LESS IS MORE: ADAPTIVE COVERAGE FOR
SYNTHETIC TRAINING DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Synthetic training data generation with Large Language Models (LLMs) like
Google’s Gemma and OpenAI’s GPT offer a promising solution to the challenge
of obtaining large, labeled datasets for training classifiers, especially when rapid
model deployment is critical, such as classifying emerging social media trends
or combating new forms of online abuse tied to current events. While prior re-
search has examined the comparability of synthetic data to human-labeled data,
this study introduces a novel sampling algorithm based on the maximum coverage
problem to select a representative subset from a synthetically generated dataset.
Our results demonstrate that training a classifier on this contextually sampled sub-
set achieves superior performance compared to training on the entire dataset. This
“less is more” approach not only improves accuracy but also reduces the volume
of data required, leading to potentially more efficient training.

1 INTRODUCTION

In recent years, the ability to generate high-quality synthetic data using large language models
(LLMs) like OpenAI’'s GPT|Achiam et al.|(2023)) or Google’s Gemma Team et al.| (2024)) has opened
new possibilities for training machine learning models, particularly in areas where human-labeled
data is costly, inaccessible, or impractical to obtain at scale Bunte et al.| (2021). With a reliance
on labeled data for downstream tasks such as text classification, sentiment analysis, and informa-
tion retrieval, LLMs offer a promising alternative by efficiently generating data that closely mirrors
real-world inputs.

While synthetic data has been shown to perform comparably to human-labeled data for certain tasks
Ding et al.| (2022), simply relying on large values of synthetic text introduces several challenges.
One of the main issues is the quality and diversity of the generated data. LLMs often produce
redundant or skewed examples that can degrade the training performance or delay model conver-
gence |Long et al.|(2024). For example, an LLM tasked with generating training data for sentiment
analysis may over-generate text that reflects common or typical expressions of sentiment, while
under-representing more nuanced or less frequent cases Hao et al.|(2024). Consider the example of
generating training data to classify sentiments for a novel event, such as a newly released product
or a political debate. An LLM might generate hundreds of slightly varied but largely repetitive ex-
amples of positive sentiment, which could saturate the dataset and obscure valuable minority cases,
such as neutral or mixed sentiments.

Such imbalances can lead to model overfitting, hinder generalization to real-world test data, and
increase computational costs due to the processing of unnecessary samples. Moreover, without
careful selection of representative data points, this over-representation dilutes the usefulness of the
data and increases the likelihood that the model will underperform on less frequent, yet equally
important, sentiment categories.

In this paper, we address a fundamental question in the utilization of synthetic data: how can we
effectively downsample large datasets to select the most informative and diverse subset of data points
for training machine learning models?

1.1 OUR RESULTS

To address this question, it becomes crucial to devise a robust method for selecting representative
data points from the synthetic dataset in a way that preserves the diversity and relevance of the
original data without sacrificing training accuracy.

Our key contribution is a novel binary search algorithm that determines the optimal configuration for
a modified max coverage sampling, enabling the selection of a small, yet diverse and representative,
subset of a synthetic dataset. Starting from a large set of synthetic text data generated by a large
language model (LLM), we embed the data into a latent space and construct a similarity graph
where nodes represent data points and edges are weighted by pairwise cosine similarity. On this
graph, we run a greedy max-coverage approximation algorithm, pruning edges through our binary
search procedure to identify the best k£ “representative” samples for fine-tuning a model on various
downstream tasks. We refer to our method as Adaptive Coverage Sampling (ACS).

In configuring ACS, we demonstrate that selecting a coverage level below 1.0—meaning the % rep-
resentative samples do not cover the entire dataset—leads to better performance across multiple
datasets. Specifically, coverage is defined as the proportion of data points adjacent to the k selected
samples in the pruned similarity graph. Each sample covers itself and all its neighbors. A coverage
of 1.0 indicates that all data points are connected to at least one of the selected samples or themselves
are in the samples set, while lower coverage values selectively exclude data points that are not good
representatives of the dataset. The optimal coverage level in ACS depends on the specific character-
istics of the dataset. Intuitively, datasets with more noise would benefit from a lower coverage target,
as this would prioritize the selection of high-quality representative samples. However, our experi-
ments consistently show that targeting a full coverage of 1.0 yields to inferior model performance
and that the performance peaks around a coverage of 0.7 to 0.9.

Our method enables practitioners to efficiently select representative subsets of synthetic data, min-
imizing redundancy while maintaining diversity. Crucially, by identifying this optimal subset, we
show that models trained on this smaller, yet diverse, dataset can outperform models trained on the
full corpus of synthetic data, while also potentially reducing computational overhead.

Unlike previous approaches that rely on heuristics or manually experimenting with threshold values
Gao et al.[(2023); Zhang et al.| (2023); |Chen et al.| (2023); [Meng et al.| (2022; 2023); |Seedat et al.
(2023), our method offers a principled approach to determining the best configuration for processing
and sampling data. This significantly reduces the need for tuning while delivering optimal subsets
for downstream model training, making it a more efficient solution with reduced computational cost.

2 RELATED WORK

Large Language Models (LLMs) Large language models (LLMs), built upon the Transformer
architecture introduced by Vaswani et al. [Vaswani| (2017), have driven significant advancements in
natural language processing [Team et al.| (2023). By training on vast amounts of data, these models
have achieved state-of-the-art results across various NLP tasks [Brown| (2020); [Rae et al.| (2021);
Taylor et al.| (2022), demonstrating the efficacy of large-scale supervised learning. Most crucially,
the discernment between human and LLM generated data is becoming increasingly challenging as
these systems capability to generate fluent text improves|Hartvigsen et al.| (2022);[Sahu et al.|(2022));
Tang et al.| (2023); [Ye et al.| (2022). Given this new state-of-the-art in human data mimicry, the
natural question arises as to when data generated by these systems can actually be used in place of,
or in tandem with, real data.

Synthetic Data High-quality data is generally defined as diverse data that contains labels which
closely resemble human intent. However, obtaining such data from humans can be challenging or
even impractical due to high costs and privacy concerns Kurakin et al.|(2023). Several studies have
further showcased that human-generated data, being inherently prone to biases or errors, may not
even be ideal for model training on all tasks in general (Gilardi et al.| (2023)); Hosking et al.; [Singh
et al.. In mitigating these issues, a burgeoning area of research has explored the task of generating
data which more diversely samples the training space Gandhi et al.|(2024)); Liu et al.| (2024)).

For novel or specialized tasks, many existing, publicly available, datasets are insufficient for model
training towards a given task |Bunte et al.|(2021)). To address this gap, many studies have focused on

generating synthetic data that closely mirrors real-world data for model training purposes |Shorten
& Khoshgoftaar| (2019). Learning from limited labeled data has been extensively explored through
methods like unsupervised pre-training |Devlin| (2018); |Yang| (2019); |[Raffel et al.[(2020), multi-task
learning |Glorot et al.| (2011)), semi-supervised learning Miyato et al.| (2016), and few-shot learning
Deng et al.[(2020); [He et al.[| (2021). One common strategy to mitigate data scarcity is data aug-
mentation, which involves creating new samples by modifying existing data or leveraging known
characteristics of the target data distribution Ding et al.|(2020); [Wei & Zou| (2019).

LLMs as Synthetic Data Generators. LL.Ms have shown great potential in generating such syn-
thetic data through their ability to produce fluent text responses from simple prompts. Researchers
have leveraged both zero-shot and few-shot prompting with models like OpenAI’s GPT |Achiam
et al.| (2023) and Google’s Gemma [Team et al.| (2024) to generate synthetic training data for text
classification tasks [Long et al.|(2024). The effectiveness of this approach depends on factors such
as the size of the label space Ding et al.| (2022), the subjectivity of the classification task [Li et al.
(2023)), and the ability of the models to produce sufficiently diverse data for robust model training
Hao et al.| (2024). We here examine this synthetically generated data and explore the gap between
classification performance from training on synthetic versus human data by employing a sophisti-
cated downsampling technique, effectively filtering the synthetic dataset to more closely resemble a
real-world set.

Downsampling for High Quality Data Filtering. Filtering of data samples is a common practice
to identify a more helpful subset of the training data. These methods typically take the form of
heuristics criteria or sample re-weighting. “Sample-reweighting” weights individual data samples
importance to the training data, assigning higher weights to correctly annotated or highly influential
samples |Gao et al.|(2023)); Zhang et al.| (2023).

Heuristics often rely on designing criteria based on learning dynamics Meng et al.| (2022} [2023));
Seedat et al.[(2023). Such methods can involve the costly process of repeated training a model on
selected subsamples to identify which contribute most meaningfully to downstream accuracy [Ilyas
et al.| (2022), emphasize classification specific diagnostics in their selection |Swayamdipta et al.
(2020), rely on repeated model updates |Park et al.[(2022), or favor the “hard” examples in a training
set which can be prone to labeling errors|Guo et al.[(2022). In contrast to these limitations, ACS is a
lightweight approach that identifies subsets of a desired size in a single step, effectively representing
the full training corpus and offering flexibility for use across tasks and data modalities.

LLMs have been deployed for this filtering task to assess the quality of samples with low scores
according to some metric. Particularly relevant to the present work is |(Chen et al.| (2023) which
demonstrated that AlpaGasus, trained on a much smaller but curated dataset, surpasses the origi-
nal Alpaca model Taori et al.|(2023)) across several benchmarks. While their simplistic method of
querying a language model to rate each sample and only including those that exceed a threshold is
comparable to the present work, their approach relies on a repeated query to such models to reduce
the space.

Our method is considerably more flexible to the data source being filtered, demonstrates that con-
siderably less data is required (6.7% as compared to 17%), and continues to outperform baselines,
further emphasizing the importance of selecting refined training sets.

3 METHODOLOGY

In this section, we describe the pipeline used to generate data from language models for fine-tuning
the BERT,s. model on a downstream task. We begin by generating a corpus of text from an open-
access LLM. Next, we apply downsampling techniques to filter this data. The filtered data is then
used to train the BERTy,, model. Finally, we evaluate the trained model using a test set of human-
generated data from well-known benchmark datasets.

3.1 SYNTHETIC DATA GENERATION

In this work, we utilize a corpus of synthetic samples generated by GPT-3.5 |Achiam et al.| (2023),
which is capable of producing diverse and contextually rich text in response to plain text prompts.
The prompts used for generating this data, tailored to specific downstream tasks (e.g., sentiment

analysis), are adopted from prior work by Ding et al.| (2022)). Our approach leverages their prompt
design while focusing on experimenting with a novel downsampling method to improve the utility
of the generated data.

To ensure sufficient variation, the generated corpus includes an equal number of data points for each
label in the label space of the classification task. This balance is maintained across all downstream
tasks and datasets where we apply our methods. As a result, the corpus comprises a diverse collec-
tion of text, ranging from straightforward, highly representative examples to nuanced edge cases.
However, synthetic data generation often introduces redundancy, where multiple texts express the
same sentiment or label in slightly different ways|Long et al.| (2024).

To address this, our methods carefully downsample the synthetic corpus, identifying the most rep-
resentative and informative data points. This approach reduces redundancy and overfitting while
enhancing the efficiency of the training process. Further details on the prompts and their use across
tasks are discussed in Section 3

3.2 DOWNSAMPLING METHODS

Given a large volume of synthetically generated data, we employ and compare three different down-
sampling methods to select a representative subset of size k, where k& < N, from the full corpus
of N samples. The goal is to identify an optimal subset of samples that preserves the diversity and
informativeness of the full dataset while maintaining a low computational overhead.

Random Sampling. The most basic baseline and computationally lightweight downsampling
method is random sampling. In this approach, we randomly select k& samples from the full cor-
pus.

k-Means Sampling. As a more sophisticated baseline, we embed the text data using pre-trained
Gecko embedding from Google Clouds Vertex Al |[Lee et al.| (2024), and subsequently run the k-
means clustering algorithm |Lloyd| (1982)). We then retain the samples closest to each k-center as our
representative samples for model fine tuning.

Adaptive Coverage Sampling (ACS). The main algorithm we introduce for the down-sampling
problem towards model fine tuning is based on a greedy max coverage sampling approach. Our
approach aims to select a diverse and representative subset of the data by selecting samples that
are close to and therefore represent a large number of data points in the latent embedding space,
while striking a balance between sampling dense and sparse regions. This algorithm ensures that the
selected k& samples capture the full diversity of a synthetic training set while ignoring redundancies.

The ACS method begins by constructing a similarity graph where each node corresponds to a data
point, and edges are weighted by the cosine similarity between text embeddings of the corresponding
points. We again use pre-trained Gecko embedding |Lee et al. (2024)) to quantify the semantic rela-
tionships among data points. Note that any embedding model can be used, as long as it is appropriate
for the downstream task and identifying similarities between data points.

In constructing the similarity graph, only edges with cosine similarity above a certain threshold are
included. This threshold is set using a novel binary search, with the goal of achieving a desired
“coverage” level of the graph. A node in the graph is covered if itself or at least one of its neighbors
are in the sample set. We thus define coverage as follows:

Definition 1 (Coverage). Let G = (V, E) be a graph with vertex set V, edge set E, and self-loop
Sor all vertices. A subset H C'V of size |H| = k achieves coverage c € [0, 1] if

U

i€H

= c:|V]

where N; is the neighborhood of vertex v € H (ie. i covers the elements of N;, including itself).

Therefore, a coverage level of 1.0 means that every node in the graph has at least one neighbor in the
sample set or itself is in the sample set. A coverage level of 0.9 means 10% of the nodes neither are in
the sampled set nor have any neighbors in the sample set and thus are not covered/represented. Since
max-cover aims to maximize the coverage with the least amount of samples, the uncovered nodes
typically corresponding to outliers or less informative samples. We formally verify the monotonicity

of this coverage level when solving the max coverage problem which allows binary search on the
cosine similarity threshold to be implemented successfully.

Theorem 1. Let D be a dataset, and for each similarity threshold s;, construct a similarity graph
G;(V, E;), where V represents the data points and (u,v) € E; if and only if the cosine similarity
between u and v exceeds s;. Let H; C V be the set of k samples selected by the max coverage
algorithm on G;, and let c; denote the coverage achieved by H;. For any two thresholds s; and s
such that s; < s;, the similarity graph G;(V, E;) has a coverage c¢; > ¢; when maximally covered
by k samples.

Proof. Consider two similarity thresholds s; and s; such that s; < s;. The corresponding similarity
graphs G;(V, E;) and G, (V, Ej;) are constructed by adding edges between data points whose cosine
similarity exceeds s; and s;, respectively. Since s; < s;, it follows that F; C Fj; that is, G;
includes all the edges from G, possibly with additional edges.

Now, let H; C V be the set of k samples selected by the max coverage algorithm on G;, which
achieves coverage c;. The coverage c; is defined as the proportion of vertices in V' that are adjacent
to at least one vertex in H;.

Since F; C Fj, the set of neighbors of each vertex in H; in G is a subset of the neighbors of the
same vertex in G;. Therefore, the coverage achieved by H; in G| is at least as large as the coverage
in G;. More formally, if H is the set of k samples selected by the max coverage algorithm on G,
we have:

)

¢i=|J Nj(v)| and ¢ =
veEH;

U Ni(v)

veEH;

where N (v) and N, (v) denote the neighborhoods of v in G; and G, respectively. Since E; C Ej,
we have N;(v) € N;(v) for all v € V, implying that the coverage in G is at least as large as the
coverage in G;. Therefore, c; > ¢;.]

The monotonicity of coverage allows us to find the largest similarity threshold that achieves a cov-
erage equal or greater than the target coverage. This thresholding ensures that the max coverage
component of ACS focuses on the most relevant and diverse samples to achieve the target coverage.
We note that the max coverage problem itself is NP-hard [Feige| (1998) and our implementation uses
the greedy approximation [Hochbaum| (1996) which is not guaranteed to be monotonic. However,
we show that, in practice, this monotonicity persists (see Section[d.T)).

Once the graph is constructed using the found optimal edge threshold, the greedy max cover algo-
rithm selects k points which collectively cover a c-portion of the dataset. This procedure proceeds
by sequentially selecting the node with the highest degree (ie. the data point that is most similar to
others). The selected node is then added to the representative subset, and all of its neighboring points
(including the sampled node itself) are deemed “covered” and removed from further consideration
to avoid redundancy. This process is repeated until k representative samples have been selected.
By prioritizing high-coverage points, ACS ensures that the selected subset captures the most impor-
tant variations within the dataset, leading to better downstream performance than random sampling
(see Sections[5.1.2]and [5.2.2)). In executing this sampling, we impose two strict constraints on each
of the £ points with respect to the constructed similarity graph to force further diversification and
efficiency of the subsampling.

Constraint 1: Maximum Nearest Neighbors Constraint. To further enhance the efficiency and
diversification of ACS, we first introduce a constraint on the maximum number of nearest neighbors
(i.e., maximum outdegree) for each node in the similarity graph. This constraint serves several
important purposes. Firstly, the maximum nearest neighbors constraint promotes diversification
in the sampling process. Without this constraint, a single sample could potentially cover a large
portion of the graph, especially in lower similarity thresholds. By limiting the number of neighbors,
we prevent any single sample from dominating the coverage. This leads to a more representative
sample subset that captures the underlying structure of the dataset more effectively. Secondly, it
improves the scalability of the algorithm. By limiting the number of edges on each node, we reduce
the overall density of the graph, leading to faster computation and lower memory usage. This is

particularly crucial when dealing with large datasets, where an unconstrained graph can lead to
memory limitations and prohibitively long processing times.

Finally, this constraint aligns with common graph construction scalability techniques such as
Locality-Sensitive Hashing (LSH) with limited bucket sizes. |Shekkizhar et al.| (2023). These tech-
niques often inherently limit the number of neighbors considered for each data point to improve
efficiency and scalability. By explicitly incorporating a maximum nearest neighbors constraint into
ACS, we ensure compatibility with these techniques and facilitate seamless integration into existing
workflows.

To implement this constraint, we set d,,,,x for each node in the graph. In a graph without an imposed
similarity threshold, a lower bound for d,,x can be defined to guarantee a desired coverage, ¢, with
k samples: dpax > ¢IPl/k. This bound, derived from the extended pigeonhole principle, ensures
that sufficient connectivity is maintained to achieve the target coverage. However, in our algorithm,
we set dimax to be twice this lower bound, dp.x = 2¢Pl/k. This provides a balance between
achieving the target coverage and avoiding excessive pruning of the graph, which could lead to less
representative samples.

Constraints 2: Minimum Similarity Threshold Constraint. While the adaptive similarity
threshold in ACS effectively controls the sampling process, it is essential to ensure that the selected
samples maintain a minimum level of similarity to the data points that they represent. To achieve
this, we introduce a minimum similarity threshold constraint. Without enforcing such a limit ACS
can achieve any target coverage by any £ > 0 samples from the graph by choosing a low similarity
thresholds. At the extreme a single sample can cover the entire graph with a similarity threshold
of zero. This coverage, however, is not real as samples are claimed to represent their neighbors but
with very low similarities. We use a minimum similarity threshold of 0.707 which corresponds to
the cosine of a 45 degree between the embedding vectors. By imposing this bound, ACS may not
achieve a target coverage and in this case, it returns the k samples selected from a graph with the
minimum similarity threshold.

3.3 BERT FINE TUNING

After generating and downsampling the synthetic dataset to obtain & training samples, we fine-tune a
BERT model Devlin| (2018)) on the selected subset. Specifically, we use the BERT},se, uncased model
(108 million parameters) and fine-tune it for three epochs|| The majority of the model weights
are initialized from pre-trained weights, while the final classification layer (2048) parameters is
randomly initialized. The weights of the final classification layer are initialized by sampling from
a normal distribution with mean 0 and standard deviation 0.02, following the standard procedure
used for fine-tuning transformer-based models like BERT, RoBERTa, and ALBERT Devlin| (2018));
Dodge et al.|(2020); Lan| (2019); Liu| (2019).

We fine-tune the model with a batch size of 16, a learning rate of 2 x 107?, and a dropout rate of 0.1.
All experiments are conducted on a high-performance GPU cluster with 16GB of RAM. Each exper-
iment is repeated N2 times, where NV is the number of distinct random seeds used for initializing the
model and the order of data. Unless otherwise indicated, we set N = 5 to ensure robust evaluation
of our down-sampling methods across different random initializations. The implementation and all
hyperparameters are available in the HuggingFace transformer library Wolf et al.| (2020), ensuring
the reproducibility of our results. Codes for model training are included as supplementary material.

4 EMPIRICAL ANALYSIS OF ACS

In this section, we validate our novel binary search procedure for determining the optimal similarity
threshold in the ACS pipeline. A key assumption of our approach is the monotonicity of coverage
as a function of similarity, a property we empirically confirm through experiments. This validation
ensures the soundness of our binary search procedure and reinforces the theoretical underpinnings
of our method.

! Although we focus on BERT fine-tuning for classification tasks in this work, our approach is general and
can be applied to train other classifier models.

06

Coverage %

40 60 40 60
Number of samples Number of Samples

(a) MNIST (b) SST2

Figure 1: Coverage of data increases with k£ or when decreasing the similarity threshold. Colors
correspond to the fixed similarity thresholds depicted in the legend.

Our experimental results on two datasets further reveal that the optimal coverage level for selecting
training data consistently lies below 1.0. This observation underscores the benefits of selecting a
sub-maximal coverage threshold, as it enhances model generalization by achieving a better balance
between representativeness and diversity in the selected subset.

4.1 MONOTONICITY OF COVERAGE AS A FUNCTION OF SIMILARITY

Our binary search algorithm for determining the optimal similarity threshold relies on the mono-
tonicity of the coverage function when approximating the solution to the max coverage problem via
the greedy algorithm. We here experimentally show that, as the similarity threshold decreases, the
coverage achieved by the selected representative samples increases or remains constant, validating
the monotonicity assumption at the core of our algorithm. This property justifies the use of binary
search to identify the optimal threshold for a desired coverage level, as was formally established for
the exact max coverage algorithm in Theorem 1}

To empirically validate this monotonicity, we ran the approximate max coverage algorithm with
various fixed similarity thresholds while varying the number of training samples, k. We include
results for both the MNIST dataset, a collection of hand-written digit images with classes 0-9 Deng
(2012), and the SST2 semantic analysis dataset Socher et al.|(2013)). Although MNIST is not used
in our primary experiments (Section [3)), its inclusion demonstrates that the monotonicity property,
and thus the soundness of our algorithm, generalizes across different data modalities. This broad
applicability highlights the potential for our approach to extend beyond text-based datasets and
synthetic data generation.

To prepare the data for running ACS, we first embed the data to generate the similarity graph, as
discussed in Section For MNIST, we generated embeddings by flattening each grayscale image
into a vector. To expedite runtime, the training dataset was first randomly downsampled from 60K
to 1K samples. For the SST2 dataset, which consists of short textual movie reviews classified as
positive or negative, we embed using Google’s Gecko embeddings |Lee et al.[(2024).

On the embedded data, for various fixed similarity thresholds, we compute the coverage attained by
running ACS at increasing subsample counts, k. Figure [1]illustrates that coverage monotonically
increases as either k increases or the similarity threshold decreases. At the extremes, maximum
coverage of ¢ = ¥/|p| is achieved for an edgeless graph, while full coverage (¢ = 1) is attained for
any k > 0 in a fully connected graph. These results are consistent for both datasets.

4.2 IDENTIFYING THE OPTIMAL COVERAGE

To optimize the representativeness of the sampled subset within a limited budget, we systematically
vary the target coverage parameter, which controls the proportion of data points in the similarity
graph that are effectively represented by the selected samples.

To evaluate the optimal coverage parameter across different data modalities, we again conducted
experiments on both the MNIST dataset and the SST2 dataset. These experiments demonstrate that
a coverage value < 1.0 consistently yields improved results on downstream tasks, informing our
parameterization of ACS and with a generalized finding across diverse types of data.

02 04 06 o8 10 02 04 06 o8 10
Coverage Coverage

(a) MNIST (b) SST2

Figure 2: Model accuracy as a function of coverage level with peaks at a coverage level below 1.0.

As in the previous section, we embed the MNIST and SST2 datasets, and subsequently run the
ACS downsampling procedure. However, we now fix the number of samples % and target different
coverage levels c, using ACS to select an optimal similarity threshold for edge insertion on the
similarity graph used to run max-coverage. Using the selected k samples, we then train a model to
predict the labels of a test set and report accuracy of the final models. For MNIST, we trained a
basic neural network model composed of a flattening layer, a dense layer with 32 units and ReLU
activation, a dropout layer with a rate of 0.2, and a final dense layer with 10 units for classification.
The model was optimized using the Adam optimizer and the sparse categorical cross-entropy loss
function. For SST2, we fine-tune BERTy, as discussed in Section[3.3]

The resulting model accuracies are plotted in Figures [2a] and [2b| against the coverage parameter.
As the figures show, increasing the number of samples generally improves performance. However,
increasing the target coverage shows diminishing returns beyond a certain point, with coverage
c = 1 (a complete graph) often leading to slight performance degradation. This demonstrates that
the optimal coverage parameter lies below 1.

More specifically, on the MNIST data, for lower values of k£ (e.g., & = 200 and k£ = 400), we
observe a significant increase in accuracy as the coverage level increases from 0.0 to 0.8. This trend
suggests that, at smaller sample sizes, increasing coverage allows the sampled set to capture a more
diverse set of data points, which in turn improves model performance. However, for coverage values
approaching 1.0, accuracy starts to drop off, indicating that full coverage may introduce noisy or
irrelevant data points, negatively affecting the model’s ability to generalize. For larger values of
k (e.g., k = 800 and £ = 1000), the performance improvement with increasing coverage is less
pronounced. However, accuracy consistently peaks at coverage levels below 1.0. For SST2, the
model training is more noisy, but a pronounced drop off in performance at a coverage level of 1.0
persists.

Our results show that, regardless of data domain, increasing the coverage level improves the accuracy
of the model trained on the selected subset to an extent. We proceed to use a coverage level of 0.9
for downstream task training in Section 3}

5 FINE-TUNING FOR DOWNSTREAM TASKS

5.1 SENTIMENT ANALYSIS

In this section, we investigate the performance of models trained on synthetic data for the task of
sentiment analysis, specifically focusing on the sequence-level task of classifying movie reviews.
For our experiments, we use synthetic data generated to mimic the Stanford Sentiment Treebank
v2 (SST2) dataset Socher et al.|(2013), which contains binary-labeled (positive / negative) movie
reviews.

5.1.1 SYNTHETIC DATA GENERATION

To simulate a real-world production scenario where access to high-quality labeled data is limited,
we assume that the user has access to an off-the-shelf GPT-3 API, and uses this to generate synthetic
data in place of human-labeled samples. To generate data which mimics the SST2 dataset, careful

Aceuracy
S ——
F1score

002 007 012 017 022 027 032 037 042 047 052 057 062 067 072 077 002 007 012 017 022 027 032 037 042 047 052 057 062 067 072 077
% of Data % of Data

(a) Average accuracy vs. downsampling percentage. (b) Average F1 score vs. downsampling percentage.

Figure 3: Performance metrics for sentiment classification on the SST2 test set: (a) Accuracy, (b)
F1 Score, across different downsampling methods as k increases. Max coverage achieves the best
performance at all values of k. The red line indicates the training accuracy when using the full
synthetic corpus, and the green line indicates the full real-world dataset.

prompting is used to encourage the generation of comparable samples. Specifically, prompts are
designed to elicit short, binary-labeled movie reviews with either positive or negative sentiments.

For the task of generating synthetic data corresponding positive sentiment reviews, an example
prompt is:

Write 20 different movie reviews with positive
sentiments with no more than 20 words.

A matching prompt is used for the negative sentiment reviews. Here we use the synthetic data set
from (2022) which is comprised of 6,000 samples, with an even split between positive
and negative. Generated text samples are then post-processed and reformatted to align with the SST2
structure and the given labels according to which prompt was used to generate the text.

5.1.2 RESULTS

We evaluate the performance of different downsampling methods on the SST2 sentiment classifica-
tion tasks by fine-tuning a BERTgasg model on subsets of the synthetic data generated as described.
The key metrics used to evaluate performance are accuracy and F1 scores, which are measured on
the SST2 test set. These metrics allow us to assess both the correctness of the sentiment classifi-
cation (accuracy) and the balance between precision and recall (F1) score. Results are compared
to two baselines: a model fine-tuned using 6,000 real-world examples from humans and one tuned
using the full corpus of 6,000 synthetically generated samples.

Figures [3a and [3b] summarize these results, where each bar represents the average for the metric
across N = 5 random initial weights on the BERT classification layer and batch processing shuf-
fles, with error bars representing the standard deviation. As the number of samples % increases,
the models trained on the synthetic subsets consistently improve in both accuracy and F1 score, ap-
proaching the performance of a model trained on the full synthetic data corpus. Across all values of
k, the ACS method outperforms random and k-means sampling approaches.

In particular, ACS achieves comparable performance to models trained on the entire synthetic dataset
using only 6.7% of the data. This significant reduction in data highlights the efficiency of the max
coverage approach. Moreover, as the subset size grows, the ACS method begins to exceed the per-
formance of the model trained on all synthetic data by 7% with only a third of the data.. The suggests
that selected representative samples offer better training signals than using the entire, potentially re-
dundant, dataset. Similarly, as seen in Figure[3b] the F1 score improves with increasing %, and ACS
consistently outperforms the baseline methods at every data point.

k-Means shows a similar trend in surpassing the synthetic baseline, which consists of all generated
samples, but it requires a larger value of k at 22% of the training data to achieve this. Additionally,
its maximum accuracy is lower than that of ACS, indicating that ACS is more effective in selecting
a diverse set of training data, ultimately bringing the system closer to the performance of human-
curated data.

(a) Precision (b) Recall (c) F1-Score

Figure 4: Performance metrics on the FewRel dataset: (a) Precision, (b) Recall, (¢) F1-Score.

Overall, these results demonstrate the effectiveness of ACS for downsampling synthetic data in
sentiment analysis tasks. By intelligently selecting a representative subset, we can match or even
exceed the performance of models trained on the full dataset, while reducing computational costs
and avoiding the pitfalls of redundant data.

5.2 RELATION EXTRACTION

We now turn our attention to the relation extraction task. Relations are inherently a more complex
classification problem compared to the prior sentiment analysis. While sentiment analysis typically
involves binary or ternary classification (e.g. positive/negative/neutral), relation extraction requires
distinguishing between a much larger set of possible relations, making it more challenging for both
the model and synthetic data generation.

FewRel Han et al.|(2018)) is a well-known benchmark dataset for relation extraction, consisting of
sentences labeled with 64 different relation types. The task requires the model to predict a labeled
relation between two entities within a sentence, which demands greater diversity and precision than
in the synthetic data generation process. For example, the sentence “Chester Alan Arthur, 21st
President of the United States, died of this disease in November 18, 1886 should be labeled with
the relation “head of government” for the connection between Arthur and being President.

5.2.1 SYNTHETIC DATA GENERATION

We again utilize the synthetic data generation pipeline of Ding et al.|(2022) which invokes a two-step
generation of labeled data. In the first step, the LLM is given the following prompt.

Prompt: Generate 20 different Head Entity and Tail
Entity with the given Relation.

where the relation might be “head of government” as above and a definition for this relation is
defined. After the model has learned the relation, it is then prompted to generate a sentence with
each of the given entities and relation. The result is a sentence labeled by the given relation. We
defer the reader to Ding et al.| (2022) for a full description of this procedure. Given the complexity
of the task and broader range of possible relations, the quality of the generated data varies more
significantly than in sentiment analysis with a notable increase in noise and redundant samples.

The generated synthetic dataset of Ding et al.|(2022) that we work with is comprised of 200 gener-
ated samples for each of the 64 relation types, giving a corpus of size | D| = 12800.

5.2.2 RESULTS

Figure [presents the performance of the downsampling as compared to the full synthetic or human
dataset baselines on the FewRel test set. Due to the label space of 64 possible relations, we here
report the precision, recall and Fl-score (= 2/_1_ + _L.).

precision

The performance of ACS consistently surpasses both baselines, Random Sampling and k-Means, as
the subset size, k, increases. Across all three metrics—precision, recall, and F1-score—ACS demon-
strates a clear advantage, achieving higher scores at every subset size. This indicates that ACS

?Precision is defined as the ratio of true positive to true positives + true negatives. Recall is the ratio of true
negatives to true negatives + false positives.

10

is more effective at selecting informative training examples compared to Random Sampling and
k-Means, resulting in improved model performance even with limited data.

We again highlight that the ACS approach further matches the classification performance of a model
trained on the full dataset of 12,800 samples with only 0.35% of the data. Moreover, ACS surpasses
the synthetic baseline by 4.7%, 6.2% and 6.7% on precision, recall and f1-score respectively. This
suggests that the original generation of synthetic data does not yield a sufficiently diverse dataset—the
training set can be represented entire by a small subset of samples with a reduction in noise.

6 CONCLUSIONS

Our experimentation shows that ACS can reduce a large corpus of potentially redundant data to
smaller representative set for model training. Unlike random sampling, which may lead to an un-
representative subset due to chance, or k-Means, which may focus on clustering samples too rigidly
without considering their informativeness, ACS leverages both clustering and coverage principles
to pick data points that have the most significant impact on model training. This selection strategy
effectively reduces redundancy and prioritizes diversity, allowing the model to achieve higher per-
formance with a fraction of the training data. Overall, the results highlight the strength of ACS in
providing a more strategically chosen subset, which leads to superior downstream performance on
the FewRel relation extraction task. While our experiments here are largely restricted to the text do-
main as it pertains to the booming interest in LLMs as data generators, we note that our methodology
is highly flexible for any data domain.

In examining the gap between the performance of ACS and a model fine-tuned using human curated
data, it is no surprise that there appears to be no true substitute for real data. However, a natural
question for future work which our study poses is: after isolating representative training samples, can
we encourage an LLM to generate more diverse text to “fill” the latent space covered by the training
set? Moreover to further enhance downstream task performance, our work shows that reducing the
training set to a fraction of the generated samples from systems like an LLM can be beneficial if
the labels of this smaller k-subset are verified by humans. In our study, we simply use prompts to
generate labels for these samples without involving human verification, as verifying large datasets
is impractical. However, if ACS identifies a small set of representative samples, human verification
of these labels could significantly improve accuracy.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Andreas Bunte, Frank Richter, and Rosanna Diovisalvi. Why it is hard to find ai in smes: A survey
from the practice and how to promote it. In ICAART (2), pp. 614-620, 2021.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701, 2023.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141-142, 2012.

Shumin Deng, Ningyu Zhang, Zhanlin Sun, Jiaoyan Chen, and Huajun Chen. When low resource
nlp meets unsupervised language model: Meta-pretraining then meta-learning for few-shot text
classification (student abstract). In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 13773-13774, 2020.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

11

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kruengkrai, Thien Hai Nguyen, Shafiq Joty, Luo
Si, and Chunyan Miao. Daga: Data augmentation with a generation approach for low-resource
tagging tasks. arXiv preprint arXiv:2011.01549, 2020.

Bosheng Ding, Chengwei Qin, Linlin Liu, Yew Ken Chia, Shafiq Joty, Boyang Li, and Lidong Bing.
Is gpt-3 a good data annotator? arXiv preprint arXiv:2212.10450, 2022.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith.
Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping.
arXiv preprint arXiv:2002.06305, 2020.

Uriel Feige. A threshold of In n for approximating set cover. Journal of the ACM (JACM), 45(4):
634-652, 1998.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Better syn-
thetic data by retrieving and transforming existing datasets. arXiv preprint arXiv:2404.14361,
2024.

Jiahui Gao, Renjie Pi, Lin Yong, Hang Xu, Jiacheng Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan
Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation for efficient zero-
shot learning. In International Conference on Learning Representations (ICLR 2023), 2023.

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli. Chatgpt outperforms crowd workers for text-
annotation tasks. Proceedings of the National Academy of Sciences, 120(30):¢2305016120, 2023.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th international conference on
machine learning (ICML-11), pp. 513-520, 2011.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selec-
tion in deep learning. In International Conference on Database and Expert Systems Applications,
pp. 181-195. Springer, 2022.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Fewrel:
A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation.
arXiv preprint arXiv:1810.10147, 2018.

Shuang Hao, Wenfeng Han, Tao Jiang, Yiping Li, Haonan Wu, Chunlin Zhong, Zhangjun Zhou, and
He Tang. Synthetic data in ai: Challenges, applications, and ethical implications. arXiv preprint
arXiv:2401.01629, 2024.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
tion. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3309-3326, 2022.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding, Liying Cheng, Jia-Wei Low, Lidong
Bing, and Luo Si. On the effectiveness of adapter-based tuning for pretrained language model
adaptation. arXiv preprint arXiv:2106.03164, 2021.

Dorit S Hochbaum. Approximating covering and packing problems: set cover, vertex cover, in-
dependent set, and related problems. In Approximation algorithms for NP-hard problems, pp.
94-143. 1996.

Tom Hosking, Phil Blunsom, and Max Bartolo. Human feedback is not gold standard. In The
Twelfth International Conference on Learning Representations.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam MacDermed, and Andreas Terzis. Harness-
ing large-language models to generate private synthetic text. arXiv preprint arXiv:2306.01684,
2023.

12

Z Lan. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, et al. Gecko: Versatile text embeddings distilled from large
language models. arXiv preprint arXiv:2403.20327, 2024.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic data generation with large lan-
guage models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849,
2023.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data. In First
Conference on Language Modeling, 2024.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129-137, 1982.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. Generating training data with language models:
Towards zero-shot language understanding. Advances in Neural Information Processing Systems,
35:462-4717, 2022.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and Jiawei Han. Tuning
language models as training data generators for augmentation-enhanced few-shot learning. In
International Conference on Machine Learning, pp. 24457-24477. PMLR, 2023.

Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods for semi-
supervised text classification. arXiv preprint arXiv:1605.07725, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Dongmin Park, Dimitris Papailiopoulos, and Kangwook Lee. Active learning is a strong baseline
for data subset selection. In Has it Trained Yet? NeurlPS 2022 Workshop, 2022.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Gaurav Sahu, Pau Rodriguez, Issam Laradji, Parmida Atighehchian, David Vazquez, and Dzmitry
Bahdanau. Data augmentation for intent classification with off-the-shelf large language models.
In Proceedings of the 4th Workshop on NLP for Conversational Al pp. 47-57, 2022.

Nabeel Seedat, Nicolas Huynh, Boris van Breugel, and Mihaela van der Schaar. Curated llm: Syn-
ergy of llms and data curation for tabular augmentation in ultra low-data regimes. arXiv preprint
arXiv:2312.12112, 2023.

Sarath Shekkizhar, Neslihan Bulut, Mohamed Farghal, Sasan Tavakkol, MohammadHossein Bateni,

and Animesh Nandi. Data sampling using locality sensitive hashing for large scale graph learning.
2023.

13

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1-48, 2019.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jachoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. Transactions on Machine Learning Research.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631-1642, 2013.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
Noah A Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
training dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 9275-9293, 2020.

Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. Does synthetic data generation of 1lms
help clinical text mining? arXiv preprint arXiv:2303.04360, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science. arXiv preprint arXiv:2211.09085, 2022.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. arXiv preprint arXiv:1901.11196, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38—45, 2020.

Zhilin Yang. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv
preprint arXiv:1906.08237, 2019.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Lingpeng
Kong. Zerogen: Efficient zero-shot learning via dataset generation. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 11653—11669, 2022.

Ruoyu Zhang, Yanzeng Li, Yongliang Ma, Ming Zhou, and Lei Zou. Llmaaa: Making large lan-
guage models as active annotators. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 13088-13103, 2023.

Jin Zhou and Shiliang Sun. Improved margin sampling for active learning. In Pattern Recognition:
6th Chinese Conference, CCPR 2014, Changsha, China, November 17-19, 2014. Proceedings,
Part I 6, pp. 120-129. Springer, 2014.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation models. In The 41st international ACM SIGIR
conference on research & development in information retrieval, pp. 1097-1100, 2018.

14

A APPENDIX

A.1 DIVERSITY METRICS

We here evaluate the diversity of the ACS subsampling method as compared to the random and k-
means baselines. To quantify diversity, we use the SelfBLEU metric Zhu et al.|(2018) or the average
BLEU metric of the samples contained in each subsampling |Papinenti et al.| (2002). Crucially, this
metric quantifies the within text corpus similarity, and its inverse serves as our diversity metric (as
was done in|Zhu et al.| (2018))).

Figure[5|depicts the SelfBLEU scores at incrementing k-sized subsets of a fixed 3,000 sample corpus
of the SST2 or FewRel synthetically generated data. At small values of k, we see that ACS yields
a subsample with a considerably lower SelfBLEU score than the other subsamplings—implying a
higher diversity. We further demonstrate the improved diversity on subsampling of the real-world
datasets as depicted in Figure[§] We again compute the Self-BLEU score for each k-sized subset of
a fixed 3,000 sample from the real-world SST2 and FewRel datasets.

For some values of k, we note that k-means demonstrates better diversity for SST2; however, it is
important to emphasize that the objective of ACS is not solely to maximize diversity. If maximizing
diversity were the primary goal, one would expect higher diversity with increased coverage. Test-
ing this hypothesis could be an interesting direction for future work. Instead, we intentionally set
coverage below 1 and demonstrate that this choice yields better results. The objective of ACS is
to select a diverse (but not the most diverse) subset of data points that serve as the best represen-
tatives to achieve a target coverage, balancing diversity and representativeness for optimal model
performance.

SelfBLEU Score

Figure 5: SelfBLEU scores of k-sized subsamples of the 3,000 synthetic sample set of (a) SST2 and

(b) FewRel.

SelfBLEU Score

20

SelfBLEU Scores for Synthetic SST2 Data

SelfBLEU Scores for Synthetic FewRel Data

SST2 Synthetic ACS
~&- SST2 Synthetic kMeans
—$— SST2 Synthetic Random

SelfBLEU Score

40.0

FewRel Synthetic ACS
~&- FewRel Synthetic kMeans
—#— FewRel Synthetic Random

1000 1500 2000

K (Number of Samples)

2500

SelfBLEU Scores for Human SST2 Data

3000

1000 1500 2000

K (Number of Samples)

2500

SelfBLEU Scores for Human FewRel Data

3000

SST2 Human ACS
—k- S5T2 Human kMeans
—#— 5ST2 Human Random

SelfBLEU Score

FewRel Human ACS
—4&- FewRel Human kMeans
—#— FewRel Human Random

1000 1500 2000

K (Number of Samples)

2500

3000

1000 1500 2000

K (Number of Samples)

2500

3000

Figure 6: SelfBLEU scores of k-sized subsamples of the 3,000 real-world sample set of (a) SST2
and (b) FewRel.

15

A.2 FURTHER REVIEWER SUGGESTED EXPERIMENTS

A2.1

COMPARISONS TO ACTIVE LEARNING

In this experiment we compare the performance of a neural net model with two hidden layers trained

on a subset of the data selected by ACS, Margin Sampling Zhou & Sun| (2014), and at random.
For margin sampling, we run the model after each step of training on the entire training datasets,
calculate the difference between the two top predicted labels, sort the data according to the margin
values, and select the top k data points with the highest margin. Our experiments show a clear
advantage of ACS over active learning with Margin Sampling, even though, ACS is model agnostic

and does not require running inference on the training data at all.

A2.2

0.8

o o °
& & 3

model accuracy

o
IS

0.3

‘‘‘‘‘‘‘‘‘

o ——

—-—- Adaptive Coverage Sampling
——- Random Sampling

——- Active Learning with Margin sampling

20

40 60 80 100
number of samples

Figure 7: ACS compared to Margin Sampling

IMBALANCED DATA PROBLEM

We conducted a simple experiment on the MNIST dataset where we removed 75% of images for
one digit (discriminated digit, 5) to artificially create an imbalanced dataset. Then, we trained a
simple neural net classifier with two hidden layers. The plots below depict the results of training
such a model on a subset of data with different sizes and selected either randomly or by ACS.
The plots show the accuracy of the trained model on classifying the discriminated digit (digit 5).
As shown by the results, ACS achieves an accuracy of over 50% by sampling 150 images, while
the model trained on random samples completely fails to classify the discriminated digit. ACS
deterministically sampled 6 most representative examples of the discriminated digit, while random
sampling sampled only one, with an expected number of 3-4 samples in general. Note that the labels

were hidden from both sampling strategies.

0.8

0.7 1

maodel accuracy

0.4

0.6

—--- Adaptive Coverage
=== Random

40 60 80 100 120 140
number of samples

(a) Accuracy on all classes

o
wn
~

2

~

Y
\

.........

=4
w

model accuracy
o
)

o
=

! —=-- Adaptive Coverage
- Random

! —_

0.01

20 40 60 80 100 120 140
number of samples

(b) Accuracy on classifying discriminated “5”
digit

Figure 8: Imbalanced data results on MNIST

16

	Introduction
	Our Results

	Related Work
	Methodology
	Synthetic Data Generation
	Downsampling Methods
	BERT Fine Tuning

	Empirical Analysis of ACS
	Monotonicity of Coverage as a function of Similarity
	Identifying the Optimal Coverage

	Fine-Tuning for Downstream Tasks
	Sentiment Analysis
	Synthetic Data Generation
	Results

	Relation Extraction
	Synthetic Data Generation
	Results

	Conclusions
	Appendix
	Diversity Metrics
	Further Reviewer Suggested Experiments
	Comparisons to Active Learning
	Imbalanced Data Problem

