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Abstract

Graph query languages have become the standard among data scientists analyzing
large, dynamic graphs, allowing them to structure their analysis as SQL-like queries.
One of the challenges in supporting graph query languages is that, unlike SQL
queries, graph queries nearly always involve aggregation of sparse data, making
it challenging to scale graph queries without heavy reliance on expensive indices.
This paper introduces the first major release of BitGraph, a graph query processing
engine that uses GPU-acceleration to quickly process Gremlin graph queries with
minimal memory overhead, along with its supporting stack, Gremlin++, which
provides query language support in C++, and Maelstrom, a lightweight library
for compute-agnostic, accelerated vector operations built on top of Thrust. This
paper also analyzes the performance of BitGraph compared to existing CPU-only
backends applied specifically to temporal graph queries, demonstrating BitGraph’s
superior scalability and speedup of up to 35x over naive CPU implementations.

1 Introduction

1.1 Background

When the field of Graph Theory was invented by Leonhard Euler, it was to solve a specific problem
on a structural graph, which is defined as a graph consisting only of vertices and edges: G = (V,E).
Later, graph theorists and analysts began to use edge weight to quantify the strength of an edge
between two vertices. But as mathematicians, data scientists, biologists, chemists, social scientists,
and countless others began to apply graph theory to more complex problems, they realized that in
many cases, vertices in the graph were defined not only by their relations to each other, but by specific
variable properties unique to each vertex; for instance, age or height. And as the internet came of age,
more and more applications also demanded edge properties beyond simple weight. Social networks
linked entiries of all kinds to each other in a multitude of ways. Analyzing edges, predicting edge
properties, creating edge-induced subgraphs, and similar operations became critical.

In the late 2000s, many of the people working on these new applications of graphs began to come
together and formalize graph representations beyond classic structural graphs. The first graph
standards, OWL [1] and RDF [2] had clear limitations and were atemporal [2]. Graph databases, which
gained popularity during the 2010s, coalesced around an alternative model called the Property Graph.
Property graphs allowed any graph element (vertex or edge) to have any number of properties [3]. In
this model, representing time series data was now possible, as any node or edge could be tagged with
a particular time. Mathematically, a property graph is Gp = (V,E, F ), where F in this expression is
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a set of functions f(x) ∈ F , defined for x ∈ (V ∪ E). 1 Each function can return anything in the
universal set. In practice, most property graph processing engines limit the domain and range of these
functions so that property graph data can be efficiently stored and retrieved.

The popularity of graph databases cannot be understated. There are established companies, such
as Neo4j [4], startups such as TigerGraph [5] and ArangoDB [6], and even major players such as
Amazon [7] and Microsoft [8] competing in the space.

Nearly all graph databases support at least one query language, an important tool in graph analytics
that goes back to the days of OWL and RDF, when the first well-known graph query language,
SPARQL, was conceived [9]. Graph query languages, such as Gremlin [10] and Cypher [11], are
often the primary way of interacting with the graph, and the focus of this paper.

1.2 Graph Query Languages

Graph query languages are a means of asking questions about a property graph. These questions can
range from the very simple (i.e. "How many friends does Bill have?") to those that are semantically
and computationally complex (i.e. "What is the shortest path between Warehouse A and Warehouse
B that does not go through Newark, NJ, and uses the minimum number of flights?"). Queries can
easily be complicated by temporal features. For instance, certain nodes in the logistics network may
not be available at given times, or routes between the nodes may actually correspond to individual
flights or truck routes that depart and leave at specific times. Graph query languages can express
these constraints very well.

Graph query languages can be very powerful in answering questions about temporal graphs. But as
graphs grow larger, these queries become more difficult to process. GPUs have been used for years to
accelerate graph algorithms, such as Connected Components, Pagerank, and Breadth-First Search,
demonstrating that graphs are a strong target for the performance benefits of GPUs. Accelerating SQL
or Spark queries on GPUs has also been mainstream for some time now, with clear benefits [12] [13].
But until now, no mainstream GPU-enabled graph query engine has ever been released.

1.3 History and Overview of the BitGraph Framework

The original, incomplete version of BitGraph was released by the author in 2019 [14], when GPU
graph analytics was just beginning to gain steam, with projects such as Gunrock [15] [16], Hornet/-
cuSTINGER [17] [18], and cuGraph [19] [20] all getting attention around the same time. BitGraph-
2019 supplemented those projects as a graph query language engine that could offload certain
processes to the GPU, boasting decent performance on small to midsize graphs. BitGraph-2019 was
limited by the overhead of host-to-device (h2d) data transfer, since it inherited the CPU-based design
of Java-Gremlin [14].

BitGraph-2023 (now a framework including the BitGraph, Gremlin++, and Maelstrom projects), is a
complete reimagining of BitGraph-2019. It is still the only open-source GPU-supporting backend for
Gremlin, and still includes Gremlin++, the only C++ frontend for Gremlin. However, BitGraph-2023
is now compute-agnostic, allowing users to mix and match CPU and GPU storage and execution.
For vertex and edge properties, this mix-and-match capability is even more fine-grained, allowing
allocation of specific properties to specific storage (CPU/GPU/UM 2) and execution (device/host).

BitGraph-2023 is especially well-optimized for ultra-sparse property graphs, graphs where both
the structure (vertices and edges) and properties (vertex properties and edge properties) are sparse.
The graph structure is considered sparse when the number of edges (excluding multiple edges
between the same two vertices) is much less than the maximum possible number of distinct edges:
|E| ≪ |V |2 [22]. While there is no formal definition, in this paper, a graph property is considered
sparse when it is present on fewer than half the total number of vertices.

The BitGraph framework was developed with other existing graph computing engines in mind,
focusing primarily on accelerating graph queries, leaving other operations to frameworks such as
PyTorch, Gunrock, cuGraph, or to graph databases.

1This definition is based on the author’s experience with property graph processing systems and varies
slightly from the definition in [3].

2UM refers to unified memory, which is an address space shared by the CPU and GPU [21].
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2 Related Work

2.1 Gunrock

Gunrock [15] is one of the earliest and most well-known examples of a GPU graph analytics backend.
It is designed for developing customized graph algorithms with zero accelerated computing or GPU
programming knowledge. Gunrock exploits frontier parallelism [15]; each operation in Gunrock
operates upon a frontier, just as each Gremlin step operates upon a set of traversers. The three main
primitives (algorithmic building blocks) of Gunrock are advance, filter, and segmented intersection
[15]. The four subtypes of advance primitives (Vertex-to-Vertex, Vertex-to-Edge, Edge-to-Vertex, and
Edge-to-Edge) are also nearly identical to those in the BitGraph framework (Maelstrom/Gremlin++).
The filter step in Gremlin++ is functionally identical to Gunrock’s filter primitive, and Gunrock’s
segmented intersection primitive can be replicated by a combination of Gremlin steps in Gremlin++.

Gunrock, also like the BitGraph framework, supports optimizations similar to those done by Gremlin
traversal strategies. Optimizations in Gunrock can include kernel fusion, which BitGraph supports
more coarsely through traversal strategies.

Where Gunrock uses its own language to represent steps, BitGraph uses the more well-known
Gremlin traversal language. BitGraph also relies on a huge suite of heavily-optimized Gremlin steps
rather than the small set of primitives offered by Gunrock. Gunrock may ultimately support better
performance for some algorithms, but its language does not have the expressiveness of Gremlin, and
it doesn’t support many basic query language features that data scientists and data analysts rely on.

2.2 cuSTINGER and Hornet

cuSTINGER is a data structure and framework for dynamic graph analysis [17]. Hornet is a successor
to cuSTINGER offering superior performance, support for dynamic sparse matrices, and memory
reclamation, with performance nearly identical or better to that of CSR [18]. BitGraph does not use
Hornet, instead opting for a combination of the COO, CSR, and CSC matrix formats, which support
BitGraph’s canonical representation, and are better-suited for eventual multi-GPU support.

2.3 Blazing SQL and Dask-SQL

Blazing SQL was a SQL engine built on top of the NVIDIA RAPIDS ecosystem [12]. It was one of
the first mainstream production frameworks for accelerating a query language (in this case, SQL)
on GPUs, and helped show that that GPUs were both effective and cost-efficient for this purpose,
delivering 20x speedup over Apache Spark for ETL queries. However, it has now been largely
replaced by GPU-supported dask-SQL [13]. Like Blazing SQL, dask-SQL is built on top of the
RAPIDS ecosystem, but takes advantage of the already-popular dask framework. It is also easier to
scale dask-SQL beyond a single node, which is critical in large-scale applications. The BitGraph
framework follows the same concept as these two projects, but accelerates Gremlin rather than SQL.

2.4 Lotan

Lotan links graph databases with graph neural networks (GNNs) [23]. GNNs are similar to convolu-
tional neural networks (CNNs), but add graph structure. Training GNNs can be difficult due to the
sheer data size of many production-scale graphs, which, without methods to generate subgraphs or
samples of the full graph, are too large to train [23]. Lotan uses a query optimization system similar
to the Gremlin traversal strategies to sample a graph stored in a graph database. But even with Lotan,
the primary bottleneck for large-scale GNN training remains the query processing engines of graph
databases [23]. While the BitGraph framework is designed for a general-purpose rather than a purely
GNN-centric workload, it directly targets this key bottleneck.

3 Design of the BitGraph Framework

The BitGraph framework is comprised of BitGraph, Gremlin++, and Maelstrom, which were created
and officially released for the first time in September 2023. Maelstrom is the bottom of the stack,
providing a compute-agnostic (CPU/GPU) framework and API for vector computations, hash tables,
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Figure 1: Gremlin++ vs. Java-Gremlin Traversal Comparison

and sparse matrices. Gremlin++ builds on Maelstrom to provide C++ language support for Gremlin,
translating Gremlin steps into vector operations in the Maelstrom API. BitGraph defines the structure
of the graph, including property storage, implementing the Gremlin++ API and using Maelstrom
sparse matrices and hash tables to store graph data.

3.1 Staying Compute Agnostic

Graph Traversals in Gremlin are a series of operations upon traverser objects [24]. Traversers are
atomic and can be shuffled around threads. However, shuffling these traverser objects runs into
scaling issues, and even more so when writing a GPU implementation of Gremlin. To start, localizing
data to a traverser object sacrifies spatial locality. Searching through or aggregating data across
traversers will cause a high number of page faults. This penalty is compounded when using unified
memory, which the BitGraph framework supports, since page faults may require transferring data
through PCI-e. The Java-Gremlin traverser implementation is also heavily reliant on pointers and
function calls, which increases memory fragmentation overhead, and would require many separate
device memory allocation calls, which force synchronization with the host.

Supporting the traverser concept without sacrificing performance was critical. The solution was
to reimagine Gremlin steps as vector operations, making traversers a virtual concept. Instead of
localizing data to traverser objects, a structure called a traverser set manages three structures:
traversed objects, side effects, and path information. These three structures globalize the data that
traditional Gremlin localizes to each traverser (Figure 1). Gremlin++ still supports traverser semantics,
but under the hood, is performing vector operations on traverser sets. This is the case regardless
of where the traverser set is stored or where it is being processed, making it compute and storage
agnostic. Enabling this was the primary objective of Maelstrom.

3.2 Overview of the Maelstrom API

Maelstrom provides a simple yet powerful API for vector operations. Inspired by libraries like
PyTorch [25], Maelstrom uses the same API for all operations regardless of where data is being
computed or stored. In nearly all cases, it can properly infer the optimal location (CPU/GPU) for
computation, and transparently dispatch the appropriate code path. Maelstrom is also designed to
eventually support multi-GPU, and potentially even multi-node processing with zero API change.
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Because the rest of the BitGraph framework uses Maelstrom, all that is needed to enable future
multi-GPU processing is the creation of that backend in Maelstrom.

Maelstrom also has APIs for two other key data structures used by the BitGraph framework, hash
tables and sparse matrices. These APIs are designed to work with the Maelstrom vector API, and like
the vector API, are designed to eventually be extended for multi-GPU processing. The hash table
API is built on top of the cuCollections dynamic map API [26]. The sparse matrix API is written
from scratch, and is designed specifically to support frontier parallelism as is used throughout the
BitGraph framework. It also takes advantage of the Maelstrom vector API’s type erasure capabilities
to allow usage with a wide variety of types, unlike the cuSPARSE API [27] it largely replaces.

3.3 Query Processing in Gremlin++

Gremlin++ provides support for the Gremlin language in C++, using Maelstrom to handle its
processing. The semantics of Gremlin++ are nearly identical to those of standard OLAP Gremlin,
making migration easy for Gremlin-Java users. Gremlin++ is divided into two parts, the structure
API, and the traversal API, mirroring Java-Gremlin. The structure API defines the basic components
of a property graph: vertices, edges, and properties. The traversal API defines the Gremlin query
language and how it is processed, by converting a Gremlin query into its internal representation
(Gremlin Steps), running the just-in-time optimization process (traversal strategies), and then calling
either functions in Maelstrom or in the structure API to execute the optimized steps. Functions that
are part of the structure API have to be implemented by backends (i.e. BitGraph) since they require
manipulating the internals of the graph, which Gremlin++ isn’t aware of.

3.4 BitGraph Structure

BitGraph is the top of the BitGraph framework, implementing the Gremlin++ API and using Mael-
strom to define its sparse matrix and property table structure. BitGraph is lightweight, comprised
mostly of calls to the Maelstrom API. This makes it compute agnostic, compatible with Maelstrom’s
type erasure, and easy to extend. BitGraph has two components: the graph structure, which is stored
as a Maelstrom sparse matrix, and the graph properties, which are stored as Maelstrom hash tables.

3.4.1 Sparse Matrices in BitGraph

Depending on the operation being done, BitGraph stores the graph in a canonical COO (coodinate
list), CSR (compressed sparse row), or CSC (compressed sparse column) format. When modifying
the graph, the canonical COO format is used. This format is a standard COO matrix sorted by
insertion order. Using canonical COO format, adding or removing vertices or edges takes best case
O(1) time and worst case O(|E|) time. Canonical COO format also saves memory by not requiring
an additional O(|E|) vector to store edge IDs.

Computing an adjacency query on the canonical COO matrix is of complexity O(|T ||E||V |), where
T represents the set of vertices in the adjacency query. Using a CSR/CSC matrix to process the query,
in contrast, has a far superior time complexity of O(|T |), and memory usage can be reduced by doing
the conversion in-place. In order to recreate the canonical COO matrix when it is needed, the edge
permutation has to be stored, so canonical CSR/CSC format includes this permutation vector, for
a total memory usage of O(|E| + |V |). Given that canonical COO has memory O(|E|), and that
generally |E| ≫ |V |, we can approximate the total memory usage as O(|E|) for both canonical COO
and canonical CSR/CSC. Therefore, converting to canonical CSR/CSC prior to adjacency queries has
a clear performance benefit without sacrificing memory usage.

All conversion to and from matrix formats is done automatically. Since users interact through the
Gremlin++ API, and write queries in Gremlin, they do not have to worry about the internals of the
graph structure, including matrix format.

3.4.2 Vertex and Edge Properties

Vertex and edge properties are implemented through Maelstrom hash tables, which allow users to
store properties in device, host, managed, or pinned memory. For properties that are frequently
accessed and updated during queries, device storage, if feasible, is the preferred option. For most
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Figure 2: Life of a Gremlin Query in the BitGraph Framework

other properties, managed memory is preferred, since it will automatically move pages back and forth
between device and host storage to save valuable device memory at a moderate performance cost.

3.5 Putting it All Together: End-to-End Life of a Query

When a user writes a query in Gremlin, it is converted into Gremlin steps. For instance, g-
>V(39).out().next() is a query that finds vertex 39, and returns the first of its outgoing edges. This
is broken into two steps and one finalization operation. The first step is a V Step, an instruction to
retrieve vertex data from the graph and put it into the traverser set (frontier). The second step is
a Vertex Step, and is an instruction to retrieve outgoing edges from a vertex. In this traversal, the
finalization operation is next, which gets the first element of the traverser set and returns it.

Once a query has been transformed into steps, the resulting steps are optimized using traversal
strategies, which are similar to compiler optimizations. For instance, one strategy combines the limit
step with steps that support running with a limit, which can reduce redundant computations.

Finally, the query is processed. Gremlin++ interprets the final set of steps, and when necessary,
will call API functions that dynamically dispatch to BitGraph. Each step updates the traverser set
(frontier), passing it on to the steps that follow.

Figure 2 shows how a Gremlin query is optimized, transformed into vector operations, and computed.

4 Performance

Through GPU acceleration, low-level optimization, and its traverser set structure, BitGraph achieves
impressive speedup over Java-Gremlin. BitGraph was benchmarked against the standard Gremlin
in-memory graph backend, TinkerGraph [28]. Unless otherwise indicated, benchmarks were run on
an overclocked Intel i7-12700K CPU and NVIDIA RTX A6000 GPU.

4.1 Connected Components

The connected components algorithm is good benchmark for understanding how users who don’t
know how to write CUDA kernels can achieve superior performance over what they could do with an
existing Gremlin frontend and backend. For this benchmark, a variation of the algorithm described
in [29] was used. The Gremlin traversal for this algorithm is in Figure 3.

The connected components algorithm is useful for temporal graph processing, as it allows for
partitioning a larger graph into smaller components that can then be classified based on their temporal
behavior. This is a common approach used for graph classification.
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g−>V ( ) . p r o p e r t y ( " cc " , i d ( ) ) . i t e r a t e ( ) ;
g−>V ( ) . p r o p e r t y ( " o l d _ c c " , v a l u e s ( " cc " ) ) . i t e r a t e ( ) ;
s i z e _ t d i f f = 1 ;
w h i l e ( d i f f > 0 ) {

d i f f = g−>V( )
. p r o p e r t y ( " o l d _ c c " , v a l u e s ( " cc " ) )
. p r o p e r t y ( " cc " ,

un ion ( {
bo th ( ) . v a l u e s ( " o l d _ c c " ) ,
v a l u e s ( " o l d _ c c " )

} ) . min ( )
)

. elementMap ( { " cc " , " o l d _ c c " } ) . where ( " cc " , neq ( " o l d _ c c " ) )

. c o u n t ( ) . n e x t ( ) ;
}

Figure 3: Gremlin Traversal for Connected Components

Figure 4: Connected Components Performance Benchmarks

This benchmark used the following datasets: facebook-combined (4K vertices, 90K edges) [30],
twitter-combined (80K vertices, 2.4M edges) [30], gplus-combined (100K vertices, 30M edges) [30],
and livejournal (5M vertices, 70M edges) [31] [32]. These were all obtained from SNAP [33]. Results
are shown in Figure 4. 3 BitGraph performed strongly on these benchmarks, due to its CSR structure
and GPU minimum aggregation, delievering an impressive 35x speedup on the largest dataset.

4.2 Temporal Shortest Paths

Shortest paths algorithms are among the most commonly-used graph algorithms. The Gremlin
language offers a simple means of constructing temporal shortest paths queries.

Consider the following problem: Suppose I have a package that I need to transfer through my logistics
network. Whenever a package arrives at a destination facility, it needs to first be sorted overnight,
before it can be sent on a plane the next day. How many nodes in the logistics network can this
package reach within four days, provided I know the current location of the package?

This problem can be translated into a Gremlin query, as shown in Figure 5.

For this benchmark, the tgbl-flights dataset (60K vertices, 70M edges) [34] was used. It was obtained
from the Temporal Graph Benchmark (TGB) project [35]. The tgbl-flights-1M dataset is a subset of
tgbl-flights consisting of the first 1 million edges. Results are shown in Figure 6. 4 BitGraph achieved
a speedup of 2.7x on flights-1M and 1.8x on the full dataset, once again benefiting from the CSR

3The livejournal benchmark was run on an AMD EPYC 7452 CPU and NVIDIA RTX A6000 GPU due to
the high RAM usage of Java-Gremlin on this dataset.

4The flights-full benchmark was run on an AMD EPYC 7452 CPU and NVIDIA RTX A6000 GPU due to
the high RAM usage of Java-Gremlin on this dataset.
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g−>V( v _ s t a r t )
. r e p e a t (

p r o p e r t y ( " v i s i t e d " , 1 )
. elementMap ( { " l a s t _ t i m e " } )
. outE ( ) . has ( " t ime " , g r e m l i n x x : : P : : l t e ( t ime_end ) )
. elementMap ( { " t ime " } )
. where ( " t ime " , g r e m l i n x x : : P : : g t ( " l a s t _ t i m e " ) )
. a s ( " l a s t _ e " )
. v a l u e s ( " t ime " ) . a s ( " l a s t _ t i m e " )
. s e l e c t ( " l a s t _ e " ) . inV ( ) . hasNot ( " v i s i t e d " )
. elementMap ( { " name " } )
. a s ( " v " )
. s e l e c t ( " l a s t _ t i m e " ) . min ( ScopeCon tex t ( Scope : : l o c a l , " name " ) )
. s e l e c t ( " v " )
. p r o p e r t y ( " l a s t _ t i m e " , s e l e c t ( " l a s t _ t i m e " ) )

) . i t e r a t e ( ) ;
a u t o v _ t o t a l = g−>V ( ) . has ( " v i s i t e d " ) . c o u n t ( ) . n e x t ( ) ;

Figure 5: Gremlin Temporal Shortest Paths Traversal

Figure 6: Temporal Shortest Paths Performance Benchmarks

structure and minimum aggregation on the GPU, although the Repeat Step did cause some additional
d2h transfers that limited the potential speedup. Improving the Repeat Step in Gremlin++ to avoid
d2h copies would likely bring the speedup closer to the 35x achieved in the previous benchmark.

5 Applications and Future Work

5.1 More Gremlin Features

Gremlin++ currently provides the most important Gremlin steps, but there are still many more steps
that Gremlin++ does not yet support, including some that would simplify or accelerate temporal
queries. A good example is the SimplePath Step [24], which automatically filters out cycles. Grem-
lin++ also currently does not support Python bindings, which is a targeted feature for a future release.
Support for Python and other languages could eventually be provided by a Gremlin server [24], which
is how Java-Gremlin is able to interface with other languages.

5.2 Just-in-Time Optimization and Dispatching

Gremlin steps can be combined with each other through traversal strategies, reducing the number of
kernel launches, and eliminating redundant operations. Other optimizations could use CUDA streams
to run concurrent queries or loop iterations. BitGraph could also support dispatching to Gunrock, or
even faster implementations of specific algorithms such as Connected Components or Pagerank.

5.3 Multi GPU

Extending Maelstrom to a multi-GPU environment would allow Gremlin++ to process queries with
many billions or even trillions of traversers, potentially across multiple disjoint graphs.
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