.3
DKM (Edstedt et al., 2023) CVPR’23 29.4 50.7 68.3
PMatch (Zhu & Liu, 2023) CVPR’23 29.4 50.1 67.4
CasMTR (Cao & Fu, 2023) ICCV’23 27.1 47.0 64.4
RoMa (Edstedt et al., 2024) CVPR’24 31.8 53.4 70.9
Ours 32.2 54.1 71.6

4.5 FURTHER ANALYSIS

Why Our Method Outperforms RoMa We conduct further analysis on our method to understand
why it can outperform RoMa. We compute the average endpoint error (AEPE) (Melekhov et al.,
2019), which is defined as the average Euclidean distance between the estimated and ground truth
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warp. The AEPE for our method and RoMa on MegaDepth-1500-C is 6.12 and 6.07, respectively.
The comparable AEPE values suggest that the warp prediction branch of our method performs sim-
ilarly to RoMa. This is understandable as we only modify the certainty prediction branch of RoMa
for evidential learning. We visualize the certainty map predicted by RoMa and our method in Fig. 6.
Compared to clean images, corruption causes both RoMa and our method to produce reduced cer-
tainty in matchable regions. However, RoMa tends to predict very low certainty value (e.g., below
0.05) for matchable regions on corrupted images, i.e., the model over-confidently classifies the pix-
els as unmatchable. As the following balanced sampling algorithm samples matches based on the
estimated certainty score, the extremely low certainty values make it hard to sample enough matches
from matchable regions. Our method is able to predict higher certainty value (i.e., ∼ 0.4) for match-
able region. Though it is not perfect compared to those predicted on clean images, it still facilitates
the following balanced sampling step to sample a diverse set of matches from matchable regions.
This problem is less severe on ScanNet, where the overlap between the image pairs is larger and the
sampled matches can still well cover the matchable region even though the predicted certainty is low.
This may explain why the advantage of our method is less significant on corrupted ScanNet-1500
compared to corrupted MegaDepth-1500.

Certainty Map Certainty MapSampled Matches Sampled MatchesImage Pair
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Figure 6: Visualization of certainty map and sampled matches for pose estimation. Top scene is
from MegaDepth-1500 and bottom scene is from ScanNet-1500. Our method predicts higher cer-
tainty value for matchable region on corrupted images than RoMa, enabling the following balanced
sampling step to select a set of diverse and reliable matches for downstream geometry estimation
tasks.

To cast more insight into the behavior of our method, we visualize the evidence map output by our
model in Fig. 7. We observe that under corrupted cases, the model cannot predict high evidence for
both classes in the matchable region, resulting in similar probability for the two classes, i.e., there
is high uncertainty in the estimation. Compared to RoMa’s over-confidence estimation, a high-
uncertainty prediction still assigns some confidence to the correct class and causes less devastating
effect to the following geometry estimation pipeline.

Ablation Study on Applying EDL at Different Scales We report the ablation study on applying
EDL at different scales in Table 5. We observe that applying EDL on coarse scale alone is not
effective, as the final prediction comes from the finest scale (which is still learnt by the BCE loss).
Applying EDL on fine scales improves the performance on corrupted samples significantly. The best
performance is achieved when EDL is applied on both coarse and fine scales.

Computation Cost Comparison We report the training and inference time of RoMa and our method
in Table 6. For training, our method takes 1.4% more GPU hours than RoMa. For inference,
our method actually incur marginally lower cost. This is probably due to the fact that EDL uses
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Class 1 ProbabilityImage Pair Class 1 Evidence Map Class 2 Evidence Map Evidential Uncertainty

Figure 7: Visualization of evidence map predicted by our model. Class 1 represents the claim
“the predicted correspondence is reliable” and Class 2 represents the opposite. Class 1 probability
is essentially the certainty score. The last column shows the evidential uncertainty (the built-in
uncertainty defined in Eq. (6)), which indicates high-uncertainty prediction in matchable regions
on corrupted images. Note that the evidence value is unbounded non-negative values and has been
clamped to [0,1] for visualization purposes.

Table 5: AUC@5◦(%) on MegaDepth-1500 for models trained with EDL at different scales. The
first row with both coarse and fine scale EDL disabled degenerates to the original RoMa model.
Note that we use a reduced training setting for this study (training image resolution 448×448, batch
size 16 and training iteration 62,500), so the reported performance is lower than those reported in
Table 1.

Coarse Fine AUC@5◦ (clean) AUC@5◦ (Gaussian noise@5)

60.9 22.8
✓ 59.9 22.9

✓ 61.4 31.7
✓ ✓ 61.5 33.1

simple operations (e.g., addition and division) to obtain the final probability, eliminating the more
complicated sigmoid computation in RoMa.

Table 6: Comparison of computation time. Training is conducted on 8 A40 GPUs with batch size
32, input size 560×560 and 250k iterations. Inference is conducted on 1 A40 GPU with batch size 1
(1 pair of images) and input size 672 × 672. The inference time is averaged over the 1500 pairs in
MegaDepth-1500 benchmark.

Training (in hours) Inference (in ms)

RoMa 126.6 329
Ours 128.4 327

5 CONCLUSIONS

In this work, we propose to incorporate evidential deep learning into the certainty prediction branch
of dense feature matching methods. To evaluate the robustness of feature matching methods, we
propose MegaDepth-1500-C and ScanNet-1500-C benchmarks that contain images distorted by 15
corruption types at five severity levels. Evaluation results show that EDL allows the model to predict
higher certainty values for matchable region on corrupted images compared to traditional cross-
entropy loss, facilitating the sampling of a set of both certain and diverse matches for geometry
estimation. Our method achieved up to 10.1% improvement for noise corruption in MegaDepth-
1500-C. We further investigate our method’s robustness against adversarial attacks, and show that
our method achieved up to 4.1% gain over SotA for the FGSM attack, and up to 2.1% gain for the
PGD attack. These results demonstrate the effectiveness of EDL in improving the robustness of
dense feature matching models.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Model Architecture The RoMa model consists of three modules: feature extractor, global matcher
and warp refiners. The feature extractor uses frozen foundation model DINOv2 (Oquab et al., 2023)
for extracting feature maps at stride 16, and VGG19 for extracting feature maps at stride [8, 4,
2, 1]. The global matcher consists of a Gaussian Process-based encoder and a transformer-based
decoder. It takes as input feature maps at stride 16, and outputs initial warp and certainty map
estimation. The warp refiner is CNN module that consists of 5 × 5 depth-wise convolution and
1 × 1 convolution. It is applied to features maps at scale [16, 8, 4, 2, 1] iteratively. At each scale,
it takes the corresponding feature maps and previously estimated warp and certainty map as input
and outputs a residual estimation on warp and certainty. To modify RoMa for evidential learning,
we increase the number of the output channel in the transformer-based decoder and the warp refiner
by 1. The original channel for sigmoid logit and the added channel are then used for the 2-class
evidence estimation in our proposed formulation.

Details about Datasets The MegaDepth dataset (Li & Snavely, 2018) contains images collected
from Internet for 196 outdoor scenes. For each scene, the camera pose and depth map of each image
is computed by COLMAP, a state-of-the-art software for Structure-from-Motion (SfM) and Multi-
View Stereo (MVS). We use the same training split as in RoMa. The ScanNet dataset (Dai et al.,
2017a) contains 1513 RGB-D scans for indoor scenes. The camera pose of each image is estimated
by the BundleFusion system (Dai et al., 2017b). The training and test split of the dataset contains
1201 and 312 scenes, respectively.

Training Procedure We follow the training setup in RoMa’s repo
(https://github.com/Parskatt/RoMa). The batch size is 32 and training image size is 560 × 560.
The learning rate for encoder (including the VGG19 feature extractor. The DINOv2 weights
are frozen) is 10−4, and the learning rate for decoder (including the global matcher and warp
refiners) is 5 · 10−6. The model is trained for 250k iterations using the AdamW (Loshchilov, 2017)
optimizer with weight decay 0.01, and the learning late is decayed by 0.1 at 225k iteration. For
outdoor geometry estimation, training pairs are randomly sampled from the MegaDepth training
split. For indoor geometry estimation, training pairs are alternatively sampled from the MegaDepth
or the ScanNet training split, following (Edstedt et al., 2024; Sun et al., 2021). Training takes
approximately 5 days on a server with 8 A40 GPUs.

A.2 ROBUSTNESS AGAINST NEWER CORRUPTIONS AND ATTACKS

3D Common Corruptions (3DCC) We evaluate our method on three corruptions from the 3DCC
collections (Kar et al., 2022), including low light noise, ISO noise and color quantization. Our
method achieves consistent and significant gains over RoMa, obtaining up to 9.4% increase in
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AUC@5◦. Some examples of corrupted images are shown in Fig. 9. We notice that for those corrup-
tions that require depth information for generation, e.g., 3D motion blur, Fog 3D, using MegaDepth’s
ground truth depth map does not create realistic images, and thus not used in our benchmarking. This
suggests that 3D corrupted image generation requires dataset-specific parameter turning, lacking the
plug-and-play convenience as its 2D counterpart.
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Figure 8: AUC@5◦(%) for three corruption types in MegaDepth-1500-3DCC.

Low-light Noise ISO Noise Color Quantization Fog 3D XY-motion Blur Z-motion BlurClean

Figure 9: Corrupted images from MegaDepth-1500-3DCC.

Pixel-wise Adversarial Attacks We experiment with a recently proposed attack CosPGD (Agni-
hotri et al., 2024). CosPGD is an improved version of PGD, where the pixel-wise loss is weighted
by the cosine similarity between (normalized) prediction and ground truth so that pixels with correct
prediction will be perturbed more in generating the attack. CosPGD can be readily applied for both
classification and regression tasks. For regression task, the prediction and ground truth are normal-
ized by softmax before computing the cosine similarity. We evaluate the robustness of RoMa and
our method under CosPGD attack and the results are shown in Fig. 10. Our method outperforms
RoMa consistently, achieving up to 2.8% gain over RoMa.

A.3 BENCHMARKING ON ADDITIONAL DATASETS

We provide additional benchmarking results in Table 7 and Table 8. Our method obtains 1.7% in-
crease in mAA@10px than RoMa on WxBS (Mishkin et al., 2015), and 0.5% increase in AUC@3px
on HPatches (Balntas et al., 2017).

A.4 VERIFY OUR METHOD WITH OTHER DENSE MATCHING MODELS

In the main experiments, we use the SotA dense matcher RoMa as our baseline and apply our
proposed framework on it. Here we apply our method on another dense matcher DKM (Ed-
stedt et al., 2023). Similar to RoMa, DKM employs a certainty estimation branch in both
global matcher and warp refiner. We modify the certainty estimation branch to generate evi-
dence and replace the BCE loss with evidential loss. We follow the training setup in DKM’s repo
(https://github.com/Parskatt/DKM). The model is trained on a server with 8 A5000 GPUs with batch
size 16, image resolution 540× 720 and training iteration 500k. Training takes roughly 5 days. For
fair comparison, we retrain the original DKM model using the same setup and report the results in
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Figure 10: AUC@5◦(%) on MegaDepth-1500 under CosPGD attack with different ϵ values (pertur-
bation budgets).

Table 7: SotA comparison on WxBS (Mishkin et al., 2015). Measured in mAA@10px (higher is
better).

Method mAA@→ 10px ↑
DISK (Tyszkiewicz et al., 2020) NeurIPS’20 35.5

DISK + LightGlue (Tyszkiewicz et al., 2020; Lindenberger et al., 2023) ICCV’23 41.7
SuperPoint +SuperGlue (DeTone et al., 2018; Sarlin et al., 2020) CVPR’20 31.4

LoFTR (Sun et al., 2021) CVPR’21 55.4
DKM (Edstedt et al., 2023) CVPR’23 58.9
RoMa (Edstedt et al., 2024) CVPR’24 80.1
Ours 81.8

Table 9. Our method increases the clean AUC@5◦ by 1.6% on MegaDepth-1500, and increases the
mean corruption AUC@5◦ by 1.3% on MegaDepth-1500-C. These results demonstrate the general-
izability of our method beyond RoMa.

Table 8: Homography estimation on HPatches (Balntas et al., 2017), measured in AUC (higher is
better).

Method ↓ AUC → @3px @5px @10px

SuperGlue (Sarlin et al., 2020) CVPR’19 53.9 68.3 81.7
LoFTR (Sun et al., 2021) CVPR’21 65.9 75.6 84.6
TopicFM (Giang et al., 2023) Arxiv’22 67.3 77.0 85.7
3DG-STFM (Mao et al., 2022) ECCV’22 64.7 73.1 81.0
ASpanFormer (Chen et al., 2022) ECCV’22 67.4 76.9 85.6

PDC-Net+ (Truong et al., 2021) Arxiv’21 67.7 77.6 86.3
DKM (Edstedt et al., 2023) CVPR’23 71.3 80.6 88.5
RoMa (Edstedt et al., 2024) CVPR’24 72.7 81.4 89.1
Ours 73.2 81.9 89.3
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Table 9: Applying our method with the DKM model. The reported performance is AUC@5◦(%)
averaged over severity levels and corruption types on MegaDepth-1500-C.

Noise Blur Weather Digital
Method Clean mCA Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
DKM 58.4 39.8 31.1 33.4 29.0 44.5 42.9 46.4 11.5 27.4 30.6 53.8 54.9 48.1 41.2 53.6 49.7
Ours 60.0 41.1 31.2 33.5 29.0 46.8 45.9 48.4 13.4 27.7 33.3 54.8 56.6 47.1 43.1 55.7 50.8

A.5 COMBINING CERTAINTY SCORE OF OUR METHOD WITH WARP OF ROMA

We report in Table 10 the results of combining certainty score from our model with the warp from
the original RoMa model. We observe that using our certainty score, the performance of RoMa
is increased from 25.3% to 36.5%, close to our results of 37.9%. In Section 4.5, we report the
average endpoint error (AEPE), which is defined as the average Euclidean distance between the
estimated and ground truth warp. The AEPE for our method and RoMa on MegaDepth-1500-C is
6.12 and 6.07, respectively. The comparable AEPE values suggest that the warp prediction branch
of our method performs similarly to RoMa. These two studies combined suggest that it is the better
certainty estimation that brings the improvement in performance.

Table 10: AUC@5◦(%) for various combinations of certainty score and warp estimation on
MegaDepth-1500.

Cert (RoMa) Warp (RoMa) Cert (Ours) Warp (Ours) AUC@5◦ (clean) AUC@5◦ (Gaussian noise@5)

✓ ✓ 62.6 25.3
✓ ✓ 62.4 36.5

✓ ✓ 63.0 37.9

A.6 QUALITATIVE RESULTS

More visualization results are presented in Fig. 11. Our method predicts higher certainty value for
matchable region than RoMa across different corruption types.
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Figure 11: Qualitative results. The matching results are visualized by taking the pixel values from
the other image using the estimated correspondences, and weighting by the estimated certainty.
Top scene is from MegaDepth-1500 and bottom scene is from ScanNet-1500. Our method predicts
higher certainty value for matchable region than RoMa across different corruption types.
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