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ABSTRACT

While recent advances in virtual try-on (VTON) have achieved realistic garment
transfer to human subjects, its inverse task, virtual try-off (VTOFF), which aims to
reconstruct canonical garment templates from dressed humans, remains critically
underexplored and lacks systematic investigation. Existing works predominantly
treat them as isolated tasks: VTON focuses on garment dressing while VTOFF
addresses garment extraction, thereby neglecting their complementary symme-
try. To bridge this fundamental gap, we propose the Two-Way Garment Trans-
fer Model (TWGTM), to the best of our knowledge, the first unified framework
for joint clothing-centric image synthesis that simultaneously resolves both mask-
guided VTON and mask-free VTOFF through bidirectional feature disentangle-
ment. Specifically, our framework employs dual-conditioned guidance from both
latent and pixel spaces of reference images to seamlessly bridge the dual tasks.
On the other hand, to resolve the inherent mask dependency asymmetry between
mask-guided VTON and mask-free VTOFF, we devise a phased training paradigm
that progressively bridges this modality gap. Extensive qualitative and quantitative
experiments conducted across the DressCode and VITON-HD datasets validate
the efficacy and competitive edge of our proposed approach.

1 INTRODUCTION

Computer vision has transformed fashion through virtual try-on (VTON) and try-off (VTOFF).
VTON overlays clothes digitally for e-commerce, while VTOFF extracts garment designs for sus-
tainability and AI recommendations. Despite their complementary functions, existing research treats
them separately rather than as an integrated system.

Early VTON approaches (Ge et al., 2021; Han et al., 2019; 2018; He et al., 2022; Minar et al., 2020;
Wang et al., 2018; Yang et al., 2020) predominantly employed Generative Adversarial Networks
(Goodfellow et al., 2020) or other networks to implement a two-stage framework: First aligning
garment patterns with human poses through specialized warping networks, then synthesizing real-
istic outputs via generators to integrate the deformed clothing with target personas. However, this
paradigm faces inherent limitations in maintaining garment structural integrity, as imperfect geo-
metric alignment in the warping stage frequently propagates distortions to final synthesis results.
The emergence of diffusion models (Ho et al., 2020; Rombach et al., 2022; Song et al., 2022; Nichol
& Dhariwal, 2021; Ramesh et al., 2021) has catalyzed new methodological directions in this field,
diverging into two distinct research trajectories. One branch (Morelli et al., 2023; Gou et al., 2023;
xujie zhang et al., 2023) enhances traditional pipelines by integrating diffusion models with pre-
liminary warping predictions, leveraging their superior generation capabilities to refine deformation
results. Conversely, alternative approaches (Zhu et al., 2023; Kim et al., 2024; Chong et al., 2025;
Xu et al., 2025; Yang et al., 2024; Zhang et al., 2025) eliminate explicit warping operations entirely,
instead employing diffusion models to autonomously learn spatial transformations through direct
feature extraction from reference garments, thereby enabling implicit geometric reasoning during
the generative process.

VTOFF, as an emerging field, faces key challenges in simultaneously resolving pose-induced defor-
mations while maintaining clothing geometry, textures, and patterns. Current approaches (Velioglu
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et al., 2024; Xarchakos & Koukopoulos, 2025) primarily employ diffusion models to implicitly learn
inverse deformations, aligning with the second VTON paradigm.

Our key insight is that VTON and VTOFF constitute dual objectives within a unified deformation
modeling paradigm. Specifically, VTON operates by estimating the forward deformation field to
spatially align garments with target body poses, whereas VTOFF requires inference of the inverse
deformation field to reconstruct canonical garment representations from pose-distorted inputs.

We analyze two representative methods: CatVTON (Chong et al., 2025) for VTON and TryoffAny-
one (Xarchakos & Koukopoulos, 2025) for VTOFF, both minimizing parameters via input-level
feature concatenation. As shown in Figue 1(a), their self-attention and FFN layers exhibit signifi-
cant parameter similarity (6.4% at threshold 0.0005 → 65.6% at 0.05) by computing relative errors,
indicating that minor architectural modifications suffice for joint task modeling.

Figure 1(b) displays a heatmap visualization of cross-task cosine similarity measurements for in-
termediate layer outputs at diffusion step T=30. This similarity, to a certain extent, arises be-
cause the reference features used in input concatenation are typically the processed target out-
comes of the another task. This observation suggests that a simple transformation of the fea-
ture concatenation order in the latent space could be employed to alter the task objectives.

（a）Weight Similarity of CatVTON and TryoffAnyone

（b）Heatmap of Feature Similarity from Intermediate Layers

Figure 1: Analysis of the commonalities
between VTON and VTOFF.

To realize this unified framework, we transcend con-
ventional single-cue conditioning by establishing a dual-
space guidance mechanism that synergizes latent-space
feature alignment and pixel-space detail preservation.
Specifically, latent space features are fused through spa-
tial concatenation to maintain topological consistency of
garment structures, while pixel space features are decom-
posed into complementary streams via a dual-branch ar-
chitecture: a semantic abstraction module that distills
category-aware garment semantics and a spatial refine-
ment module that enhances fine-grained texture patterns.
These disentangled features are then dynamically fused
through an extended attention mechanism, which enables
hierarchical feature integration across abstraction levels.

A fundamental distinction between VTON and VTOFF
lies in mask utilization: while many VTON methods em-
ploy predefined inpainting masks, whereas VTOFF in-
herently lacks reliable mask guidance due to indetermi-
nate clothing boundaries. To reconcile this spectrum of
mask dependency, we develop a phased training protocol.
Initially, we co-optimize high-level semantic feature ex-
traction and a lightweight mask predictor in TaskFormer
Module for VTOFF, using auxiliary loss on canonical gar-
ment shapes. Subsequently, we enable cross-task knowl-
edge transfer by co-training all modules with task-specific
attention gating, where mask conditioning is either pro-
vided (VTON) or predicted (VTOFF) in the Extended At-
tention Module. Through extensive experiments, we val-
idate the efficacy of our design.

In summary, the primary contributions of our TWGTM can be highlighted as follows:

• We present, to the best of our knowledge, the first unified diffusion framework that achieves
bidirectional garment manipulation through dual-path conditional guidance, where mask-
guided VTON and mask-free VTOFF operations are bidirectionally derived through an
implicit unified deformation field.

• We propose a dual-phase training strategy to address the task-specific mask discrepancy, si-
multaneously leveraging auxiliary segmentation loss for implicit canonical mask prediction
in VTOFF.
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• Extensive experiments validate our framework and training strategy, demonstrating the ef-
ficacy of jointly modeling these complementary virtual garment manipulation tasks.

2 RELATED WROK

2.1 VIRTUAL TRY-ON

Early methods(Han et al., 2018; Wang et al., 2018; Ge et al., 2021; Xie et al., 2023) established a
two-stage pipeline: first aligning garments to target poses through geometric transformations (e.g.,
Thin Plate Spline(TPS) warping(Yang et al., 2020; Minar et al., 2020; Duchon, 1977; Lee et al.,
2019), flow estimation(Bai et al., 2022; Li et al., 2021; Chopra et al., 2021; Zhou et al., 2016) or
landmark(Yan et al., 2023; Liu et al., 2021a; Chen et al., 2023; Xie et al., 2020)), then synthesizing
realistic try-on results using GANs or related architectures. But they easily suffered from error
propagation due to imperfect warping, artifacts at garment-person boundaries, and heavy reliance
on auxiliary inputs.

The rise of diffusion models catalyzed two distinct research trajectories: (1) Warping-enhanced
diffusion frameworks(Morelli et al., 2023; Gou et al., 2023; xujie zhang et al., 2023) integrate pre-
liminary warping predictions with diffusion models to refine alignment errors and improve texture
fidelity. These hybrid methods leverage diffusion’s generative strength to correct distortions while
retaining structural priors from warping. (2) Warping-free diffusion frameworks(Zhu et al., 2023;
Kim et al., 2024; Xu et al., 2025) eliminate explicit geometric alignment entirely, instead training
diffusion models to implicitly infer spatial transformations through direct garment feature extrac-
tion. By encoding garments and employing attention mechanisms, these approaches autonomously
learn deformation rules, enabling flexible handling of complex poses and non-rigid fabrics. Recent
advancements like MMTryon(Zhang et al., 2024) further reduce dependency on auxiliary inputs
by incorporating textual guidance and multi-modal conditioning, broadening usability for arbitrary
garment-person pairs.

2.2 VIRTUAL TRY-OFF

VTOFF has recently emerged as a novel research direction in fashion-oriented computer vision,
aiming to reconstruct canonical garment images from dressed human photos. Two pioneering works
demonstrate promising approaches: TryOffDiff(Velioglu et al., 2024) achieves precise segmentation
of target garment regions through its SigLIP-conditioned latent diffusion framework, yet encounters
persistent limitations in reconstructing fine-grained details (e.g., embroidery patterns) and main-
taining color fidelity across varying illumination conditions. Subsequently, TryOffAnyone achieves
computationally efficient garment reconstruction via a mask-integrated StableDiffusion variant with
transformer tuning, but suffers from spatial inaccuracies (e.g., over-inference at sleeve joints, or
distortions in adjacent garments).

3 METHODOLOGY

3.1 PRELIMINARY

Latent Diffusion Model(Rombach et al., 2022) establishes a hierarchical framework for conditional
image generation through latent space manipulation. The architecture comprises three core com-
ponents: (1) A CLIP text encoder(Radford et al., 2021) ET that projects prompts y into a 768-
dimensional embedding space, (2) A variational autoencoder (VAE)(Kingma et al., 2013) with en-
coder E compressing input images I ∈ R3×H×W into lower-dimensional latent representations
z0 = E(I) ∈ Rc×h×w (typically h = H

8 , w = W
8 , c = 4), together with a decoder D, and (3) A

time-conditional U-Net(Ronneberger et al., 2015) ϵθ that progressively denoises corrupted latents zt
over T diffusion steps. The forward process follows the Markov chain:

αt :=

t∏
s=1

(1− βs), zt =
√
αtz0 +

√
1− αtϵ, (1)
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Figure 2: (a) The illustration shows latent space input processing in the first and second stages of
training. (b) Overview of TWGTM, omitting the VAE encoder and decoder. (c) The Extended
Attention Module integrates outputs from the Spatial Refinement Module and Semantic Abstraction
Module through dual cross-attention operations.

where βs defines a noise schedule from β1 to βT , ϵ ∼ N (0, I). The model optimizes the noise
prediction objective:

LDM = EE(I),ϵ∈N (0,1),t,y

[
∥ϵ− ϵθ(zt, t, ET (y))∥22

]
. (2)

3.2 PROCESSING IN LATENT SPACE

Training Phase. Figure 2(a) illustrates the feature concatenation process during training. For
VTON, we spatially concatenate the model image x and flattened garment c to form the tar-
get feature hi = [x, c] ∈ R3×H×2W . Let M denote the localized garment mask and xa rep-
resent the masked person image, where xa is obtained by: xa = (1 − M) ⊗ x, with ⊗ ex-
plicitly defined as element-wise multiplication. We further concatenate the mask-guided feature
hm = [1 − M,ones(M)] ∈ R1×H×2W (where ones(M) is an all-ones mask with identical di-
mensions to M ) and the guidance feature hf = [xa, c] ∈ R3×H×2W . The variables hi and hf

are subsequently encoded into the latent space through the VAE encoder E , while hi is perturbed
by additive Gaussian noise scaled according to the diffusion timestep t and hm is resized to match
the spatial dimensions of the latent space representation. The final input tensor is constructed via
channel-wise concatenation: It = [Noiset(E(hi)), E(hf ), resize(hm)] ∈ R(4+4+1)×H

8 × 2W
8 .

For VTOFF, this process reverses the spatial order between x and c, along with their corresponding
mask-guided feature and guidance feature. Notably, in the first training stage, the garment mask
is directly synthesized from the conditional input c, focusing on developing the model’s inpainting
capability for precisely reconstructing designated garment regions. In contrast, the second stage
replaces these masks with morphologically augmented square-shaped masks (generated via erosion-
dilation operations), deliberately challenging the model’s geometric reasoning capacity to recover
accurate shape boundaries.

Inference Phase. We retain both the guidance feature and mask-guided feature while replacing the
initial input channels with a fully noised tensor. Especially, for VTOFF, the original garment mask
in hm is substituted with an all-zeros mask zeros(M) matching M ’s dimensions and the guidance
feature undergo corresponding adjustments. Additionally, rectangular masks (e.g., bounding box)
can serve as an alternative for garment proportion optimization.
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3.3 PROCESSING IN PIXEL SPACE

Semantic Abstraction Module. This module combines a CLIP image encoder with QFormer(Li
et al., 2023b), where the CLIP encoder remains frozen throughout training. The reference image
is first encoded by CLIP to obtain the global semantic feature FCLIP G ∈ RB×1×D, where the
final-layer token sequence FCLIP S ∈ RB×L×D serves as the input to QFormer. Context-aware
filtering is implemented by conditioning QFormer with semantically-grounded text prompts (e.g.,
“upper garment” for torso clothing), which enables targeted feature selection from CLIP’s outputs.
This cross-modal interaction process can be formulated as:

FQF = QFormer (FCLIP S, Tp) ∈ RB×N×D, (3)

where Tp represents the encoded text features and N denotes the number of learnable query tokens.
The final module output is formed by concatenating CLIP’s global semantic feature FCLIP G with
QFormer’s filtered representations FQF along the sequence dimension, resulting in a composite
sequence

FSAM = [FCLIP G, FQF ] ∈ RB×(1+N)×D. (4)
Spatial Refinement Module. This module employs distinct query embeddings to learn region-

specific features across multi-scale inputs, enabling precise spatial detail extraction from reference
images. We initially employ Swin Transformer (Liu et al., 2021b) as the image encoder to ex-
tract multi-scale features H = [H1, H2, H3] (1/4, 1/8, 1/16 resolutions) from the reference image.
These multi-resolution features, alongside the semantic features from QFormer outputs FQF as
inputs, are jointly fed into TaskFormer’s three scale-specific processing blocks, which are based
on a transformer-decoder-like architecture (Vaswani et al., 2017). This architecture independently
processes each scale while facilitating cross-granularity interaction between spatial and semantic
features.

TaskFormer employs different learnable queries to dynamically attend to distinct spatial regions
across hierarchical feature maps. Each processing unit comprises three blocks operating on indi-
vidual feature scales (FQF , H2, H3), where the conventional cross-attention is replaced by masked
attention layers and preceded self-attention layers (following Mask2Former (Cheng et al., 2022))
to enforce spatial coherence through generative region masks. The i-th processing unit computes
Fi = H ′

3, where features are refined sequentially through cascaded blocks:

F ′
QF = Block1(Fi−1, FQF ,M1

i−1), (5)

H ′
2 = Block2(F ′

QF , H2,M2
i−1), (6)

H ′
3 = Block3(H ′

2, H3,M2
i−1), (7)

with hierarchical masks M1
i−1 and M2

i−1 propagated from the (i-1)-th unit to enforce task-specific
spatial constraints.

Subsequently, the dual projection branches process each unit’s outputs through distinct operations.
The mask-space projection applies multilayer perceptron (MLP) and linear layer to both spatially
and semantically constrained attention masks

M1
i = σ (Linear(Fi)⊙ FQF ) ∈ [0, 1]B×K×N , (8)

M2
i = σ (MLPmask(Fi)⊙H1) ∈ [0, 1]B×K×H×W , (9)

where σ is the sigmoid function, ⊙ denotes tensor multiplication, H ×W is the spatial resolution
of the feature map, K denotes the number of learnable query tokens. These masks dynamically
highlight task-critical regions (e.g., garment patterns in virtual try-on) to enhance details in different
regions. Simultaneously, the task-space projection employs query-specific processing, where the
first query explicitly predicts flattened garment masks for VTOFF via

TFQ0 = σ(MLP 0
task(Fi)⊙H1) ∈ [0, 1]B×1×H×W , (10)

while subsequent queries (j ≥ 1) implicitly enhance diffusion-generated details through uncon-
strained refinement

TFQj = MLP j
task(Fi)⊙H1 ∈ RB×(K−1)×H×W . (11)

The TaskFormer eventually outputs three-scale features with the same resolution as the Unet’s latent
space.
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Subsequently, the lightweight Decoder combines convolutional layers and basic transformer blocks
to project TaskFormer’s outputs into UNet-compatible feature dimensions, preserving critical spatial
information while ensuring computational efficiency. This process is formulated as:

FSRM = Decoder(TFQ). (12)
Extended Attention Block. As illustrated in Figure 2(c), this module integrates spatial features
FSRM with self-attention learned features from UNet to compensate for information loss in la-
tent space and enhance detailed image generation. The proposed Zero Linear Layer serves dual
purposes: (1) gradually introduces spatial feature influences to reduce learning difficulty, and (2)
suppresses noise in spatial features while amplifying discriminative patterns. Specifically, UNet
features are decomposed into query (Q), key (K), and value (V ) tensors. These first undergo stan-
dard self-attention: SelfAttn(Q,K, V ) = softmax(QKT

√
d
)V. Simultaneously, cross-attention is

performed between Q and spatial-derived K ′, V ′: CrossAttn(Q,K ′, V ′) = softmax(QK′T
√
d

)V ′.

The cross-attention outputs are modulated through the Zero Linear Layer (ZLL) before element-
wise summation with self-attention features:

Ffused = SelfAttn+ ZLL(CrossAttn). (13)

Finally, the additional cross-attention between the fused features Ffused and the high-level semantic
features FSAM serves to extract complementary information, thereby enhancing the overall feature
representation.

3.4 TRAINING STRATEGY

Inpainting-based VTON utilizes segmentation-based methods to explicitly locate garment replace-
ment regions, while VTOFF requires simultaneous shape inference and texture inpainting due to
indeterminate damage regions after virtual garment removal.

To balance the inherent difficulty disparity between tasks, we implement a phased training strat-
egy. Stage 1 focuses on inpainting capability by using the generated flattened garment mask as the
VTOFF inpainting region. The model predicts flattened garment masks through spatial features from
the first query vector of the TaskFormer, while reference image features are exclusively integrated
via UNet’s native cross-attention blocks. The training objective for the first stage is as follows:

L = E ∥ϵ− ϵθ(It, t, τSAM (xref )∥22 + λLmask, (14)
Lmask = λ′Ldice + λ′′Lbce. (15)

Stage 2 enhances shape awareness by applying morphological operations (erosion and dilation) to
generate square inpainting masks. This phase combines spatial features from the Spatial Refine-
ment Module with self-attention learned features to reinforce garment shape constraints, with the
Extended Attention Block activated for feature fusion. The training objective for the second stage is
as follows:

L = E ∥ϵ− ϵθ(It, t, τSAM (xref ), τSRM (xref )∥22 . (16)

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We conduct the experiments using two publicly available datasets, VITON-HD(Choi et al., 2021)
and DressCode(Morelli et al., 2022). The VITON-HD dataset comprises over 10,000 pairs of upper-
body garments, while the DressCode dataset encompasses three categories of clothing: upper gar-
ments, lower garments, and dresses, with a total of over 40,000 image pairs.

Following previous works, the evaluation employs SSIM (and variants)(Wang et al., 2004; Tang
et al., 2011) for structural accuracy, LPIPS(Zhang et al., 2018) and DISTS(Ding et al., 2020) for
texture fidelity, FID(Heusel et al., 2017) and KID(Bińkowski et al., 2021) for perceptual realism,
and DINO(Zhang et al., 2022) similarity and CLIP-FID for semantic alignment. More details can
be found in the appendix.
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Clothing Person DCI-VTON OursMV-VTON GP-VTON Ladi-VTON IDM-VTON CatVTON Reference Target TryOffDiff TryOffAnyone Ours

（a）VTON （b）VTOFF

Figure 3: Qualitative comparison of VTON and VTOFF results with baselines.

4.2 QUANTITATIVE COMPARISON

Table 1: Quantitative comparison of VTON results with baselines on the DressCode dataset. The
best and suboptimal results are demonstrated in bold and underlined, respectively.

Upper Body Lower Body Dresses

Method FID↓ DINO↑ SSIM↑ LPIPS↓ FID↓ DINO↑ SSIM↑ LPIPS↓ FID↓ DINO↑ SSIM↑ LPIPS↓
GP-VTON 17.585 0.864 0.779 0.200 21.411 0.904 0.771 0.206 13.816 0.893 0.794 0.156
LaDI-VTON 14.108 0.883 0.919 0.055 14.215 0.926 0.914 0.058 16.548 0.859 0.863 0.077
IDM-VTON 7.277 0.941 0.929 0.033 8.313 0.967 0.913 0.035 9.018 0.921 0.884 0.075
CatVTON 7.805 0.919 0.929 0.034 8.910 0.937 0.912 0.045 8.890 0.906 0.865 0.062
Ours 7.497 0.939 0.941 0.043 8.298 0.960 0.922 0.054 8.412 0.923 0.881 0.062

Table 2: Quantitative comparison of VTON re-
sults with baselines on the VITON-HD dataset.

VITON-HD

Method FID↓ DINO↑ SSIM↑ LPIPS↓
DCI-VTON 7.119 0.940 0.881 0.065
MV-VTON 8.597 0.942 0.887 0.060
GP-VTON 8.939 0.899 0.880 0.068
LaDI-VTON 11.297 0.924 0.869 0.075
IDM-VTON 6.098 0.957 0.865 0.074
CatVTON 5.693 0.954 0.871 0.060
Ours 6.107 0.960 0.905 0.055

For VTON, Table 1 and Table 2 display quan-
titative comparisons of TWGTM (ours) with
other state-of-the-art methods on the VITON-HD
and DressCode test datasets, respectively. Our
method demonstrates competitive performance
on both datasets, achieving advanced levels of
performance across most metrics. On the Dress-
Code dataset, some metrics fall short of the ex-
pected or desired outcomes, which we speculate
primarily stem from inherent color and texture in-
consistencies between the model and the flattened
garment images. These inconsistencies are likely
caused by variations in lighting conditions during
the original photography process. Further analy-
sis can be found in the appendix.

For VTOFF, our method in Table 3 demonstrates
state-of-the-art performance on the VITON-HD dataset, significantly outperforming existing ap-
proaches across most metrics. Compared to others, our method achieves the lowest DISTS score,
indicating superior preservation of structural and textural fidelity, which aligns with its designation
as the primary metric for VTOFF.

4.3 QUALITATIVE COMPARISON

For VTON, our proposed model demonstrates superior capability in preserving fine-grained details
and addressing color discrepancies from reference images. As shown in the first row of Figure 3(a)

7
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Table 3: Quantitative comparison of VTOFF results with baselines on the VITON-HD dataset.

Method SSIM↑ MS-SSIM↑ CW-SSIM↑ LPIPS↓ FID↓ CLIP-FID↓ KID↓ DISTS↓

TryOffDiff 0.727 0.526 0.422 0.414 21.397 8.627 7.6 0.246
TryOffAnyone 0.723 0.583 0.513 0.340 11.553 5.131 2.0 0.213
Ours 0.721 0.590 0.524 0.332 10.393 5.651 1.5 0.195

Variant 1 Variant 2 TWGTM(Ours) Variant 1 Variant 2 TWGTM(Ours)

R
ef

er
en

ce
Ta

rg
et

R
ef

er
en

ce
Ta

rg
et

Variant 3

C
Lo

th
in

g
A

gn
os

tic
 p

er
so

n
C

Lo
th

in
g

A
gn

os
tic

 p
er

so
n

（a）VTON （b）VTOFF

Figure 4: Generated outcomes of ablation variants in both VTON and VTOFF tasks.

, the gray ”ALL” lettering on black clothing exhibits reduced clarity due to low contrast, yet our
synthesized garment retains these subtle texture details with fidelity. Furthermore, the second-row
experimental results demonstrate precise preservation of textual elements under non-uniform color
distributions, underscoring our framework’s robustness in handling complex garment textures.

For VTOFF, as shown in Figure 3(b), TryOffDiff struggles to preserve intricate patterns in complex
garments, introducing color distortions or erroneous inferences, while TryOffAnyOne partially ad-
dresses detail loss but easily suffers from feature redundancy, erroneously incorporating extraneous
garment characteristics. In comparison, our model better preserves the color, texture, and shape of
the garments.

4.4 ABLATION STUDIES

Compared to TWGTM, Variant 1 (removing SRM and relying solely on SAM via standard attention
mechanism) and Variant 8 (removing QFormer while maintaining the outputs from the CLIP model)
in Table 4 exhibits degraded performance across key evaluation metrics for both VTON and VTOFF.
As shown in Figures 4, Variant 1 exhibits detail loss (e.g., texture distortion in the hand region
and partial color deviations), along with localization issues in inpainting regions (e.g., excessive
inference on skirts caused by failure in agnostic regions and the generation of extraneous sleeves).

We also evaluated two alternative feature fusion methods: Variant 6 (SRM output concatenation
before self-attention) and Variant 7 (ip-Adapter integration). As shown in Table 4, both variants
showed degraded performance, with more severe degradation in VTOFF.

Variant 2 (replacing spatial concatenation with deformed garment fusion through reference image-
warped garment combination) achieves marginally higher SSIM scores, but reveals artifacts induced
by garment deformation. Specifically, spatial ambiguity induced by inaccurate warping disrupts
garment-body alignment. Issues such as pose changes and faded clothing colors caused by erroneous
warping in VTON from Figure 4(a), as well as the loss of textual details in VTOFF from Figure 4(b),
also corroborate this problem. This conclusively demonstrates that spatial concatenation in latent
space remains essential for preserving positional coherence between garments and body regions.
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Table 4: Ablation studies of network components in our model.

Virtual Try-on Virtual Try-off

Setting FID↓ DINO↑ SSIM↑ LPIPS↓ FID↓ SSIM↑ LPIPS↓ DISTS↓

Variant 1(w/o Spatial Refinement Module) 6.317 0.957 0.891 0.062 11.748 0.690 0.370 0.211
Variant 2(w/o spatial concat) 6.604 0.950 0.906 0.056 15.288 0.738 0.309 0.208
Variant 3(w Mask2BBox) - - - - 9.201 0.769 0.225 0.174
Variant 4 (Scratch-Only VTON Training) 6.165 0.960 0.905 0.055 - - - -
Variant 5 (Scratch-Only VTOFF Training) - - - - 13.398 0.680 0.367 0.217
Variant 6 (Pre-SelfAttention Feature Concatenation) 6.130 0.959 0.904 0.055 15.082 0.629 0.448 0.241
Variant 7 (w ip-Adapter) 6.168 0.959 0.904 0.056 14.182 0.651 0.420 0.230
Variant 8 (w/o QFormer) 6.183 0.960 0.904 0.056 14.094 0.668 0.386 0.225
TWGTM(Ours) 6.107 0.960 0.905 0.055 10.393 0.721 0.332 0.195

Variant 3 maintains the training-time configuration for VTOFF inference, using an enhanced rect-
angular inpainting region to guide synthesis. It shows significant metric improvements, proving that
explicit modeling of garment geometry (aspect ratio, position) boosts both generation quality and
controllable customization. As demonstrated in Figure 4(b), the predefined rectangular inpainting
region effectively regulate the proportion of flat clothing in the generated results.
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Figure 5: The impact of fine-tuning for VTON
on the performance of VTOFF.
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Figure 6: The impact of fine-tuning for VTOFF
on the performance of VTON.

Variant 4 and Variant 5 are task-specific models trained from scratch. As shown in Table 4, VTON
achieves stronger performance due to mask-guided restoration, while VTOFF shows greater perfor-
mance variance. Simultaneously, we conducted fine-tuning on each of the two single tasks individ-
ually to explore the impact of fine-tuning one task on the performance of the other. As shown in
Figure 5, when VTON was fine-tuned in isolation, there was a partial improvement observed in the
FID, SSIM, and LPIPS metrics for VTOFF. Similarly, Figure 6 demonstrates a comparable improve-
ment in the FID and LPIPS metrics for VTON. These results substantiate our hypothesis that, to a
certain extent, these two tasks can mutually enhance each other’s performance.

5 CONCLUSION

In this work, we present a unified diffusion framework Two-Way Garment Transfer Model
(TWGTM) for bidirectional virtual garment manipulation, addressing both mask-guided VTON and
mask-free VTOFF through reversible spatial transformations. Our model innovatively bridges the
gap between these two complementary tasks by leveraging dual-conditioned guidance from both
latent and pixel spaces. Latent features are fused via spatial concatenation to maintain structural
integrity, while pixel features are refined through dedicated modules for semantic abstraction and
spatial detail enhancement. The Extended Attention Block then integrates these features effectively.
Additionally, we introduce a phased training strategy to mitigate the mask dependency issue between
VTON and VTOFF. Extensive experiments demonstrate the superior performance of our method.

6 ETHICS STATEMENT

This research strictly follows the ICLR Code of Ethics. No studies involving human participants
or animal subjects were conducted. All datasets—including VITON-HD and DressCode—were
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obtained in accordance with applicable usage policies, ensuring full respect for privacy. We actively
guarded against any form of bias or discriminatory results, did not utilise personally identifiable
information, and avoided experiments that could compromise privacy or security. Transparency and
integrity were maintained throughout the investigation.

7 REPRODUCIBILITY STATEMENT

To promote reproducibility, we have released our code and data anonymously and documented
the full pipeline—training procedures, model hyper-parameters, and hardware setup—in the paper.
These resources should allow the community to replicate our findings and build upon them.
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A APPENDIX

A.1 LLM USAGE

We used a large language model (LLM) exclusively to polish the language—improving grammar,
clarity, and flow. The model did not contribute to research ideas, methodology, or data analysis. All
scientific content remains the authors’ responsibility, and we have verified that the LLM-assisted
text meets ethical standards.

A.2 IMPLEMENTATION DETAILS

We use Paint by Example(Yang et al., 2023) as the backbone of our method and the swin trans-
former is a standard Swin-B(Liu et al., 2021b) pretrained on ImageNet(Deng et al., 2009). Ad-
ditionally, the weights of QFormer(Li et al., 2023b) are initialized from BLIP-Diffusion(Li et al.,
2023a), while those of taskFormer are partially initialized from Mask2Former(Cheng et al., 2022).
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The hyper-parameter λ is set to 5e-2, λ′ is set to 0.9, and λ′′ is set to 0.1. We employ the AdamW
optimizer(Loshchilov & Hutter, 2019), with an initial learning rate of 1e-5 that increases linearly
from 0 during the first 1,000 warmup steps. In QFormer, the number of learnable query tokens is
set to N = 32, while TaskFormer extends this capacity to K = 100 learnable query tokens to handle
complex task hierarchies.

A.3 METRICS

We assess our VTON ability using three categories of metrics: (1) Reconstruction with Structural
Similarity Index Measure (SSIM)(Wang et al., 2004) and Learned Perceptual Image Patch Similarity
(LPIPS)(Zhang et al., 2018) to measure pixel-level alignment and texture fidelity; (2) Perceptual
Quality via Fréchet Inception Distance (FID)(Heusel et al., 2017) to evaluate realism on VITON-HD
and DressCode datasets; and (3) Semantic Consistency through DINO similarity(Zhang et al., 2022)
for high-level feature matching. For VTOFF, we follow the existing SOTA garment reconstruction
method TryOffDiff, combining structural accuracy (SSIM variants(Wang et al., 2004; Tang et al.,
2011) for pixel alignment) with multi-level perceptual assessment (LPIPS and Deep Image Structure
and Texture Similarity (DISTS)(Ding et al., 2020) for texture, FID and Kernel Inception Distance
(KID)(Bińkowski et al., 2021) for realism, CLIP-FID for semantic alignment).

A.4 DATASET ANALYSIS

As illustrated in the first row of Figure 7, the absence of distinctive visual features in the model’s
upper garment makes it challenging to classify the item as either a regular short-sleeved top or a
one-piece outfit, resulting in inherent ambiguity for the model. Such cases typically require supple-
mentary feature cues (e.g., textual context) to mitigate misclassification.

In the second row, significant color disparities between the worn garments and their flat-laid coun-
terparts are observed, primarily attributable to environmental variations during photography. These
inconsistencies substantially exacerbate the difficulty of bidirectional garment style transfer tasks.

Notably, in the final sample of the second row, while the target garment is an upper-body piece, the
model exhibits a tendency to misinterpret it as a skirt due to the visually blurred boundary between
the top and skirt in the model’s pose. This perceptual ambiguity persists even in human visual
cognition, underscoring the intrinsic challenges in fine-grained garment segmentation under such
conditions.

Figure 7: Data features of DressCode dataset.

A.5 ADDITIONAL RESULTS

A.5.1 ANALYSIS OF FAILURE CASES.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: VTOFF results of our model trained on VITON-HD dataset, tested on DressCode dataset.

Reference Target Outcome

Figure 9: Illustrative failure cases.

The DressCode dataset, characterized by a pre-
dominantly white background, presents certain
challenges when processing garments of ex-
treme colors, particularly white, which can lead
to noticeable color distortions. As illustrated
in the first row of Figure 9, white garments
tend to exhibit heightened contrast against the
background. Furthermore, when dealing with
black garments, there is an occasional occur-
rence of color fading, as depicted in the sec-
ond row. The presence of prominent acces-
sories (e.g., the belt shown in row 3) may cause
the model to misclassify them as intrinsic gar-
ment features, resulting in distorted representa-
tions. Furthermore, specular highlights caused
by smooth material surfaces under studio light-
ing (as seen in row 4) are persistently repli-
cated in the generated outputs, introducing un-
intended material rendering artifacts.

A.5.2 CROSS-DATASET EVALUATION.

We trained our model on the VITON-HD
dataset and conducted inference on the Dress-
Code dataset to evaluate its generalization ca-
pability to unseen data. The results, as shown in
figure 8, demonstrate that our model maintains
positive outcomes in the virtual try-off task, ef-
fectively generating plausible outputs despite
the domain shift. However, fine-grained rea-
soning errors persist, particularly in garment
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hem inference. As demonstrated by the first two examples in the bottom row of Figure 8, these
discrepancies primarily stem from inter-dataset distributional shifts. These observations underscore
both the robustness and current limitations of our approach in handling diverse and unseen data
distributions.

Additional results are displayed in Figure 10.
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Figure 10: More examples of experimental results.
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