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ABSTRACT

Multi-modal models, such as CLIP, have demonstrated strong performance in
aligning visual and textual representations, excelling in tasks like image retrieval
and zero-shot classification. Despite this success, the mechanisms by which these
models utilize training data, particularly the role of memorization, remain unclear.
In uni-modal models, both supervised and self-supervised, memorization has
been shown to be essential for generalization. However, it is not well understood
how these findings would apply to CLIP, which incorporates elements from both
supervised learning via captions that provide a supervisory signal similar to labels,
and from self-supervised learning via the contrastive objective. To bridge this
gap in understanding, we propose a formal definition of memorization in CLIP
(CLIPMem) and use it to quantify memorization in CLIP-style models. Our results
indicate that CLIP’s memorization behavior falls between the supervised and self-
supervised paradigms, with "mis-captioned" samples exhibiting highest levels of
memorization. Additionally, we find that the text encoder contributes more to
memorization than the image encoder, suggesting that mitigation strategies should
focus on the text domain. Building on these insights, we propose multiple strategies
to reduce memorization while at the same time improving utility—something that
had not been shown before for traditional learning paradigms where reducing
memorization typically results in utility decrease.

1 INTRODUCTION

Multi-modal models, such as CLIP (Radford et al., 2021), have demonstrated strong performance in
representation learning. By aligning visual and textual representations, these models achieve state-of-
the-art results in tasks like image retrieval (Baldrati et al., 2022a;b), visual question answering (Pan
et al., 2023; Song et al., 2022), and zero-shot classification (Radford et al., 2021; Ali & Khan,
2023; Wang et al., 2023; Zhang et al., 2022). Despite these successes, the mechanisms by which
multi-modal models leverage their training data to achieve good generalization remain underexplored.

In uni-modal setups, both supervised (Feldman, 2020; Feldman & Zhang, 2020) and self-
supervised (Wang et al., 2024b), models have shown that their ability to memorize their training data
is essential for generalization. In supervised learning, memorization typically occurs for mislabeled
samples, outliers (Bartlett et al., 2020; Feldman, 2020; Feldman & Zhang, 2020), or data points seen
towards the end of training (Jagielski et al., 2022), while in self-supervised learning, high memoriza-
tion is experienced particularly for atypical data points (Wang et al., 2024b). However, it is unclear
how these findings extend to models like CLIP which entail elements from both supervised learning
(via captions as supervisory signals) and self-supervised learning (via contrastive loss functions).

Existing definitions of memorization offer limited applicability to CLIP and cannot fully address this
gap. The standard definition from supervised learning (Feldman, 2020) relies on one-dimensional
labels and the model’s ability to produce confidence scores for these labels, whereas CLIP outputs
high-dimensional representations. While the SSLMem metric (Wang et al., 2024b), developed for self-
supervised vision models, could, in principle, be applied to CLIP’s vision encoder outputs, it neglects
the text modality, which is a critical component of CLIP. Additionally, measuring memorization in
only one modality, or treating the modalities separately, risks diluting the signal and under-reporting
memorization. Our experimental results, as shown in Section 4.3, confirm this concern. Therefore,
new definitions of memorization tailored to CLIP’s multi-modal nature are necessary.
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An item of a vase with something 
inside of it.

two males and a female in a red top 
holding some flowers

A woman opening the trunk of her 
car.

a sleeping toddler laying on a womans 
shoulder 

An open point of view of a room 
with various things all around

A group of people standing on top 
of a field together.

a pole with some yellow lights in 
front of a narrow building

a parking lot with a bunch of cars 
in it

A person is taken in this very 
picture.

I am unable to see an image 
above

(a) Most Memorized: CLIPMem > 0.89

A girl in pink sweater putting a blue 
umbrella over a yellow fire hydrant.

Closeup of two street signs that read 
"Airport Pkwy" and "Karmill Ave."

A sign with Oriental writing and the 
words saying Hyatt on the Bund.

A pink Hello Kitty microwave on 
a store shelf.

A sign saying "Don't Honk, $350 
Penalty" on a pole.

A yellow and blue fire hydrant 
surrounded by leaves

A sign is displayed on a pole 
that says bump.

A man in maroon shirt standing 
next to a stainless steel refrigerator.

A group of artistic surfboards are 
displayed in a tent.

A blue street sign that reads "Thelonius 
Monk Circle."

(b) Least Memorized: CLIPMem ≈ 0.0

Figure 1: Examples of data with different levels of memorization. Higher memorization scores
indicate stronger memorization. We observe that atypical or distorted images, as well as those with
incorrect or imprecise captions, experience higher memorization compared to standard samples and
easy-to-label images with accurate captions. Results are obtained on OpenCLIP (Ilharco et al., 2021),
with encoders based on the ViT-Base architecture trained on the COCO dataset.

The only existing empirical work on quantifying memorization in CLIP models (Jayaraman et al.,
2024) focuses on Déjà Vu memorization (Meehan et al., 2023), a specific type of memorization.
The success of their method relies on the accuracy of the integrated object detection method and on
the availability of an additional public dataset from the same distribution as CLIP’s training data,
limiting practical applicability. To overcome this limitation, we propose CLIPMem that measures
memorization directly on CLIP’s output representations. Specifically, it compares the alignment—i.e.,
the similarity between representations—of a given image-text pair in a CLIP model trained with the
pair, to the alignment in a CLIP model trained on the same data but without the pair.

In our empirical study of memorization in CLIP-like models using CLIPMem, we uncover several
key findings. First, examples with incorrect or imprecise captions ("mis-captioned" examples) exhibit
the highest levels of memorization, followed by atypical examples, as illustrated in Figure 1. Second,
removing these samples from training yields significant improvements in CLIP’s generalization
abilities. These findings are particularly noteworthy, given that state-of-the-art CLIP models are
usually trained on large, uncurated datasets sourced from the internet with no guarantees regarding
the correctness of the text-image pairs. Our results highlight that this practice not only exposes
imprecise or incorrect data pairs to more memorization, often recognized as a cause for increased
privacy leakage (Carlini et al., 2019; 2021; 2022; Song et al., 2017; Liu et al., 2021), but that it also
negatively affects model performance. Furthermore, by disentangling CLIP’s two modalities, we are
able to dissect how memorization manifests within each. Surprisingly, we find that memorization
does not affect both modalities alike, with memorization occurring more in the text modality than in
the vision modality. Building on these insights, we propose several strategies to reduce memorization
while simultaneously improving generalization—a result that has not been observed in traditional
supervised or self-supervised learning, where any reduction of memorization causes decreases in
performance. Finally, at a deeper level, our analysis of the model internals, following Wang et al.
(2024a), shows that CLIP’s memorization behavior sits between that of supervised and self-supervised
learning. Specifically, neurons in early layers are responsible for groups of data points (e.g., classes),
similar to models trained using supervised learning, while neurons in later layers memorize individual
data points, as seen in self-supervised learning.

In summary, we make the following contributions:

• We propose CLIPMem, a metric to measure memorization in multi-modal vision language models.

• Through extensive evaluation, we identify that "mis-captioned" and "atypical" data points expe-
rience the highest memorization, and that the text encoder is more responsible for memorization
than the image encoder.

• Based on our insights, we propose and evaluate multiple strategies to mitigate memorization in
CLIP. We show that in CLIP, contrary to traditional supervised and self-supervised learning, a
reduction of memorization does not need to imply a decrease in performance.
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2 BACKGROUND AND RELATED WORK

CLIP. Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) trains an image encoder
fimg and a text encoder ftxt to map image-text pairs into a shared latent space. It trains these encoders
by maximizing similarity for matching image-text pairs while minimizing it for non-matching pairs,
using a contrastive loss function L:

L = − 1

N

N∑
i=1

log
exp(sim(fimg(xi), ftxt(yi))/τ)∑N
j=1 exp(sim(fimg(xi), ftxt(yj))/τ)

,

where sim(·, ·) is cosine similarity, τ is a temperature parameter, and N is the batch size. The popular
Language augmented CLIP (LaCLIP) (Fan et al., 2023) extends this approach by introducing text
augmentions alongside the original image augmentations (crops) during training to reduce overfitting.
We study the impact of this practice on memorization and find it to be a suitable mitigation method.

Memorization. Memorization refers to a model’s tendency to store detailed information from
training examples, rather than learning general patterns. (Zhang et al., 2016; Arpit et al., 2017;
Chatterjee, 2018; Feldman, 2020). This can lead to privacy risks when sensitive data is memorized
(Carlini et al., 2019; 2021; 2022; Song et al., 2017). To date, memorization has been studied mainly
within single modalities. In supervised learning, models tend to memorize mislabeled (Feldman,
2020), difficult, or atypical examples (Arpit et al., 2017; Sadrtdinov et al., 2021), which can improve
generalization on long-tailed data (Feldman, 2020; Feldman & Zhang, 2020). Similarly, in self-
supervised learning (SSL) in the vision domain (Wang et al., 2024b), atypical samples experience
higher memorization, and reducing memorization in SSL encoders leads to decreased performance in
downstream tasks. A similar connection between memorization and generalization has been observed
in the language domain (Antoniades et al., 2024; Tirumala et al., 2022). However, these papers
consider single-modality models. How those insights transfer to multi-modal models remains unclear.

Memorization in self-supervised learning. Our CLIPMem builds on the SSLMem metric introduced
by Wang et al. (2024b). This metric measures how much an SSL encoder memorizes a data point
x by comparing the alignment of representations from its augmented views. Let f : Rn → Rd be
an SSL encoder trained on an unlabeled dataset S = {xi}mi=1 using an SSL algorithm A. The data
augmentations are represented as Aug(x) = {a(x)|a ∈ Aug}, where a is a transformation function
applied to the data point x, mapping from Rn → Rn. The encoder’s output representation for a given
data point x is denoted as f(x). For a trained SSL encoder f , the alignment loss for a data point x is
defined as

Lalign(f, x) = E
x′,x′′∼Aug(x)

[d (f(x′), f(x′′))], (1)

where x′, x′′ are augmented views of x and d(·, ·) is a distance metric, typically the ℓ2 distance.
SSLMem is then defined as

SSLMem(x) = E
g∼A(S\x)

Lalign(g, x)− E
f∼A(S)

Lalign(f, x) (2)

with f being an SSL encoder trained with data point x, and g, an encoder trained without x but
otherwise on the same dataset. While this framework measures memorization using alignment loss
for single-modality encoders, this approach is unsuitable to leverage the signal over both modalities
from multi-modal encoders like CLIP, as we also highlight empirically in Section 4.3. However, we
can build on the main concepts from SSLMem to define a new metric that can evaluate memorization
in CLIP, by considering both image and text representations, as we will detail in Section 3.

Memorization in CLIP. Even though CLIP is a widely used vision-language encoder, there has
been limited work on measuring memorization in CLIP. The only existing work (Jayaraman et al.,
2024) applies the empirical Déjà Vu memorization framework from (Meehan et al., 2023) to CLIP. It
measures memorization by computing the overlap between unique objects in potentially memorized
images and their nearest neighbors—identified in the CLIP embedding space—from a public dataset.
However, the reliance on external public data from the same distribution, along with the required
accuracy of the object detection (which may not perform well for all samples, especially atypical
ones (Kumar et al., 2023; Dhamija et al., 2020), limits the applicability of this approach. We further
expand on this in Appendix A.1. In contrast, our CLIPMem operates directly on CLIP’s output
representations and returns a joint score over both modalities.
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3 DEFINING MEMORIZATION OVER MULTI-MODAL ENCODERS

3.1 PROBLEM SETUP

Consider a single image-text pair (I, T ) from a dataset S and two CLIP models: a model f and a
reference model g, trained on dataset S and S′ = S \ {(I, T )}, respectively. We aim to quantify the
memorization of (I, T ) in f , trained on this data point, by leveraging model g not trained on the data
point but otherwise on the same data, in a leave-one-out style of defining memorization (Feldman,
2020). We denote the image encoder in CLIP as fimg : Image → Rd and the text encoder as
ftxt : Text → Rd. For the image-text pair (I , T ), we denote with fimg(I) the output representation of
f ’s image encoder on image I and with ftxt(T ) the output representation of f ’s text encoder on text
T . To evaluate the alignment between the image and text representations, i.e., to quantify how similar
the two representations are, we use cosine similarity sim(fimg(I), ftxt(T )), as defined in the original
CLIP paper (Radford et al., 2021).

3.2 ALIGNMENT WITH CONTRASTIVE OBJECTIVE

During training, the contrastive objective in CLIP maximizes the cosine similarity for correct image-
text pairs while minimizing the cosine similarity for all the other N − 1 incorrect pairs in any
given training mini-batch with N training samples. This means that for a given image I and text
T , the training objective pulls fimg(I) and ftxt(T ) closer together in the latent space, while pushing
fimg(I) away from the representations of all other N − 1 unrelated texts, and ftxt(T ) away from
all other images. Hence, the intuition is that the quality of alignment in f , unlike in uni-modal
self-supervised learning (Wang et al., 2024b), depends not only on the model’s ability to create
well-aligned text and image representations for a given text-image pair, but also on its ability to create
distant representations for the N − 1 other representations.

To formalize this intuition into a metric that quantifies the alignment of f on the image-text pair
(I, T ), we define T̂test as a set of N − 1 randomly chosen testing samples that were not used in
training f or g. Furthermore, when applicable, we denote random augmentations of the training
data—e.g., text augmentations in versions like LaCLIP (Fan et al., 2023)—as T ′ ∼ Aug(T ) for texts
and I ′ ∼ Aug(I) for images. Then, we define the alignment score of f on (I, T ) as

Aalign(f, I, T ) = E
(I′,T ′)∼Aug(I,T )

[sim(fimg(I
′), ftxt(T

′))]

− E
(_,t)∈T̂test

[sim(fimg(I), ftxt(t))]− E
(i,_)∈T̂test

[sim(fimg(i), ftxt(T ))] ,
(3)

where high scores indicate a better alignment of f on (I, T ). In case no text augmentations are
applied, as in standard CLIP training, the first term is calculated only over T .

3.3 DEFINING MEMORIZATION IN CLIP

Given our definition of alignment scores, we can define our CLIPMem in a similar vein to the
definition of memorization in supervised learning (Feldman, 2020), in the leave-one-out style. Given
the image-text pair (I, T ) from dataset S and two CLIP models, f and g, trained on dataset S and
S′ = S \ {(I, T )}, respectively, we define CLIPMem as

CLIPMem(I, T ) = Aalign(f, I, T )−Aalign(g, I, T ). (4)

If a model f has a significantly higher alignment score than model g on (I, T ), this means that f
memorizes this data point. Note that taking the difference between f and g is crucial to get a solid
estimate of memorization. This is because without "context", a high or low alignment score of f
does not express much information. The alignment of f can be high without memorizing (I, T ), for
example, if (I, T ) is a simple (but not memorized) training example. In this case, the reference model
g will also have a high score, such that the difference is again small. Thanks to this design of our
CLIPMem, it will then correctly report low memorization.
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4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETUP

Models and training. We build our experiments on OpenCLIP (Cherti et al., 2023), an open-
source Python version of Open-CLIP (Ilharco et al., 2021). The standard architecture used for the
experiments builds on ViT-Base, but we also include experiments using ViT-Large. We train the
model on the COCO dataset (Lin et al., 2014). Since COCO is much smaller than OpenCLIP’s
standard training datasets, we reduce the training batch size to 128 and increase the epoch number
from 32 to 100 to achieve similar performance. All other settings strictly follow OpenCLIP. For
training DINO, as an example of an SSL vision encoder, we follow the default setting of Caron et al.
(2021). The supervised model is trained as a multi-label classifier, also based on ViT-Base (with an
additional fully connection layer) based on the first-level annotation captions in the COCO dataset. A
full specification of our experimental setup is detailed in Appendix A.2. Additional experiments for
measuring memorization on the BLIP (Li et al., 2022) model are presented in Appendix A.6.

Datasets. We use COCO (Lin et al., 2014), CC3M (Sharma et al., 2018), and the
YFCC100M (Thomee et al., 2016a) datasets to pre-train the OpenCLIP models. For CC3M, we
randomly sample 75000 examples from 2.91M total. We evaluate the models based on linear probing
accuracy on ImageNet (Deng et al., 2009) with an added classification layer trained on top of the
output representations. We use YFCC100M to simulate an infinite data regime, i.e., using a single
training run where no data point is repeated whereas we train iteratively using CC3M and COCO.

Measuring memorization. We follow Wang et al. (2024b) to approximate our CLIPMem. Since
training a separate pair of models for every data point would be computationally intractable, we
measure memorization across multiple data points simultaneously. Therefore, we divide the training
set into four subsets: (1) SS , data points that both model f and g were trained on, (2) SC , data points
used only for training f , (3) SI , data points used only for training g, and (4) SE , external "test" data
points that none of the models was trained on. Note that |SC | = |SI |, such that f and g have the same
number of training data points in total. For our experiments, following a similar approach to Wang
et al. (2024b), we want to strike a balance when choosing the size of SC . If the size is too large, then
f and g might differ too much and not yield a strong memorization signal, but if it is too small, we
would only have a memorization signal for too few data points. Concretely, for COCO and CC3M,
we set |SS | = 65000 and |SC | = |SI | = |SE | = 5000. Memorization is reported as an average over
all data points in SC for model f , or per individual data point in SC .

Generating captions and images. To generate additional captions for the training images, we
use GPT-3.5-turbo. For each input image, we provide the representation produced by our trained
OpenCLIP model and ask GPT to generate five new captions. Generated sample captions are
presented in Figure 18. To generate additional images for the COCO dataset, we use Stable Diffusion
v1.5 to generate five new images, one corresponding to each of the five per-image captions in the
COCO dataset. Sample generated images are presented in Figure 17.

4.2 STUDYING MEMORIZATION USING CLIPMEM

We first analyze the general memorization in CLIP in order to identify which data points are
memorized. To do this, we quantify CLIPMem over the different training subsets. Our results are
presented in Figure 2a. In particular, we observe that CLIPMem for SC , the data points only used
to train model f , is significantly higher than for SS , the data points shared between the two models.
Memorization for SS is comparable to that for SE , i.e., the external data not seen during training,
indicating that f does not memorize these samples. The data in SI causes negative CLIPMem scores,
indicating that this data is memorized by g, not by f . This is the expected behavior according to the
definition of our metric. In Appendix A.4, we additionally highlight that memorization increases
with model size, i.e., CLIP based on ViT-Large has a higher overall memorization with an average of
0.457 while CLIP based on ViT-Base only reaches 0.438 on average.

Additionally, we analyze individual data points by their reported CLIPMem. We give examples of
highly memorized data points in Figure 1 and highly vs. little memorized samples in Figures 13,14,15,
and 16 in Appendix A.9. Overall, high CLIPMem samples seem to be difficult examples or examples
with imprecise or incorrect captions, whereas low CLIPMem samples are simpler and more precisely
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(a) Memorization scores across data subsets.

Clean SC Poisoned SC

Clean Model 0.438 N/A
Poisoned Model 0.440 0.586

(b) Average CLIPMem scores.

Figure 2: Memorization with CLIPMem. We train a CLIP model on COCO using standard image
cropping and no text augmentations. (a) We present memorization scores according to CLIPMem
per data subset. The significantly higher scores for SC compared to SS indicate that f memorizes
SC . (b) We also study how inserting training samples with imprecise or incorrect captions ("mis-
captioned") affects memorization. We refer to the model trained with correct captions as Clean Model,
and the model trained with SC containing 4500 standard canaries (Clean) and 500 mis-captioned
(Mis-captioned) as Poisoned Model. We report CLIPMem over the different subsets of candidates.
We observe that the mis-captioned samples experience a significantly higher memorization while the
memorization of the clean data points is (almost) not affected.
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(a) SSLMem (Img).
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(b) SSLMem (Text).
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(c) CLIPMem.

Figure 3: Measuring memorization on individual modalities is not able to extract a strong
signal. (a)–(b) We measure SSLMem (Wang et al., 2024b) on the individual encoders of our CLIP
model trained on COCO. (c) Our CLIPMem extracts a stronger memorization signal by using both
modalities in CLIP jointly.

captioned. In Appendix A.5, we show that these findings also hold when we operate in the infinite
data regime, i.e., when we perform only a single training run where no data point is repeated.

Motivated by this insight and findings from supervised learning, where models memorize random
labels (Zhang et al., 2016) and where mislabeled data experiences highest memorization (Feldman,
2020), we test if the same effect can also be observed in CLIP. We "poison" CLIP’s training data
by randomly shuffling the captions among 500 of 5000 candidate data points in SC , creating "mis-
captioned" data points. We train a model on this data and see that the mis-captioned examples
experience significantly higher memorization (CLIPMem of 0.586) compared to "clean" data points
(CLIPMem of 0.440). Despite CLIP’s contrastive training objective, memorization of clean data
points is not significantly affected by training the model with the mis-captioned examples, as we can
see by their CLIPMem that is 0.438 on the clean model and 0.440 on the poisoned model.

4.3 MEASURING MEMORIZATION IN ONE MODALITY DOES NOT YIELD A STRONG SIGNAL

To assess the importance of considering both modalities in our definition of CLIPMem, we evaluate
whether existing uni-modal encoder memorization metrics (Wang et al., 2024b) yield a sufficiently
strong memorization signal in CLIP. Therefore, we apply SSLMem independently to CLIP’s vision
and text encoders. Since SSLMem relies on augmentations of the encoder input, we use image crops,
like during CLIP training for the vision encoder, and the 5 COCO captions as augmentations for the
text, like in (Fan et al., 2023). Our results in Figure 3 show that SSLMem and its naive adaptation to
CLIP fail to yield a strong memorization signal. In particular, there is a high overlap in scores between
the non-memorized samples from SS , and candidate examples for memorization SC . Additionally,
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the highest reported memorization scores for SC go up to around 0.65 (for SSLMem on the vision
encoder) and 0.73 (for SSLMem on the text encoder). In contrast, our new CLIPMem is able to get a
distinct signal for the candidates SC with respect to SS and reports a much higher memorization of
0.91. Thereby, our CLIPMem prevents under-reporting the actual memorization in CLIP.

4.4 MEMORIZATION BETWEEN MODALITIES

Our results in Figure 3 indicate that memorization is higher in CLIP’s text encoder than in the image
encoder (the average SSLMem on SC in the text encoder is 0.209 vs. 0.168 in the image encoder).
To provide further insights into how memorization behaves between the modalities in CLIP, we
first analyze the use of augmentations. We compare five cases: (1) no additional augmentations
beyond the baseline (image cropping), (2) generating one image using a diffusion model for a given
original caption, (3) generating five variations of each image using a diffusion model and randomly
selecting one for each training iteration while keeping the caption fixed, (4) using the original image
but randomly selecting one of the five COCO captions for each training iteration, and (5) randomly
pairing each of the five generated images with one of the five COCO captions.

Table 1: Impact of augmentations.

Case CLIPMem Lin. Prob. Acc. (ImageNet)

1 Image, 1 Caption 0.438 63.11% ± 0.91%
1 Image (generated), 1 Caption 0.428 63.97% ± 0.79%
5 Images (generated), 1 Caption 0.424 64.60% ± 0.82%

1 Image, 5 Captions 0.423 64.88% ± 0.83%
5 Images (generated), 5 Captions 0.417 64.79% ± 0.99%

As shown in Figure 14, there is quite a variabil-
ity in the COCO captions for the same sample.
Hence, some images might not fit well with the
chosen training caption. This imprecise caption-
ing can cause an increase in memorization. We
observe that the effect is mitigated when using
the 5 images with the 5 captions (5th case, see
Table 1). This phenomenon results most likely from the increased number of possible image-text
pairs (25), such that individual incorrect or imprecise pairs are not seen so often during training. For
the third case, i.e., row three in Table 1, we generate five images with a diffusion model based on all
five captions per image from the COCO dataset. However, as we only use the first caption during
training, this would introduce many mis-captioned images which significantly lowers performance
and increases memorization. To avoid this problem, we removed 6000 mis-captioned samples.

Our results in Table 1 highlight that augmenting text during training reduces memorization and
increases performance more than augmenting images. However, applying augmentations of both
text and images strikes the right balance between the reduction in memorization and the increase in
performance. In fact, applying both augmentations reduces memorization most significantly. These
results indicate that memorization in CLIP’s is tightly coupled to the captions assigned to the training
images with imprecise captions having a destructive effect on CLIP performance and memorization.

4.5 RELATION TO CLIP MEMORIZATION TO (SELF-)SUPERVISED MEMORIZATION

We further provide insights on whether CLIP’s memorization behavior is more alike to the one of
supervised learning or SSL. This question is highly interesting since the captions in CLIP can be
considered as a form of labels, like in supervised learning, whereas the contrastive training objective
on the dataset resembles more SSL. We perform two experiments to gain a better understanding of
the memorization behavior of CLIP with respect to supervised learning and SSL.

First, we compare an SSL vision encoder pair f and g with the same architecture as CLIP’s vision
encoder but trained from scratch on COCO using DINO, i.e., standard SSL training. We train f and g
using the same candidates as the pair of CLIP models in our previous experiments. Then, we use the
SSLMem metric from Wang et al. (2024b) to quantify memorization in the CLIP vision encoder and
the SSL encoder, respectively. The CLIP vision encoder has a significantly lower SSLMem than the
SSL encoder (0.209 vs. 0.279). Hence, CLIP vision encoders experience lower SSL memorization
than SSL trained encoders. To further investigate the difference, we also report the overlap between
the top 10% memorized samples between the two models, measured according to SSLMem. With an
overlap of only 47 out of 500 (9.4%) samples, we find that CLIP memorizes significantly different
samples than SSL encoders. Wang et al. (2024b) had performed a similar experiment on SSL vs.
supervised learning and found that the two paradigms also lead to different samples being memorized.
While this is, on the one hand, an effect of the different objective function, the difference between the
memorized samples in CLIP and SSL is likely also closely connected to the additional captions that
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(a) Different numbers of captions.
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(b) Noising text embedding during training.

Figure 5: Mitigating memorization in CLIP improves downstream generalization. We train CLIP
models with different "augmentations" in the textual domain. (a) We use multiple captions per image.
(b) We directly noise the text embeddings using Gaussian noise with a mean of 0 and different standard
deviations (adding N (0, 0.15) achieves the optimal balance of smallest memorization and highest
performance). Both strategies successfully reduce memorization while improving performance.

CLIP takes into account. While SSL-trained encoders can memorize atypical images, CLIP encoders
can memorize typical images when they have an atypical, imprecise, or incorrect caption.
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Figure 4: UnitMem metric: CLIP is
between supervised and SSL models.

Additionally, we compare the memorization behavior of
CLIP at the neuron level against supervised and SSL-
trained models. To do so, we train two ViT-Base models on
COCO using supervised and SSL (DINO) training. Then,
we apply the UnitMem metric (Wang et al., 2024a) to mea-
sure how much individual neurons memorize individual
samples from the training data. High UnitMem indicates
neurons memorizing individual data points rather than
groups/classes of points. Prior work found that supervised
learning results in low UnitMem in lower-layer neurons,
indicating group-based learning, while later-layer neurons
highly memorize individual data points. In contrast, SSL
maintains relatively constant UnitMem, with lower-layer neurons also memorizing individual data
points. This difference was attributed to objective functions: supervised learning’s cross-entry loss
pulls same-class data points together, while SSL’s contrastive loss pushes individual data points apart.
(Wang et al., 2024a). Our results (Figure 4) reveal that CLIP’s memorization behavior falls between
supervised learning and SSL. In lower layers, it is much less selective than SSL, i.e., it focuses on
groups rather than individual data points, similar to supervised learning. Yet, in later layers, CLIP
becomes more selective than SSL, i.e., it memorizes individual data points more in individual neurons,
though still less than supervised learning, which exhibits a much higher average per-layer UnitMem.
We present additional insights on how memorization evolves over training in Appendix A.7.

4.6 MITIGATING MEMORIZATION WHILE MAINTAINING GENERALIZATION

Experiments in Table 1 suggest that augmentations during training can improve generalization while
also reducing memorization. This is an unexpected synergy, since generalization was shown to decline
when memorization decreases, in both supervised learning (Feldman, 2020) and SSL (Wang et al.,
2024b). To further study how mitigating memorization affects CLIP’s downstream generalization, we
explore two orthogonal strategies for "augmenting" text, first in the input space and second in the
embedding space. Additionally, we analyze the effect of removing memorized samples from training.

Multiple captions. We vary the number of captions used during training and report memorization
and downstream performance in Figure 5a. We find that using more captions during training
reduces memorization while improving linear probing accuracy. Our results in Table 3 highlight
that using all captions equally often enhances utility without significantly affecting memorization.
Since not all dataset have multiple captions, we explore generating them with a language model.
Table 7 shows that training CLIP with GPT3.5-generated captions yields extremely similar results
in utility and memorization, making this strategy widely applicable. Our findings that modifying
text during training can reduce memorization align with Jayaraman et al. (2024), who proposed text
randomization, i.e., masking out a fraction of tokens during training as a mitigation for their Déjà Vu
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(a) CLIP trained on COCO.
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(b) CLIP trained on CC3M.

Figure 6: Removing memorized samples according to CLIPMem has a stronger influence on
the linear probing accuracy than removing random data points. Removing the mislabeled
samples based on CLIPMem improves the performance significantly, followed by a sharper drop
when removing atypical samples.
memorization. However, unlike our GPT3.5-generated captions, this method reduces performance,
likely due to the greater distribution shift introduced by masked tokens.

Noising the text embedding during training. To avoid any inherent distribution shifts, we propose
applying "augmentations" directly in the embedding space. Specifically, we add small Gaussian noise
to text embeddings before computing cosine similarity for contrastive loss. As shown in Figure 5b and
Table 8, this strategy is effectively reduces memorization while improving downstream generalization.

Removing memorized samples. Finally, we investigate the effect of removing memorized samples on
downstream performance. After training a CLIP model, we identify and remove the most memorized
data points, then retrain on the remaining data points. We compare this to two baselines, where we
either randomly remove samples or filter out the samples with the lowest CLIP similarity between
the training data points’ two modalities. We showcase the effect on the downstream linear probing
accuracy on ImageNet in Figure 6 with CLIP models trained on COCO and on the CCM3 dataset.
For the COCO dataset, when removing up to 100 most memorized data points, we first observe
a sharp increase in downstream performance in comparison to removing random samples. Then,
downstream performance starts dropping significantly more when removing memorized instead of
random samples, until a cutoff point is reached (400-800 removed samples), where further removal
based on memorization results in worse performance. For the CC3M dataset, this cutoff occurs later
(1,600-3,200 removed samples). While filtering by CLIP similarity also improves performance, it is
not as effective as CLIPMem, emphasizing the value of considering memorization as a lens to identify
noisy samples. This finding is significantly different than for supervised learning and SSL, where
removing highly memorized samples constantly harms performance more than the removal of random
samples (Feldman, 2020; Wang et al., 2024b). We hypothesize that the effect observed in CLIP might
result from the distinction between "mis-captioned" and atypical samples, where the former harms
generalization while the latter helps the model learn from smaller sub-populations (Feldman, 2020).
We empirically support this hypothesis in Appendix A.3.1. Our finding that CLIP generalization can
be improved by identifying inaccurately captioned data points using our CLIPMem and removing
them from training is of high practical impact, given that state-of-the-art CLIP models are trained on
large, uncurated datasets sourced from the internet with no guarantees regarding the correctness of
the text-image pairs. Overall, our results suggest that CLIPMem can help reduce memorization in
CLIP while improving downstream generalization.

5 CONCLUSION

We presented CLIPMem, a formal measure to capture memorization in multi-modal models, such as
CLIP. By not only quantifying memorization but also identifying which data points are memorized
and why, we provide deeper insights into the underlying mechanisms of CLIP. Our findings highlight
that memorization behavior of CLIP models falls between that of supervised and self-supervised
models. In particular, CLIP highly memorizes data points with incorrect and imprecise captions,
much like supervised models memorize mislabeled samples, but it also memorizes atypical examples.
Furthermore, we find that memorization in CLIP happens mainly within the text encoder, which
motivates instantiating mitigation strategies there. By doing so, we can not only reduce memorization
in CLIP but also improve downstream generalization, a result that challenges the typical trade-offs
seen in both supervised and self-supervised learning.
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A APPENDIX

A.1 EXTENDED BACKGROUND

Déjà Vu Memorization in CLIP. The Déjà Vu memorization framework (Jayaraman et al., 2024)
is the only existing other work that attempts to quantify memorization in vision-language models.
It uses the text embedding of a training image caption to retrieve relevant images from a public
dataset of images. It then measures the fraction of ground-truth objects from the original image
that are present in the retrieved images. If the training pair is memorized, retrieved images have
a higher overlap in ground truth objects, beyond the simple correlation. While valuable, several
aspects warrant further consideration for broader applicability of the framework. First, its focus
on object-level memorization ignores non-object information like spatial relationships or visual
patterns that can also influence memorization (Feldman, 2020; Wang et al., 2024b). To perform object
retrieval, the framework also relies on object detection and annotation tools, which may introduce
variability based on the accuracy and robustness of these tools. Additionally, the assumption that
public datasets with similar distributions to the training data are readily available may not always
hold, necessitating alternative approaches. Moreover, the framework does not analyze why certain
images are memorized limiting detailed analysis. Finally, while Déjà Vu must address the challenge
of distinguishing between memorization and spurious correlations, CLIPMem avoids this by directly
assessing memorization on the output representations of the model. One notable difference between
the results of our approach and Déjà Vu’s is that their findings show that their mitigation strategies
can reduce memorization, but at the cost of decreased model utility. CLIPMem, in contrast, does not
observe trade-offs between memorization and performance.

A.2 EXTENDED EXPERIMENTAL SETUP

General Setup. All the experiments in the paper are done on a server with 4 A100 (80 GB) GPUs
and a work station with one RTX 4090 GPU(24 GB). We detail the setup for our model training, both
CLIP and SSL (relying on DINO) in Table 2.

Table 2: Experimental Setup. We provide details on our setup for encoder training and evaluation.

Model Training Linear Probing

CLIP DINO Supervised ViT CLIP DINO Supervised ViT

Training Epoch 100 300 100 45 45 45
Warm-up Epoch 5 30 5 5 5 5

Batch Size 128 1024 128 4096 4096 4096
Optimizer Adam AdamW Adam LARS LARS LARS

Learning rate 1.2e-3 2e-3 1e-3 1.6 1.6 1.6
Learning rate Schedule Cos. Decay Cos. Decay Cos. Decay Cos. Decay Cos. Decay Cos. Decay

Experimental Setup for SSLMem. To experimentally evaluate memorization using the SSLMem
framework (Wang et al., 2024b), the training dataset S is split into four sets: shared set (SS) used for
training both encoders f and g; candidate set (SC ) used only for training encoder f ; independent set
(SI ) data used only for training encoder g; and an additional extra set (SI ) from the test set not used
for training either f or g. For training encoders, encoder f is trained on SS ∪ SC , while encoder g is
trained on SS ∪SI . The alignment losses Lalign(f, x) and Lalign(g, x) are computed for both encoders,
and the memorization score m(x) for each data point is derived as the difference between these
alignment losses, normalized to a range between −1 and 1. A score of 0 indicates no memorization,
+1 indicates the strongest memorization by f , and −1 indicates the strongest memorization by g.

Normalization on CLIPMem. For improved interpretability, we normalize our CLIPMem scores to
a range of [−1, 1]. A memorization score of 0 indicates no memorization, +1 indicates the strongest
memorization on CLIP model f, and −1 indicates the strongest memorization on CLIP model g. We
find the normalized CLIPMem score for a dataset using the following process: For each image-text
pair (I, T ), we first calculate the CLIPMem score as the difference in alignment scores between two
CLIP models f and g. Once CLIPMem scores are computed for all data points, we normalize them
by dividing each score by the range, which is the difference between the maximum and minimum
scores in the dataset. Finally, we report the normalized CLIPMem score for a dataset as the average
of these normalized values.
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Figure 7: Removing memorized samples. We show the effect on downstream performance in terms
of ImageNet linear probing accuracy and CLIPMem for a CLIP model trained on COCO using 5 text
captions instead of 1, like done in Figure 6. We observe the same trend, with the difference that the
peak is at roughly 500 removed samples rather than 100. This is likely due to the increase in captions
(by factor 5) that causes increase in mis-captioned samples.
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Figure 8: Removing memorized samples in supervised learning. We train a ViT-tiny on CI-
FAR10 (Krizhevsky et al., 2009) using supervised learning. We use our evaluation setup with SC , SS ,
SI , and SE to approximate the memorization metric from Feldman (2020). We use 5000 samples in
SC , but before training, we flip the labels of 200 samples. We calculate memorization over all samples
in SC and test the linear probing accuracy with ImageNet resized to 32*32 on the representations
output before the original classification layer.

A.3 ADDITIONAL EXPERIMENTS

A.3.1 MEMORIZATION VS. GENERALIZATION IN CLIP

Extending evaluation. In Figure 7, we perform the same experiment as in Figure 6, but on a CLIP
model trained with 5 captions instead of 1. We observe the same trend, with the difference that the
peak is at roughly 500 removed samples rather than 100. This is likely due to the increase in captions
(by factor 5) that causes increase in mis-captioned samples.

Verifying the hypothesis on memorizing mis-captioned samples through supervised learning.
We repeat the same experiment in the supervised learning setup to understand where the increase
and then decrease in linear probing accuracy stems from. To test our hypothesis that it stems from
"mis-captioned" samples, we "poison" our supervised model by flipping the labels of 200 data points
before training. Then, we approximate the memorization metric from Feldman (2020) in our setup
and remove highly memorized vs. random data points. In the same vein as in Appendix A.3.1, we
first observe an increase in linear probing accuracy when removing memorized samples (instead of
random samples). The peak is at roughly 200 data points, i.e., the number of deliberately mislabeled
samples. Until the cutoff point at roughly 3200 examples, linear probing accuracy is still higher when
removing most memorized rather than random samples, which might suggest that there are other
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Table 3: Using different/multiple captions during training. We evaluate CLIPMem how mem-
orization on different data subsets and linear probing accuracy on ImageNet differ when using 1
caption (baseline), 5 COCO captions, one chosen at random at every round (random), and 5 COCO
captions, but all chosen equally often, i.e., 20 out of 100 training epochs (balanced). We observe that
increasing the number of captions reduces highest memorization. Yet, only when we balance the
usage of caption, also model performance increases.

baseline random balanced

Avg. CLIPMem (Top 10 samples) 0.792 0.788 0.790
Avg. CLIPMem (Top 20%) 0.552 0.531 0.540

Linear Probing Acc. 63.11% ± 0.91% 62.44% ± 1.18% 64.88% ± 0.83%

Table 4: The CLIPMem and linear probing accuracy of model trained with original coco
captions and captions generated by GPT3.5. For ’Single Caption’, only one caption is used during
training. For ’Five Caption’, all five caption are used equally during training (every caption trained
for 20 epoch out of 100). The linear probing accuracy is tested on ImageNet

COCO GPT3.5
Single Caption Five Caption Single Caption Five Caption

CLIPMem 0.438 0.423 0.430 0.411
LP. Acc. 63.11% ± 0.91% 64.88% ± 0.83% 63.09% ± 1.12% 64.47 ± 0.72%

outliers or inherently mislabeled samples whose removal improves model performance. After the
cutoff, we observe the behavior as observed in prior work (Wang et al., 2024b; Feldman, 2020) that
reducing memorization harms generalization more than reducing random data points from training.

A.3.2 THE EFFECT OF CAPTIONS

In Table 3, we show that using more captions during training reduces memorization and that by using
each caption at the same frequency over the training epochs, we can additionally improve model
performance. Additionally, we show that captions generated by GPT3.5 have the same effect as the
original COCO captions on memorization and linear probing accuracy in Table 4.

A.4 THE EFFECT OF MODEL SIZE

In Table 5, we present how the model size affects the memorization level of CLIP models. Both
models are trained using the same dataset and settings. We observe that with more parameters (larger
model size), encoders have higher memorization capacity. This aligns with findings from previous
research (Wang et al., 2024b; Feldman, 2020; Meehan et al., 2023).

A.5 VERIFICATION OF INFINITE DATA REGIMES

To evaluate CLIPMem over infinite data regimes (i.e., using a single training run where no data
point is repeated), we use a subset D (containing 7050000 samples) of YFCC100M dataset (Thomee
et al., 2016b) to train another pair of ViT-Base models for only 1 epoch. Following our definition
of CLIPMem, we further divide D into SS with 6950000 samples, SC with 50000 samples, and SI

with 50000 samples. The reason we use 7M (6950000+50000) samples to train either model f or
model g is to make sure the newly trained model has the same number of training samples as the
model trained with K-epoch runs (70000 samples/epoch * 100 epoch). The results in Table 6 show
that the model trained with infinite data regimes has higher linear probing accuracy on ImageNet as a
downstream task and lower memorization scores, as measured by CLIPMem. This aligns with the
fact that duplicated data points increase the memorization level and make the model over-fit, hence
reducing the generalization (Wang et al., 2024b; Feldman, 2020). The results in Figure 9 show that
the most memorized samples according to CLIPMem in the model trained with infinite data regimes
are also samples with imprecise or incorrect captions. This aligns with our statements in Section 4.5.
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Table 5: CLIPMem and linear probing accuracy of models with different sizes. The models are
trained using identical settings and the same subset of the COCO dataset. Linear probing accuracy is
tested on the ImageNet dataset as the downstream task.

Model CLIPMem Lin. Prob. Acc. (ImageNet)

ViT-base (Baseline in main paper) 0.438 63.11% ± 0.91%
ViT-large 0.457 67.04% ± 1.05%

Series taken during heritage surveys in 2007. 
I have not had time to develop individual 
captions for these, however happy to 
provide some comment if required.

Cumbres and Toltec Scenic Railroad, historical 
narrow gauge railroad between Chama, New 
Mexico, and Antonito, Colorado. These photos 
are from the station and railyard in Chama.

Day Four set here. Entire Japan collection here.

Natural Bridge & Rockshelter Wisconsin State 
Natural Area #105 Natural Bridge State Park 
Sauk County

Mountain Empire Filed Trip - Bristol, TN, 
and environs Photo by Amy C. Evans, SFA 
oral historian June 2009 
www.southernfoodways.org

Photo By Terri Hodges 
www.craftingthegalaxy.com Useage is 
Creative Commons but credit is required

Mellwood Art Center in Louisville, 
KY (1-27-06)

-- Lisa Brewster Sent from my Palm Pre

At Hellfest with After Forever

On the way to visit Western 
Kentucky University (9/20/08)

Figure 9: Top 10 memorized samples according to CLIPMem in the model trained under infinite
data regimes on YFCC100M. The model is trained for one epoch, i.e., seeing each training data
point exactly once. Even in this setup, the most memorized samples are still the ones with imprecise
or incorrect captions.

A.6 EVALUATION ON BLIP

To verify the effectiveness of CLIPMem over other similar multi-modal models, we train a BLIP
model on COCO dataset following the same settings as the baseline model in the main paper. We
present the results for CLIPMem over all 4 data subsets in Figure 10, which is in agreement with
the results of the CLIP model in Figure 2a. We also present the UnitMem results for BLIP model in
Figure 4, which is also very similar to the result of CLIP models

A.7 MEMORIZATION DISTRIBUTION DURING TRAINING

We present the distributions of neurons with highest UnitMem during training in Figure 11. These
results highly consistently indicate that in the early stages of training, neuronal memory occurs mainly
in the lower layer of the clip model, while in the middle and later stages of training, neuronal memory
is more concentrated in the later layer of the model.

A.8 HUMAN VS MACHINE GENERATED CAPTIONS

For each image in the COCO dataset, we use GPT 3.5 (specifically, gpt-3.5-turbo) to generate 5
captions (from scratch). We use the following instruction in the OpenAI API:

def generate_description_for_image(image_caption, clip_features):
prompt = f"Here is an image with the caption: ’{image_caption}’. "
prompt += f"Based on this caption and the visual features
represented by this embedding ’{clip_features}’,
please generate a new detailed description."
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Table 6: Evaluation of CLIPMem under infinite data regimes, i.e., seeing every data point only
once during training vs training with 100 epochs. We observe that both setups reach comparable
downstream accuracy and memorization.

Model CLIPMem Lin. Prob. Acc. (ImageNet)

ViT-Base (YFCC 7M, 1 epoch) 0.425 64.83% ± 1.04%
ViT-Base (COCO 70K, 100 epochs) 0.438 63.11% ± 0.91%

1.00 0.75 0.50 0.250.00 0.25 0.50 0.75 1.00

CLIPMem for BLIP

0
100
200
300
400
500
600
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Figure 10: Memorization scores across data subsets on BLIP models. We train a BLIP model on
COCO standard image cropping and no text augmentation. We present the results for CLIPMem over
all four data subsets, which is in agreement with the results of the CLIP model in Figure 2a.

response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[

{"role": "system", "content": "You are a helpful
assistant that generates captions for images."},
{"role": "user", "content": prompt}

]
)
return response[’choices’][0][’message’][’content’]

We present the obtained captions in Figure 18. In Figure 12b, we analyze the pairwise cosine
similarity in the original COCO and the GPT3.5 generated captions. We find that the GPT3.5
generated captions are slightly more uniform than the original COCO captions, reflecting in a higher
pairwise cosine similarity.

A.9 EXAMPLES FOR MEMORIZED SAMPLES
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(a) Top 1% neurons
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(b) Top 3% neurons
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(c) Top 5% neurons

Figure 11: Distribution of top 1%, 3%, and 5% neurons with highest UnitMem during training.
We train a CLIP model on COCO standard image cropping and no text augmentation following
the settings of baseline model in main paper. We record the neurons with top 1%, 3%, and 5% of
highest UnitMem during training (every epoch). We observe that while during early training stages,
memorization focuses on lower layers, during later stages of training, it is mainly in the last layers.
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Table 7: The machine generated captions provide similar performance to the original human-
generated captions. We report the CLIPMem and linear probing accuracy of model trained with
original COCO captions and captions generated by GPT 3.5. For the ’Single Caption’, only a
single caption is used during training. For ’Five Captions’, all five captions are used equally during
training (every caption trained for 20 epochs out of 100). The linear probing accuracy is tested on the
ImageNet dataset as the downstream task.

COCO GPT 3.5
Single Caption Five Captions Single Caption Five Captions

CLIPMem 0.438 0.423 0.430 0.411
Linear Probing Accuracy (ImageNet) 63.11% ± 0.91% 64.88% ± 0.83% 63.09% ± 1.12% 64.47 ± 0.72%
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Figure 12: Pairwise cosine similarity of 5 captions from COCO and generated by GPT3.5.

Noise CLIPMem Lin. Prob. Acc. (ImageNet)

None 0.438 63.11% ± 0.91%
N (0.01) 0.435 63.36% ± 0.88%
N (0.05) 0.428 64.02% ± 1.12%
N (0.10) 0.421 64.95% ± 0.96%
N (0.15) 0.417 65.34% ± 0.84%
N (0.20) 0.422 64.83% ± 0.92%
N (0.25) 0.436 63.28% ± 0.79%
N (0.30) 0.447 61.50% ± 0.86%
N (0.50) 0.491 57.04% ± 1.11%
N (0.75) 0.501 52.28% ± 0.98%
N (1.00) 0.504 51.92% ± 1.03%

Table 8: Noising text embedding during training. We present the impact of adding noise to the text
embedding during training for the ViT-base trained on COCO.
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Caption 1: Two vases that match in color sitting side by side.
Caption 2: A pair of very nice urns sitting on the floor.
Caption 3: a face with some kind of plant growing out of it.
Caption 4: Separate vases, one is empty, while the other has green flowers. 
Caption 5: Blue and black glazed jars with one holding a plant.

Caption 1: A flock of birds are flying through the sky.
Caption 2: A large flock of birds flying high up in the air.
Caption 3: Many birds fly over houses while the sun is setting.
Caption 4: a flock of birds flying outside at sunset
Caption 5: A large flock of big birds flying away to roost

Caption 1: Several people are on the beach flying kites.
Caption 2: A group of people with kites on a beach.
Caption 3: A group of people fly large kites on a beach.
Caption 4: A beech full of people with lots of parachutes overhead.
Caption 5: Several people are at the beach walking and flying kites.

Caption 1: A dog sleeping in a dog bed on a floor.
Caption 2: A DOG IS DRESS TO SLEEP IN THE DOG BED
Caption 3: A dog is in a bed that matches his shirt.
Caption 4: A small dog in a basket that has a blanket that matches the 
dogs clothing it is dressed in.
Caption 5: a dog is getting ready to lay down in his dog bed

Caption 1: A large object floating in a lake next to a shore.
Caption 2: An elephant hangs out in a body of water.
Caption 3: A elephant walking a deep water to the other side
Caption 4: The elephant wades through very deep, calm waters.
Caption 5: A large black object is in the middle of some water.

Caption 1: A close up of a wrist watch with focus on the date.
Caption 2: a watch saying it is friday the 13th
Caption 3: a close up of a clock and a date 
Caption 4: The object in the photo seems to be intriguing. 
Caption 5: A polished metal watch, seen close up, with the date Friday the 13th inset.

Caption 1: A street sign that says C have you paid?
Caption 2: A street scene with focus on a sign on a pole.
Caption 3: A sign says Have you paid and has a C on it.
Caption 4: A street sign that is asking if you have paid.
Caption 5: A parking sign on the sidewalk next to a line of parked cars.

Caption 1: A brown bear investigating something on top of a rock.
Caption 2: a big brown bear drinks water from a lake
Caption 3: A bear that is looking at some water.
Caption 4: A large brown bear peering into the water at the edge of a stream.
Caption 5: A brown bear is looking into the water.

Caption 1: Young children on snowy area of alpine region.
Caption 2: Two kids are on skis at the top of a slope.
Caption 3: Two people in ski gear with a mountain in the background.
Caption 4: Two people who are wearing snow skis on snow.
Caption 5: Two boys are skiing in snow in front of a mountain.

Caption 1: Laptop computer sitting on a desk with a black mouse on the table.
Caption 2: A laptop sitting on a table near a mouse.
Caption 3: A laptop sitting on a table with a mouse beside of it.
Caption 4: A laptop computer sitting next to a computer mouse.
Caption 5: The laptop and mouse sits upon the desk with one other item.

Figure 13: The 10 samples with lowest CLIPMem in the CLIP model trained with all 5 captions.
We can see that these samples contain clear concepts and precise captions.

Caption 1: A skateboarder looking down at his feet while skating.
Caption 2: A skateboarder is moving swiftly down the street.
Caption 3: A person in a  yellow shirt, jeans and sneakers on a skateboard
Caption 4: There is a person riding a skateboard 
Caption 5: First person view of a person riding a skate board.

Caption 1: A sculpture made up of several traffic lights. 
Caption 2: A pole with many traffic lights on a street.
Caption 3: A traffic light monstrosity sitting in the middle of a road.
Caption 4: A traffic light tree sculpture in the middle of an intersection
Caption 5: a pole with many different traffic lights on a city street

Caption 1: A car driving down a street in the pouring rain at night.
Caption 2: It is snowing as the cars drive down the street.
Caption 3: Night time city scene with now coming down at a traffic intersection.
Caption 4: An intersection on a snowy night with several street lamps
Caption 5: a city scene of a streetlights and cars in snow

Caption 1: A collection of assorted  farm animal photos 
Caption 2: Farm pictures of ponies, chickens, sheep and goats.
Caption 3: A composite of photos of a farm, including chickens, horses, and sheep.
Caption 4: Farm animals, horses, sheep, and chickens, pose for the camera.
Caption 5: Numerous images of farm animals including horses sheep 
goats chickens and a person at a petting zoo

Caption 1: A setup for ubuntu the operating system, with a man at a desk.
Caption 2: A basement office houses tech support for Ubuntu.
Caption 3: Man working on a laptop at a wooden table.
Caption 4: A man sitting at a table in a building.
Caption 5: a man sits at a desk next to some computers 

Caption 1: A car driving down a street in the pouring rain at night.
Caption 2: It is snowing as the cars drive down the street.
Caption 3: Night time city scene with now coming down at 
a traffic intersection.
Caption 4: An intersection on a snowy night with several street lamps
Caption 5: a city scene of a streetlights and cars in snow

Caption 1: a man sitting on a wooden bench in a field full of snow
Caption 2: A man taking a nap on a park bench on a sunny day.
Caption 3: A man sitting on top of a park bench.
Caption 4: a bench with a man that is sitting on it
Caption 5: A man rests on a bench in a snowy park

Caption 1: A bunch of stuffed animals in a room.
Caption 2: Teddy bears and hats for sale in a flea market booth.
Caption 3: there are many stuffed animals that are hanging at the top
Caption 4: Several teddy bears of different colors are being displayed.
Caption 5: We are looking at a display of prizes at a carnival game.

Caption 1: The wall of a bathroom is being torn down.
Caption 2: A view of a house with the walls being demolished. 
Caption 3: a partially demolished wall inside of a run down house.
Caption 4: A toilet in a room with a wall knocked out.
Caption 5: A demolished wall with a view inside a bathroom with a toilet.

Caption 1: The man is on the dirt bike practicing his tricks.
Caption 2: The image shows the stages of a biker jumping a ramp. 
Caption 3: A time lapse photo of a motorcycle stunt.
Caption 4: A man riding a motorcycle over a ramp under a blue sky.
Caption 5: There are many different people riding their motorcycles.

Figure 14: The 10 samples with highest CLIPMem in the CLIP model trained with all 5 captions.
We can see that these samples contain atypical, difficult samples with imprecise or incorrect captions.
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A girl in pink sweater putting a blue 
umbrella over a yellow fire hydrant.

Closeup of two street signs that read 
"Airport Pkwy" and "Karmill Ave."

A sign with Oriental writing and the 
words saying Hyatt on the Bund.

A pink Hello Kitty microwave on 
a store shelf.

A sign saying "Don't Honk, $350 
Penalty" on a pole.

A yellow and blue fire hydrant 
surrounded by leaves

A sign is displayed on a pole 
that says bump.

A man in maroon shirt standing 
next to a stainless steel refrigerator.

A group of artistic surfboards are 
displayed in a tent.

A blue street sign that reads "Thelonius 
Monk Circle."

Figure 15: The 10 samples with lowest CLIPMem in the CLIP model trained with 1 caption. We
can see that these samples contain clear concepts and precise captions.

An item of a vase with something 
inside of it.

two males and a female in a red top 
holding some flowers

A woman opening the trunk of her 
car.

a sleeping toddler laying on a womans 
shoulder 

An open point of view of a room 
with various things all around

A group of people standing on top 
of a field together.

a pole with some yellow lights in 
front of a narrow building

a parking lot with a bunch of cars 
in it

A person is taken in this very 
picture.

I am unable to see an image 
above

Figure 16: The 10 samples with highest CLIPMem in the CLIP model trained with 1 caption.
We can see that these samples contain atypical, difficult samples with imprecise or incorrect captions.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review at ICLR 2025 Workshop on Foundation Models in the Wild.

COCO Image COCO Caption

A group of people that are touching a animal.
A group of people walking through and petting a sheep.
A woman is petting a sheep that has been sheered.
A woman petting a sheep inside a pen at a fair. 
A sheep in a stall being pet by a woman.

Stable Diffusion Image

A man standing next to palm trees next to a bunch of 
surfboards.
A SURFING BOARD STAND WITH A PERSON STANDING 
NEAR BY.
A man standing in front of many surfboards at the beach.
A palm tree lined beach contains a large surf board rack, 
and people milling about. 
A group of people standing on the sands at the beach 

A tree filled with lots of lemons and green leaves.
large yellow fresh fruit tree wet from rain
Yellow apples hanging from a leafy tree. 
A close up of several oranges in a tree.
Several round, yellow fruits growing on a tree.

Figure 17: Samples of images generated by Stable Diffusion. We present the generated images
based on the COCO captions.

COCO Captions GPT3.5 Captions
three parrots sitting on a branch
three blue and yellow parrots sitting on a branch 
three blue and yellow parrots sitting on a tree branch 
a trio of parrots sitting on a tree branch 
a trio of parrots sitting on a branch

Three parrots sitting on a wooden branch next to each other.
Three brightly-colored parrots are interacting in a tree.
Three very colorful parrots perched on different sticks.
Three brightly colored birds on top of a cluster of branches. 
Three parrots sitting on branches and grooming their feathers. 

A dim bathroom with a light over the sink
A bathroom is dimly lit with a single bulb.
A dimly light bathroom with dark walls. 
A bathroom with a sink, mirror, and over head light.
A bathroom sink with a light hanging above. 

a bathroom with a sink and mirror in it 
a small bathroom with a sink and mirror 
a bathroom with a sink and a mirror 
a small bathroom with a sink and a mirror 
a bathroom with a sink and a mirror in it

The man is putting his bag on his shoulder as he walks away from the car.
A man in a peach colored shirt holding his luggage. 
A man carrying a large bag through a parking lot.
a man with a hand bag talk on a cell phone 
A talking on a cell phone, with a bag on his shoulder.

a man standing next to a car talking on a cell
a man standing in front of a car talking on a cell 
a man standing next to a car talking on a cell phone 
a man standing next to a parked car talking on a cell 
a man standing next to a car talking on the phone

The two giraffes stand facing away from each other next to the brown wall.
Two giraffes walking away from each other against a fence.
two giraffes walking opposite of each other 
A pair of two giraffes stand behind a line.
Two giraffes walking in opposite directions near a wall.

two giraffes standing next to each other  
two giraffes standing in front of a wooden fence 
A wood fence is behind two giraffes
two giraffes standing next to a wooden fence 
two giraffes standing in front of a fence

this is two cops riding on back of horses
Two uniformed personnel are riding horses in a crowd
a couple of people are riding on the back of horses
A man and woman that are sitting on horses.
Two police officers riding through a crowd on top of horses.

two police officers on horses 
two police officers riding horses 
two police officers sitting on horses
two police officers on horsebacks 
a couple of police officers on horses

Figure 18: Sample captions generated by GPT3.5. We present the generated captions and the
original image and captions from COCO.
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(a) SSLMem Image Encoder (1 caption)
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(b) SSLMem Image Encoder (5 captions)
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(c) SSLMem Text Encoder (1 caption)
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(d) SSLMem Text Encoder (5 captions)
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(e) CLIPMem
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(f) SSLMem, Naive Sum of SSLMem and CLIPMem

Figure 19: Evaluation of SSLMem and CLIPMem on a CLIP model trained on COCO. Extended
version of Figure 3 where we also include SSLMem calculated on encoders trained with 5 captions
instead of 1. The trends in both cases are the same. SSLMem for the CLIP Models trained with the 5
captions is slightly higher since SSLMem uses the captions as augmentations for the calculation of
the memorization. Overall, our CLIPMem reports the strongest memorization signal for CLIP.
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