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Abstract: While visuomotor policy learning has advanced robotic manipulation,
precisely executing contact-rich tasks remains challenging due to the limitations of
vision in reasoning about physical interactions. To address this, recent work has
sought to integrate tactile sensing into policy learning. However, many existing
approaches rely on optical tactile sensors that are either restricted to recognition
tasks or require complex dimensionality reduction steps for policy learning. In this
work, we explore learning policies with magnetic skin sensors, which are inher-
ently low-dimensional, highly sensitive, and inexpensive to integrate with robotic
platforms. To leverage these sensors effectively, we present the VISK framework,
a simple approach that uses a transformer-based policy and treats skin sensor data
as additional tokens alongside visual information. Evaluated on four complex
real-world tasks involving credit card swiping, plug insertion, USB insertion, and
bookshelf retrieval, VISK significantly outperforms both vision-only and optical
tactile sensing based policies. Further analysis reveals that combining tactile and vi-
sual modalities enhances policy performance and spatial generalization, achieving
an average improvement of 27.5% across tasks.

1 Introduction

Humans effortlessly perform precise manipulation tasks in their everyday lives, such as plugging in
charger cords, or swiping credit cards – activities that demand exact alignment and involve constrained
motion. These tasks are so commonplace that we often overlook the complexity involved in executing
them with the necessary accuracy. In contrast, much of the existing robot learning literature remains
focused on simple, low-precision primitives such as pick-and-place, slide, push-pull, and lift that
does not require such fine-grained spatial accuracy. As we strive to create robots capable of everyday
tasks like handling cables and opening jars, it is crucial to develop frameworks that enable precise,
contact-rich manipulation.
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Figure 1: VISK uses AnySkin with a
simple transformer-based architecture to
solve precise, contact-rich tasks.
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Figure 2: Robot setup used for experiments (left) and
VISK policy architecture (right).
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While the role of tactile feedback for robust execution of precise skills in humans is widely ac-
knowledged [1, 2], analogous capabilities in robotic policies have lagged behind their vision-based
counterparts. A variety of tactile sensors have been developed to bridge this gap in robotics, with
optical tactile sensors like Gelsight [3] and DIGIT [4] becoming popular choices in robot learning
due to their high resolution. This increased resolution has facilitated several impressive works in
areas like 3D reconstruction and localization [5, 6] and object recognition [7, 8]. In most cases,
the use of optical sensors necessitates dimensionality reduction through representation learning [4],
explicit state estimation [9, 10] or discretization [11, 12] to make it amenable to policy learning. This
observation prompts an investigation into using alternative tactile sensing modalities that naturally
offer lower-dimensional representations while still effectively capturing the essential characteristics
of physical contact.

In this work, we present Visuo-Skin (VISK), a simple framework for training precise robot policies
using skin-based tactile sensing. VISK uses a simple visuotactile policy architecture that incorporates
tactile signals from AnySkin [13], an affordable magnetic tactile sensor demonstrated to provide
spatially continuous, low-dimensional (15-dimensional) sensing while being replaceable, making it
well-suited for policy learning applications. The VISK policy builds upon the BAKU [14] architecture,
which enables policy learning across multiple camera views and tasks. Through VISK, we demon-
strate that simply incorporating a tactile token obtained from a tactile encoder into state-of-the-art
visual policy learning architectures enables effective visuotactile policy learning for precise real-world
manipulation tasks that require visual as well as tactile inputs for localization. Furthermore, using
a low-dimensional sensor like AnySkin allows policies to be learned end-to-end without requiring
any task-specific preprocessing [9, 10] of the tactile input or pretraining [4, 12]. To the best of our
knowledge, this work presents the first visuotactile framework enabling robots to perform precise
contact-rich manipulation skills with policies that generalize across spatial variations while requiring
a small number of robot demonstrations (< 200).

To demonstrate the effectiveness of VISK, we run extensive experiments on four precise manipulation
tasks using a real-world xArm robot - plug insertion, credit card swiping, USB insertion, and
bookshelf retrieval. Our main findings are summarized below:

1. Policies trained with VISK using skin-based tactile sensing exhibit an overall 27.5% absolute
improvement in performance compared to vision-only models across 4 precise manipulation tasks
(Section 3.1).

2. Policies trained with the AnySkin tactile sensor [13] outperform those using optical tactile sensors
such as DIGIT [4] by at least 43% on two real-world tasks, highlighting the benefits of skin-based
sensors for visuotactile policy learning (Section 3.2).

3. Through an ablation analysis, we study the impact of different modalities on policy learning,
particularly the difference between visual and visuotactile policies for precise manipulation
(Section C.3).

All of our datasets, code for training, and robot evaluation will be made publicly available. Robot
videos are best viewed at https://visuoskin.github.io/.

2 Visuo-Skin Policy Learning (VISK)

Two key considerations in designing a framework for visuotactile policy learning include the choice
of a tactile sensor capable of providing reliable tactile data across diverse environments and tasks, and
designing a neural architecture able to effectively leverage multimodal visual and tactile information.
Our proposed approach, VISK, addresses these in two ways. First, it employs AnySkin [13], a
skin-based magnetic tactile sensor shown to yield consistent tactile measurements reliably under
various conditions. Second, it builds upon state-of-the-art approaches to visual policy learning [14]
by incorporating a tactile encoding stream, allowing the network to profitably learn from multimodal
visuotactile data. Below, we describe each component of our method in detail.

2

https://visuoskin.github.io/


2.1 Data Collection

We use a VR-based teleoperation framework [15] employing the Meta Quest 3 headset to collect data
for our real-world xArm robot experiments. Visual data from 4 camera views, including an egocentric
camera attached to the robot gripper, is recorded at 30 Hz. Tactile data for the AnySkin experiments
is recorded as magnetometer signals at 100 Hz, while data from the DIGIT sensors in comparative
tests are recorded at 30 Hz, identical to the cameras. Drawing from prior work demonstrating the
benefits of adding noise to demonstrations for policy learning [16, 17], we add a uniformly sampled
angular perturbation to the direction of the commanded robot velocity during teleoperation. This
proves especially useful for increasing the diversity of contact-rich signals in the dataset by rendering
the tasks slightly more challenging for the human operator.

2.2 Policy Architecture

The VISK policy builds on top of BAKU [14], a state-of-the-art transformer-based policy learning
architecture that learns visual policies across multiple camera views (Figure 2). We encode the visual
inputs from cameras using using a modified ResNet-18 [18] visual encoder. Low-dimensional tactile
inputs from the AnySkin sensor are encoded with a two-layer multilayer perceptron (MLP). The
encoded representations for each modality are projected to the same dimensionality to facilitate
combining modalities in the observation trunk. Some of the comparisons in Section 3 use DIGIT
sensors and robot proprioception as inputs to the policy. In line with prior works [19, 20], tactile
images from the DIGIT sensor are encoded using the same ResNet-18 encoder as the visual data.
The encoded inputs from all modalities along with a learnable action token are passed through a
transformer decoder network [21]. A deterministic action head is used to predict the action from
the action feature. We follow prior work [14, 22, 23] and include action chunking and exponential
temporal smooting [22] to counteract the covariate shift often seen in the low-data imitation learning
regime. More details about the policy architecture have been provided in Appendix B.1.

3 Experiments

We study the effectiveness of the VISK framework in a policy learning setting using behavior cloning.
Our experiments are designed to answer the following questions:

• How does VISK perform on precise manipulation tasks?

• Does VISK’s use of AnySkin improve over DIGIT [4]?

Additional analysis about the effect of different input combinations on VISK, the generalization capa-
bilities of VISK, and the environment setup and task descriptions have been provided in Appendix C.

3.1 Performance of VISK policies

We evaluate the performance of VISK policies on the aforementioned precise manipulation tasks in
the real world. For each evaluation, we train policies across 3 random seeds and conduct 10 trials per
seed for a total of 30 trials. We report the aggregated success rate across seeds in Table 1, and find
that VISK policies consistently outperform other variations across tasks.

Additionally, we observe that VISK policies exhibit emergent seeking behavior. For instance, with
the plug insertion and USB insertion tasks, we find that the policy first gets close to the location of the
target (socket or port respectively), makes contact, and proceeds to move around as it tries to find the
target. This behavior is strong evidence of VISK policies effectively leveraging tactile information
from AnySkin. Further, it is distinctly different from the behavior of vision-only policies that simply
attempt to push downwards once close to the insertion location regardless of alignment.

Similarly, for the book retrieval task, policies without AnySkin either apply too little force causing the
book to flip back into the bookrack, or too much force causing the book to topple over entirely. VISK
policies apply a controlled downward force that enables them to pivot the book to an appropriate tilt,
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Table 1: Success rates (out of 10) averaged over three seeds for policies trained on four tasks: Plug
Insertion, USB Insertion, Card Swiping and Book Retrieval. VISK policies are highlighted in grey.

Tactile
Sensor

Input Modalities Policy performance

3rd Person
Camera

Wrist
Cameras

Robot
Proprio

Plug
Insertion

USB
Insertion

Card
Swiping

Book
Retrieval

None

✓ ✗ ✗ 0.0± 0.0 0.7± 0.6 3.3± 1.6 2.0± 1.0
✓ ✗ ✓ 0.0± 0.0 0.0± 0.0 3.0± 1.0 0.6± 0.5
✓ ✓ ✗ 3.6± 0.5 2.3± 2.0 1.3± 0.5 3.3± 1.1
✓ ✓ ✓ 1.0± 1.0 2.0± 1.0 3.0± 1.7 2.3± 1.5

✓ ✗ ✗ 2.3± 1.1 2.0± 1.0 7.0± 1.7 3.6± 2.5
✓ ✗ ✓ 1.3± 0.5 1.0± 1.0 2.6± 1.5 2.6± 0.5
✓ ✓ ✗ 6.6± 1.5 5.6± 1.5 1.0± 1.0 5.3± 2.0

AnySkin
(VISK)

✓ ✓ ✓ 3.6± 1.5 2.0± 1.0 3.0± 1.7 4.6± 2.0

DIGIT ✓ ✗ ✗ 2.3± 0.5 0.0± 0.0 N/A N/A
✓ ✓ ✗ 1.6± 1.5 0.3± 0.5 N/A N/A

followed by grasping and retrieval as shown in Fig. B.1. Further, for the book retrieval task, repeated
interaction with the sharp edges of the book caused the AnySkin to tear. All evaluations for this task
reported in Table 1 use a new instance of AnySkin. The sustained improvement of VISK policies
with new skins underscores the importance of using AnySkin to the VISK framework.

3.2 Comparison between AnySkin and DIGIT

To further demonstrate the effectiveness of AnySkin for precise manipulation tasks, we collect
demonstration datasets for two tasks from Section C.2 (Plug Insertion and USB Insertion) using
DIGIT sensors instead of AnySkin sensors. We keep the same policy architecture, except for the
tactile encoder, where we replace the MLP with a modified ResNet-18 encoder. We ensure the DIGIT
and AnySkin datasets are closely aligned, maintaining the same test positions. The results in Table 1
compare VISK using the skin-based AnySkin sensor with the optical DIGIT [4] sensor.

Our findings show that policies trained with AnySkin significantly outperform those trained with
DIGIT. This difference arises from DIGIT’s lower sensitivity, which hinders detection of small tactile
signals from contact with the object. Additionally, the higher dimensionality of DIGIT observations
may complicate learning a sensory encoder without overfitting. These experiments underscore the
superiority of AnySkin over optical sensors for visuotactile policy learning in precise tasks.

4 Conclusions

In this work, we presented Visuo-Skin (VISK), a simple yet effective framework that leverages low-
dimensional skin-based tactile sensing for visuotactile policy learning in the real world. Our results
demonstrate the efficacy of VISK across a diverse range of precise, contact-rich manipulation tasks.
We address a few limitations in this work: (a) While VISK shows significant improvements over
vision-only policies, the policy’s performance remains at approximately 60% across all tasks. This
suggests potential for further enhancement through fine-tuning the VISK policy using reinforcement
learning techniques. (b) Contrary to findings in prior studies, we observe that robot proprioception
did not contribute to improved policy learning performance in precise manipulation tasks. This
unexpected result warrants further investigation and presents an interesting direction for future
research. These limitations notwithstanding, we believe that VISK presents a signficant step in the
right direction for advancing visuotactile policy learning in robotics.
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A Related Work

A.1 Tactile sensing in Robotics

Most robotic tasks involve physical interaction with the environment. Tactile sensing is critical in
its ability to enable robots to reason about the physics of contact directly at the point of contact.
Over the years, a number of diverse transduction mechanisms have been explored for tactile sensing.
Resistive tactile sensors [24, 25, 26] are inexpensive and relatively easy to fabricate, and provide
discrete sensing making them well-suited for a range of applications that involve sensing the presence
or absence of contact. Capacitative tactile sensors [27, 28] tend to provide more fine-grained
measurements compared to resistive sensors and include proximity sensing in addtion to tactile
sensing. Another versatile category of sensors are MEMS-based sensors [29] that often combine
multiple sensors such as audio and IMU sensors and can offer multimodal feedback in addition to
higher resolution and mm-scale form factor.

Recently, optical tactile sensors like Gelsight [3] and DIGIT [4] have emerged as a popular, high
resolution alternative to existing tactile sensors for robotics due to a number of desirable properties
such as their ease of replaceability and compatibility with well-understood neural architectures like
convolutional neural networks [7]. Similarly, magnetic tactile sensors like Xela [30] and ReSkin [31]
have garnered significant interest due to their scalable form factor, low dimensionality and ability to
sense shear force in addition to their consistency across sensor instances [31, 32]. In light of these
characteristics, the VISK framework presented in this work uses AnySkin [13] a magnetic tactile
sensor that strikes the right balance between low dimensionality and continuous contact sensing.
Furthermore, its superior cross-instance signal consistency makes it more amenable than optical
sensors to policy learning without the need for complex additional fabrication to prevent wear and
tear [12].

A.2 Visuotactile learning

The meteoric rise of deep learning has paralleled recent developments in rapid prototyping and
additive manufacturing. As a result, a number of recent works have investigated the use of machine
learning for a host of tactile prediction tasks such as slip detection [33], material classification [34],
object identification [19] and 3D reconstruction [35] across a range of tactile sensors. In this paper,
we specifically focus on policy learning – incorporating tactile information into robotic policies to
enhance contact-rich manipulation.

Recent works have demonstrated impressive improvements from incorporating tactile data into the
policy learning framework for precise dexterity [36, 37] and bimanual manipulation [38]. However,
the high dimensional nature of dexterous control limits the task complexity and extent of general-
izability enabled by these works. While [11, 39] use sim2real learning to demonstrate significant
generalizability across objects for an in-hand rotation task, the task lacks precision, and sim2real
transfer necessitates significant dilution of the tactile input to only capture coarse, discrete information.
This limits the scalability of this approach to the precise, contact-rich tasks considered in this work.

Yet other works rely on explicit pose estimation [40] and handcrafted feature extraction [9, 10] from
optical tactile data for alignment when performing insertion tasks. While interesting, these techniques
do not generalize to arbitrary tasks and require significant effort and domain knowledge to adapt to
every new task. While some existing works have learned visuotactile policies for precise tasks such
as insertion [41, 42], all of these works evaluate performance in restricted settings with little to no
spatial variation in the location of the insertion slot. In this paper, we investigate visuotactile policy
learning for contact-rich, high-precision tasks requiring spatial generalization, and conclusively show
that VISK policies use tactile feedback in conjunction with vision to substantially improve task
performance.
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Figure 3: (a) Close-up views of a VISK policy rollout for the four tasks presented. (b) Overhead
view depicting variations in target object locations for training and evaluation for plug insertion, USB
insertion and card swiping. The blue box denotes the extent of variation in the training data. Test
locations for plug insertion and USB insertion are marked on the image. For the card swiping task,
arrows denote test locations and orientations of the card machine used for evaluation.

B Visuo-Skin Policy Learning (VISK)

B.1 Policy Architecture

The VISK policy builds on top of BAKU [14], a state-of-the-art transformer-based policy learning ar-
chitecture that learns visual policies across multiple camera views. Similar to BAKU, our architecture
contains three main components:

Sensory Encoders Visual inputs from cameras are encoded using a modified ResNet-18 [18] visual
encoder. Low-dimensional tactile inputs from the AnySkin sensor are encoded with a two-layer
multilayer perceptron (MLP). Drawing from [31], we subtract a baseline measurement from each
tactile reading to account for sensor drift. The encoded representations for each modality are projected
to the same dimensionality to facilitate combining modalities in the observation trunk. Some of the
ablations and comparisons presented in Section 3 also use DIGIT sensors and robot proprioception as
inputs to the policy. In line with prior works using DIGIT sensors for policy learning [19, 20], tactile
images from the DIGIT sensor are encoded using the same ResNet-18 encoder as the visual data. The
proprioceptive inputs are encoded using a two-layer MLP.

Observation Trunk The encoded inputs from all camera views, robot proprioception, and the
tactile signals are treated as separate observation tokens and passed through a transformer decoder
network [21]. A learnable action token is appended to the list of observation tokens and is used to
obtain action features.

Action Head Finally, an action head takes as input the action features from the observation trunk
and predicts the corresponding actions. We found a deterministic action head learned using a mean
squared error loss to suffice for our experiments. Considering the temporal correlation in robot
movements, we follow prior work [14, 22, 23] and include action chunking to counteract the covariate
shift often seen in the low-data imitation learning regime. During inference, we apply exponential
temporal smoothing [22] for producing smoother robot motions. Our full policy architecture is
depicted in Figure 2.
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C Experiments

C.1 Environment Setup

We use a Ufactory xArm 7 robot with its standard two-fingered gripper for all our experiments. To
enable tactile sensing, we attach AnySkin sensor tips to the left gripper finger. An identically shaped,
plain silicone tip is attached to the right finger. For baseline comparisons with the DIGIT sensor,
we use a DIGIT sensor on either fingertip in line with prior work [33]. The camera inputs comprise
synchronized RGB images at 128x128 resolution from three static third-person cameras and an
egocentric camera mounted on the gripper. The action space is the change in the end-effector pose
and gripper state. Our experimental setup is depicted in Figure 2. Learned policies are deployed at a
10Hz frequency.

C.2 Task Descriptions

For all the analysis presented in this paper, we focus on a set of four contact-rich tasks that require
high precision as well as spatial generalization. Each task has a target object that the robot must
interact with, whose position is varied during demo collection. All evaluations use a fixed set of ten
target locations unseen in the training demonstration data.

Plug Insertion This task requires the robot to insert a plug into the first socket on a power strip.
The arm starts with the plug grasped and the power strip randomly positioned within a 20cm × 7cm
grid with a fixed orientation. The training dataset consists of 96 demonstrations.

USB Insertion This task has the robot plugging a USB stick into a specific USB port. The arm
starts with the USB stick grasped and the USB hub is positioned randomly within a 20cm × 15cm
grid. The training dataset consists of 96 demonstrations.

Card Swiping This task involves swiping a credit card through a card reader. The arm starts with
the credit card grasped and the card reader randomly positioned within a 40cm × 15cm grid, and
oriented at a random angle in the range (−30◦, 30◦) from the direction the robot is facing. The
training dataset consists of 96 demonstrations.

Book Retrieval This task requires the robot to retrieve a specific book from a set of eight books
placed together, with the order of books randomized each time. The robot must first reach for the
target book, pivot it about its edge, and then grasp and pull it out of the bookrack. The training dataset
consists of 172 demonstrations.

For the first three tasks, where the robot starts with a grasped object, we do not enforce hard constraints
on the grasping location and allow some variability across runs. The extent of variation in target object
positions are shown in Fig. B.1. Evaluations are performed on a set of 10 held-out configurations for
each task.

C.3 Effect of different input modalities on performance

From Table 1, we find that while the addition of AnySkin inputs to the policy consistently improves
performance, the addition of other modalities like the wrist camera and proprioception can have
significant impact on policy performance depending on the task. A few consistent patterns emerge
across tasks: (1) VISK results in a significant improvement (≥ 2×) in performance over the next best
model, indicating its effectiveness on precise, contact-rich manipulation. (2) Adding proprioceptive
input almost always results in a drop in performance. This can be attributed to the learned policy
overfitting to proprioceptive information which is detrimental to tasks requiring spatial generalizability
over target object locations. (3) With the exception of the card swiping task, the addition of a wrist
camera improves policy performance. The wrist camera gives the policy a local visual understanding
of the scene in the frame of the gripper, and in turn, the same frame as the robot’s action space.
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This is especially useful for the more fine-grained adjustments required for high-precision tasks.
Visualization of demonstration data for the card swiping task indicated that the wrist camera cannot
see the card reader due to occlusion from the gripper and therefore simply acts as a noise input to the
policy.

While the drops in performance due to proprioception as well as due to the wrist camera in the card
swiping task could potentially be addressed by collecting more demonstrations, they highlight the
true potential of the VISK framework. The addition of AnySkin and the use of a transformer-based
architecture enable the policy to incorporate reliable tactile feedback directly from the interface
between the robot and the object being interacted with. The low dimensional nature of AnySkin
signal eliminates the need for dimensionality reduction or intermediate representation learning and
enables end-to-end learning of visuotactile policies from relatively few (< 200) demonstrations.

C.4 Generalization to Unseen Task Variations

To further probe the strengths of the VISK framework, we investigate performance on unseen task
variations for two of the tasks presented above: Plug Insertion and Book Retrieval.

Train Ground pin Shape Size Color

Figure 4: We test the generalization of the best-performing VISK policy to different variations of the
plug

C.4.1 Plug Insertion

For plug insertion, we study the efficacy of the best-performing VISK policy on four different
variations of the plug as shown in Fig. 4 – addition of ground pin, shape, size and color. We report
performance across 10 trials over the same set of target object locations as the previous experiments
in Table 2. The VISK policy generalizes surprisingly well to variations in shape, ground pin, and size,
despite their pins being in significantly different positions than the plug used for training. This is
further evidence of VISK policies effectively leveraging vision and touch even when faced with object
variations distinctly different from training. We also find that the policy fails on the color variant
which could be attributed to the difficulty of localizing a black plug against a black background.

Table 2: Performance of the best VISK policy on different variations of the plug for the plug insertion
task

Train Ground Shape Weight Color

8/10 6/10 6/10 6/10 1/10

C.4.2 Book Retrieval

Similarly, for the book retrieval task, we study the effectiveness of the best-performing VISK policy
on different numbers of books. While our dataset is collected with 8 books, we evaluate performance
with 5 and 11 books. For the 5 book variation, we start with the same initial arrangements as used
in the original evaluations, and randomly remove 3 books for each trial. For the 11-book variation,
we randomize the order of the books for evaluation. Success rates are reported in Table 3. We
observe that despite prominent visual differences, the VISK policy is able to generalize to the scenario
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with 11 books. This reinstates the effectiveness of the visuotactile representation learned in VISK
for generalizing to novel scenarios at inference. However, for the 5-book variation we find that
performance drops significantly. This could be attributed to the lower friction from neighboring
books resulting from lower inertia.

Table 3: Performance of the best VISK policy on different number of books in the bookrack

Train 5 books 11 books

7/10 3/10 6/10
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