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ABSTRACT

The rapid advancement of large language models (LLMs) has created a diverse
landscape of models, each excelling at different tasks. This diversity drives re-
searchers to employ multiple LLMs in practice, leaving behind valuable multi-
LLM log data. This naturally leads to the question of whether such logs can be
fully leveraged to fuse LLMs’ complementary capabilities. Although prior work
has explored various strategies for integrating multiple LLMs, we argue that prac-
tical fusion must meet two essential requirements: (1) compatibility with real-
world serving scenarios (e.g., local and API-based serving), and (2) flexibility to
operate at different stages of the LLM pipeline to meet varied user needs (e.g.,
fine-tuning and inference stages). To this end, we introduce LLMFusionBench,
a large-scale benchmark for LLM fusion that spans 14 tasks across five domains,
with responses from 20 open-source LLMs (§8B-671B) totaling 103M tokens.
Building on LLMFusionBench, we propose FusionFactory, a systematic
framework with three elaborated levels: (1) query-level fusion via tailored LLM
routers, (2) thought-level fusion leveraging retrieved abstract reasoning tem-
plates, and (3) model-level fusion via distillation from top-ranked responses. Ex-
periments show that FusionFactory consistently outperforms the best individ-
ual LLM across all 14 benchmarks, with the optimal fusion configuration varying
across benchmarks, highlighting the promise of multi-LLM log data as a practical
foundation for fusing diverse LLM capabilities.

1 INTRODUCTION

Large language models (LLMs), with differences in architecture design, training data, and optimiza-
tion objectives, often excel at different tasks (Ahmed et al., 2024; Zhang et al., 2024b; Singhal et al.,
2022; Luo et al., 2022). For example, DeepSeek-R1 achieves strong results in code generation (Guo
et al., 2025), while Claude 3.7 Sonnet is particularly effective in factual retrieval and knowledge
coverage (Anthropic, 2025); our work also verifies this diversity of LLM performance (Figure 2 and
3). Due to this diversity, researchers tend to utilize multiple LLMs in their workflow, notably in
LLM API server platforms and agentic workflows (Zhang et al., 2024a); such usage pattern leaves
us with valuable multi-LLM log data. We point out that these multi-LLM log data are a valuable
vault, leading to an important research question: can we fully leverage multi-LLM log data to fuse
LLMs’ complementary capabilities?

To address this challenge, prior work has explored several different ways of integrating multiple
LLMs. Some studies investigate multi-agent systems, where LLMs collaborate through division
of labor (Talebirad & Nadiri, 2023; Han et al., 2024c; Chen et al., 2023b). Others develop LLM
routers that dynamically assign queries to the most suitable model (Ding et al., 2024a; Dai et al.,
2024b; Chen et al., 2023a; Ong et al., 2024; Feng et al., 2024b), while some existing model fusion
approaches, including naive ensembles (Haber & Holtzman Gazit, 2013; Li et al., 2023b) and model
merging (Yang et al., 2024b), aim to leverage multiple LLMs at the output and parameter levels,
respectively. Despite their different formulations, these approaches share the same underlying goal
of harnessing complementary strengths among LLMs. While these explorations mark an impor-
tant step forward, fundamental challenges remain in building LLM fusion approaches that are both
broadly effective and practically feasible. These challenges motivate a closer examination of what
properties an effective fusion framework should possess.

In this work, we argue that effective fusion methods should ideally satisfy two key requirements.
First, effective fusion should be compatible with different LLM serving scenarios: Real-world LLM
servicing, broadly speaking, can be categorized into local serving (when model weights are avail-
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Table 1: Comparison of FusionFactory with existing works leveraging multi-LLM log
data. We evaluate along three fusion stages, API serving compatibility, and task domain cover-
age. FusionFactory supports all three fusion stages, is compatible with API-based serving, and
covers six task domains, demonstrating broader applicability and flexibility compared to prior work.

Method LLM Fusion Stage API Serving Task Domain
Query-level Thought-level Model-level Compatibility Coverage
RouteLLM (Ong et al., 2024) v X X v 3
GraphRouter (Feng et al., 2024b) v X X 4 4
RouterBench (Hu et al., 2024) v X X v 5
LLM-Blender (Jiang et al., 2023b) v X X v 4
FuseLLM (Wan et al., 2024) X X v X 3
FusionFactory v 4 v v 6

able) and API-based serving (when models are closed-source or expensive to run). While LLM
distillation (Xu et al., 2024) has emerged as a popular paradigm for fusion, existing methods typi-
cally rely on logits or internal states, which are inaccessible in the generic LLM serving scenarios
(e.g., API-based serving). In contrast, multi-LLM log data, which is stored in text format, offers the
most practical, cost-effective, and scalable foundation for studying LLM fusion, and thus forms the
focus of this work. Second, effective fusion should happen at different stages in the LLM pipeline to
accommodate different users’ needs. In practice, users may or may not have the privilege of fine-
tuning an LLM (due to cost and model availability considerations). Moreover, different tasks may
require an LLM to fuse at different stages; for example, a RAG-based LLM system works more
favorably with retrieval-based thought-level LLM fusion. In this work, we aim to systematically
understand the trade-offs of LLM fusion at different stages.

Based on the above observations, we propose LLMFusionBench, a large-scale benchmark de-
signed to support comprehensive studies on LLM fusion. LLMFusionBench provides rich super-
vision by including both direct and reasoning-augmented responses from multiple LLMs, as well as
reusable thought templates summarized from the top-performing models. Covering 14 tasks across
6 domains, LLMFusionBench is built from 20 open-source LLMs ranging from 8B to 671B,
making it one of the most diverse resources for studying multi-LLM integration (Table 2 and 3).

Building on LLMFusionBench, we introduce FusionFactory, a systematic framework for
LLM fusion across three representative levels (comparison shown in Table 1). (1) Query-level
fusion adapts to the varying strengths of different models and the diverse user preferences regard-
ing token generation costs by constructing routers tailored to each query, enabling finer-grained
capability fusion. Unlike traditional methods, we incorporate both direct outputs and reasoning-
augmented responses (Yuan et al., 2024; Besta et al., 2024; Yao et al., 2023; Wei et al., 2022) to
better address complex user queries. (2) Thought-level fusion improves new responses by retriev-
ing abstract thought templates (i.e., concise summaries distilled from top-performing model outputs)
based on embedding similarity to past queries. This design avoids the noise of full past responses
while still capturing useful reasoning patterns, which are then used as few-shot demonstrations for
new queries (Song et al., 2023; Kang et al., 2023; Li et al., 2024b; Zhao et al., 2021). (3) Model-
level fusion takes a distillation view (Sreenivas et al., 2024; Stichlmair et al., 2021), transferring
complementary capabilities into a single base model by conducting supervised fine-tuning on high-
quality responses aggregated across LLMs. Inspired by imitation learning in the LLLM distillation
domain (Hussein et al., 2017; Osa et al., 2018), for each query, we select the LLM responses with
the top-k performance or the highest LLM judge scores as training data. This enables downstream
deployment of a fused model without relying on multiple LLMs at inference time.

We systematically evaluate FusionFactory on LLMFusionBench and find that fusing LLMs
with FusionFactory yields consistent benchmark performance improvement over the best in-
dividual LLM across 14 popular LLM benchmarks, where the optimal FusionFactory con-
figuration varies across different benchmarks. Specifically, we find that: (1) thought-level fusion
achieves the best overall performance, especially when using hybrid selection and large summaries;
(2) model-level fusion performs the worst among the three levels, likely due to overfitting and dif-
ficulty generalizing across tasks; (3) query-level fusion offers a good balance between performance
and efficiency, achieving decent results while requiring minimal computational overhead; (4) gains
from fusing World Knowledge and Math domains are moderate, where these domains demand high
factual accuracy or strict logical consistency, which are difficult to maintain through multi-LLM
fusion. These results highlight the promise of multi-LLM log data as a practical foundation for
developing fusion methods that flexibly adapt to diverse serving scenarios and fusion stages.
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Figure 1: Overview of LLMFusionBench’s construction process. For each task and user
query, multiple LLMs generate responses in two modes: direct and reason (i.e., chain-of-thoughts
(CoT) (Wei et al., 2022)). These responses are then evaluated for performance, cost, and judge
scores.

Table 2: LLMFusionBench covers 14 tasks  Table 3: LLMFusionBench includes 20 LLMs

across 6 representative domains. grouped into three size-based scales.
Domain Tasks Scale LLMs
Math GSMS8K, MATH Small Qwen?2 (7b), Mistral (7b), Qwen2.5 (7b), Gemma (7b),

CodeGemma (7b), Gemma-2 (9b), LLaMA-3.1 (8b),
Granite (8b), LLaMA-3 ChatQA (8b), Mistral-Nemo
CommonsenseQA, ARC, (12b)

HellaSwag, OpenBookQA Medium LLaMA-3.3 Nemotron Super (49b), Granite Code (34b),

World Knowledge NaturalQuestions, TriviaQA LLaMA-3.1 Nemotron (51b), LLaMA-3 ChatQA (70b),
LLaMA-3.1 (70b), LLaMA-3 (70b), Mixtral (8x7b)

Large Palmyra Creative (122b), Mixtral (8x22b), DeepSeek-R1
Popular MMLU, GPQA (671b)

Code MBPP, HumanEval

Commonsense Reasoning

Reading Comprehension SQuAD, BoolQ

2 LIMFUSIONBENCH: BENCHMARKING LLM CAPABILITY FUSION WITH
MULTI-LLM LoG DATA

In this section, we detail the construction of LLMFusionBench (Section 2.1) and its support for
LLM capability fusion (Section 2.2), as illustrated in Figure 1.

2.1 LIMFusioNBENcH CONSTRUCTION

As shown in Figure 1, we construct LLMFusionBench by sampling up to 500 training and 50 par-
tial test queries (10:1 ratio) from each of 14 tasks across six domains (Table 2). For each query, re-
sponses from multiple LLMs are collected to support comparison and exploration of query-, thought-
, and model-level fusion (Sections 4.2, 5.2, and 6.2). For the final cross-level analysis (Section 7), we
also use each task’s full test set to comprehensively evaluate fusion levels. Table 10 in the Appendix
summarizes sample counts for training, partial test, and full test sets.

As summarized in Table 3, we select 20 LLMs across varying scales. To elicit diverse responses,
we apply distinct system prompts for direct and reasoning-based outputs. Responses are evaluated
with task-specific metrics (Table 7), but as shown in Figure 17, such metrics may favor short, low-
information answers that hinder effective fusion. To address this, we introduce an LLM judge that
scores the insightfulness of correct answers (prompt in Table 16). As shown in Table 17, the LLM
judge better reflects informative value, offering greater utility for fusion.

To assess cost, we follow (Feng et al., 2024b) by estimating total token usage via GPT-2 (Radford
et al., 2019) and converting it into monetary cost using Together AI’s API pricing (Table 8). As
shown in the right of Figure 1, collected data is stored in a DataFrame, with each row capturing task,
query, LLM, response, performance, cost, and LLM judge score (details in Table 9).

2.2 SUPPORT FOR LLM CAPABILITIES FUSION

As introduced earlier, LLMFusionBench captures diverse LLM responses to the same query, en-
abling potential for LLM capability fusion. To illustrate this, we conduct a qualitative case study
using a Math query (Figure 2). We compare responses from LLaMA-3.1 Nemotron-direct (51B),
LLaMA-3.1 Nemotron-think (51B), and LLaMA-3-think (70B), where -think denotes CoT prompt-
ing. These responses exhibit distinct styles: direct and concise, analytical reasoning, and detailed
explanation, respectively. These variations highlight opportunities to learn diverse reasoning pat-
terns and enhance fusion effectiveness.



Under review as a conference paper at ICLR 2026

<Query> What is the positive difference between (6> + 62)/6 and (6> x 62)/6? E Response of LLaMA-3-think (70b): Step 1: Evaluate each expression separately.
Response of LLaMA-3.1 Nemotron-direct (51b): 204. : Step 2: The first expression is (6 + 6)/6, and the second expression is (6> X 62)/6.
Response of LLaMA-3.1 Nemotron-think (51b): To find the positive ditfcrcncci Step 3: We have 62 = 36, so the expression becomes (36 + 36)/6.

between (6>+62)/6 and (62x62)/6, we need to evaluate each expression separately. E Step 4: Adding the numbers in the numerator, we get 72/6.

First, let's evaluate (6*+62)/6: (6*+6)/6 = (36+36)/6 = 72/6 = 12 1 Step 5: Dividing 72 by 6 gives us 12.

Next, let's evaluate (62x62)/6: (62x62)/6 = (36x36)/6 = 1296/6 = 216 I:Step 6: Then we have 62 = 36, so the expression becomes (36 x 36)/6.

Now, we need to find the positive difference between 12 and 216: 216 - 12 =204 1 Step 7: Multiplying 36 by 36 gives us 1296, and then dividing by 6 gives us 216.

'
So, the positive difference between (6>+62)/6 and (6>x6%)/6 is 204. :Slep 8: The positive difference is 216 - 12 = 204.The final answer is: 204

Figure 2: LLMs exhibit varying reasoning styles when answering the same query. This example
from the Math task compares responses from LLaMA-3.1 Nemotron-direct (51B), Nemotron-think
(51B), and LLaMA-3-think (70B), where -think denotes CoT prompting. The responses show a
progression from concise answers to increasingly detailed reasoning.
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Figure 3: LLMs of different scales show distinct strengths across queries. For each query, we
compute average LLM judge scores for small, medium, and large models (Table 3), and subtract
these scores pairwise (small-medium, medium—large, small-large) to measure relative advantages.
We then visualize the resulting score differences as three histograms.

To complement our analysis, we conduct quantitative evaluations using LLM judge scores. As
shown in Figure 3, we compute the average judge score for each model scale per query (based on Ta-
ble 3), and then calculate pairwise differences: small-medium, medium-large, and small-large. The
resulting histograms reveal distinct performance gaps across scales, suggesting that models of differ-
ent sizes exhibit complementary strengths and further motivating fusion via LLMFusionBench.

3 FusioNFactTorY: FLEXIBLE FUSION OF LLM CAPABILITIES

As shown in Figure 4, we present FusionFactory across three representative levels of LLM
capabilities fusion: query-, thought-, and model-level, corresponding to early, mid, and late fusion
stages. Each level targets a distinct phase in the reasoning process. Query-level Fusion (Early
Fusion) (Section 4) operates at the problem interpretation stage. A router analyzes the query and
task characteristics to select the best LLM configuration, considering performance, cost, and LLM-
based evaluations. The selected model then processes the query independently, enabling efficient
task-specialized execution. Thought-level Fusion (Mid Fusion) (Section 5) intervenes during rea-
soning. An LLM summarizer distills abstract thought templates from top-k responses (ranked by
performance or LLM judgment). For new queries, we retrieve similar historical queries and apply
their thought templates as few-shot prompts, allowing dynamic coordination across reasoning styles.
Model-level Fusion (Late Fusion) (Section 6) occurs after full responses are generated. A base
LLM is fine-tuned using top-k high-quality outputs (selected via performance or LLM judgment)
to internalize fused capabilities. This stage reflects post-hoc fusion via training rather than online
collaboration. These three fusion stages offer complementary strengths at different points in
the reasoning pipeline, allowing users to flexibly choose the most suitable level of integration
based on their specific serving constraints, performance goals, and resource availability.

4 QUERY-LEVEL FusIoNFACTORY FUSION

4.1 METHODOLOGY: QUERY-LEVEL FUSION

The goal of query-level fusion is to assign the most suitable LLM for each user query, fusing LLMs’
capabilities through a router. This router selects models based on the query, task info, and LLM
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Figure 4: Overview of FusionFactory via LLMFusionBench across three fusion stages:
query-, thought-, and model-level, corresponding to early, mid, and late fusion. At the query level,
a router selects the best LLM per query using performance, cost, and judge scores. At the thought
level, a summarizer extracts thought templates from top-k responses for few-shot prompting. At the
model level, we fine-tune a base LLM on high-quality responses to encode fused capabilities.

features, jointly considering performance, cost, and LLM judge scores. As shown in the first panel
of Figure 4, we follow Feng et al. (2024b) and define the task reward function as (arguments (-)
omitted for brevity):

Reward(-) = « - Performance(-) — 3 - Cost(+) + v - LLM-judge(-), (1)

where the weights a, /3, and -y control the relative importance of performance, cost, and the LLM
judge, respectively. Base on this, for a query g, its corresponding task ¢, and LLM features m, our
goal is to learn a router model f, such as a neural network that maximizes the Reward:

¢* = arg m(z‘?x E(q,t)N'D,mNMa [Reward ('; f(b(Qa tv m))} y (2)

where D denotes the joint distribution over query-task pairs (¢, t) and M denotes the categories
of different LLM features. After obtaining ¢*, fy- can select the appropriate LLM to respond to
different queries and tasks.

4.2 EXPERIMENTAL SETTINGS: QUERY-LEVEL FUSION

Scenario. To explore query-level fusion, we define four routing scenarios aligned with Section 4:
Performance First, Balance, Cost First, and LLM Judge. The first three examine trade-offs be-
tween performance and cost, while the last assesses routing under LLM-as-judge evaluation. These
scenarios differ in their reward weights («, 8, ) in Equation 1, which control the emphasis on per-
formance, cost, and LLM-judge scores and are set to (1.0,0.0,0.0), (0.5,0.5,0.0), (0.2,0.8,0.0),
and (0.0, 0.0, 1.0), respectively.

Comparison Routers. We evaluate five representative routing methods for LLM fusion:
RouterKNN (Shnitzer et al., 2023), RouterSVM (Hu et al., 2024), RouterMLP (Shnitzer et al., 2023),
RouterBERT (Ong et al., 2024), and GraphRouter (Feng et al., 2024b). We also include several
static baselines: Best LLM, which achieves the highest performance on the training set; LLM-Mean,
which yields the average test performance across all LLMs; and Largest LLM, which denotes the
test performance of the largest model. Detailed baseline description can be found in Appendix C.

Evaluation Metric. Following (Feng et al., 2024b; Ong et al., 2024), we adopt three metrics:
Performance, the average task accuracy over queries; Cost, the average inference expense of selected
LLMs; and LLMScore, a learned evaluator’s quality rating over (query, ground truth, response)
triples. Full LLMScore details are in Appendix I.

4.3 RESULT ANALYSIS: QUERY-LEVEL FUSION

We report results in Table 4 with three key findings: (1) Query-level fusion outperforms the
best single LLLM across all four scenarios. As shown in Table 4, methods such as RouterMLP,
RouterKNN, and RouterSVM consistently surpass the best individual LLM, with gains of at least 2%
and up to 16% in performance or reward, depending on the scenario and metric. (2) GraphRouter
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Table 4: Multiple query-level fusion methods surpass the best single LLM across four scenar-
ios. Bold and underline indicate the best and second-best scores. In the Performance First, Balance,
and Cost First settings, we report Performance, Cost, and Reward to evaluate how well each router
balances performance and cost. The LLM Judge scenario evaluates router ability to integrate infor-
mative responses, using LLMScore and Performance.

Scenario Performance First Balance Cost First LLM Judge

Method Performance Cost Reward Performance Cost Reward Performance Cost Reward LLMScore Performance

Best LLM 0.546 0.1850 0.546 0.556 0.0681 0.244 0.431 0.0047 0.0823 0.823 0.431
RouterKNN 0.558 0.0666 0.558 0.461 0.0068 0.227 0.463 0.0067 0.0872 0.835 0.470
RouterSVM 0.546 0.0673 0.546 0.448 0.0084 0.220 0.442 0.0075 0.0825 0.790 0.449
RouterMLP 0.561 0.0652 0.561 0.482 0.0095 0.236 0.477 0.0078 0.0884 0.836 0.464
RouterBERT 0.528 0.1030 0.528 0.387 0.0262 0.180 0.368 0.0531 0.0310 0.805 0.414
GraphRouter 0.602 0.0184 0.602 0.464 0.0184 0.269 0.496 0.0047 0.0955 0.870 0.538
0.6
I LLM-Mean Best LLM
Largest LLM GraphRouter

Performance
° o ° °
o w = &

o
-

Small Scale Medium Scale Large Scale

Figure 5: GraphRouter fuses smaller LLMs to beat both top single and largest models. Com-
parison across scales shows larger LLMs don’t always perform best under the 1024-token constraint.

achieves the strongest performance consistently. It brings over 10% relative reward gains in the
performance first and balance settings, 16%-+ in cost first, and a 5.7% LLMScore improvement un-
der the LLM Judge scenario. Other routers are less stable, sometimes even underperforming the Best
LLM baseline, showing the challenge of effective multi-task multi-LLM fusion. (3) GraphRouter
effectively fuses smaller LLMs to outperform both the best and largest single models. We fur-
ther assess GraphRouter’s ability across LLM scales (Table 3). Under the performance-first setting,
it consistently beats static baselines across small, medium, and large LLMs (Figure 5), highlighting
both the strength of the method and the versatility of LLMFusionBench in LLM fusion.

5 THOUGHT-LEVEL FusioNFacToRrY FUSION

5.1 METHODOLOGY: THOUGHT-LEVEL FUSION

At the thought level, the core insight is to summarize the responses of multiple LLMs for each query
into a thought template, thereby enabling the fusion of different LLMs’ capabilities to enhance few-
shot responses. Specifically, as shown in the second part on the right side of Figure 4, an LLM is
employed to serve as a thought summarizer L, distilling a generalized reasoning template T; from
the top-k responses R; of query g; selected according to performance or LLM judge:

Ri = {r},r3,-...mj.} = Top-k ({rj}j_Score(r})) , T, = Ly(R:) (3)
where {r; j—1 denotes the set of responses generated by n different LLMs for query q*, and

Score(ré) is given by task-specific metrics or an LLM judge.

Based on this, for new queries ', we retrieve the top-d similar queries Q' = (q1, g2, ..., qq) via
similarity search and use their corresponding thought templates 7! = (Ty,T5, ..., T;) to enable
few-shot prompting of the LLM response R':

Ql = TOp'd (Qa Sim(qlv qZ)) ) Tl = (Tlv T27 s ’Td)v Rl =LLM (ql’ Tl) (4)

5.2 EXPERIMENTAL SETTINGS: THOUGHT-LEVEL FUSION

Model and Implementation. We evaluate thought-level fusion across three model sizes and six task
domains in LLMFusionBench. For each training query, LLaMA-3 (70B) generates a high-level
thought template by summarizing the top-3 responses, selected by Performance and LLMScore, with
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Figure 6: Thought-level fusion improves performance across model scales and task domains.
Radar plots show accuracy per domain for small (LLaMA-3.1 8B), medium (LLaMA-3.1 Nemotron
51B), and large (Palmyra Creative 122B) models under different paradigms. The thought template
approach yields the largest gains, especially on reasoning-heavy tasks like Math and Code. The
hybrid strategy balances performance and response quality, often achieving the best results.

cost as tiebreaker (prompt in Table 12). To assess effectiveness, we compare three paradigms: (1)
Zero-Shot, using only the query; (2) Few-Shot, retrieving three similar queries (by cosine similarity)
each with three top responses; (3) Thought Template, using the same three similar queries, but
with distilled templates. For Thought Template, we try three strategies: (a) Performance-based,
using top-3 responses by Performance; (b) LLMScore-based, by LLMScore; (c) Hybrid, selecting
top-5 by Performance, then top-3 by LLMScore. We experiment with llama3-8b (small), llama-3.1-
nemotron-51b-instruct (medium), and palmyra-creative-122b (large), chosen as top performers in
their scale. Accuracy is averaged by domain and shown as radar plots in Figure 6.

5.3 RESULT ANALYSIS: THOUGHT-LEVEL FUSION

As shown in Figure 6, thought-level fusion consistently improves performance across all model
sizes. Averaged over six task domains, small, medium, and large models improve by 12.7%, 4.8%,
and 8.3%, respectively, compared to zero-shot. These improvements manifest differently across
reasoning types and model sizes, as detailed below. (1) Strong gains on reasoning-intensive tasks.
Thought fusion is most effective on tasks like math and code. Hybrid fusion improves math by
21.3% (small) and 15.8% (medium); the large model (Palmyra Creative 122B) gains 57.6% in coding
(from 0.33% to 0.52%). Commonsense and reading comprehension also improve (14.9% and 16.9%
for small models). In contrast, performance drops on world knowledge (-7.9% for small models)
and varies on popular knowledge, likely due to these tasks emphasizing factual recall over reasoning.
(2) Large models still benefit. Thought-level fusion yields notable improvements even for large
models: +57.6% in code and +6.8% in math. Medium models gain 11.9% (code) and 15.8% (math),
showing the value of distilling diverse reasoning even at large model scales. (3) Hybrid strategy
offers best trade-off. The hybrid approach balances accuracy and quality best, boosting small
model accuracy by 12.7%, outperforming performance-based (3.6%) and LLMScore-based (7.3%)
strategies. This balance leads to more coherent and helpful templates. See Appendix D and G for
analysis of inference time and benefits of reasoning-augmented responses in thought-level fusion.

6 MODEL-LEVEL FusIoNFacToRY FUSION

6.1 METHODOLOGY: MODEL-LEVEL FUSION

The model-level aims to leverage different LLMs’ high-quality responses as training data to fuse
LLM capabilities. Specifically, as shown in the last part on the right side of Figure 4, we obtain the
top-k responses R; of query ¢; selected according to performance or LLM judge as equation (3).
Based on this, we can obtain a training data containing n samples Z = {¢;, R;}},. Finally, we
leverage Z to train an LLM fy based on supervised fine-tuning:

1 n
0* =argﬂgngzﬁ(fe(qi>ﬂi> )

=1

Once 6* is obtained, the fine-tuned fy~ can generate responses for different queries.
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Table 5: Model-level fusion performance of LLaMA-3.1 (8B) on LLMFusionBench under
different fine-tuning and selection strategies. We compare Zero-Shot, Top-K Label-only SFT,
and Top- K SFT across three response selection criteria: Task Performance, LLM Judge, and Hybrid.
Results span six tasks, with bold and underline indicating the best and second-best. CS, WK, and
Read denote Commonsense, World Knowledge, and Reading Comprehension.

Sort Criterion Task Performance LLM Judge Hybrid

Scenarios Math Code CS WK Read Popular Math Code CS WK Read Popular Math Code CS WK Read Popular
Zero-Shot 0.473 0.564 0.725 0.300 0.703 0.415 0.473 0.564 0.725 0.300 0.703 0.415 0.473 0.564 0.725 0.300 0.703 0.415

Top-5 Label-only SFT 0.217 0.510 0.785 0.150 0.646 0.372 0.217 0.510 0.785 0.150 0.646 0.372 0.217 0.510 0.785 0.150 0.646 0.372

Top-5 SFT 0.547 0.503 0.755 0.290 0.731 0.468 0.528 0.584 0.780 0.280 0.662 0.489 0.443 0.578 0.790 0.300 0.728 0.457

Top-10 Label-only SFT 0.340 0.498 0.830 0.150 0.667 0.489 0.340 0.498 0.830 0.150 0.667 0.489 0.340 0.498 0.830 0.150 0.667 0.489

Top-10 SFT 0.509 0.535 0.765 0.310 0.707 0.425 0.528 0.515 0.815 0.300 0.647 0.468 0.491 0.526 0.815 0.250 0.706 0.500

Table 6: Comparison across three fusion levels and six domains. Commonsense, World, and
Read denote Commonsense Reasoning, World Knowledge, and Reading Comprehension. Average
indicates mean task performance. Bold and underline highlight the best and second-best.

Fusion Level Fusion LLM Size Fusion Criteria\Math Code Commonsense World Read Popular\Average

Zero-shot Small N/A | 0.602 0.517 0.715 0.334 0.834 0398 | 0.567
Query Small Performance | 0.599 0.522 0.792 0.338 0.862 0395 | 0.585
Thought Small Hybrid-8b 0.610 0.423 0.778 0.301 0.956 0.443 0.585
Thought Full Hybrid-8b 0.544 0.564 0.799 0.304 0.965 0.452 0.605
Thought Small Hybrid-70b | 0.612 0.550 0.778 0312 0.966 0.447 0.611
Thought Full Hybrid-70b | 0.588 0.562 0.796 0.303 0970 0.473 0.615
Model Small LLM Judge |0.530 0.510 0.708 0.286 0.851 0.410 0.549
Model Full LLM Judge |0.528 0.436 0.802 0.290 0.851 0.425 0.555

6.2 EXPERIMENTAL SETTINGS: MODEL-LEVEL FUSION

Model and Implementation. To evaluate model-level fusion, we fine-tune the best-performing
small LLM (LLaMA-3.1 (8B)) on LLMFusionBench. For each query, we rank and select LLM-
generated responses using three strategies from Section 2.1: (1) Task Performance: top-K by
performance; (2) LLM Judge: top-K by judge score; (3) Hybrid: first by performance, then tie-
break with judge score. The selected responses from each strategy serve as training data.

Following knowledge distillation practices (Hinton et al., 2015; Xie et al., 2020), we augment train-
ing set by including each query’s ground truth along with the top-K LLM responses. This forms
the Top-K SFT method. We compare it with two baselines: Zero-Shot: directly uses LLaMA-3.1
(8B) without fine-tuning; Top-K Label-only SFT: trains only on repeated ground truths (replicated
K + 1 times to match training data volume). This setup tests whether model-level fusion effectively
distills multi-LLM knowledge beyond supervised fine-tuning on ground truth alone.

6.3 RESULT ANALYSIS: MODEL-LEVEL FUSION

We summarize results in Table 5 with three key observations: (1) Model-level fusion yields modest
but consistent gains in 4 of 6 tasks. Compared to zero-shot baselines, fusion improves average
performance under both performance- and LLM-judge-based selection, showing that fine-tuning
on diverse LLM responses helps encode complementary knowledge. (2) Fusion may hurt in do-
mains like code due to data scarcity and task mismatch. All fusion strategies perform worse on
code, likely due to fewer samples and the divergence between code generation and QA-style rea-
soning in other domains, making naive multi-task training less effective. (3) LLM Judge-based
selection outperforms rigid metric-based selection. Among the three selection strategies, i.e.,
performance, LLM Judge, and hybrid, the LLM Judge approach consistently yields the best results.
This is likely because it offers finer-grained, continuous assessment compared to binary metrics
(e.g., exact match), and better identifies informative responses.

7 COMPARISONS ACROSS THREE FusToNFAcTORY FUSION LEVELS

In this section, we compare the three FusionFactory levels on the full test set of 14 tasks (Ta-
ble 0), selecting the best-performing configuration for each level: Query-level: GraphRouter using
task performance as the routing criterion; Thought-level: Hybrid strategy with thought summariza-
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tion; Model-level: Fine-tuning with top-K responses selected by the LLM Judge. To ensure fair-
ness, all fusion levels are restricted to small LLLMs only (LLaMA-3.1 8B) for generation, with
thought/model-level also using 8B as the base model. Table 6 further breaks down fusion settings
by two factors: Fusion LLM Size (whether responses are fused from all or only small models) and
Fusion Criteria (how responses are selected, e.g., task performance vs. LLMScore).

Using unified experimental settings, we now summarize and compare the results across all three
fusion levels. (1) Thought-level fusion achieves the best overall performance. Thought-Full-
Hybrid-70B outperforms all settings, demonstrating its ability to integrate reasoning from diverse
LLMs. However, performance gains plateau when increasing model size or response count, sug-
gesting diminishing returns relative to cost. (2) Model-level fusion underperforms despite access
to high-quality responses. Fine-tuned models outperform zero-shot in only 3 of 6 domains, and
even fall behind on average. Likely causes include overfitting to multi-response inputs and difficulty
abstracting across heterogeneous task styles during SFT. (3) Query-level fusion achieves moder-
ate accuracy with the lowest cost. Despite lower accuracy, GraphRouter performs competitively
while being lightweight and easy to deploy, offering a strong cost-effectiveness tradeoff. (4) Fu-
sion remains challenging for World Knowledge and Math domains. In these domains, zero-shot
still outperforms fusion. For World Knowledge, fusion introduces noise in tasks requiring factual
precision. For Math, multi-agent reasoning disrupts sequential logic, harming accuracy.

Overall, these findings validate our central claim: multi-LLM log data, when properly structured
and leveraged, enables practical and flexible fusion strategies across diverse serving needs and fu-
sion stages. This is further demonstrated by the well-structured design of FusionFactory and
highlights LLMFusionBench as a demanding benchmark for real-world multi-LLM integration.

8 ADDITIONAL RELATED WORK

LLM fusion. Recent work explores fusing multiple LLMs or reasoning traces to enhance per-
formance, robustness, and generalization. Query-level methods (e.g., LLMRouter (Li et al., 2023c),
STaR (Zhou et al., 2022)) treat routing as policy learning to select the best model per query. Thought-
level methods (e.g., Thought Propagation (Li et al., 2023d), Tree of Thoughts (Yao et al., 2023)) ag-
gregate reasoning paths for more consistent answers. Model-level methods (e.g., Frugal GPT (Jiang
et al., 2023c¢), Self-Consistency (Wang et al., 2022)) combine multiple model outputs or samples to
approximate stronger reasoning while controlling cost. LLM-as-judge approaches (e.g., LLM-as-
Judge (Zhang et al., 2023), RAG Fusion (Lewis et al., 2021)) evaluate and select responses via a
secondary LLM. However, most prior studies focus on a single level of fusion. We instead introduce
LLMFusionBench, a large-scale benchmark for LLM fusion, and conduct a systematic compari-
son across three levels via FusionFactory, enabling more holistic and integrated insights.

LLM Router. Recent work on LLM routing focuses on improving efficiency and response quality
by directing queries to the most suitable model. Early methods like RouteLL.M (Ding et al., 2024b)
optimize preference-aligned model selection via learned policies, while RouterBench (Hu et al.,
2024) benchmarks routing decisions but does not study routing logs for capability fusion. TO-
Router (Stripelis et al., 2024) and Expert Router (Anonymous, 2024) emphasize parallel dispatch for
efficiency, and Glider (Li et al., 2024a) integrates global and local signals to refine expert selection.
In contrast, our work focuses on capability-oriented analysis. We leverage large-scale multi-LLM
log data not only for model selection, but as a form of weak supervision to systematically study and
fuse LLM capabilities across three flexible levels.

9 CONCLUSION

In this work, we revisit LLM fusion through the lens of API-based multi-LLM log data, arguing
that practical fusion must (1) be compatible with real-world serving (local and API) and (2) support
integration at different pipeline stages. We introduce LLMFusionBench, a large-scale benchmark
spanning 14 tasks and 20 LLMs with diverse response modes and reusable thought templates, and
propose FusionFactory, athree-level framework for stage-aware fusion. Experiments show that
thought-level fusion delivers the strongest gains, query-level fusion offers the best accuracy—cost
trade-off, and model-level fusion lags due to generalization limits. Overall, these results validate
multi-LLM log data as a practical supervision source and position LLMFusionBench as a de-
manding, real-world testbed for flexible, serving-compatible LLM fusion methods.
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ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our study uses only publicly available benchmarks and API-
accessible LLMs; no human subjects, personal data, or sensitive attributes are involved. All prompts,
responses, and logs are text-only and contain no personally identifiable information. We complied
with the provider terms of service and licensing for all models and datasets. We acknowledge that
LLM-based evaluators (LLM-as-judge) can introduce bias; to mitigate this, we report task metrics
alongside judge scores and document evaluator prompts and settings.

REPRODUCIBILITY STATEMENT

We detail model configurations, prompts, training settings, and hyperparameters in Section 3, with
additional implementation specifics in the Appendix C, E, H, and I. All datasets are public. We
fix random seeds where applicable and specify model versions/endpoints used for API calls. Upon
publication, we will release scripts for data collection (prompting and logging), training, and eval-
uation, as well as configuration files and thought-template prompts to enable end-to-end replication
of our results.
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A LIMITATIONS AND FUTURE WORK

While our work focuses on evaluating real-world task performance - particularly in domains like
math and coding - future research should also investigate aspects of trustworthiness (Qi et al., 2024;
Han et al., 2024b) and justice (Han et al., 2024a; Dai et al., 2024a) in the fusion process. The act of
fusing multiple responses may inadvertently introduce social biases, inaccuracies, or conflicting rea-
soning, which could impact the reliability and ethical soundness of the LLMs. Exploring safeguards
or calibration techniques to ensure more robust and equitable fusion outcomes presents a valuable
direction for further study.

B MORE ON LLMFUSIONBENCH

Here, we list all the tasks and the metrics used for each in Table 7, and all models along with their
sizes and costs in Table 8.

Table 7: The tasks and corresponding evaluation metrics of the dataset used in constructing
LLMFusionBench, organized by domain.

Domain Tasks Metrics

Math GSMSK (Cobbe et al., 2021) Accuracy
MATH (Hendrycks et al, Accuracy
2021b)

Code MBPP (Austin et al., 2021) Pass@1
HumanEval (Chen et al., 2021) Pass@1
CommonsenseQA (Talmor Accuracy

Commonsense etal., 2019)

Reasoning ARC (Clark et al., 2018) Accuracy

HellaSwag (Zellers et al., 2019)  Accuracy
OpenBookQA (Mihaylov et al., Accuracy

2018)
World NaturalQuestions CEM
Knowledge (Kwiatkowski et al., 2019)
TriviaQA (Joshi et al., 2017) CEM
. SQuAD (Rajpurkar et al., 2016) CEM
Reading
BoolQ (Clark et al., 2019) CEM

Comprehension

Popul MMLU (Hendrycks et al, Multi-task Accuracy
opuiar 2021a)

GPQA (Rein et al., 2023) Accuracy

C ROUTER BASELINE DESCRIPTION FOR QUERY-LEVEL FUSION

For the query-level fusion, we evaluate five representative routing methods to assess their LLM fu-
sion capabilities: (1) RouterKNN (Shnitzer et al., 2023), a non-parametric baseline that routes by
nearest neighbors in query space and selects the majority LLM label; (2) RouterSVM (Hu et al.,
2024), a support vector machine trained on query features and task labels; (3) RouterMLP (Shnitzer
et al., 2023), a multi-layer perceptron leveraging query embeddings and task context; (4) Router-
BERT (Ong et al., 2024), a compact BERT classifier that encodes both query and task to predict the
optimal LLM; and (5) GraphRouter (Feng et al., 2024b), a graph-based model that treats routing
as node classification over a heterogeneous graph of queries, tasks, and LLMs with learned edge
interactions. All models use al1-MiniILM-L6-v2 for embeddings, except GraphRouter, which
employs Longformer (Beltagy et al., 2020) to obtain the embeddings for task/query/LLM. We also
include several static baselines: Best LLM, which achieves the highest performance on the train-
ing set; LLM-Mean, which yields the average test performance across all LLMs; and Largest LLM,
which denotes the test performance of the largest model.

18



Under review as a conference paper at ICLR 2026

Table 8: Language Models and estimated price (in $ per 1M tokens).

Size Type Model Size Input Price  Output Price
Gemma-2 (9b) (Team et al., 2024b) 9B 0.20 0.20
Qwen?2 (7b) (Yang et al., 2024a) 7B 0.20 0.20
Gemma (7b) (Team et al., 2024b) 7B 0.20 0.20
CodeGemma (7b) (Team et al., 2024a) 7B 0.20 0.20
Small Mistral (7b) (Jiang et al., 2023a) 7B 0.20 0.20
LLaMA-3.1 (8b) (Grattafiori et al., 2024) 8B 0.20 0.20
Granite (8b) (Mishra et al., 2024) 8B 0.20 0.20
LLaMA-3 ChatQA (8b) (Liu et al., 2024) 8B 0.20 0.20
Qwen2.5 (7b) (Qwen et al., 2025) 7B 0.20 0.20
Mistral-Nemo (12b) (Mistral Al, 2024) 12B 0.30 0.30
Granite Code (34b) (Mishra et al., 2024) 34B 0.80 0.80
LLaMA-3.3 Nemotron Super (49b)(Wang et al., 2024) 49B 0.90 0.90
LLaMA-3.1 Nemotron (51b) (Wang et al., 2024) 51B 0.90 0.90
Medium Mixtral (8x7b) (Jiang et al., 2024) 56B (8x7B) 0.60 0.60
LLaMA-3.1 (70b)(Grattafiori et al., 2024) 70B 0.90 0.90
LLaMA-3 ChatQA (70b) (Liu et al., 2024) 70B 0.90 0.90
LLaMA-3 (70b) (Grattafiori et al., 2024) 70B 0.90 0.90
Palmyra Creative (122b) (team, 2024) 122B 1.80 1.80
Large Mixtral (8x22b)(Jiang et al., 2024) 176B (8x22B) 1.20 1.20
DeepSeek-R1 (671b) (Guo et al., 2025) 671B 0.55 2.19

Table 9: Data collection information.

Task Name; Task Description; Task Description Embedding; Query;

Collected Data Fields Query Embedding; Ground Truth; Metric; LLM; Input Price; Output
Price; Input Tokens Num; Output Tokens Num; Performance; Cost;
Response; LLM Description

D INFERENCE TIME FOR THOUGHT-LEVEL FUSION

Setup and offline preprocessing. As introduced in Table 1 and Figure 1, the thought templates
used by the thought-level fusion style are summarized offline on LLMFusionBench. For new
queries, we do not re-generate summaries; we only retrieve the most relevant thought templates and
prepend them to the prompt. Retrieval is implemented with FAISS, and responses are produced
using the NVIDIA NIM API. This design minimizes online overhead and keeps inference practical
for API-based serving.

Inference-time comparison. Table 11 reports average inference times on the full test set with
LLaMA-3 (8B) as the backbone across three paradigms: Zero-Shot, Few-Shot, and Thought-
Hybrid. Thought-level fusion incurs only a minor increase relative to Zero-Shot and Few-Shot,
which is attributable to the extra input tokens from the retrieved thought templates. The average
lookup time for the thought-based method is 0.03 s, accounting for 0.7 % of the total Thought-Hybrid
inference time, which is essentially negligible. In return, the performance gains are substantial. We
also expect the relative overhead to further diminish with larger base models, since total inference
time increases while lookup time remains nearly constant.

E PROMPTS FOR THOUGHT-LEVEL FUSION

Previous studies have shown that thought templates can enhance the performance of LLMs (Feng
et al., 2024a; Yang et al., 2024c). However, existing templates are often either too general to a big
category of questions (Yang et al., 2024c) or too specific, tailored to only one particular case (Feng
et al., 2024a). Our prompt 12 is designed to strike a balance between these extremes: it is specific
enough to guide similar problems effectively, yet general enough to be applicable across a range of
variations.
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Table 10: Sample counts in the LLMFusionBench training set, partial test set, and full test
set across different tasks.

Domain Tasks Train Train Tokens Partial Test Test Tokens Full Test
Math GSMBK (Cobbe et al., 2021) 500 5.838M 50 551K 1,319
MATH (Hendrycks et al., 2021b) 500 8.591M 50 944K 5,000
Code MBPP (Austin et al., 2021) 374 4.702M 50 623K 500
HumanEval (Chen et al., 2021) 120 2.268M 44 836K 44
CommonsenseQA (Talmor et al., 2019) 500 4.511M 50 423K 1,221
Commonsense ARC (Clark et al., 2018) 500 5.387TM 50 489K 1,172
Reasoning HellaSwag (Zellers et al., 2019) 500 7.96OM 50 795K 10,042
OpenBookQA (Mihaylov et al., 2018) 500 4.496M 50 431K 500
World NaturalQuestions (Kwiatkowski et al., 2019) 500 4.792M 50 444K 3,610
Knowledge TriviaQA (Joshi et al., 2017) 500 3.722M 50 323K 17,944
Reading SQuAD (Rajpurkar et al., 2016) 500 6.572M 50 646K 10,570
Comprehension  BoolQ (Clark et al., 2019) 500 7.101M 50 671K 3,270
Popular MMLU (Hendrycks et al., 2021a) 500 10.515M 50 628K 14,042
opuia GPQA (Rein et al., 2023) 400 10.044M 44 1.2M 44

Table 11: Average inference time (seconds) on the full test set with LLaMA-3 (8B) as the
backbone. Thought-level fusion adds minimal overhead due to template tokens, while retrieval
adds only 0.03 s on average.

Method Mean Inference Time (s)
Zero-Shot 3.74
Few-Shot 3.89
Thought-Hybrid 3.91

F DETAILED RESULTS FOR COMPARISON ACROSS THREE FUSTONFACTORY
LEVELS

In this section, we present detailed results for each task across all methods from the three aforemen-
tioned fusion levels, as shown in Table 14.

G MORE ANALYSIS: DOES REASONING DATA HELP FOR
REASONING-ORIENTED TASKS?

Motivation. As discussed around thought-level fusion, LLMFusionBench includes both rea-
soning and non-reasoning responses (LLM-think vs. LLM-direct).

Analysis setup. We analyze, under the thought-level hybrid selection setting, the composition
of best-selected responses per task (reasoning vs. non-reasoning). This directly tests whether
reasoning-style data is preferentially selected for tasks that demand more reasoning.

Findings. Table 15 shows that (1) reasoning ratios are higher for most reasoning-oriented
tasks—Math, Code, Commonsense Reasoning, and Popular—indicating that such tasks ben-
efit from reasoning traces. (2) In contrast, World Knowledge and Reading Comprehension
skew toward non-reasoning outputs, consistent with their stronger reliance on factual recall
and concise evidence extraction. Overall, these results support that reasoning-level information
in LLMFusionBench aids selection for reasoning-heavy tasks while preserving flexibility for
knowledge-intensive ones.

H IMPLEMENTATION DETAILS OF FUSIONFACTORY

We utilize NVIDIA API' for our API calling in data generation and model inference. We also use a
NVIDIA A6000 GPU to obtain all the embeddings for queries/tasks/LL.Ms described in section 4.2.

"https://build.nvidia.com/nim
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Table 12: Prompts for thought template creation.

Given this question and example solutions, extract a concise thought template that captures
the effective reasoning pattern and can serve as guidance:

Question: [QUERY]

Here are 3 high-performing solutions:
Solution 1: [Response 1]
Solution 2: [Response 2]
Solution 3: [Response 3]

Please create a concise and clear thought template (1-5 sentences total) focusing on:

* Core Task Summarization: Identify the core problem type and general approach
needed (1 sentence).

* Reasoning Step: Provide a clear chain of thought to address this problem (1-3
sentences).

* Answer Template: Describe the preferred answer format or structure (1 sentence).

Your template should be specific enough to guide similar problems but general enough
to work across variations.

Thought Template:

Table 13: The model names and their specific settings. We introduce these model names in Table
14 in terms of the aspects corresponding to Table 6, namely Fusion Level, Fusion LLM Size, and
Fusion Criteria.

Model Name Fusion Level Fusion LLM Size Fusion Criteria
Zero-shot Zero-shot Small N/A
Query-Small Query Small Performance
Thought-Small-8b Thought Small Hybrid-8b
Thought-Full-8b Thought Full Hybrid-8B
Thought-Small-70b Thought Small Hybrid-70B
Thought-Full-70b Thought Full Hybrid-70b
Model-Small Model Small LLM Judge
Model-Full Model Full LLM Judge

For model-level fusion, we adopt LLaMA-Factory2 to fine-tune the model with LoRA, which is
conducted on NVIDIA A6000 GPUs. For LoRA, we apply adaptation to all transformer layers with
a rank of 8. Inputs are processed with a maximum context length of 2048 tokens unless otherwise
specified. The training uses a per-device batch size of 8 and a gradient accumulation step of 4,
resulting in an effective batch size of 32. We set the learning rate to le-4 and train the model for
3 full epochs. A cosine learning rate scheduler is used with a warmup ratio of 0.1 to ensure stable
convergence. Training is conducted using bfloat16 precision, and Flash Attention 2 is enabled to
accelerate attention computation. Note that, as shown in Table 10, the training data in the Code
domain is relatively smaller and more challenging compared to other domains. Therefore, following
the approach adopted in previous work (Roziere et al., 2023; Li et al., 2023a), we train a separate
model for the Code domain, while a unified model is trained for the remaining domains.

https://github.com/hiyouga/LLaMA-Factory
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Table 14: Detailed results for all levels of fusion across all benchmarks.

Scenario | Task Zero-shot Query-Small Thought-Small-8b  Thought-Full-8b  Thought-Small-70b  Thought-Full-70b  Model-Small Model-Full
Math GSMSK 0.749 0.7983 0.771 0.651 0.771 0.749 0.715 0.742
MATH 0.455 0.4000 0.449 0.437 0.452 0.427 0.344 0.314
Code HumanEval 0.432 0.4545 0.546 0.530 0.500 0.523 0.566 0.485
MBPP 0.601 0.5900 0.300 0.598 0.600 0.600 0.455 0.386
ARC (Challenge) 0.736 0.8276 0.819 0.839 0.819 0.835 0.689 0.812
Commonsense | CommonsenseQA  (0.723 0.7371 0.757 0.770 0.757 0.766 0.716 0.792
Reasoning HellaSwag 0.649 0.7424 0.745 0.757 0.745 0.750 0.727 0.794
OpenBookQA 0.750 0.8620 0.792 0.830 0.792 0.834 0.700 0.810
World NaturalQuestions ~ 0.473 04716 0.409 0.414 0.427 0.416 0.404 0414
Knowledge TriviaQA 0.195 0.2034 0.192 0.193 0.197 0.189 0.168 0.165
Reading SQuAD 0.825 0.8746 0.921 0.947 0.948 0.950 0.849 0.863
Comprehension | BoolQ 0.843 0.8492 0.991 0.983 0.985 0.990 0.852 0.838
Popul GPQA 0.186 0.1818 0.273 0.227 0.273 0.273 0.205 0.182
opuiar MMLU 0.610 0.6073 0.612 0.676 0.621 0.672 0.614 0.668

Table 15: Reasoning vs. Non-Reasoning ratios under thought-level hybrid selection (by do-
main).

Task Domain Reasoning Ratio (%) Non-Reasoning Ratio (%)
Math 51.25 48.75
Code 53.18 46.82
Commonsense Reasoning 71.00 29.00
World Knowledge 37.90 62.10
Reading Comprehension 44.10 55.90
Popular 57.50 42.50

I PROMPTS FOR LLM-AS-JUDGE SCORE GENERATION
We present the prompt for LLM-As-Judge Score Generation in Table 16.

Table 16: Prompts for LLM-As-Judge score generation.

You are an expert judge evaluating the quality of an Al model’s response. Please score the
response based on the following criteria:

1. Correctness (0-1): Is the answer correct according to the ground truth?
2. Thought Process (0-1): Does the response show clear reasoning and explanation?

3. Training Data Quality (0-1): Is the response well-structured and suitable for su-
pervised fine-tuning?

Query: {query}
Ground Truth: {ground_truth}
Response: {response}
Please provide a single score from O to 1, where:
* 0: Incorrect answer
* 0.3: Correct answer but minimal thought process
¢ 0.6: Correct answer with some thought process
* 0.8: Correct answer with good thought process

* 1.0: Correct answer with excellent thought process and well-suited for training

Return the score in the following format:

<answer>SCORE</answer>
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Table 17: Comparison of performance and LLM judge for responses. We selected responses
from two different LLMs on the Math and GSMS8K tasks, and obtained their respective Performance
and LLM Score. It can be observed that while Performance effectively reflects the correctness of
responses, it fails to distinguish the amount of information provided in responses that are all correct.
In contrast, LLM Score compensates for this limitation by capturing the informational richness of
responses, thereby offering greater potential for enhancing LLM capabilities fusion.

Question of Math

Simplify (3p° — 5p + 6) + (4 — 6p> + 2p). Express your answer in the form Ap> + BpZ + Cp + D, where A, B, C, and D are
numbers (possibly negative).
Answer of Gemma-2 (9b) Answer of Gemma-2-think (9b)
Here’s how to simplify the expression:
- 1. Remove the parentheses: Since we are adding, the parentheses
Sp“ — 6p2 —3p+10 don’t affect the order of operations.

3p® —5p+6+4— 6p> +2p
2. Combine like terms: Identify terms with the same variable and
exponent, and pombine their coefficients.

3p® — 6p® + (—5p + 2p) + (6 + 4)
3. Simplify:

3p® — 6p2 — 3p + 10

3p® — 6p> — 3p + 10

Performance: 1.0 Performance: 1.0

LLMScore: 0.3 LLMScore: 0.8

Correct answer but minimal thought process Correct answer with good thought process
Question of GSMSK

Mr. Maximilian has a rental building that he collects rent from every month. The number of units in the building is 100. If the building is 3/4
occupied for a whole year, and each resident of the building pays a rent of $400, calculate the amount of money Mr. Maximilian receives in
that year.

Answer of Qwen2.5 (7b) Answer of Qwen2.5-think (7b)

To calculate the amount of money Mr. Maximilian receives in a year, Sure, let’s break down the problem step by step to find out how much
we can follow these steps: money Mr. Maximilian receives in a year from the rent.
1. Calculate the number of occupied units: Step 1: Calculate the Number of Occupied Units

- The building has 100 units. 1. The total number of units in the building is 100.

- It is 3/4 occupied. 2. The building is 3/4 (or 75%) occupied.

- Number of occupied units = (100 x % = 75). To find the number of occupied units:

2. Calculate the monthly rent collected: Number of occupied units = % x 100 = 75

- Each resident pays $400 per month. Step 2: Calculate the Monthly Rent Collection

- Monthly rent collected = (75 x 400 = 30, 000) dollars. 1. Each resident pays a rent of $400 per month.

3. Calculate the annual rent collected: 2. There are 75 occupied units.

- There are 12 months in a year. To find the total monthly rent collection:

- Annual rent collected = (30, 000 x 12 = 360, 000) dollars. Monthly rent collection = 75 X 400 = 30, 000
Therefore, Mr. Maximilian receives $360,000 in rent for the year. Step 3: Calculate the Annual Rent Collection

1. The monthly rent collection is $30,000.

2. There are 12 months in a year.

To find the total annual rent collection:

Annual rent collection = 30, 000 x 12 = 360, 000
Final Answer

Mr. Maximilian receives $360,000 in rent for the year.

Performance Score: 1.0 Performance Score: 1.0
LLMScore: 0.9 LLMScore: 1.0
Correct answer with very good thought process Correct answer with excellent thought process
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J DESCRIPTIONS FOR TASKS AND LLMS

Using task and model descriptions generated by LLMs enhances the expressiveness and general-
ization capability of the router. In this work, we present descriptions of various tasks and LLMs
generated by GPT-40. Specifically, GPT-40 captures the unique characteristics and challenges as-
sociated with each task, as well as the size, cost, and distinct strengths of different LLMs. These
detailed descriptions are provided in the tables below.

K CASE STUDY FOR ALL LEVELS

To better understand the behavior of LLMs under different fusion strategies, we conduct a series of
case studies spanning diverse task types, including Math, Code, Commonsense Reasoning, World
Knowledge, Reading Comprehension, and Popular questions. Each example is evaluated under
four levels: Zero-shot, Query-level, Thought-level, and Model-level. These comparative analy-
ses provide qualitative insights into how reasoning granularity and intervention level impact model
performance, faithfulness, and error patterns. See Tables 18, 19, 20, 21, 22, and 23 for detailed
comparisons across tasks.

Table 18: Case study - Math. An example math question used to compare model responses across
different settings. This case probes multi-step numerical reasoning, arithmetic consistency, and

symbolic manipulation under zero-shot, query-level, thought-level, and model-level settings.

Question of Math

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells
the remainder at the farmers” market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’ market?

Zero-shot

Query-level

Thought-level

Model-level

To find out how much Janet makes
every day at the farmers’ market,
we need to first determine how
many eggs she has left after eating
and baking. Janet’s ducks lay 16
eggs per day. She eats 3 for break-
fast and bakes 4 for muffins, so
she uses 3 +4 =7 eggs. To find out
how many eggs she has left, we
subtract the number of eggs she
uses from the total number of eggs
laid: 16 - 7 = 9 eggs. Janet sells
the remaining 9 eggs at the farm-
ers’ market for $2 per egg. To find
out how much she makes, we mul-
tiply the number of eggs she sells
by the price per egg: 9 x $2 =$18.
Therefore, Janet makes $18 every
day at the farmers’ market.

To find out how much Janet makes
every day at the farmers’ mar-
ket, we need to follow these steps:
1. Calculate the total number of
eggs laid by the ducks per day.
2. Calculate the number of eggs
Janet eats for breakfast and bakes
for her friends. 3. Calculate
the number of eggs left over af-
ter Janet eats and bakes. 4. Cal-
culate the amount of money Janet
makes from selling the leftover
eggs. Step I: Calculate the to-
tal number of eggs laid by the
ducks per day. Janet’s ducks lay
16 eggs per day. Step 2: Cal-
culate the number of eggs Janet
eats for breakfast and bakes for
her friends. Janet eats 3 eggs for
breakfast and bakes 4 eggs for her
friends, so she uses a total of 3
+ 4 =7 eggs. Step 3: Calculate
the number of eggs left over af-
ter Janet eats and bakes. The to-
tal number of eggs laid is 16, and
Janet uses 7 eggs, so the number
of eggs left overis 16 - 7=9. Step
4: Calculate the amount of money
Janet makes from selling the left-
over eggs. Janet sells the leftover
eggs for $2 each, and she has 9
eggs left over, so she makes 9 x
$2 = $18. Therefore, Janet makes
$18 every day at the farmers’ mar-
ket. <answer>$18</answer>

To solve this problem, T will use
the thought template for calcu-
lating the remaining quantity of
items after filling containers with
a specific capacity. **Core Task
Summarization**: Determine the
daily earnings from selling eggs at
the farmers’ market. **Reason-
ing Step**: 1. Calculate the total
number of eggs laid by the ducks
per day: 16 eggs/day 2. Calcu-
late the total number of eggs eaten
by Janet for breakfast: 3 eggs/-
day 3. Calculate the total number
of eggs used for baking muffins:
4 eggs/day 4. Calculate the to-
tal number of eggs used for break-
fast and baking: 3 + 4 = 7 eggs/-
day 5. Calculate the remaining
number of eggs to be sold at the
farmers’ market: 16 - 7 =9 eggs/-
day 6. Calculate the daily earn-
ings from selling eggs at the farm-
ers’ market: 9 eggs/day * $2/egg
= $18/day **Answer Template**:
The final answer is a numerical
value representing the daily earn-
ings from selling eggs at the farm-
ers’ market. The final answer is:

$18

To calculate how much Janet
makes every day at the farmers’
market, we need to determine how
many eggs she has left after us-
ing some for breakfast and bak-
ing muffins. Then, we can calcu-
late the remaining eggs and mul-
tiply that by the price per egg.
1. **Calculate the total eggs laid
per day:** Janet’s ducks lay 16
eggs per day. 2. **Calculate
the eggs used for breakfast:** She
cats three eggs for breakfast ev-
ery morning. 3. **Calculate the
eggs used for baking muffins:**
She bakes muffins with four eggs
every day. 4. **Calculate the to-
tal eggs used:** 3 (breakfast) + 4
(muffins) = 7 eggs. 5. **Calcu-
late the remaining eggs:** 16 (to-
tal eggs) - 7 (eggs used) = 9 eggs.
6. **Calculate the money made at
the farmers” market:** 9 eggs * $2
per egg = $18. So, Janet makes
$18 every day at the farmers’ mar-
ket.

L THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely for minor editing purposes, such as checking gram-
mar and improving the readability of the text.

24




Under review as a conference paper at ICLR 2026

Table 19: Case study - Code. A representative code generation problem requiring functional un-
derstanding and list manipulation in Python. The table shows how different levels affect the model’s

ability to parse task requirements, implement correct logic, and produce syntactically valid code.

Question of Code

You are an expert Python programmer. Complete the following function: Given a non-empty list of integers, return the sum of all of the odd
elements that are in even positions. Examples: solution([5, 8, 7, 1]) == 12, solution([3, 3, 3, 3, 3]) ==; 9, solution([30, 13, 24, 321]) ==; 0

Zero-shot

Query-level

Thought-level

Model-level

[BEGIN] def solution(lst): return
sum(num for i, num in enumer-
ate(lst) if i % 2 == 0 and num %
2 1=0) [Done]

[BEGIN] To solve this problem,
we need to iterate through the
given list and check two condi-
tions for each element: 1. The
element is at an even position (0-
indexed, so positions 0, 2, 4, ...
are even). 2. The element is
odd. If both conditions are met,
we add the element to our run-
ning total. Here’s how we can im-
plement this in Python: “‘python
def solution(lst): total = 0 for i
in range(0, len(lst), 2): # Iter-
ate through even positions if Ist[i]
% 2 '= 0: # Check if the ele-
ment is odd total += Ist[i] # Add
the element to the total return to-
tal “‘ Let’s test this function with
the provided examples: “‘python
print(solution([5, 8, 7, 1])) # Out-
put: 12 (5 + 7) print(solution([3,
3, 3, 3, 3])) # Output: 9 (3
+ 3 + 3) print(solution([30, 13,
24, 321])) # Output: 0 (no odd
elements at even positions) “*
[Done] <answer>total += Ist[i]
if Istfi] % 2 '=0 and i % 2 ==
0</answer>

[BEGIN] def solution(Ist): return
sum(num for i, num in enumer-
ate(Ist) if i % 2 == 0 and num
% 2 = 0) [Done] This solution
uses a generator expression to it-
erate over the list, checking each
element’s position (i) and value
(num). If the position is even (i %
2 ==0) and the value is odd (num
% 2 = 0), the element is included
in the sum. The ‘enumerate’ func-
tion is used to get both the index
and value of each element in the
list.

[BEGIN] result = 0; for i in
range(len(Ist)): if Ist[i] % 2 !'= 0
and (i + 1) % 2 == 0: result +=
Ist[i]; return result [Done]
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Table 20: Case study - Commonsense Reasoning. A question testing commonsense reasoning
in everyday scenarios. This case highlights how different settings influence the model’s ability to

eliminate distractors, rely on implicit knowledge, and select the most plausible answer.

R

Question of C

store (D) mall (E) new york

A revolving door is convenient for two direction travel, but it also serves as a security measure at a what? (A) bank (B) library (C) department

Zero-shot

Query-level

Thought-level

Model-level

(C) department store

Let’s think through this step by
step: 1. A revolving door is a
security measure because it con-
trols the flow of people in and out
of a building, making it easier to
monitor who is entering and exit-
ing. 2. Banks, libraries, depart-
ment stores, and malls all have a
need for such security and conve-
nience. 3. However, the question
asks for a specific type of build-
ing, not just any public place. 4.
Among the options given, banks
are the most likely to have high
security measures due to the na-
ture of their business (handling
large amounts of money). 5.
Therefore, the revolving door in
a bank would serve as a security
measure, not just a convenience.
Final answer: <answer>(A)
bank</answer>

To solve this question, I will use
the thought templates provided.
**Core Task Summarization®*:
Identify the core problem type as
a “location-based question” that
requires understanding the typi-
cal context or setting for a spe-
cific activity or service. **Rea-
soning Step**: To answer this
type of question, think about the
typical setting or location where
the activity or service is com-
monly found, and consider the
needs and behaviors of the peo-
ple involved. In this case, re-
volving doors are often used in
public places where security is a
concern, and they are convenient
for two-direction travel. **An-
swer Template**: The preferred
answer format is a single letter in
parentheses, corresponding to the
correct option. Considering the
options, I will evaluate each one:
(A) bank: Banks often have secu-
rity measures in place, and revolv-
ing doors could be used to con-
trol access and prevent unautho-
rized entry. (B) library: Libraries
may have security measures, but
they are not typically associated
with revolving doors. (C) depart-
ment store: Department stores of-
ten have revolving doors to con-
trol access and prevent unautho-
rized entry, especially in areas
with high-value merchandise. (D)
mall: Malls may have security
measures, but they are not typ-
ically associated with revolving
doors. (E) new york: This is a
city, not a specific location where
revolving doors are typically used
for security. Based on the rea-
soning, I think the most likely
location where a revolving door
serves as a security measure is a
bank or a department store. How-
ever, considering the specific con-
text of the question, I will choose
the option that is most closely as-
sociated with security and two-
direction travel. Therefore, my fi-
nal answer is: (A)

Here’s the answer: (C) department
store **Explanation:** Revolving
doors are often used in depart-
ment stores to control access and
maintain a comfortable indoor cli-
mate while also allowing for two-
directional travel. They are com-
monly found at entrances to such
establishments. **Let me know
if you'd like me to clarify any-
thing!** (I’ll be happy to provide
more context if needed.)
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Table 21: Case study - World Knowledge. A factual recall question aimed at assessing the model’s
memorization and retrieval of well-known historical facts. This table illustrates how different levels
affect factual precision, confidence, and error types such as hallucination.

Question of World Knowledge

‘Who got the first Nobel Prize in Physics?

Zero-shot

Query-level

Thought-level

Model-level

The first Nobel Prize in Physics
was awarded in 1901 to Wilhelm
Conrad Rontgen, a German physi-
cist, for his discovery of X-rays in
1895. Rontgen’s discovery revo-
lutionized the field of physics and
paved the way for significant ad-
vances in medical imaging and
other areas of research. Rontgen
was awarded the Nobel Prize in
Physics on December 10, 1901,
at the Royal Swedish Academy of
Sciences in Stockholm, Sweden.
He received a gold medal and a
cash award of 150,782 Swedish
kronor, which is equivalent to ap-
proximately $1.5 million in to-
day’s currency. Rontgen’s discov-
ery of X-rays was a groundbreak-
ing achievement that opened up
new possibilities for understand-
ing the structure of matter and
the behavior of energy. His work
laid the foundation for the devel-
opment of many important tech-
nologies, including medical imag-
ing techniques such as X-ray com-
puted tomography (CT) scans and
mammography.

To find out who received the first
Nobel Prize in Physics, 1 will
follow these steps: 1. **Iden-
tify the year the Nobel Prizes
were first awarded**: The No-
bel Prizes were first awarded in
1901, as per the will of Alfred No-
bel, the founder of the prizes. 2.
**Determine the category of the
first Nobel Prize**: The first No-
bel Prizes were awarded in five
categories: Physics, Chemistry,
Medicine, Literature, and Peace.
Since we are interested in the
Physics category, we will focus
on that. 3. **Research the first
Nobel Prize in Physics winner**:
The first Nobel Prize in Physics
was awarded in 1901. To find out
who received it, I will look for
historical records or official Nobel
Prize websites that list the win-
ners of the first year. 4. **Ver-
ify the information**: Once I find
the name of the winner, T will
verify it through multiple sources
to ensure accuracy. After re-
searching and verifying the infor-
mation, I found that the first No-
bel Prize in Physics was awarded
to:  <answer>Wilhelm Con-
rad Rontgen</answer> Wil-
helm Conrad Rontgen was a Ger-
man physicist who discovered X-
rays in 1895. His discovery rev-
olutionized the field of physics
and had significant impacts on
medicine and technology. He was
awarded the first Nobel Prize in
Physics in 1901 for his ground-
breaking work.

Here’s the solution to the question
“who got the first Nobel Prize in
Physics” using the thought tem-
plates as guidance: **Core Task
Summarization: ** Identify the in-
dividual who received the first No-
bel Prize in Physics. **Reason-
ing Step:** 1. Gather information
on the first Nobel Prize in Physics:
The first Nobel Prize in Physics
was awarded in 1901. 2. Con-
sider the criteria for the first Nobel
Prize in Physics: The prize was
awarded to the person who made
the most important discovery or
invention in the field of physics.
3. Evaluate the data to deter-
mine the winner: According to
historical records, the first Nobel
Prize in Physics was awarded to
Wilhelm Conrad Rontgen, a Ger-
man physicist, for his discovery
of X-rays. **Answer Template:**
The first Nobel Prize in Physics
was awarded to Wilhelm Conrad
Rontgen, for his discovery of X-
rays. Therefore, the answer is:
Wilhelm Conrad Rontgen

Albert Einstein. The first Nobel
Prize in Physics was awarded to
Albert Einstein in 1921 for his ex-
planation of the photoelectric ef-
fect, which led to the development
of quantum mechanics. He was
awarded the prize in 1921, but the
award ceremony was held in 1922
due to the war. Einstein’s work
on the photoelectric effect showed
that light can behave as particles
(now known as photons) and that
the energy of these particles is de-
pendent on their frequency, not
their intensity.  This discovery
was a major breakthrough in the
understanding of the behavior of
light and paved the way for the de-
velopment of quantum mechanics.
Einstein’s work on the photoelec-
tric effect was recognized by the
Nobel Committee in 1921, and he
was awarded the Nobel Prize in
Physics on December 10, 1921.
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Table 22: Case study - Reading Comprehension. A passage-based question requiring contextual
information extraction. This case demonstrates the model’s ability to identify key entities and events

in a paragraph, comparing how fusion levels influence comprehension and answer fidelity.

Question of Reading Comprel

AFC at Super Bowl 50?

Use the following context to answer the question. Context: Super Bowl 50 was an American football game to determine the champion of
the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated
the National Football Conference (NFC) champion Carolina Panthers 24—10 to earn their third Super Bowl title. The game was played on
February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa Clara, California. Question: Which NFL team represented the

Zero-shot

Query-level

Thought-level

Model-level

The Denver Broncos represented
the American Football Confer-
ence (AFC) at Super Bowl 50.

To determine which NFL team
represented the AFC at Super
Bowl 50, I will follow these steps:
1. Identify the teams that par-
ticipated in Super Bowl 50. 2.
Determine which team was from
the AFC. From the given con-
text, I know that Super Bowl
50 was played between the AFC
champion and the NFC cham-
pion. The context also mentions
that the AFC champion Denver
Broncos defeated the NFC cham-
pion Carolina Panthers. Step 1:
Identify the teams that partici-
pated in Super Bowl 50. The
teams that participated in Super
Bowl 50 were the Denver Bron-
cos (AFC champion) and the Car-
olina Panthers (NFC champion).
Step 2: Determine which team
was from the AFC. Since the Den-
ver Broncos are mentioned as the
AFC champion, it is clear that
they represented the AFC at Super
Bowl 50. Therefore, the final an-
swer is: <answer>Denver Bron-
cos</answer>

To answer the question, I will use
Thought Template 1: Core Task
Summarization, Reasoning Step,
and Answer Template. **Core
Task Summarization®*: Identify
a specific team mentioned in the
context as the AFC representa-
tive at Super Bowl 50. **Rea-
soning Step**: Locate the rele-
vant sentence that contains the an-
swer, and extract the team name.
The sentence is: “The Ameri-
can Football Conference (AFC)
champion Denver Broncos de-
feated the National Football Con-
ference (NFC) champion Carolina
Panthers 24-10 to earn their third
Super Bowl title.” **Answer Tem-
plate**: The preferred answer for-
mat is a clear and concise state-
ment of the team name, using the
exact wording or a paraphrased
version of the relevant sentence.
The answer is: The Denver Bron-
cos. This team represented the
AFC at Super Bowl 50.

The Denver Broncos represented
the American Football Confer-
ence (AFC) at Super Bowl 50.
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Table 23: Case study - Popular. A mathematically non-trivial question from a domain frequently
encountered in academic or competitive settings. This case examines the model’s handling of ab-
stract reasoning and specialized knowledge under different fusion strategies.

Question of Popular

Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q. (A) 0 (B) 4 (C) 2 (D) 6

Zero-shot

Query-level

Thought-level

Model-level

To find the degree of the field
extension  Q(sqrt(2), sqrt(3),
sqrt(18)) over Q, we need to
consider the minimal polynomial
of each element in the extension.
First, we note that sqrt(18) =
sqrt(9%2) = 3*sqrt(2). So, the
extension can be written as
Q(sqrt(2), sqrt(3),  3*sqrt(2)).
Now, let’s consider the minimal
polynomial of each element:
* The minimal polynomial of
sqrt(2) over Q is x™2 - 2, which
has degree 2. * The minimal poly-
nomial of sqrt(3) over Q(sqrt(2))
is X2 - 3, which has degree 2.
* The minimal polynomial of
3%sqrt(2) over Q(sqrt(2), sqrt(3))
is x™2 - 18, which has degree 2.
Since the degree of the extension
is the product of the degrees of the
minimal polynomials, we have:
Degree =2 * 2 * 2 = 8 However,
none of the options match this
answer. We can simplify the
extension by noting that sqrt(18)
= 3*sqrt(2), so we can remove
sqrt(18) from the extension. The
simplified extension is Q(sqrt(2),
sqrt(3)). Now, let’s consider
the minimal polynomial of each
element: * The minimal poly-
nomial of sqrt(2) over Q is x"2
- 2, which has degree 2. * The
minimal polynomial of sqrt(3)
over Q(sqrt(2)) is x"2 - 3, which
has degree 2. Since the degree
of the extension is the product
of the degrees of the minimal
polynomials, we have: Degree =
2 * 2 =4 The final answer is: (B)

To find the degree of the field
extension  Q(sqrt(2),  sqrt(3),
sqrt(18)) over Q, we need to
understand the concept of field
extensions and their degrees.
Step 1: Understand the given
field extension The given field
extension is Q(sqrt(2), sqrt(3),
sqrt(18)) over Q. This means
we are extending the rational
numbers (Q) by adding the square
roots of 2, 3, and 18. Step 2:
Simplify sqrt(18) We can simplify
sqrt(18) as sqrt(9*2) = 3*sqrt(2).
This is because sqrt(9) = 3 and
sqrt(2) remains as it is. Step 3:
Rewrite the field extension Now,
we can rewrite the field extension
as Q(sqrt(2), sqrt(3), 3*sqrt(2))
over Q. Step 4: Analyze the field
extension We can see that sqrt(2)
and 3*sqrt(2) are both in the
field extension. This means that
the field extension is essentially
Q(sqrt(2), sqrt(3)) over Q. Step
5: Find the degree of the field
extension To find the degree of
the field extension Q(sqrt(2),
sqrt(3)) over Q, we need to find
the degrees of the individual
extensions Q(sqrt(2)) over Q and
Q(sqrt(3)) over Q. Step 6: Find
the degree of Q(sqrt(2)) over Q
The degree of Q(sqrt(2)) over
Q is 2, because the minimal
polynomial of sqrt(2) over Q is
Xx"2 - 2, which has degree 2. Step
7: Find the degree of Q(sqrt(3))
over Q The degree of Q(sqrt(3))
over Q is 2, because the minimal
polynomial of sqrt(3) over Q is
X2 - 3, which has degree 2. Step
8: Find the degree of Q(sqrt(2),
sqrt(3)) over Q Since Q(sqrt(2),
sqrt(3)) is the compositum of
Q(sqrt(2)) and Q(sqrt(3)), the
degree of Q(sqrt(2), sqrt(3))
over Q is the product of the
degrees of Q(sqrt(2)) over Q and
Q(sqrt(3)) over Q, which is 2%2
= 4. Therefore, the degree of the
field extension Q(sqrt(2), sqrt(3),
sqrt(18)) over Q is 4. <answer>
B </answer>

To solve this problem, we’ll use
the thought template for a “sens-
ing organ” or “perception” ques-
tion, but since this is a field ex-
tension problem, we’ll adapt the
template to fit the context. **Core
Task Summarization:** Identify
the problem type as a field ex-
tension question, and recognize
the need to determine the de-
gree of the extension. **Rea-
soning Step:** To find the degree
of the field extension Q(sqrt(2),
sqrt(3), sqrt(18)) over Q, we need
to consider the minimal polyno-
mial of each element in the ex-
tension. The degree of the ex-
tension is the product of the de-
grees of the minimal polynomials
of the elements. Let’s break down
the elements: * sqrt(2) has a min-
imal polynomial x"2 - 2 over Q. *
sqrt(3) has a minimal polynomial
X2 - 3 over Q. * sqrt(18) = sqrt(2
*3%2) = 3 * sqrt(2), so it’s not
a new element, and its minimal
polynomial is the same as sqrt(2).
Since sqrt(18) is not a new ele-
ment, we only need to consider the
degrees of the minimal polynomi-
als of sqrt(2) and sqrt(3), which
are 2 and 2, respectively. **An-
swer Template:** The degree of
the field extension is the prod-
uct of the degrees of the minimal
polynomials, which is 2 * 2 = 4.
The final answer is: (B)

To find the degree of the field
extension  Q(sqrt(2), sqrt(3),
sqrt(18)) over Q, we first need to
understand the structure of the
extension. The field Q(sqrt(2),
sqrt(3), sqrt(18)) is a tower of
extensions, starting from Q,
then Q(sqrt(2)), then Q(sqrt(2),
sqrt(3)), and finally Q(sqrt(2),
sqrt(3), sqrt(18)). 1. The degree
of Q(sqrt(2)) over Q is 2 because
sqrt(2) is not in Q and it is a
root of the irreducible polyno-
mial x2 - 2. 2. The degree of
Q(sqrt(2), sqrt(3)) over Q(sqrt(2))
is 2 because sqrt(3) is not in
Q(sqrt(2)) and it is a root of the
irreducible polynomial x*2 - 3. 3.
The degree of Q(sqrt(2), sqrt(3),
sqrt(18)) over Q(sqrt(2), sqrt(3))
is 2 because sqrt(18) is not in
Q(sqrt(2), sqrt(3)) and it is a root
of the irreducible polynomial x"2
- 18. Since the degrees of each
extension are 2, 2, and 2, the total
degree of the extension Q(sqrt(2),
sqrt(3), sqrt(18)) over Q is 2 * 2
* 2 = 8. However, none of the
options match this, so we need
to consider the properties of the
given options. The correct answer
is (B). 4 is not the correct answer,
but it is the closest option to the
actual degree of 8. However, the
actual degree is 8, which is not
an option. Therefore, the closest
option is (B) 4.

Table 24: Description of Natural Questions task.

Natural Questions consists of real Google search queries paired with full Wikipedia articles.
It evaluates a model’s ability to retrieve and comprehend information from long, unstructured
documents in open-domain settings.

Table 25: Description of TriviaQA task.

TriviaQA features complex trivia-style questions with evidence from multiple web sources.
It tests a model’s deep reasoning skills, cross-paragraph synthesis, and ability to handle chal-
lenging or indirect answers.
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Table 26: Description of QuAC task.

QuAC is a conversational QA dataset where each question builds on the previous dialogue
turn. It assesses a model’s ability to handle multi-turn dialogue, maintain context across turns,
and track conversational flow.

Table 27: Description of BoolQ task.

BoolQ contains yes/no questions based on a given paragraph, written in natural language. It
evaluates a model’s capability in binary reasoning, especially involving negation, inference,
and implicit logical cues.

Table 28: Description of GSMSK task.

GSMSK is a benchmark of grade school math word problems designed to evaluate a model’s
numerical reasoning, problem-solving skills, and ability to generate step-by-step solutions
using arithmetic and logical reasoning.

Table 29: Description of CommonsenseQA task.

CommonsenseQA is a multiple-choice question dataset that requires models to apply com-
monsense knowledge beyond factual recall. It evaluates a model’s ability to reason about
everyday scenarios, infer implicit context, and choose the most plausible answer.

Table 30: Description of MMLU task.

MMLU (Massive Multitask Language Understanding) covers 57 subjects ranging from
STEM to humanities, evaluating a model’s breadth of knowledge and ability to apply con-
cepts across multiple domains with varying complexity.

Table 31: Description of GPQA task.

GPQA evaluates a model’s ability to answer challenging graduate-level multiple-choice ques-
tions spanning physics, chemistry, biology, and other scientific fields.

Table 32: Description of MBPP task.

MBPP (Mostly Basic Python Programming) features Python programming tasks of varying
complexity with test cases, measuring a model’s ability to generate syntactically correct and
functionally accurate Python code.

30



Under review as a conference paper at ICLR 2026

Table 33: Description of HumanEval task.

HumanEval is a challenging programming benchmark that evaluates a model’s ability to both
understand problem descriptions and generate code that implements the required functional-
ity correctly.

Table 34: Description of MATH task.

MATH is a dataset of high school and competition-level mathematics problems, requiring
detailed multi-step solutions across algebra, geometry, calculus, and more. It evaluates a
model’s symbolic reasoning ability, problem-solving depth, and proficiency in generating
mathematically rigorous derivations.

Table 35: Description of ARC-Challenge task.

ARC-Challenge is a benchmark of difficult grade-school science questions requiring com-
plex reasoning, knowledge retrieval, and elimination strategies. It tests a model’s ability to
integrate scientific understanding with problem-solving skills in a multiple-choice setting.

Table 36: Description of HellaSwag task.

HellaSwag is a challenging commonsense reasoning benchmark featuring sentence comple-
tion tasks with deceptively similar distractors. It evaluates a model’s ability to infer plausible
continuations, grasp everyday physical and social scenarios, and distinguish subtle contextual
cues.

Table 37: Description of OpenbookQA task.

OpenbookQA consists of elementary science questions that require combining core scientific
facts with broad commonsense knowledge. It evaluates a model’s ability to perform open-
book reasoning, make connections across domains, and apply learned facts in novel contexts.

Table 38: Description of Qwen2 (7b).

Qwen2 (7b) is a bilingual Chinese and English large language model designed for com-
prehensive language understanding, coding, mathematics, and reasoning tasks. The model
is available on Together Al with competitive pricing of $0.20 per million input tokens and
$0.20 per million output tokens.

Table 39: Description of Qwen2.5 (7b).

Qwen2.5 (7b) represents an upgraded version of the Qwen model series, featuring signifi-
cantly enhanced multilingual capabilities across diverse language tasks. This improved model
offers excellent value at $0.20 per million input tokens and $0.20 per million output tokens.
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Table 40: Description of Gemma (7b).

Gemma (7b) is Google’s lightweight 7-billion parameter model specifically optimized for
both text generation and code-related tasks. Available through Together Al, this efficient
model offers cost-effective pricing at $0.20 per million input tokens and $0.20 per million
output tokens.

Table 41: Description of CodeGemma (7b).

CodeGemma (7b) is a specialized variant of the Gemma model family that focuses exclu-
sively on code generation and completion tasks. This programming-oriented model provides
robust coding assistance capabilities at an affordable rate of $0.20 per million input tokens
and $0.20 per million output tokens.

Table 42: Description of Gemma-2 (9b).

Gemma-2 (9b) is a 9-billion parameter instruction-tuned model from Google, designed for
general text processing and conversational applications. This compact yet capable model
offers exceptional value with ultra-low pricing of $0.10 per million input tokens and $0.10
per million output tokens.

Table 43: Description of LLaMA-3.1 (8b).

LLaMA-3.1 (8b) is Meta’s 8-billion parameter model from the advanced Llama-3 series,
specifically designed for conversational Al and complex reasoning tasks. This versatile model
combines strong performance with reasonable costs at $0.20 per million input tokens and
$0.20 per million output tokens.

Table 44: Description of Granite (8b).

Granite (8b) is IBM’s compact large language model that excels in retrieval-augmented gen-
eration (RAG), document summarization, and code-related tasks. This enterprise-focused
model provides comprehensive functionality at competitive pricing of $0.20 per million in-
put tokens and $0.20 per million output tokens.

Table 45: Description of LLaMA-3 ChatQA (8b).

LLaMA-3 ChatQA (8b) is an NVIDIA fine-tuned 8-billion parameter model specifically op-
timized for question-answering and reasoning applications. This specialized model delivers
enhanced performance in conversational Al scenarios at $0.20 per million input and output
tokens.

Table 46: Description of Mistral-Nemo (12b).

Mistral-Nemo (12b) is a 12-billion parameter model that combines innovative Mistral archi-
tecture with NeMo technology for enhanced performance. This hybrid approach delivers
superior capabilities across various tasks, priced at $0.30 per million input tokens and $0.30
per million output tokens.

Table 47: Description of LLaMA-3.3 Nemotron Super (49b).

LLaMA-3.3 Nemotron Super (49b) is a powerful 49-billion parameter Nemotron model engi-
neered for high-accuracy performance across demanding applications. This advanced model
delivers exceptional results for complex tasks, available at $0.90 per million input and output
tokens.
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Table 48: Description of Granite Code (34b).

Granite Code (34b) is IBM’s specialized 34-billion parameter model exclusively designed for
software development and programming tasks. This code-focused model excels in generat-
ing, debugging, and explaining code across multiple programming languages, priced at $0.80
per million input and output tokens.

Table 49: Description of LLaMA-3.1 Nemotron (51b).

LLaMA-3.1 Nemotron (51b) is NVIDIA’s 51-billion parameter alignment model that focuses
on producing safe, helpful, and accurate responses. This enterprise-grade model emphasizes
responsible Al deployment and is priced at $0.90 per million input and output tokens.

Table 50: Description of LLaMA-3 ChatQA (70b).

LLaMA-3 ChatQA (70b) is a 70-billion parameter model specifically optimized for conver-
sational Al and chat applications. This large-scale model provides sophisticated dialogue
capabilities and nuanced understanding, available at $0.90 per million input and output to-
kens.

Table 51: Description of LLaMA-3.1 (70b).

LLaMA-3.1 (70b) is Meta’s flagship 70-billion parameter model designed for handling com-
plex conversations and sophisticated reasoning tasks. This state-of-the-art model delivers
exceptional performance across diverse applications, priced at $0.90 per million input and
output tokens.

Table 52: Description of LLaMA-3 (70b).

LLaMA-3 (70b) represents an alternative naming convention for Meta’s powerful 70-billion
parameter model, maintaining the same robust capabilities and performance characteristics.
This model provides comprehensive language understanding and generation at $0.90 per mil-
lion input and output tokens.

Table 53: Description of Mixtral (8x7b).

Mixtral (8x7b) is a 56-billion parameter Mixture of Experts (MoE) model composed of eight
7-billion parameter expert models, specifically optimized for creative text generation. This
innovative architecture provides high-quality outputs while maintaining efficiency, available
at $0.60 per million input and output tokens.

Table 54: Description of Palmyra Creative (122b).

Palmyra Creative (122b) is Writer’s specialized 122-billion parameter model specifically en-
gineered for creative writing and marketing content generation. This purpose-built model
excels in producing engaging, high-quality creative content for various marketing and story-
telling applications, available at $1.80 per million input and output tokens.

Table 55: Description of Mixtral (8x22b).

Mixtral (8x22b) is an advanced 176-billion parameter Mixture of Experts model comprising
eight 22-billion parameter expert components. This large-scale MoE architecture delivers
exceptional performance across diverse tasks while maintaining computational efficiency,
priced at $1.20 per million input and output tokens.
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Table 56: Description of DeepSeek-R1 (671b).

DeepSeek-R1 (671b) is a massive 671-billion parameter reasoning powerhouse designed for
complex analytical and problem-solving tasks. This cutting-edge model excels in multi-step
reasoning and sophisticated analysis, with asymmetric pricing of $0.55 per million input
tokens and $2.19 per million output tokens.
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