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ABSTRACT

We present Structured World Modeling From Low-Level Observations
(“SWMPO”), a framework for the unsupervised learning of neural Finite State
Machines (FSM) that capture environment structure. Traditional unsupervised
world modeling methods for policy optimization rely on unstructured representa-
tions, such as neural networks, which do not explicitly represent high-level pat-
terns within the system (e.g., walking vs swimming). In contrast, SWMPO ex-
plicitly models the environment as an FSM, where each state represents a region
of the environment’s state space with distinct dynamics, exposing the structure of
the environment to downstream tasks such as policy optimization. Prior works that
synthesize FSMs for this purpose have been limited to discrete spaces, not con-
tinuous, high-dimensional spaces. Our FSM synthesis algorithm operates in an
unsupervised manner, leveraging low-level features from unprocessed, non-visual
data, making it adaptable across various domains. We demonstrate the advantages
of SWMPO by benchmarking its environment modeling capabilities in different
simulated environments.

1 INTRODUCTION

Data collection Labeling FSM synthesis
(unsupervised)

walk swim

Figure 1: Overview of the proposed method. First, an existing (possibly expensive to run) controller
(e.g., a planner) is used to gather data. Then, data is labeled according to the modes of the system
in an unsupervised fashion. With this, a model of the environment could be used the form of a state
machine is synthesized. In this illustration, the walking mode is green and the swimming mode is
blue.

This paper examines learned approximations of environment dynamics, known as world models Ha
& Schmidhuber (2018) in the special case where these models must explicitly encode the high-
level structure of the environment dynamics. We are motivated by the observation that the high-
level structure of a dynamical system can be used to efficiently solve control problems. Consider,
for example, an amphibious robot that must navigate both water and land (see fig. 1). An expert
roboticist might approach this problem by breaking down the task into three sub-problems: (1)
controlling the robot on water; (2) controlling it on land and; (3) managing the transition between
these two modes. With this division, the expert can exploit the fact that the robot moves faster on
land than in water, using this knowledge to optimize route planning. Inspired by this strategy, our
goal is to develop a method that automatically constructs a representation of the environment and a
corresponding fine state machine.
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We are interested in extracting structure directly from continuous, low-level, non-visual observations
(e.g., LiDAR measurements or joint positions). To this end, we propose Structured World Modeling
From Low-Level Observations –SWMPO– a framework where an environment’s high-level structure
is inferred directly from low-level continuous observations in a fully unsupervised manner (i.e., with
no training labels), resulting in an FSM which can then be utilized in downstream tasks such as
policy optimization.

The synthesized FSM consists of modes and transitions. Each mode is a neural network that ap-
proximates the environment dynamics within a subset of the state space (e.g., the walking mode,
see fig. 1). Predicates determine when to switch between modes based on observations of the envi-
ronment. We evaluate SWMPO across a variety of benchmarks and environments with continuous
dynamics, including two-and three-dimensional simulations.

Contributions Our contributions are as follows:

1. A novel unsupervised learning algorithm that segments time series data into a discrete set
of modes.

2. A state-machine synthesis algorithm that constructs a Finite State Machine (FSM) model
directly from continuous low-level observations, enabling interpretable representations of
latent dynamics.

3. Empirical testing demonstrating the performance of the state machine across fours test
environments.

2 RELATED WORK

Automata Synthesis and Symbolic Structure Extraction Hasanbeig et al. (2021) demonstrated
that FSMs could be synthesized to model environments, improving performance in RL tasks. How-
ever, this method is limited by its reliance on fully-symbolic representations obtained from pre-
trained vision models in grid-world settings. In contrast, our approach extracts structure from con-
tinuous, low-level, non-visual observations. To the best of our knowledge, our work is the first to
leverage neural world models in the synthesis of FSMs for continuous low-level high-dimensional
non-visual observation spaces.

Hidden Markov Models Hidden Markov Models (HMMs) are a standard approach to captur-
ing temporal dependencies and mode-switching behavior in sequential data (Li & Biswas, 2002;
Bouguila et al., 2022). In robotics, HMMs have been leveraged to segment trajectories into dis-
crete modes (Goh et al., 2012) and used during policy learning for multimodal or hierarchical tasks
(Marturi et al., 2019). Recent advances have extended HMMs using deep neural network architec-
tures (neural HMMs) to handle high-dimensional, continuous observation spaces and to learn more
complex transition dynamics (Tran et al., 2016). For instance, neural HMMs have been used in
unsupervised settings to model complex sensory streams for trajectory clustering Vakanski et al.
(2012) and to predict latent modes during task execution Wu et al. (2019). However, HMMs suffer
from the fundamental limitation that the transition between modes is determined by a probability
distribution that is only conditioned on the latent state, this means that the observed evolution of the
system itself is only indirectly used to update the active mode.

Leveraging Structure in Reinforcement Learning A body of research focuses on leveraging
structure to solve control problems with RL (Mohan et al., 2024). Hierarchical RL (Xu & Fekri,
2021; Botvinick, 2012; Li et al., 2006) and modular RL (Simpkins & Isbell, 2019; Andreas et al.,
2017; Devin et al., 2017) encode structure directly into the policy architecture, here we instead
consider the synthesis of a structured model. Model-based RL approaches leverage neural world
models to optimize policies more efficiently (Moerland et al., 2023; Ha & Schmidhuber, 2018).
However, neural models lack distinct boundaries between the representation of different modes in
the environment. Reward machines (Toro Icarte et al., 2019; Icarte et al., 2018) leverage structured
models of the reward function to guide the policy optimization process.

Structure Induction and Hybrid Systems In the broader field of hybrid systems, modeling en-
vironments as a collection of modes with distinct dynamics is standard practice (Alur et al., 1995;

2
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Paoletti et al., 2007; Ferrari-Trecate et al., 2003; Devin et al., 2017; Camacho et al., 2010). Recently,
Soto et al. (2021) show that automata with affine dynamics can be synthesized from time-series data.
In this work, we leverage non-linear neural models to both extract structure and represent dynamics
within the automata, making our approach more general.

Finally, other approaches to discovering structure which are not directly applicable to time-series
data include the use of graph neural networks (Cranmer et al., 2020) and sparse networks (Gupta
et al., 2024). Similarly, methods that leverage recurrent neural networks (RNNs) and FSMs to model
linguistic structures (Kolen, 1993; Koul et al., 2018; Jacobsson, 2005) share a conceptual foundation
with our work, but these methods focus on formal languages and are not directly applicable to the
class of problems we study in this work.

3 BACKGROUND

We operate in the standard discrete-time RL framework, where an agent interacts with an environ-
ment (Sutton & Barto, 2018). A summary of the notation used in this paper can be found in table 1.

3.1 REINFORCEMENT LEARNING

Definition 1 (Partially Observable Markov Decision Process). A discrete-time Partially Observable
Markov Decision Process (POMDP) is a tuple M ≜ ⟨S,A, T, S0,Ω, O⟩, where S ∈ Rk is the set of
states, Ω is the set of observations that the agent can make, A is a set of actions, T : S × A → S is
a transition function, S0 is a distribution of initial states, Ω is a set of observations, each observation
o ∈ Ω made under some state s ∈ S and action a ∈ A with probability O(o | s, a) given by
the set of conditional observation probabilities. We associate a POMDP with a reward function
R : S ×A× S → R.

Definition 2 (Trajectory). A trajectory is a time-indexed sequence of transition tuples (ot, at, ot+1).
We call ot and ot+1 the source and next observations, respectively.

3.2 FINITE STATE MACHINES

Definition 3 (Finite State Machine World Model). We define a finite state machine world model
(FSMWM) to be a tuple F ≜ ⟨f,O,A, δ, f0⟩, where O and A are respectively the observation and
action spaces of a POMDP; f = {fi : O × A → O}i is a set of models of the environment; and
δ = {δi,j : O ×A → {0, 1}}i,j is a set of mode-transition predicates.

For a given active mode indexed by i and an observation ot ∈ S, the predicted next observation is
ot+1 = fi(ot, at) is the predicted next observation. The next active mode index is

δ(ot, ut, i) =

{
argmaxj δi,j(ot, ut) if δi,j(ot, ut) > 0

i otherwise.

We define argmax to choose the first matching index in case of a tie. This definition mirrors previous
use of a FSM as policies in the MDP setting (Inala et al., 2020), but here we are using them as world
models.

4 PROBLEM STATEMENT

Consider the example of an amphibious robot that must navigate both water and land (see fig. 1),
corresponding to the two modes of the system. Our goal is two-fold: (1) to synthesize an FSMWM
from low-level observations in an unsupervised manner (i.e., without mode labels) that captures the
high-level structure of the environment by moving between modes that correspond to the (unob-
served) mode of the system, and (2) to leverage the FSMWM in the RL training loop.

Our fundamental assumption is that the latent categorical variable Mt, which corresponds to the
modes, can be characterized by a function m : (st−1, at−1, st) 7→ mt. Further assumptions made
by our method on the system and Mt are motivated and stated in section 5.1.

3
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5 METHOD

This section outlines the two main components of the SWMPO algorithm: (1) State Machine Syn-
thesis, where we use data from episodes to synthesize an FSM that models the environment’s struc-
ture and low-level agent behavior, and (2) State-Machine-Guided Policy Optimization, where the
synthesized FSM is employed to optimize the policy. Our framework is outlined in algorithm 1.

Algorithm 1 SWMPO

Require: POMDP M = (S,A, T, S0,Ω, O), initial policy π0, reward function R, mode number m,
partition pruning tolerance error ϵ, learning rate γ, intrinsic reward factor η, RL algorithm

1: Collect trajectory dataset D with π0

2: F = synthesizeFSMWM(D,π0,m, ϵ, γ)
3: return F

As illustrated in fig. 1, the inputs to our proposed framework, SWMPO, are a POMDP
(S,A, T, S0,Ω, O) with associated reward function R, the number of modes m, and an expert policy
π0 used for initial data collection. The outputs are (1) a state machine with m nodes that approxi-
mates T , and (2) a policy that approximately maximizes the reward in the POMDP.

Our method synthesizes an FSM to model the structure of the environment, where each state in
the FSM represents a distinct mode of the data (e.g., swimming or walking). A key challenge is
discovering these modes in an unsupervised manner, as only the number of modes is assumed to be
known. Ensuring clear separation between modes at different stages of the algorithm is also critical
to avoid cascading errors from misclassified data, which can progressively degrade the model’s
performance. To address these challenges, we synthesize our state machine as follows:

1. Labeling: Divide the transitions in the dataset into different mode subsets.
2. Pruning: Simplify the mode-transition dynamics of the partition by removing spurious

transitions between modes.
3. Transition Predicate Synthesis: Learn when to transition between modes.

5.1 LABELING

Labeling addresses the problem of decomposing environment dynamics by assigning each transition
in a dataset D of trajectories to one of m disjoint subsets, with each subset corresponding to a
mode of the POMDP. We first state the assumptions of the labeling algorithm, and then describe the
algorithm.

Let ⟨S,A, T, S0,Ω, O⟩ be a POMDP. Let St and At be the random variables of the state and action at
time t respectively, under some fixed policy π. We focus on the case where observations conditioned
on a state are deterministic, so ot = O(st). We are interested in modelling the mode variable Mt

(e.g., mt = walking), taking values in some set M . Our method revolves around learning Mt as an
intermediate computation of a learned first-order model of the form

f(m(ot−1, at−1, ot), ot, at) ≈ ot+1 − ot

which we describe in this section. Ultimately we characterize modes as a categorical variable (i.e.,
robot is either walking or swimming), but we first approximate Mt as taking values in Rn. We now
impose constraints on the POMDP and the mode variable that allows us to design an algorithm to
predict Mt. In summary, the assumptions imply that partial observability is a consequence solely of
the latent mode variable and that this variable can in principle be predicted from previous observa-
tions.

Assumption 1: mode identifiability We start with the assumption that Mt can be modelled as a
function mt ≈ m(ot−1, at−1, ot). Intuitively, this assumption means that it is possible to identify
the current mode by observing how the world changed under the latest action. We thus think of Mt

as an abstraction over the observed change of the system under some action and state.

4
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Assumption 2: change can be predicted conditioned on mode The next assumption is that the
POMDP becomes a deterministic MDP conditioned on the mode. More precisely, we assume the
existence of a function T ′ : M ×A×O → O such that T ′(mt, at, ot) = O(T (st, at)).

Thus far, our constraints allow the trivial solution Mt = St, which is not useful. There may be many
other variables which satisfy our assumptions. Consequently, we add a constraint that allows us to
uniquely identify Mt.

Assumption 3: modes alone have minimal information Let M be the set of random variables
that satisfy the previous assumptions. Then the mode variable Mt is the unique solution to Mt =
argminMt∈M I(Mt, Ot+1).

Under the assumptions so far, we can so far conclude that if we find a variable Mt that allows us
to predict the change in the environment given an action and has minimal mutual information with
Ot+1, then Mt must be the mode variable. However, our approximation of Mt takes values in a
vector space, but we ultimately want to model it as a categorical variable. We therefore add our last
assumption.

Assumption 4: mode vectors form clusters Mt corresponds to a partition of the state space
where in expectation the within-subset sum of squares to the centroid of the subset is minimal. That
is, we assume a strict partitioning, centroid model clustering scheme, which means that if k-means
is run on vectors of Mt, then in expectation the clusters will correspond to the different modes.

Our assumptions imply that if a variable Mt is predictive of the change in observed state for any
action and has minimal mutual information with Ot+1, then that variable corresponds to the mode
variable. In other words, consider m : O ×A×O → M and f : M ×A×O → O under the joint
optimization problem

argmin
e,d

E(st−1,at−1,st,at,st+1)∼Mπ
[∥f(m(ot−1, at−1, ot), at)− (T (st, at)− st)∥]

− I(m(Ot−1, At, Ot), Ot+1),
(1)

where ∥ · ∥ is the Euclidean norm, ot−1 = O(st−1) and ot = O(st). From the assumptions stated
above, it follows that the solution to eq. (1) implies that m(·) corresponds to the mode variable,
which can be clustered with k-means to obtain mode labels for a set of data. In practice, we
parametrize m(·) and f(·) with neural networks and approximate the solution with gradient-based
search. To compute the mutual-information I(·, ·), we assume independence of features and fit
Gaussian distributions to compute a Monte-Carlo approximation.

Fitting local models to the data At this point it is possible to fit a local model for each cluster of
transitions in the dataset, as illustrated in Fig. 2, where each local model has higher performance for
a particular mode of the environment. This entire process results in algorithm 2.
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Figure 2: Performance of the specialized models for the walking and swimming modes of
PointMass, an idealized version of an amphibious robot (see section 6). Each local model is spe-
cialized for a specific mode, leading to a combined low prediction error across the entire episode.
The x-axis indicates time.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 optimizePartition
Require: list of trajectories D, latent space M , number of modes m

1: Use gradient-descent to find e : S ×A → M and d : M ×A → Ŝ that approximately solve
eq. (1)

2: Embed the transitions into mode vectors, m(D)
3: Cluster the embeddings into m disjoint subsets using k-means
4: Di = {τ ∈ D | cluster(τ) = i}
5: D̄ = {D1, . . . , Dm}
6: Fit a local model fi to approximate the dynamics of Di.
7: return D̄, f

The algorithm takes a dataset of trajectories D, and partitions it by solving eq. (1) and clustering
the resulting mode vectors. The partition, say D̄ = {D1, . . . , Dm}, induces the sequence of modes
that the state machine should visit for a given trajectory in the dataset. That is, the state machine
should be in state i when processing transition τ if and only if τ ∈ Di.

5.2 PRUNING

The aforementioned partitioning process can create overly complex transitions. While the FSM
globally approximates the environment dynamics, some state regions may have multiple models
with similar accuracy, resulting in spurious transitions between states. In such cases, transitions
between these models can be pruned with minimal impact on performance.

To address this, we apply a pruning mechanism to eliminate these unwanted transitions. This helps
balance the complexity-accuracy trade-off in the state machine search space: while more complex
transition patterns can improve accuracy, they also increase the risk of overfitting and reduce inter-
pretability. We now describe the pruning approach, which optimizes for both accuracy and simplic-
ity.

Pruning Approach We begin by labeling each transition in the dataset with the index of the neural
network from the ensemble that best predicts the system’s evolution in that state. A mode transition
occurs when this label changes between consecutive states. For example, in the sequence 113322,
we transition from mode 1 to 3, then from 3 to 2. Pruning the transition to mode 3 yields two
possible sequences: 111122 (forward-prune) or 112222 (backward-prune). Our goal is to remove
transitions that have minimal impact on prediction accuracy.

To prune a mode transition, the framework shifts the affected transitions from one subset to another,
causing a different model, with equal or greater prediction error, to handle those transitions. If the
increase in prediction error is within the user-defined tolerance factor ϵ, the move is considered ϵ-
valid relative to the original partition. A mode transition is ϵ-prunable if all the associated moves are
ϵ-valid. There may be multiple ϵ-prunable mode transitions for a given trajectory and partition. Our
approach is to greedily prune the first prunable mode transitions with the strategy that results in the
smallest prediction error increase (see algorithm 3).

Algorithm 3 greedyPrune

Require: Partition D̄ of trajectory dataset D, error tolerance factor ϵ,
1: D̄0 = copy(D̄)
2: for t ∈ D do
3: while exists ϵ-prunnable (relative to D̄0) mode transition in t do
4: Prune the first ϵ-prunable (relative to D̄0) mode transition in D̄, updating D̄
5: return D̄

5.2.1 TRANSITION PREDICATE SYNTHESIS

We describe the mechanism by which the FSM learns when to transition from one mode to another.

6
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Each subset of a partition corresponds to a state of the FSM being synthesized. For each pair of
FSM states (fi, fj), the core question is: given that the state machine was in state fi, and the agent
observed st, took action u, and then observed st+1, should the FSM transition to state fj? We
identify the subset of Di containing transitions where the next state is a source state in Dj , referred
to as the positive’ set. The negative’ set is the complement of the positive set with respect to Di. The
task then becomes a standard classification problem, where we find a predicate that outputs True for
the positive set and False for the negative set. See algorithm 4. We use scikit-learn Pedregosa et al.
(2011) to synthesize these predicates, parametrizing them with small Multi-Layer Perceptrons.

Algorithm 4 synthesizeTransitions

Require: Partition D̄ = {D1, . . . , Dm} and corresponding list of trajectories D
1: for i, j ∈ {1, . . . ,m} × {1, . . . ,m} do
2: positive = {τ1 ∈ Di | ∃τ2 ∈ Dj s.t. follows(τ1, τ2)}
3: negative = Di \ {positive}
4: δi,j = synthesizePredicate(positive, negative)
5: return δ

Algorithm 5 synthesizeFSMWM
Require: Dataset D of environment transitions, initial policy π0, mode number m, partition pruning

tolerance error ϵ, learning rate γ, RL algorithm
1: (D̄′, f ′) ≜ optimizePartition(D,m, γ)
2: Sort D̄′ = {D1, . . . , Dm} so that D1 contains the most initial transitions.
3: D̄ = greedyPrune(D̄′, ϵ,D)
4: δ = synthesizeTransitions(D̄)
5: F = (f, S,A, δ, f1)
6: return F

6 EXPERIMENTS

We evaluate SWMPO’s ability to identify and approximate the modes of the environment.

6.1 TEST ENVIRONMENTS

We test SWMPO on four environments of varying complexity (see fig. 3):

1. PointMass. These tasks are a simplified version of the amphibious robot running ex-
ample, and consist of applying a sequence of thrusts to a two-dimensional point mass to
take it to a target position. Crucially, the environment is split into terrains with different
characteristics: sand with no drag and water with high drag. Additionally, to simulate the
need for different policies in different terrains, actions in the sand terrain are inverted. See
fig. 3a. We use an MPC controller as the initial expert policy.

2. LiDAR-Racing. Adapted from Ivanov et al. (2021). Tasks in this environment consist
of driving a two-dimensional vehicle with bicycle dynamics and LiDAR sensors through
a track randomly assembled from pieces of five different types. See fig. 3b. We use a
pre-trained controller provided by the authors as the expert controller.

3. Salamander. A locomotion task in which an amphibious salamander must navigate
through water and land. This environment is implemented in the Webots 3D simula-
tor (Michel, 2004), in which the Salamandra Robotica II (Crespi et al., 2013) robot is
available. See fig. 3c. This environment is a scaled-up version of PointMass. For ob-
servations, we use the motor positions, the LiDAR readings and the GPS position. We use
the controller provided by Webots for this robot as the expert policy. However, to satisfy
Assumption 2 we randomly switch the controller’s mode, so that the robot sometimes per-
forms swimming actions on the land and viceversa. This is so that the change in the world
can only be accurately predicted if the mode variable is extracted.

7
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4. BipedalWalkerHarcore (BipedalWH). A locomotion task in which a bipedal robot
has to locomote over uneven terrain with four different types of obstacles. This is a standard
benchmark in the Gymnasium library Towers et al. (2024) and employes the Box2D rigid
body simulator Catto (2024). We use a pre-trained controller from the RL Baselines3 Zoo
library Raffin (2020) as the expert policy.

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 3: Benchmark domains.
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Figure 4: Labels of all the input trajectories from the PointMass environment. In each plot, the

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 5: Example unsupervised labeling outputs.

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 6: Example mode tracking on unseen data.
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(a) Ground truth (b) Learned partition

Figure 7: Mode vectors learned through SWMPO in the PointMass environment. Each point rep-
resents a transition encoded with the learned m(·) (after dimensionality reduction through UMAP).
In the left plot, the ground truth labels are used to color the vectors. In the right, the learned partition
is used to assign colors.

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 8: We compare the performance of our method against HMMs across four different environ-
ments. The box plots illustrate the Levenshtein distance between FSM-predicted and ground truth
labels for each environment, with SWMPO results shown on the right and HMM results on the left.

The algorithm to approximate the solution to eq. (1) is written with Pytorch (Ansel et al., 2024) using
the Adam optimizer (Kingma & Ba, 2017). We use multi-layer perceptrons with ReLU activations
for all the neural networks involved in the algorithm. Predicate synthesis is performed with Scikit-
learn (Pedregosa et al., 2011).

6.2 LEARNED REPRESENTATION OF THE MODE VARIABLE

We present a plot of the data in the PointMass environment, where each transition is colored
according to both the ground truth and the learned partitions, shown in fig. 7. The results indicate
that the data forms clusters that align with the ground truth labels, demonstrating that the different
modes are separated. There is a high level of correspondence between the ground truth and learned
labels, although a few transitions are mislabeled.

6.3 FSM SYNTHESIS

We evaluate the performance of our FSM synthesis algorithm across all four environments.

For each environment, we use the expert policy to generate input data. We then use SWMPO to
partition the transitions in the input data into the number of modes for that environment. For illus-
tration purposes, we include all the labeled data for the PointMass environment (see fig. 5). We
then synthesize the FSMWM. We compare the states visited by the synthesized FSMWM in unseen
data against the ground truth states, as well as the visited states predicted by a hidden Markov model
with Gaussian emissions fitted to the training data. See fig. 6). We calculate the accuracy of each
partition with the Levenshtein distance to ground-truth labels (see fig. 8).

In PointMass, SWMPO outperforms HMMs and in LiDAR-Racing and Salamander,
SWMPO significantly outperforms HMM. In Bipedal Walker, SWMPO marginally beats

9
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HMM, however, where the models struggle to capture the underlying dynamics of the agent in
its environment.

7 LIMITATIONS

The main limitations of the framework are stated formally as assumptions in section 5.1. The main
assumption is that the partial observability of the environment is a consequence solely of the mode
variable. Another limitation is that the mode variable must be approximated from a single transition;
generalizing this to allow for modes that require multiple steps to be identified is left for future work.

8 CONCLUSION

We presented a novel framework for synthesizing Finite State Machine World Models (FSMWMs)
in an unsupervised manner using low-level, non-visual continuous observations. We outlined the
key assumptions underpinning our approach and demonstrated its applicability. Our analysis shows
that the synthesized FSMWMs effectively capture the underlying structure of the environment by
mapping latent modes to discrete states. Additionally, our algorithm matches or surpasses the perfor-
mance of a Hidden Markov Model baseline on challenging dynamical systems. The implementation
of the framework and all the code necessary to replicate the experiments, including hyperparameters,
are attached to this manuscript, and are open sourced.
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A NOTATION TABLE

Table 1: Notation Table

Symbol Meaning
M Markov Decision Process (MDP)
S ∈ Rk Set of observations
A Set of actions
T : S ×A → S Transition function
S0 Distribution of initial states
R : S ×A× S → R Reward function
πθ : S → A Policy parametrized by θ
Vπθ

(s) Value function for state s
st Source state at time t
st+1 Next state after taking action
F Finite State Machine World Model (FSMWM)
f Set of environment models
δ Set of mode-transition predicates
st+1 = fi(st, ut) Predicted next observation
δ(st, ut, i) Mode transition function
(M⊗F) Product MDP
S⊗ Augmented state space
S⊗
0 Augmented initial state distribution

T⊗ Transition function for product MDP
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