
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRUCTURED WORLD MODELS FROM LOW-LEVEL
OBSERVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Structured World Modeling From Low-Level Observations
(“SWMPO”), a framework for the unsupervised learning of neural Finite State
Machines (FSM) that capture environment structure. Traditional unsupervised
world modeling methods for policy optimization rely on unstructured representa-
tions, such as neural networks, which do not explicitly represent high-level pat-
terns within the system (e.g., walking vs swimming). In contrast, SWMPO ex-
plicitly models the environment as an FSM, where each state represents a region
of the environment’s state space with distinct dynamics, exposing the structure of
the environment to downstream tasks such as policy optimization. Prior works that
synthesize FSMs for this purpose have been limited to discrete spaces, not con-
tinuous, high-dimensional spaces. Our FSM synthesis algorithm operates in an
unsupervised manner, leveraging low-level features from unprocessed, non-visual
data, making it adaptable across various domains. We demonstrate the advantages
of SWMPO by benchmarking its environment modeling capabilities in different
simulated environments.

1 INTRODUCTION

Data collection Labeling FSM synthesis
(unsupervised)

walk swim

Figure 1: Overview of the proposed method. First, an existing (possibly expensive to run) controller
(e.g., a planner) is used to gather data. Then, data is labeled according to the modes of the system
in an unsupervised fashion. With this, a model of the environment could be used the form of a state
machine is synthesized. In this illustration, the walking mode is green and the swimming mode is
blue.

This paper examines learned approximations of environment dynamics, known as world models Ha
& Schmidhuber (2018) in the special case where these models must explicitly encode the high-
level structure of the environment dynamics. We are motivated by the observation that the high-
level structure of a dynamical system can be used to efficiently solve control problems. Consider,
for example, an amphibious robot that must navigate both water and land (see fig. 1). An expert
roboticist might approach this problem by breaking down the task into three sub-problems: (1)
controlling the robot on water; (2) controlling it on land and; (3) managing the transition between
these two modes. With this division, the expert can exploit the fact that the robot moves faster on
land than in water, using this knowledge to optimize route planning. Inspired by this strategy, our
goal is to develop a method that automatically constructs a representation of the environment and a
corresponding fine state machine.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We are interested in extracting structure directly from continuous, low-level, non-visual observations
(e.g., LiDAR measurements or joint positions). To this end, we propose Structured World Modeling
From Low-Level Observations –SWMPO– a framework where an environment’s high-level structure
is inferred directly from low-level continuous observations in a fully unsupervised manner (i.e., with
no training labels), resulting in an FSM which can then be utilized in downstream tasks such as
policy optimization.

The synthesized FSM consists of modes and transitions. Each mode is a neural network that ap-
proximates the environment dynamics within a subset of the state space (e.g., the walking mode,
see fig. 1). Predicates determine when to switch between modes based on observations of the envi-
ronment. We evaluate SWMPO across a variety of benchmarks and environments with continuous
dynamics, including two-and three-dimensional simulations.

Contributions Our contributions are as follows:

1. A novel unsupervised learning algorithm that segments time series data into a discrete set
of modes.

2. A state-machine synthesis algorithm that constructs a Finite State Machine (FSM) model
directly from continuous low-level observations, enabling interpretable representations of
latent dynamics.

3. Empirical testing demonstrating the performance of the state machine across fours test
environments.

2 RELATED WORK

Automata Synthesis and Symbolic Structure Extraction Hasanbeig et al. (2021) demonstrated
that FSMs could be synthesized to model environments, improving performance in RL tasks. How-
ever, this method is limited by its reliance on fully-symbolic representations obtained from pre-
trained vision models in grid-world settings. In contrast, our approach extracts structure from con-
tinuous, low-level, non-visual observations. To the best of our knowledge, our work is the first to
leverage neural world models in the synthesis of FSMs for continuous low-level high-dimensional
non-visual observation spaces.

Hidden Markov Models Hidden Markov Models (HMMs) are a standard approach to captur-
ing temporal dependencies and mode-switching behavior in sequential data (Li & Biswas, 2002;
Bouguila et al., 2022). In robotics, HMMs have been leveraged to segment trajectories into dis-
crete modes (Goh et al., 2012) and used during policy learning for multimodal or hierarchical tasks
(Marturi et al., 2019). Recent advances have extended HMMs using deep neural network architec-
tures (neural HMMs) to handle high-dimensional, continuous observation spaces and to learn more
complex transition dynamics (Tran et al., 2016). For instance, neural HMMs have been used in
unsupervised settings to model complex sensory streams for trajectory clustering Vakanski et al.
(2012) and to predict latent modes during task execution Wu et al. (2019). However, HMMs suffer
from the fundamental limitation that the transition between modes is determined by a probability
distribution that is only conditioned on the latent state, this means that the observed evolution of the
system itself is only indirectly used to update the active mode.

Leveraging Structure in Reinforcement Learning A body of research focuses on leveraging
structure to solve control problems with RL (Mohan et al., 2024). Hierarchical RL (Xu & Fekri,
2021; Botvinick, 2012; Li et al., 2006) and modular RL (Simpkins & Isbell, 2019; Andreas et al.,
2017; Devin et al., 2017) encode structure directly into the policy architecture, here we instead
consider the synthesis of a structured model. Model-based RL approaches leverage neural world
models to optimize policies more efficiently (Moerland et al., 2023; Ha & Schmidhuber, 2018).
However, neural models lack distinct boundaries between the representation of different modes in
the environment. Reward machines (Toro Icarte et al., 2019; Icarte et al., 2018) leverage structured
models of the reward function to guide the policy optimization process.

Structure Induction and Hybrid Systems In the broader field of hybrid systems, modeling en-
vironments as a collection of modes with distinct dynamics is standard practice (Alur et al., 1995;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Paoletti et al., 2007; Ferrari-Trecate et al., 2003; Devin et al., 2017; Camacho et al., 2010). Recently,
Soto et al. (2021) show that automata with affine dynamics can be synthesized from time-series data.
In this work, we leverage non-linear neural models to both extract structure and represent dynamics
within the automata, making our approach more general.

Finally, other approaches to discovering structure which are not directly applicable to time-series
data include the use of graph neural networks (Cranmer et al., 2020) and sparse networks (Gupta
et al., 2024). Similarly, methods that leverage recurrent neural networks (RNNs) and FSMs to model
linguistic structures (Kolen, 1993; Koul et al., 2018; Jacobsson, 2005) share a conceptual foundation
with our work, but these methods focus on formal languages and are not directly applicable to the
class of problems we study in this work.

3 BACKGROUND

We operate in the standard discrete-time RL framework, where an agent interacts with an environ-
ment (Sutton & Barto, 2018). A summary of the notation used in this paper can be found in table 1.

3.1 REINFORCEMENT LEARNING

Definition 1 (Partially Observable Markov Decision Process). A discrete-time Partially Observable
Markov Decision Process (POMDP) is a tuple M ≜ ⟨S,A, T, S0,Ω, O⟩, where S ∈ Rk is the set of
states, Ω is the set of observations that the agent can make, A is a set of actions, T : S × A → S is
a transition function, S0 is a distribution of initial states, Ω is a set of observations, each observation
o ∈ Ω made under some state s ∈ S and action a ∈ A with probability O(o | s, a) given by
the set of conditional observation probabilities. We associate a POMDP with a reward function
R : S ×A× S → R.

Definition 2 (Trajectory). A trajectory is a time-indexed sequence of transition tuples (ot, at, ot+1).
We call ot and ot+1 the source and next observations, respectively.

3.2 FINITE STATE MACHINES

Definition 3 (Finite State Machine World Model). We define a finite state machine world model
(FSMWM) to be a tuple F ≜ ⟨f,O,A, δ, f0⟩, where O and A are respectively the observation and
action spaces of a POMDP; f = {fi : O × A → O}i is a set of models of the environment; and
δ = {δi,j : O ×A → {0, 1}}i,j is a set of mode-transition predicates.

For a given active mode indexed by i and an observation ot ∈ S, the predicted next observation is
ot+1 = fi(ot, at) is the predicted next observation. The next active mode index is

δ(ot, ut, i) =

{
argmaxj δi,j(ot, ut) if δi,j(ot, ut) > 0

i otherwise.

We define argmax to choose the first matching index in case of a tie. This definition mirrors previous
use of a FSM as policies in the MDP setting (Inala et al., 2020), but here we are using them as world
models.

4 PROBLEM STATEMENT

Consider the example of an amphibious robot that must navigate both water and land (see fig. 1),
corresponding to the two modes of the system. Our goal is two-fold: (1) to synthesize an FSMWM
from low-level observations in an unsupervised manner (i.e., without mode labels) that captures the
high-level structure of the environment by moving between modes that correspond to the (unob-
served) mode of the system, and (2) to leverage the FSMWM in the RL training loop.

Our fundamental assumption is that the latent categorical variable Mt, which corresponds to the
modes, can be characterized by a function m : (st−1, at−1, st) 7→ mt. Further assumptions made
by our method on the system and Mt are motivated and stated in section 5.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

5 METHOD

This section outlines the two main components of the SWMPO algorithm: (1) State Machine Syn-
thesis, where we use data from episodes to synthesize an FSM that models the environment’s struc-
ture and low-level agent behavior, and (2) State-Machine-Guided Policy Optimization, where the
synthesized FSM is employed to optimize the policy. Our framework is outlined in algorithm 1.

Algorithm 1 SWMPO

Require: POMDP M = (S,A, T, S0,Ω, O), initial policy π0, reward function R, mode number m,
partition pruning tolerance error ϵ, learning rate γ, intrinsic reward factor η, RL algorithm

1: Collect trajectory dataset D with π0

2: F = synthesizeFSMWM(D,π0,m, ϵ, γ)
3: return F

As illustrated in fig. 1, the inputs to our proposed framework, SWMPO, are a POMDP
(S,A, T, S0,Ω, O) with associated reward function R, the number of modes m, and an expert policy
π0 used for initial data collection. The outputs are (1) a state machine with m nodes that approxi-
mates T , and (2) a policy that approximately maximizes the reward in the POMDP.

Our method synthesizes an FSM to model the structure of the environment, where each state in
the FSM represents a distinct mode of the data (e.g., swimming or walking). A key challenge is
discovering these modes in an unsupervised manner, as only the number of modes is assumed to be
known. Ensuring clear separation between modes at different stages of the algorithm is also critical
to avoid cascading errors from misclassified data, which can progressively degrade the model’s
performance. To address these challenges, we synthesize our state machine as follows:

1. Labeling: Divide the transitions in the dataset into different mode subsets.
2. Pruning: Simplify the mode-transition dynamics of the partition by removing spurious

transitions between modes.
3. Transition Predicate Synthesis: Learn when to transition between modes.

5.1 LABELING

Labeling addresses the problem of decomposing environment dynamics by assigning each transition
in a dataset D of trajectories to one of m disjoint subsets, with each subset corresponding to a
mode of the POMDP. We first state the assumptions of the labeling algorithm, and then describe the
algorithm.

Let ⟨S,A, T, S0,Ω, O⟩ be a POMDP. Let St and At be the random variables of the state and action at
time t respectively, under some fixed policy π. We focus on the case where observations conditioned
on a state are deterministic, so ot = O(st). We are interested in modelling the mode variable Mt

(e.g., mt = walking), taking values in some set M . Our method revolves around learning Mt as an
intermediate computation of a learned first-order model of the form

f(m(ot−1, at−1, ot), ot, at) ≈ ot+1 − ot

which we describe in this section. Ultimately we characterize modes as a categorical variable (i.e.,
robot is either walking or swimming), but we first approximate Mt as taking values in Rn. We now
impose constraints on the POMDP and the mode variable that allows us to design an algorithm to
predict Mt. In summary, the assumptions imply that partial observability is a consequence solely of
the latent mode variable and that this variable can in principle be predicted from previous observa-
tions.

Assumption 1: mode identifiability We start with the assumption that Mt can be modelled as a
function mt ≈ m(ot−1, at−1, ot). Intuitively, this assumption means that it is possible to identify
the current mode by observing how the world changed under the latest action. We thus think of Mt

as an abstraction over the observed change of the system under some action and state.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumption 2: change can be predicted conditioned on mode The next assumption is that the
POMDP becomes a deterministic MDP conditioned on the mode. More precisely, we assume the
existence of a function T ′ : M ×A×O → O such that T ′(mt, at, ot) = O(T (st, at)).

Thus far, our constraints allow the trivial solution Mt = St, which is not useful. There may be many
other variables which satisfy our assumptions. Consequently, we add a constraint that allows us to
uniquely identify Mt.

Assumption 3: modes alone have minimal information Let M be the set of random variables
that satisfy the previous assumptions. Then the mode variable Mt is the unique solution to Mt =
argminMt∈M I(Mt, Ot+1).

Under the assumptions so far, we can so far conclude that if we find a variable Mt that allows us
to predict the change in the environment given an action and has minimal mutual information with
Ot+1, then Mt must be the mode variable. However, our approximation of Mt takes values in a
vector space, but we ultimately want to model it as a categorical variable. We therefore add our last
assumption.

Assumption 4: mode vectors form clusters Mt corresponds to a partition of the state space
where in expectation the within-subset sum of squares to the centroid of the subset is minimal. That
is, we assume a strict partitioning, centroid model clustering scheme, which means that if k-means
is run on vectors of Mt, then in expectation the clusters will correspond to the different modes.

Our assumptions imply that if a variable Mt is predictive of the change in observed state for any
action and has minimal mutual information with Ot+1, then that variable corresponds to the mode
variable. In other words, consider m : O ×A×O → M and f : M ×A×O → O under the joint
optimization problem

argmin
e,d

E(st−1,at−1,st,at,st+1)∼Mπ
[∥f(m(ot−1, at−1, ot), at)− (T (st, at)− st)∥]

− I(m(Ot−1, At, Ot), Ot+1),
(1)

where ∥ · ∥ is the Euclidean norm, ot−1 = O(st−1) and ot = O(st). From the assumptions stated
above, it follows that the solution to eq. (1) implies that m(·) corresponds to the mode variable,
which can be clustered with k-means to obtain mode labels for a set of data. In practice, we
parametrize m(·) and f(·) with neural networks and approximate the solution with gradient-based
search. To compute the mutual-information I(·, ·), we assume independence of features and fit
Gaussian distributions to compute a Monte-Carlo approximation.

Fitting local models to the data At this point it is possible to fit a local model for each cluster of
transitions in the dataset, as illustrated in Fig. 2, where each local model has higher performance for
a particular mode of the environment. This entire process results in algorithm 2.

P
re

d
ic

ti
o
n
 e

rr
o
r

Figure 2: Performance of the specialized models for the walking and swimming modes of
PointMass, an idealized version of an amphibious robot (see section 6). Each local model is spe-
cialized for a specific mode, leading to a combined low prediction error across the entire episode.
The x-axis indicates time.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 optimizePartition
Require: list of trajectories D, latent space M , number of modes m

1: Use gradient-descent to find e : S ×A → M and d : M ×A → Ŝ that approximately solve
eq. (1)

2: Embed the transitions into mode vectors, m(D)
3: Cluster the embeddings into m disjoint subsets using k-means
4: Di = {τ ∈ D | cluster(τ) = i}
5: D̄ = {D1, . . . , Dm}
6: Fit a local model fi to approximate the dynamics of Di.
7: return D̄, f

The algorithm takes a dataset of trajectories D, and partitions it by solving eq. (1) and clustering
the resulting mode vectors. The partition, say D̄ = {D1, . . . , Dm}, induces the sequence of modes
that the state machine should visit for a given trajectory in the dataset. That is, the state machine
should be in state i when processing transition τ if and only if τ ∈ Di.

5.2 PRUNING

The aforementioned partitioning process can create overly complex transitions. While the FSM
globally approximates the environment dynamics, some state regions may have multiple models
with similar accuracy, resulting in spurious transitions between states. In such cases, transitions
between these models can be pruned with minimal impact on performance.

To address this, we apply a pruning mechanism to eliminate these unwanted transitions. This helps
balance the complexity-accuracy trade-off in the state machine search space: while more complex
transition patterns can improve accuracy, they also increase the risk of overfitting and reduce inter-
pretability. We now describe the pruning approach, which optimizes for both accuracy and simplic-
ity.

Pruning Approach We begin by labeling each transition in the dataset with the index of the neural
network from the ensemble that best predicts the system’s evolution in that state. A mode transition
occurs when this label changes between consecutive states. For example, in the sequence 113322,
we transition from mode 1 to 3, then from 3 to 2. Pruning the transition to mode 3 yields two
possible sequences: 111122 (forward-prune) or 112222 (backward-prune). Our goal is to remove
transitions that have minimal impact on prediction accuracy.

To prune a mode transition, the framework shifts the affected transitions from one subset to another,
causing a different model, with equal or greater prediction error, to handle those transitions. If the
increase in prediction error is within the user-defined tolerance factor ϵ, the move is considered ϵ-
valid relative to the original partition. A mode transition is ϵ-prunable if all the associated moves are
ϵ-valid. There may be multiple ϵ-prunable mode transitions for a given trajectory and partition. Our
approach is to greedily prune the first prunable mode transitions with the strategy that results in the
smallest prediction error increase (see algorithm 3).

Algorithm 3 greedyPrune

Require: Partition D̄ of trajectory dataset D, error tolerance factor ϵ,
1: D̄0 = copy(D̄)
2: for t ∈ D do
3: while exists ϵ-prunnable (relative to D̄0) mode transition in t do
4: Prune the first ϵ-prunable (relative to D̄0) mode transition in D̄, updating D̄
5: return D̄

5.2.1 TRANSITION PREDICATE SYNTHESIS

We describe the mechanism by which the FSM learns when to transition from one mode to another.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Each subset of a partition corresponds to a state of the FSM being synthesized. For each pair of
FSM states (fi, fj), the core question is: given that the state machine was in state fi, and the agent
observed st, took action u, and then observed st+1, should the FSM transition to state fj? We
identify the subset of Di containing transitions where the next state is a source state in Dj , referred
to as the positive’ set. The negative’ set is the complement of the positive set with respect to Di. The
task then becomes a standard classification problem, where we find a predicate that outputs True for
the positive set and False for the negative set. See algorithm 4. We use scikit-learn Pedregosa et al.
(2011) to synthesize these predicates, parametrizing them with small Multi-Layer Perceptrons.

Algorithm 4 synthesizeTransitions

Require: Partition D̄ = {D1, . . . , Dm} and corresponding list of trajectories D
1: for i, j ∈ {1, . . . ,m} × {1, . . . ,m} do
2: positive = {τ1 ∈ Di | ∃τ2 ∈ Dj s.t. follows(τ1, τ2)}
3: negative = Di \ {positive}
4: δi,j = synthesizePredicate(positive, negative)
5: return δ

Algorithm 5 synthesizeFSMWM
Require: Dataset D of environment transitions, initial policy π0, mode number m, partition pruning

tolerance error ϵ, learning rate γ, RL algorithm
1: (D̄′, f ′) ≜ optimizePartition(D,m, γ)
2: Sort D̄′ = {D1, . . . , Dm} so that D1 contains the most initial transitions.
3: D̄ = greedyPrune(D̄′, ϵ,D)
4: δ = synthesizeTransitions(D̄)
5: F = (f, S,A, δ, f1)
6: return F

6 EXPERIMENTS

We evaluate SWMPO’s ability to identify and approximate the modes of the environment.

6.1 TEST ENVIRONMENTS

We test SWMPO on four environments of varying complexity (see fig. 3):

1. PointMass. These tasks are a simplified version of the amphibious robot running ex-
ample, and consist of applying a sequence of thrusts to a two-dimensional point mass to
take it to a target position. Crucially, the environment is split into terrains with different
characteristics: sand with no drag and water with high drag. Additionally, to simulate the
need for different policies in different terrains, actions in the sand terrain are inverted. See
fig. 3a. We use an MPC controller as the initial expert policy.

2. LiDAR-Racing. Adapted from Ivanov et al. (2021). Tasks in this environment consist
of driving a two-dimensional vehicle with bicycle dynamics and LiDAR sensors through
a track randomly assembled from pieces of five different types. See fig. 3b. We use a
pre-trained controller provided by the authors as the expert controller.

3. Salamander. A locomotion task in which an amphibious salamander must navigate
through water and land. This environment is implemented in the Webots 3D simula-
tor (Michel, 2004), in which the Salamandra Robotica II (Crespi et al., 2013) robot is
available. See fig. 3c. This environment is a scaled-up version of PointMass. For ob-
servations, we use the motor positions, the LiDAR readings and the GPS position. We use
the controller provided by Webots for this robot as the expert policy. However, to satisfy
Assumption 2 we randomly switch the controller’s mode, so that the robot sometimes per-
forms swimming actions on the land and viceversa. This is so that the change in the world
can only be accurately predicted if the mode variable is extracted.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4. BipedalWalkerHarcore (BipedalWH). A locomotion task in which a bipedal robot
has to locomote over uneven terrain with four different types of obstacles. This is a standard
benchmark in the Gymnasium library Towers et al. (2024) and employes the Box2D rigid
body simulator Catto (2024). We use a pre-trained controller from the RL Baselines3 Zoo
library Raffin (2020) as the expert policy.

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 3: Benchmark domains.

Predict
ed

Ground tru
th

Predict
ed

Ground tru
th

Predict
ed

Ground tru
th

Predict
ed

Ground tru
th

Figure 4: Labels of all the input trajectories from the PointMass environment. In each plot, the

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 5: Example unsupervised labeling outputs.

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 6: Example mode tracking on unseen data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Ground truth (b) Learned partition

Figure 7: Mode vectors learned through SWMPO in the PointMass environment. Each point rep-
resents a transition encoded with the learned m(·) (after dimensionality reduction through UMAP).
In the left plot, the ground truth labels are used to color the vectors. In the right, the learned partition
is used to assign colors.

(a) PointMass (b) LiDAR-Racing (c) Salamander (d) BipedalWH

Figure 8: We compare the performance of our method against HMMs across four different environ-
ments. The box plots illustrate the Levenshtein distance between FSM-predicted and ground truth
labels for each environment, with SWMPO results shown on the right and HMM results on the left.

The algorithm to approximate the solution to eq. (1) is written with Pytorch (Ansel et al., 2024) using
the Adam optimizer (Kingma & Ba, 2017). We use multi-layer perceptrons with ReLU activations
for all the neural networks involved in the algorithm. Predicate synthesis is performed with Scikit-
learn (Pedregosa et al., 2011).

6.2 LEARNED REPRESENTATION OF THE MODE VARIABLE

We present a plot of the data in the PointMass environment, where each transition is colored
according to both the ground truth and the learned partitions, shown in fig. 7. The results indicate
that the data forms clusters that align with the ground truth labels, demonstrating that the different
modes are separated. There is a high level of correspondence between the ground truth and learned
labels, although a few transitions are mislabeled.

6.3 FSM SYNTHESIS

We evaluate the performance of our FSM synthesis algorithm across all four environments.

For each environment, we use the expert policy to generate input data. We then use SWMPO to
partition the transitions in the input data into the number of modes for that environment. For illus-
tration purposes, we include all the labeled data for the PointMass environment (see fig. 5). We
then synthesize the FSMWM. We compare the states visited by the synthesized FSMWM in unseen
data against the ground truth states, as well as the visited states predicted by a hidden Markov model
with Gaussian emissions fitted to the training data. See fig. 6). We calculate the accuracy of each
partition with the Levenshtein distance to ground-truth labels (see fig. 8).

In PointMass, SWMPO outperforms HMMs and in LiDAR-Racing and Salamander,
SWMPO significantly outperforms HMM. In Bipedal Walker, SWMPO marginally beats

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

HMM, however, where the models struggle to capture the underlying dynamics of the agent in
its environment.

7 LIMITATIONS

The main limitations of the framework are stated formally as assumptions in section 5.1. The main
assumption is that the partial observability of the environment is a consequence solely of the mode
variable. Another limitation is that the mode variable must be approximated from a single transition;
generalizing this to allow for modes that require multiple steps to be identified is left for future work.

8 CONCLUSION

We presented a novel framework for synthesizing Finite State Machine World Models (FSMWMs)
in an unsupervised manner using low-level, non-visual continuous observations. We outlined the
key assumptions underpinning our approach and demonstrated its applicability. Our analysis shows
that the synthesized FSMWMs effectively capture the underlying structure of the environment by
mapping latent modes to discrete states. Additionally, our algorithm matches or surpasses the perfor-
mance of a Hidden Markov Model baseline on challenging dynamical systems. The implementation
of the framework and all the code necessary to replicate the experiments, including hyperparameters,
are attached to this manuscript, and are open sourced.

REFERENCES

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theo-
retical Computer Science, 138(1):3–34, February 1995. ISSN 0304-3975. doi: 10.
1016/0304-3975(94)00202-T. URL https://www.sciencedirect.com/science/
article/pii/030439759400202T.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with
Policy Sketches. In Proceedings of the 34th International Conference on Machine Learn-
ing, pp. 166–175. PMLR, July 2017. URL https://proceedings.mlr.press/v70/
andreas17a.html. ISSN: 2640-3498.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Matthew Michael Botvinick. Hierarchical reinforcement learning and decision making. Current
Opinion in Neurobiology, 22(6):956–962, December 2012. ISSN 0959-4388. doi: 10.1016/
j.conb.2012.05.008. URL https://www.sciencedirect.com/science/article/
pii/S0959438812000876.

Nizar Bouguila, Wentao Fan, and Manar Amayri. Hidden Markov models and applications.
Springer, 2022.

E. F. Camacho, D. R. Ramirez, D. Limon, D. Muñoz de la Peña, and T. Alamo. Model predictive
control techniques for hybrid systems. Annual Reviews in Control, 34(1):21–31, April 2010. ISSN
1367-5788. doi: 10.1016/j.arcontrol.2010.02.002. URL https://www.sciencedirect.
com/science/article/pii/S1367578810000040.

10

https://www.sciencedirect.com/science/article/pii/030439759400202T
https://www.sciencedirect.com/science/article/pii/030439759400202T
https://proceedings.mlr.press/v70/andreas17a.html
https://proceedings.mlr.press/v70/andreas17a.html
https://pytorch.org/assets/pytorch2-2.pdf
https://www.sciencedirect.com/science/article/pii/S0959438812000876
https://www.sciencedirect.com/science/article/pii/S0959438812000876
https://www.sciencedirect.com/science/article/pii/S1367578810000040
https://www.sciencedirect.com/science/article/pii/S1367578810000040


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Erin Catto. erincatto/box2d, September 2024. URL https://github.com/erincatto/
box2d. original-date: 2015-03-14T16:52:46Z.

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering Symbolic Models from Deep Learning with Inductive Biases. In
Advances in Neural Information Processing Systems, volume 33, pp. 17429–17442. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c9f2f917078bd2db12f23c3b413d9cba-Abstract.html.

Alessandro Crespi, Konstantinos Karakasiliotis, André Guignard, and Auke Jan Ijspeert. Sala-
mandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walk-
ing Gaits. IEEE Transactions on Robotics, 29(2):308–320, April 2013. ISSN 1941-0468.
doi: 10.1109/TRO.2012.2234311. URL https://ieeexplore.ieee.org/document/
6416074. Conference Name: IEEE Transactions on Robotics.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning
modular neural network policies for multi-task and multi-robot transfer. In 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 2169–2176, May 2017. doi:
10.1109/ICRA.2017.7989250.

Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari. A clustering tech-
nique for the identification of piecewise affine systems. Automatica, 39(2):205–217, Febru-
ary 2003. ISSN 0005-1098. doi: 10.1016/S0005-1098(02)00224-8. URL https://www.
sciencedirect.com/science/article/pii/S0005109802002248.

Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muhammad Tayyab Asif, Ali Oran, and Patrick
Jaillet. Online map-matching based on hidden markov model for real-time traffic sensing appli-
cations. In 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp.
776–781. IEEE, 2012.

Kavi Gupta, Chenxi Yang, Kayla McCue, Osbert Bastani, Phillip A. Sharp, Christopher B. Burge,
and Armando Solar-Lezama. Improved modeling of RNA-binding protein motifs in an inter-
pretable neural model of RNA splicing. Genome Biology, 25(1):23, January 2024. ISSN
1474-760X. doi: 10.1186/s13059-023-03162-x. URL https://doi.org/10.1186/
s13059-023-03162-x.

David Ha and Jürgen Schmidhuber. Recurrent World Models Facilitate Policy Evolu-
tion. In Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
2de5d16682c3c35007e4e92982f1a2ba-Abstract.html.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham, and
Daniel Kroening. DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep
Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9):
7647–7656, May 2021. ISSN 2374-3468. doi: 10.1609/aaai.v35i9.16935. URL https://
ojs.aaai.org/index.php/AAAI/article/view/16935. Number: 9.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using Reward Ma-
chines for High-Level Task Specification and Decomposition in Reinforcement Learning. In
Proceedings of the 35th International Conference on Machine Learning, pp. 2107–2116. PMLR,
July 2018. URL https://proceedings.mlr.press/v80/icarte18a.html. ISSN:
2640-3498.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
Programmatic Policies that Inductively Generalize. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=S1l8oANFDH.

Radoslav Ivanov, Kishor Jothimurugan, Steve Hsu, Shaan Vaidya, Rajeev Alur, and Osbert Bastani.
Compositional Learning and Verification of Neural Network Controllers. ACM Transactions on
Embedded Computing Systems, 20(5s):92:1–92:26, September 2021. ISSN 1539-9087. doi: 10.
1145/3477023. URL https://dl.acm.org/doi/10.1145/3477023.

11

https://github.com/erincatto/box2d
https://github.com/erincatto/box2d
https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html
https://ieeexplore.ieee.org/document/6416074
https://ieeexplore.ieee.org/document/6416074
https://www.sciencedirect.com/science/article/pii/S0005109802002248
https://www.sciencedirect.com/science/article/pii/S0005109802002248
https://doi.org/10.1186/s13059-023-03162-x
https://doi.org/10.1186/s13059-023-03162-x
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/16935
https://ojs.aaai.org/index.php/AAAI/article/view/16935
https://proceedings.mlr.press/v80/icarte18a.html
https://openreview.net/forum?id=S1l8oANFDH
https://dl.acm.org/doi/10.1145/3477023


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Henrik Jacobsson. Rule Extraction from Recurrent Neural Networks: ATaxonomy and Re-
view. Neural Computation, 17(6):1223–1263, June 2005. ISSN 0899-7667. doi: 10.1162/
0899766053630350. Conference Name: Neural Computation.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.
URL http://arxiv.org/abs/1412.6980. arXiv:1412.6980 [cs].

John Kolen. Fool’ s Gold: Extracting Finite State Machines from Recurrent Network Dy-
namics. In Advances in Neural Information Processing Systems, volume 6. Morgan-
Kaufmann, 1993. URL https://proceedings.neurips.cc/paper/1993/hash/
470e7a4f017a5476afb7eeb3f8b96f9b-Abstract.html.

Anurag Koul, Sam Greydanus, and Alan Fern. Learning Finite State Representations of Recur-
rent Policy Networks, November 2018. URL http://arxiv.org/abs/1811.12530.
arXiv:1811.12530 [cs, stat].

Cen Li and Gautam Biswas. Applying the hidden Markov model methodology for unsupervised
learning of temporal data. International Journal of Knowledge Based Intelligent Engineering
Systems, 6(3):152–160, 2002. Publisher: UNKNOWN.

Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a Unified Theory of State Abstraction
for MDPs. In International Symposium on Artificial Intelligence and Mathematics, AI&Math
2006, Fort Lauderdale, Florida, USA, January 4-6, 2006, 2006. URL http://anytime.cs.
umass.edu/aimath06/proceedings/P21.pdf.

Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vijaykumar Rajasekaran, Maxime Adjig-
ble, Rustam Stolkin, Aleš Leonardis, and Yasemin Bekiroglu. Dynamic grasp and trajectory
planning for moving objects. Autonomous Robots, 43:1241–1256, 2019. Publisher: Springer.

O. Michel. Webots: Professional Mobile Robot Simulation. Journal of Advanced
Robotics Systems, 1(1):39–42, 2004. URL http://www.ars-journal.com/
International-Journal-of-Advanced-Robotic-Systems/Volume-1/
39-42.pdf.

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based Re-
inforcement Learning: A Survey. Foundations and Trends® in Machine Learning, 16(1):1–
118, January 2023. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000086. URL https:
//www.nowpublishers.com/article/Details/MAL-086. Publisher: Now Publish-
ers, Inc.

Aditya Mohan, Amy Zhang, and Marius Lindauer. Structure in Deep Reinforcement Learning: A
Survey and Open Problems. J. Artif. Int. Res., 79, April 2024. ISSN 1076-9757. doi: 10.1613/
jair.1.15703. URL https://dl.acm.org/doi/10.1613/jair.1.15703.

Simone Paoletti, Aleksandar Lj. Juloski, Giancarlo Ferrari-Trecate, and René Vidal. Identifica-
tion of Hybrid Systems A Tutorial. European Journal of Control, 13(2):242–260, January 2007.
ISSN 0947-3580. doi: 10.3166/ejc.13.242-260. URL https://www.sciencedirect.
com/science/article/pii/S0947358007708221.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Antonin Raffin. RL Baselines3 Zoo, 2020. URL https://github.com/DLR-RM/
rl-baselines3-zoo. Publication Title: GitHub repository.

Christopher Simpkins and Charles Isbell. Composable Modular Reinforcement Learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 33(01):4975–4982, July 2019. ISSN
2374-3468. doi: 10.1609/aaai.v33i01.33014975. URL https://ojs.aaai.org/index.
php/AAAI/article/view/4428. Number: 01.

12

http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/1993/hash/470e7a4f017a5476afb7eeb3f8b96f9b-Abstract.html
https://proceedings.neurips.cc/paper/1993/hash/470e7a4f017a5476afb7eeb3f8b96f9b-Abstract.html
http://arxiv.org/abs/1811.12530
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://anytime.cs.umass.edu/aimath06/proceedings/P21.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
https://www.nowpublishers.com/article/Details/MAL-086
https://www.nowpublishers.com/article/Details/MAL-086
https://dl.acm.org/doi/10.1613/jair.1.15703
https://www.sciencedirect.com/science/article/pii/S0947358007708221
https://www.sciencedirect.com/science/article/pii/S0947358007708221
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
https://ojs.aaai.org/index.php/AAAI/article/view/4428
https://ojs.aaai.org/index.php/AAAI/article/view/4428


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Miriam Garcı́a Soto, Thomas A. Henzinger, and Christian Schilling. Synthesis of hybrid automata
with affine dynamics from time-series data. In Proceedings of the 24th International Conference
on Hybrid Systems: Computation and Control, HSCC ’21, pp. 1–11, New York, NY, USA, May
2021. Association for Computing Machinery. ISBN 978-1-4503-8339-4. doi: 10.1145/3447928.
3456704. URL https://dl.acm.org/doi/10.1145/3447928.3456704.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction, 2nd ed. Rein-
forcement learning: An introduction, 2nd ed. The MIT Press, Cambridge, MA, US, 2018. ISBN
978-0-262-03924-6. Pages: xxii, 526.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila McIlraith. Learning Reward Machines for Partially Observable Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
532435c44bec236b471a47a88d63513d-Abstract.html.

Mark Towers, Jordan K Terry, Ariel Kwiatkowski, John U. Balis, Gianluca Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Jin Shen Tan, and Omar G. Younis. Gymna-
sium, May 2024. URL https://zenodo.org/records/11232524.

Ke Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. Unsupervised neural
hidden Markov models. arXiv preprint arXiv:1609.09007, 2016.

Aleksandar Vakanski, Iraj Mantegh, Andrew Irish, and Farrokh Janabi-Sharifi. Trajectory learning
for robot programming by demonstration using hidden Markov model and dynamic time warping.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(4):1039–1052,
2012. Publisher: IEEE.

Hongmin Wu, Yisheng Guan, and Juan Rojas. A latent state-based multimodal execution monitor
with anomaly detection and classification for robot introspection. Applied Sciences, 9(6):1072,
2019. Publisher: MDPI.

Duo Xu and Faramarz Fekri. Interpretable Model-based Hierarchical Reinforcement Learning using
Inductive Logic Programming, June 2021. URL http://arxiv.org/abs/2106.11417.
arXiv:2106.11417 [cs].

13

https://dl.acm.org/doi/10.1145/3447928.3456704
https://proceedings.neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/532435c44bec236b471a47a88d63513d-Abstract.html
https://zenodo.org/records/11232524
http://arxiv.org/abs/2106.11417


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A NOTATION TABLE

Table 1: Notation Table

Symbol Meaning
M Markov Decision Process (MDP)
S ∈ Rk Set of observations
A Set of actions
T : S ×A → S Transition function
S0 Distribution of initial states
R : S ×A× S → R Reward function
πθ : S → A Policy parametrized by θ
Vπθ

(s) Value function for state s
st Source state at time t
st+1 Next state after taking action
F Finite State Machine World Model (FSMWM)
f Set of environment models
δ Set of mode-transition predicates
st+1 = fi(st, ut) Predicted next observation
δ(st, ut, i) Mode transition function
(M⊗F) Product MDP
S⊗ Augmented state space
S⊗
0 Augmented initial state distribution

T⊗ Transition function for product MDP

14


	Introduction
	Related work
	Background
	Reinforcement learning
	Finite State Machines

	Problem statement
	Method
	Labeling
	Pruning
	Transition predicate synthesis


	Experiments
	Test Environments
	Learned Representation of the Mode Variable
	FSM synthesis

	Limitations
	Conclusion
	Notation table

