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1. Introduction
Large Vision-Language Models (LVLMs) (Liu et al., 2024a;
Dai et al., 2023b; Ye et al., 2023b; Bai et al., 2023a) have
achieved significant success by incorporating pre-trained
large language models (LLMs) and vision models through
instruction tuning. However, these LVLMs suffer from the
hallucination phenomenon (Rohrbach et al., 2018), which
generates text responses that are linguistically plausible
but contradict the visual information in the accompanying
image. For instance, the description generated by LVLMs
may include visual elements that are not depicted in the
image. This issue can also occur when the LLM is highly
factual and the visual backbone is capable of producing
sufficiently high-quality representations. As indicated in
Cui et al. (2023); Guan et al. (2023), the potential reason
for this lies in the misalignment problem between image
and text modalities in LVLMs, which causes the model to
prioritize the text knowledge present in the training language
data while ignoring the actual visual input information.

Several works have been proposed to enhance modality
alignment capability in LVLMs through preference fine-
tuning techniques, such as reinforcement learning from hu-
man feedback (RLHF) (Sun et al., 2023) and direct pref-
erence optimization (DPO) (Li et al., 2023d; Zhou et al.,
2024). However, these methods often either introduce ad-
ditional models, such as GPT-4, or depend on human an-
notation to generate preference data. This data generation
process is not only resource-intensive but, more critically,
fails to capture the inherent preferences of the target LVLM.
Consequently, the target LVLM may easily discern prefer-
ences from such curated data, making them less effective
(detailed analysis provided in Appendix C.1). Recently,
self-rewarding approaches have emerged, utilizing a single
LLM for both response generation and preference model-
ing, showing promising results in LLM alignment (Yuan
et al., 2024a; Chen et al., 2024a). Unlike LLMs, LVLMs
face modality misalignment issues in both response genera-
tion and preference modeling stages, potentially resulting
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in self-generated preferences overlooking visual input infor-
mation. Directly applying these self-rewarding approaches
to LVLMs is not capable of addressing the modality align-
ment problem and redirecting LVLM’s attention towards
emphasizing input image information.

To tackle these challenges, our work introduces the
Calibrated Self-Rewarding (CSR) approach, aimed at cali-
brating the self-rewarding paradigm by incorporating visual
constraints into the preference modeling process. Specif-
ically, we train the target LVLM using an iterative prefer-
ence optimization framework that continuously generates
preferences and optimizes the target LVLM over multiple it-
erations. Starting with a seed model, each iteration employs
sentence-level beam search (Graves, 2012; Sutskever et al.,
2014) to produce fine-grained candidate responses for each
image and text prompt. During the beam search, for each
generated sentence, we first utilize the language decoder
to establish an initial reward (i.e., sentence-level cumula-
tive probabilities). Subsequently, we calibrate this initial
reward by incorporating an image-response relevance score,
resulting in the calibrated reward score. These calibrated
reward scores are utilized to guide the generation of the next
batch of candidate sentences. Finally, responses with the
highest and lowest cumulative reward scores are identified
as preferred and dispreferred responses, respectively, for
preference fine-tuning in the subsequent iteration.

The primary contribution of this paper is CSR, a novel cal-
ibrated self-rewarding paradigm for improving modality
alignment in LVLMs. Theoretically, with mild assump-
tions, we show that introducing visual constraints in the
self-rewarding paradigm can improve performance. Empir-
ically, when compared with other competitive approaches,
the results demonstrate that CSR is capable of improving
performance on comprehensive LVLM evaluation bench-
marks, VQA tasks, and reducing hallucination, achieving
up to a 7.62% improvement on average.

2. Calibrated Self-Rewarding
To address this challenge, we propose Calibrated Self-
Rewarding (CSR), a novel approach aimed at improving
modality alignment in LVLMs by integrating visual con-
straints into the self-rewarding paradigm. As illustrated
in Figure 1, CSR trains the target LVLM by alternately
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performing two stages: candidate response generation and
preference curation and fine-tuning. In the candidate re-
sponse generation stage, we employ sentence-level beam
search for each input prompt to produce fine-grained candi-
date responses. During this process, the language decoder
determines the initial reward for each generated sentence,
which is then calibrated by incorporating an image-response
relevance score. This calibrated reward score guides the
generation of subsequent sentences and finally generate the
entire response. Moving on to the preference curation and
fine-tuning stage, we use the responses with the highest
and lowest cumulative calibrated rewards to construct the
preferred and dispreferred responses, and utilize the con-
structed preference pairs for fine-tuning. In the remaining of
this section, we will provide detailed explanations of CSR.

2.1. Step-Level Reward Modeling and Calibration

Before delving into how to generate candidate response and
construct preference data, in this section, we first discuss
how to formulate the reward within CSR. The ideal reward
in the LVLM fulfills two specific criteria:

• Vision-Constrained Reward: This aspect aims to integrate
image-relevance into the reward definition of LVLMs. By
doing so, we address the limitation of LVLM in overlook-
ing image input data.

• Step-Wise Reward: Instead of assigning a single reward
for the entire response, we opt for a step-wise approach,
involving assigning rewards at each step of response gen-
eration. Compared to a single reward, this finer-grained
reward offers more detailed guidance and is more robust.

To fulfill these criteria, we propose a step-wise calibrated
reward modeling strategy. Inspired by PRM (Lightman et al.,
2023), we assign a reward score, R(s), to each generated
sentence s during the sentence-level beam search. This score
is a combination of two components: the self-generated
instruction-following score, RT (s), and the image-response
relevance score, RI(s).

Specifically, the self-generated instruction-following score,
RT (s), is calculated using the language decoder of the
LVLM. It represents the sentence-level cumulative prob-
ability of generating sentence s, formulated as:

RT (s) =

No∏
t=1

P (ro | x, r1, r2, . . . , ro−1), (1)

where No is the number of tokens in sentence s and ro
represents token o in sentence s. A higher self-generated
instruction-following score indicates a stronger capability
of the generated response to follow instructions.

While the self-generated instruction-following score par-
tially reflects the LVLM’s preference, it still suffers from

modality misalignment, potentially overlooking visual in-
put information. To address this, we introduce an image-
response relevance score, RI(s), to calibrate the reward
score RT (s). This score depicts the relevance between the
generated sentence s and input image xv. We leverage
CLIP-score (Hessel et al., 2021) for this calculation, where
the vision encoder in the CLIP model aligns with the vision
encoder in the target LVLM. The image-response relevance
score RI(s) is defined as:

RI(s) = max(100 ∗ cos(FI(xv),FT (s)), 0), (2)

where the FI(xv) and FT (s) represent the visual CLIP em-
bedding and textual CLIP embedding, respectively. Finally,
the calibrated reward score R(s) for the generated sentence
s is defined as:

R(s) = λ ·RI(s) + (1− λ) ·RT (s), (3)

where λ is a hyperparameter used to balance the language
instruction-following and image-response relevance scores.
By combining both scores, we aim to redirect the atten-
tion of LVLM towards the input visual information, thus
enhancing its modality alignment ability.

2.2. Iterative Fine-Tuning

After establishing the reward framework, we next discuss
our iterative fine-tuning process. Within this framework,
we iteratively perform two essential steps, namely candi-
date response generation and preference data curation and
optimization. These steps are elaborated upon as follows:

Step-Level Candidate Response Generation. In candidate
response generation, our objective is to generate responses
to build preference data. To accomplish this, we employ a
sentence-level beam search strategy. Initially, we concur-
rently sample multiple candidate sentences, utilizing the
"end of sub-sentence" marker (e.g., "." in English) as the
delimiter. Subsequently, for each sentence s, we compute
its reward score R(s) using Eqn. (3). From these scores, we
then select the top-k and bottom-k sentences with the high-
est and lowest reward scores, respectively, to proceed to the
subsequent round of sentence-level beam search. This itera-
tive process continues until reaching the "end of response,"
conventionally represented as ⟨eos⟩. Once all sentences for
a response y = {s1, · · · , sNy} are generated, we calculate
the cumulative reward score for the response as the sum of
the reward scores for each sentence within it. This is defined
as: R(y) =

∑Ny

i=1 R(si), where Ny is the number of sen-
tences in response y. The detailed algorithm for candidate
response generation is outlined in Algorithm 1.

Preference Curation and Optimization. After generat-
ing candidate responses with their reward scores, our next
step is to curate preference dataset. Here, for each input
prompt, we select the responses with the highest and lowest
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Figure 1: The CSR framework operates an iterative process of preference data generation and learning.

cumulative calibrated reward scores as the preferred and dis-
preferred responses, respectively, to construct the preference
dataset for fine-tuning. For each iteration t, we denote the
constructed preference data as: Dt = {(x(i), y

(i)
w,t, y

(i)
l,t )}

N
i=1.

After obtaining the preference data, we fine-tune the target
LVLM using DPO. At iteration t, we use the last iteration
fine-tuned model πθt−1

as the reference model. Following
Eqn (5), the loss at iteration t of CSR is defined as:

Lt = −E(x,yw,t,yl,t)∼D

[
log σ

(
α log

πθ(yw,t|x)
πθt−1

(yw,t|x)

−α log
πθ(yl,t|x)

πθt−1(yl,t|x)

)]
.

(4)

The training process of CSR is detailed in Algorithm 1.

3. Experiment
In this section, we empirically investigate CSR in addressing
the modality misalignment problem (see additional experi-
ments in Appendix C.2). We provide the theoretical analysis
to understand the empirical phenomena in Appendix D.

Implementation Details. We utilize LLaVA-1.5 7B and
13B (Liu et al., 2024a) as the backbone models. During the
preference learning process, we adapt LoRA fine-tuning (Hu
et al., 2021). The images and prompts used to construct
the preference data are randomly sampled from the de-
tailed description and complex reasoning subclasses of the
LLaVA150k dataset, totaling approximately 13,000 sam-
ples (Liu et al., 2023b). It is worth noting that each iteration
uses the same prompt and image as the previous round. For
more detailed information on training hyperparameters and
training data, please refer to Appendix A.1.

Evaluation Benchmarks and Baselines. We conducted
evaluations on three types of benchmarks: comprehensive
benchmarks, general VQA and hallucination benchmarks.
In terms of baselines, we will first compare CSR with the
self-rewarding approach described by Yuan et al. (2024b).
Here, we directly apply self-rewarding to LVLM, using
the prompts and experimental settings outlined in Yuan
et al. (2024b). We also compared CSR with several data-
driven preference learning methods (e.g., POVID (Zhou
et al., 2024)). More detailed descriptions are discussed in
Appendices A.2 and A.3.

3.1. Results

CSR Continuously Improves Model Performance over
Iterations. In Figure 2 ((see Table 6 and Table 7 in Ap-
pendix C.2 for full results)), we report the average perfor-
mance of LLaVA-1.5 7B and 13B models concerning the
number of training iterations on all baselines. In the experi-
ment, the 7B model achieved an improvement of approxi-
mately 7.62% across all benchmarks through online iterative
updates, while the 13B model saw an improvement of ap-
proximately 5.25%. The results indicate that CSR is capable
of incrementally improving model performance over itera-
tions, demonstrating its effectiveness in self-improving the
quality of generated preference data and leading to stronger
modality alignment. The degree of improvement gradually
becomes smaller, which is not surprising, indicating that the
model is gradually converging.

CSR Outperforms Competitive Preference Fine-Tuning
Baselines. Compared to preference data curation ap-
proaches (e.g., POVID, RHLF-V) that generate prefer-
ence data from either additional models or human anno-
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Table 1: The performance of CSR on LLaVA-1.5 across all benchmarks is presented. Most baseline results, except those for
self-rewarding, are sourced from Zhou et al. (2024).

Comprehensive Benchmark General VQA Hallucination Benchmark

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA POPE CHAIRS CHAIRI

LLaVA-1.5-7B 1510.7 348.2 58.6 63.4 64.3 30.5 66.8 50.0 62.0 85.90 48.8 14.9
+ Vlfeedback 1432.7 321.8 59.3 62.1 64.0 31.2 66.2 52.6 63.2 83.72 40.3 13.2
+ Human-Prefer 1490.6 335.0 58.1 63.7 63.4 31.1 65.8 51.7 61.3 81.50 38.7 11.3
+ POVID 1452.8 325.3 60.2 68.7 64.9 31.8 68.8 53.6 61.7 86.90 35.2 8.3
+ RLHF-V 1489.2 349.4 60.1 65.4 63.6 30.9 67.1 54.2 62.1 86.20 29.7 7.5
+ Self-rewarding 1505.6 362.5 60.0 61.2 64.5 31.4 69.6 53.9 61.7 86.88 24.0 6.7
+ CSR (Ours) 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3 87.01 21.0 6.0

LLaVA-1.5-13B 1531.3 295.4 61.6 70.7 67.7 35.4 71.6 53.6 63.3 85.90 48.3 14.1
+ Self-rewarding 1529.0 300.1 62.8 65.6 64.5 35.3 74.3 56.1 63.2 86.58 37.0 8.8
+ CSR (Ours) 1530.6 303.9 62.9 74.7 68.8 37.8 75.1 56.8 63.7 87.30 28.0 7.3

Figure 2: Average scores of CSR at different iterations.

tations, the superiority of CSR indicates that adapting a
self-rewarding paradigm better captures the inherent pref-
erences of the target LVLMs, achieving stronger modality
alignment. Furthermore, CSR outperforms existing self-
rewarding methods with 2.43% improvements, demonstrat-
ing its effectiveness in calibrating the reward model by incor-
porating image-response relevance scores. This mitigates
the potential issue of overlooking visual input information
when estimating self-generated preferences.

In addition, we compare the performance of LLaVA-1.5
after three rounds of online CSR with other state-of-the-art
open-sourced VLLMs and report the results in Table 5 of
Appendix C.2. Although different open-sourced VLLMs uti-
lize various image and text encoders, CSR still outperforms
other open-sourced VLLMs in 9 out of 10 benchmarks, fur-
ther corroborating the effectiveness of CSR in improving
modality alignment. Table 2: Ablation study.

Method 7B 13B

Base 65.96 67.56
Only RT 67.66 68.70
Only RI 66.77 68.23
CSR (Ours) 70.99 71.10

Ablation Study. To vali-
date the effectiveness of using
the image-response relevance
score (RI ) to complement the
self-generated instruction fol-
lowing score (RT ), we specifically compare CSR with three
variants: (1) without applying CSR on LLaVA 1.5 (Base);
(2) using CSR with only the self-generated instruction fol-
lowing score (Only RT ); and (3) using CSR with only the
image-response relevance score (Only RI ). The results
are reported in Table 2. We first observe that CSR im-
proves performance by jointly considering both the self-
generated instruction following and image-response rele-
vance scores. This verifies its effectiveness in enhancing

modality alignment by calibrating the language-driven self-
rewarding paradigm with visual constraints.

How Does CSR Change the Image-Response Relevance
Over Iterations? To investigate how CSR gradually im-
prove the performance over iterations, we analyzed the
change of self-generated preference data with the LLaVA-
1.5 7B model. In Figure 3, we illustrated the distribution
of image-response relevance scores of three iterations (Liu
et al., 2023b). We first observe that both the chosen (pre-
ferred) and rejected (dispreferred) responses achieve higher
image-response relevance scores after the model undergoes
CSR online iterations. This indicates that, following CSR,
the responses generated by LVLMs are more closely aligned
with the image information. Secondly, it can be observed
that after multiple rounds of online iterations with CSR, the
average image-response relevance scores for the rejected
and chosen responses become closer to each other. This
makes the self-generated preference data during CSR itera-
tions more challenging to distinguish, while further strength-
ening the learning process.

10 15 20 25 30 35 40
Image-Response Relevance Scores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity

Base Rejected
CSR (Ours) Rejected
Base Chosen
CSR (Ours) Chosen

Figure 3: The change in image relevance scores before and
after employing CSR.

4. Conclusion
In this paper, we investigate the challenge of enhancing
modality alignment in LVLMs by introducing a calibrated
self-rewarding approach, which integrates visual constraints
into the preference modeling process of the self-rewarding
paradigm. Empirically, CSR enhances the alignment be-
tween image and text modalities, significantly improving
performance on various LVLM evaluation benchmarks.
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Algorithm 1 Calibrated Self-Rewarding

Require: Dataset: D = {x(i)}Ni=1; Reference model: πref ; Number of iterations: T
1: for t = 1, . . . , T do
2: for each x in D do
3: while not reach the end of response do
4: Generate a bunch of candidate sentences from last-round sentences
5: for each candidate sentence s do
6: Compute the self-generated instruction-following score RT (s) by Eqn. (1)
7: Calculate the image representation FI(xv) and sentence representation FT (s)
8: Compute the image-response relevance score RI(s) by Eqn. (2)
9: Compute the calibrated reward score R(s) by Eqn. (3)

10: end for
11: Select top-k and bottom-k sentences with the highest and lowest reward scores
12: end while
13: Select the preferred response yw,t and dispreferred response yl,t
14: end for
15: Update πθ ← argminθ Lt(πθ;πref), πref ← πθ

16: end for

A. Experimental Setups
A.1. Hyperparameter Settings

Sentence-Level Beam Search. We configure our parameters as follows to ensure both diversity and quality in the
sampled data. The num_beamsparameter, set to 5, determines the capacity of input at each search layer. Additionally,
num_token_beams, also set to 5, ensures that each beam search returns 5 token-level search results. The eos_token_id is set
to the token for a period, effectively controlling the sentence-by-sentence generation process. The max_length parameter,
set to 1024, prevents truncation errors and infinite repetitions by controlling the maximum length, while max_new_tokens,
set to 74, limits the maximum length of newly generated content to avoid exceeding the CLIP encoding limit.

To further enhance data diversity, we utilize group beam search by setting the num_beam_group parameter to 5. This
approach, when matched with token-level search, significantly boosts the diversity of each data point. The diversity_penalty
parameter, set to a value of 3.0, effectively controls the diversity and quality of the sampled data among different beam
groups.

Calibrated Rewarding. We set the clip score weight to 0.9 and the language score weight to 0.1 when calculating the
scores, giving greater emphasis to visual calibration.

A.2. Evaluation Metrics and Benchmarks

• MME (Fu et al., 2024) is a comprehensive benchmark for assessing the capabilities of LVLMs in multimodal tasks. It
systematically evaluates models across two primary dimensions: perception and cognition, through 14 meticulously
designed subtasks that challenge the models’ interpretative and analytical skills.

• SEED-Bench (Li et al., 2023a) is designed to evaluate the generative comprehension capabilities of LVLMs. It features
an extensive dataset of 19K multiple-choice questions with precise human annotations, covering 12 distinct evaluation
dimensions that assess both spatial and temporal understanding across image and video modalities.

• LLaVAW (Liu et al., 2023b) is a comprehensive benchmark for evaluating visual reasoning models. It comprises 24
diverse images with a total of 60 questions, covering a range of scenarios from indoor and outdoor settings to abstract art.

• MMBench (Liu et al., 2024b) introduces a dual-pronged approach: a meticulously curated dataset that significantly
expands the scope and diversity of evaluation questions, and a pioneering CircularEval strategy that leverages ChatGPT to
transform free-form predictions into structured choices.

• MM-Vet (Yu et al., 2023b) is an evaluation benchmark tailored for assessing the multifaceted competencies of LVLMs. It
systematically structures complex multimodal tasks into 16 distinct integrations derived from a combination of 6 core
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vision-language capabilities, providing a granular analysis of model performance across diverse question types and answer
styles.

• ScienceQA (Lu et al., 2022) is a multimodal benchmark designed to evaluate and diagnose the multi-hop reasoning ability
and interpretability of AI systems within the domain of science. It offers an expansive dataset of approximately 21k
multiple-choice questions across a broad spectrum of scientific topics, complemented by detailed answer annotations,
associated lectures, and explanations.

• VizWiz (Gurari et al., 2018) is a dataset in the field of visual question answering (VQA), derived from a naturalistic setting
with over 31,000 visual questions. It is distinguished by its goal-oriented approach, featuring images captured by blind
individuals and accompanied by their spoken queries, along with crowdsourced answers.

• GQA (Hudson & Manning, 2019) is a dataset engineered for advanced real-world visual reasoning, utilizing scene
graph-based structures to generate 22 million diverse, semantically-programmed questions. It incorporates a novel
evaluation metrics suite focused on consistency, grounding, and plausibility, establishing a rigorous standard for assessing
in vision-language tasks.

• POPE (Li et al., 2023e) is an assessment methodology designed to scrutinize object hallucination in LVLMs. It reformulates
the evaluation into a binary classification task, prompting LVLMs with straightforward Yes-or-No queries to identify
hallucinated objects. POPE offers a stable and adaptable approach, utilizing various object sampling strategies to reveal
model tendencies towards hallucination.

• CHAIR (Rohrbach et al., 2019) is a widely-recognized tool for evaluating the incidence of object hallucination in image
captioning tasks, which has two variants: CHAIRI and CHAIRS, which assess object hallucination at the instance and
sentence levels, respectively. Formulated as:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}|

Specifically, we randomly sampled 500 images from the COCO (Lin et al., 2015) validation set and evaluated object
hallucination using the CHAIR metric.

A.3. Overview of the Baselines

• LLaVA-1.5 (Liu et al., 2024a) is an improvement based on the original LLaVA (Liu et al., 2023b) model demonstrating
exceptional performance and data efficiency through visual instruction tuning. It enhanced with a CLIP-ViT-L-336px
visual backbone and MLP projection. By incorporating academic-task-oriented VQA data and simple response formatting
prompts, LLaVA-1.5 achieves the state-of-the-art results at that time with a remarkably modest dataset of just 1.2 million
public images.

• InstructBLIP (Dai et al., 2023a) leverages instruction tuning on pretrained BLIP-2 models, integrating an instruction-aware
Query Transformer to enhance feature extraction for diverse vision-language tasks. It achieved state-of-the-art zero-shot
performance at the time across 13 datasets and excelled in fine-tuned downstream tasks, such as ScienceQA, showcasing
its advantage over contemporaneous multimodal models.

• Qwen-VL-Chat (Bai et al., 2023b) is built upon the Qwen-LM (Bai et al., 2023a) with a specialized visual receptor
and input-output interface. It is trained through a 3-stage process and enhanced with a multilingual multimodal corpus,
enabling advanced grounding and text-reading capabilities.

• mPLUG-Owl2 (Ye et al., 2023c) employs a modular network design with a language decoder interface for unified modality
management. It integrates shared modules for cross-modal collaboration and modality-adaptive components for feature
retention, enhancing generalization in both text-only and multimodal tasks.

• BLIP-2 (Li et al., 2023c) is a vision-language pre-training framework that efficiently leverages off-the-shelf frozen image
encoders and LLMs. Employing a two-stage pre-training strategy with a lightweight Querying Transformer, BLIP-2
bridges the modality gap between vision and language, enabling zero-shot image-to-text generation that adheres to natural
language instructions while maintaining high compute-efficiency.
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• IDEFICS (Laurençon et al., 2023) is an open-access visual language model that expands upon the Flamingo (Alayrac
et al., 2022) architecture, offering both base and instructed variants with 9 billion and 80 billion parameter sizes. It is
developed using solely publicly available data and models.

• POVID (Zhou et al., 2024) is a novel training paradigm aligns the preferences of VLLMs through external preference data
from GPT4 and the inherent hallucination patterns within the model triggered by noisy images.

• RLHF-V (Yu et al., 2023a) collected fine-grained paragraph-level corrections from humans on hallucinations and
performing dense direct preference optimization on the human feedback.

• Silkie (Li et al., 2023d) constructed a VLFeedback dataset using VLLMs annotation. Specifically, the responses were
generated by 12 LVLMs models conditioned on multimodal instructions extracted from different datasets. The entire
dataset was evaluated using GPT-4V to assess the generated outputs in terms of helpfulness, visual faithfulness, and
ethical considerations. In this paper, the VLFeedback dataset was utilized to perform one round of DPO on LLaVA-1.5.

• LLaVA-RLHF (Sun et al., 2023) proposes a novel alignment algorithm called Factually Augmented RLHF, which enhances
the reward model by incorporating additional factual information such as image captions and ground-truth multi-choice
options. In this paper, the annotated preference data is used to conduct one round of preference learning on LLaVA1.5.

• Self-rewarding (Yuan et al., 2024b) introduces a method for self-feedback learning in LLMs and serves as a baseline for
our approach, referred to as CSR. Specifically, for each input image and prompt, two outputs are sampled from LLaVA-1.5.
The model is provided with the prompt mentioned in Table 3 and is tasked with determining which output is better. Finally,
LLaVA-1.5 is fine-tuned using the collected preference data, with the entire setup and the images and prompts used for
inference matching those of CSR.

Table 3: Prompt for self-reward: utilizing the model itself as a judge to determine whether the corresponding response is a
chosen response or a reject response.

Now you act as a judge, helping me determine which of the two texts I provide is closer to the given image and has
fewer errors.
*****************************************************************************
Response 1:
{response 1}
Response 2:
{response 2}
******************************************************************************
Please strictly follow the following format requirements when outputting, and don’t have any other unnecessary words.
Output Format:
response 1 or response 2.

B. Preliminaries
In this section, we will provide a brief overview of LVLM and preference optimization.

Large Vision Language Models. LVLMs extend LLMs to multimodal scenario, which progressively predict the probability
distribution of the next token for each input prompt. Given an <image xv , text xt> pair as input prompt x, LVLM outputs a
text response y.

Preference Optimization. Preference optimization has shown promise in fine-tuning language models and aligning their
behavior with desired outcomes. Given an input prompt x , a language model with policy πθ can produce a conditional
distribution πθ(y | x) with y as the output text response. The preference data is defined as D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1, where

y
(i)
w and y

(i)
l denote the preferred and dispreferred responses for the input prompt x(i). Preference optimization leverage the

preference data to optimize language models. Taking DPO (Rafailov et al., 2023) as a representative example„ it formulates
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Figure 4: Distribution of preferred responses and dispreferred responses based on the sampling probability scores generated
by LVLMs’ language models.

the probability of obtaining each preference pair as p(yw ≻ yl) = σ(r(x, yw)− r(x, yl)), where σ(·) is the sigmoid function.
DPO optimizes the language models with the following classification loss:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
α log

πθ(yw|x)
πref(yw|x)

− α log
πθ(yl|x)
πref(yl|x)

)]
, (5)

where πref(y|x) represents the reference policy, i.e., language model after supervised fine-tuning.

C. Additional Results
C.1. Do Different Sources of Preference Data Have Different Impacts?

The sources of preference data generally fall into two main categories: external preference data and self-generated data.
External preference data typically represent preferences obtained from human annotations or GPT-4. Although external
preference data generally have higher quality compared to self-generated data, are they really more effective? We conducted
an analysis using 500 samples obtained from the original LLaVA-1.5 7B model. Following the same pipeline as CSR, we
selected samples with the highest and lowest rewards as preferred (chosen) and dispreferred (rejected) responses. We further
employed the GPT-4 API to transform preferred responses into dispreferred ones, with specific prompts referenced in Table
4.

In Figure 4, we present the distribution based on both the sampling probabilities score generated by the target LVLM,
which describes the probability of the LVLM generating this response. Clearly, compared to the model’s own generated
dispreferred responses, the dispreferred responses modified by GPT-4V are not as easily confusable for the model. This
result partially supports the idea that dispreferred responses generated by external models are more easily distinguishable by
the target LVLM, making them less effective.

C.2. Additional Experiments

In this subsection, we provide a additional results and analysis of CSR. All experiments demonstrate the effectiveness of
CSR.

Compatibility Analysis. To validate CSR for its applicability to other LVLMs, we deployed CSR on Vila 7B and conducted
three rounds of online iterations. We conducted experiments on all ten evaluation benchmarks and tasks, and the results are
shown in Figure 5. Similar to the findings in Figure 2, Vila demonstrates a similar phenomenon during the online iterations
of CSR, where it can self-correct preferences, leading to gradual improvements in all benchmarks. For Vila, the overall
performance improved by 3.37% after three rounds of CSR iterations, with particularly notable increases of 8.48% on
VisWiz and 14.0% on MM-Vet. The compatibility analysis further corroborates the generalizability and effectiveness of
CSR in enhancing the performance of LVLMs.

How Does CSR Improve Modality Alignment? To further understand how CSR affects modality alignment, in Figure 6, we
present the changes in image and text attention maps for three models: the original LLaVA-1.5 7B model, the self-rewarding
approach, and CSR. These attention maps illustrate the distribution of attention scores over image and text tokens. We
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Table 4: Prompt for GPT-4 API: transform the provided response into negative ones based on the provided image.

Transform the provided response into negative ones based on the provided image.
*****************************************************************************
Response:
{chosen response from another LVLM or ground truth}
Requirements:
(1) Revise the response while maintaining its original format and order as much as possible.
(2) Based on the provided image, primarily add, replace, or modify entities in the input response to make them related
to the image but incorrect. Adjust their attributes and logical relationships accordingly.
(3) The modifications in (2) must align with the image information, making the revised result difficult to discern.
*****************************************************************************
Please strictly follow the following format requirements when outputting, and don’t have any other unnecessary words.
Output Format:
negative response

Figure 5: Average scores of CSR in Vila 7B at different iterations over all benchmarks (see Table 8 in Appendix ?? for full
results).

observe that applying CSR strengthens the model’s attention to certain visual tokens. Simultaneously, the change of attention
values of the text tokens indicates that CSR is capable of alleviating the issue of over-reliance on context mentioned in
(Huang et al., 2023). Additionally, compared with the self-rewarding approach, CSR shows a more effective distribution of
attention between image and text tokens. These findings indicate that with CSR, LVLMs can better align different modalities
through a calibrated self-rewarding strategy, focusing more on the visual modality rather than over-relying on contextual
text.

Table 5: Comparison of LLaVA-1.5 with CSR and other open-sourced state-of-the-art LVLMs.

Comprehensive Benchmark General VQA

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA

BLIP-2 1293.8 290.0 46.4 38.1 - 22.4 61.0 19.6 41.0
InstructBLIP 1212.8 291.8 53.4 60.9 36.0 26.2 60.5 34.5 49.2
IDEFICS 1177.3 - 45.0 45.0 48.2 30.0 - 35.5 38.4
Qwen-VL-Chat 1487.6 360.7 58.2 67.7 60.6 47.3 68.2 38.9 57.5
mPLUG-Owl2 1450.2 313.2 57.8 59.9 64.5 36.2 68.7 54.5 56.1

CSR iter-3 7B 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3

CSR iter-3 13B 1530.6 303.9 62.9 74.7 68.8 37.8 75.1 56.8 63.7
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Table 6: The performance of CSR online iteration with LLaVA-1.5 as the backbone on comprehensive benchmarks and
general VQA.

Comprehensive Benchmark General VQA

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA

LLaVA-1.5-7B 1510.7 348.2 58.6 63.4 64.3 30.5 66.8 50.0 62.0
+ CSR iter-1 1500.6 367.5 60.4 69.7 64.7 32.2 70.3 54.0 62.1
+ CSR iter-2 1519.0 368.9 60.3 70.4 65.2 33.7 70.1 54.0 62.3
+ CSR iter-3 1524.2 367.9 60.3 71.1 65.4 33.9 70.7 54.1 62.3

LLaVA-1.5-13B 1531.3 295.4 61.6 70.7 67.7 35.4 71.6 53.6 63.3
+ CSR iter-1 1533.1 303.6 63.0 74.4 68.4 37.4 74.8 56.8 63.2
+ CSR iter-2 1530.4 301.1 63.0 74.3 68.5 37.2 75.0 56.0 63.2
+ CSR iter-3 1530.6 303.9 62.9 74.7 68.8 37.8 75.1 56.8 63.7

Table 7: The performance of CSR online iteration with LLaVA-1.5 as the backbone on hallucination benchmarks.

Hallucination Benchmark

Method POPEacc POPEf1 CHAIRS CHAIRI Avg Length

LLaVA-1.5-7B 85.90 84.29 48.8 14.9 89.03
+ CSR iter-1 86.94 85.80 26.6 7.2 80.59
+ CSR iter-2 86.82 85.62 23.0 6.1 82.62
+ CSR iter-3 87.01 85.93 21.0 6.0 83.29

LLaVA-1.5-13B 85.90 84.87 48.3 14.1 89.73
+ CSR iter-1 87.28 86.29 36.0 9.0 98.85
+ CSR iter-2 87.33 86.36 36.0 7.8 105.0
+ CSR iter-3 87.30 86.31 28.0 7.3 107.8

Table 8: The performance of CSR online iteration with Vila 7B as the backbone.

Comprehensive Benchmark General VQA Hallucination Benchmark

Method MMEP MMEC SEED LLaVAW MMB MM-Vet SQAI VisWiz GQA POPE CHAIRS CHAIRI

Vila 1533.0 316.4 61.1 69.7 68.9 34.9 68.2 57.8 62.3 85.50 31.0 8.8
+ CSR iter-1 1520.6 321.9 63.2 73.5 69.3 38.3 71.9 62.3 62.2 86.82 29.2 7.9
+ CSR iter-2 1536.0 322.6 63.4 74.2 69.1 39.7 72.3 62.6 62.1 87.30 28.2 8.0
+ CSR iter-3 1542.2 321.5 63.4 74.3 69.3 39.8 72.2 62.7 62.4 87.31 28.0 8.2

D. Theoretical Explanation
In this section, we present a theoretical framework to explain the empirical phenomenon that incorporating an image-response
relevance score can calibrate the self-rewarding procedure, ultimately improving generation accuracy.

As we consider an LVLM, to facilitate the analysis, we decompose the input prompt into x = (xv, xt) ∈ Rdv × Rdt ,
representing the image and text prompts respectively. Although text data typically comprises discrete tokens, we follow
the CLIP theory literature (Nakada et al., 2023; Chen et al., 2023; Liu et al., 2024c) in modeling them as continuous-value
random vectors in this section to elucidate the rationale behind our proposed method. More specifically, we assume the
following data generative model for xv and xt:

xv = U1z1 + ξ1, and xt = U2z2 + ξ2,

where U1 ∈ Odv×r and U2 ∈ Odt×r are two orthonormal matrixces, representing decoders that transform the latent
(low-dimensional) signals z1, z2 ∈ Rr to images and text respectively. We assume the covariance matrices of z1, z2 are
identity matrices. ξ1 ∈ Rdv and ξ2 ∈ Rdt are noise vectors, and we assume they follow sub-gaussian distributions with
well-conditioned covariance matrices and sub-gaussian norms upper bounded by a universal constant. We consider the
infinite data setting. This is a widely used simplification to avoid the influence of sample randomness (Kim et al., 2019;
Ghorbani et al., 2021; Ye et al., 2023a). According to (Nakada et al., 2023), with an abundance of image-text pairs, the
learned visual CLIP embedding FI(xv) and textual CLIP embedding FT (xt) converge to U⊤

1 xv and U⊤
2 xt respectively. To
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Prompt: What are the key elements in this picture?

CSR (Ours)

The image features a blue and white bus driving down a city street, with the bus's destination clearly displayed on the front: "Artesia." The bus is positioned in 
the middle of the street, and its large size and prominent destination sign make it easily noticeable to pedestrians and other vehicles. In addition to the bus, the 
image also includes a car driving behind the bus, indicating that both vehicles are sharing the roadway in the city.

An articulated city bus, which is blue and white, is driving down a street in a large city. In front of the bus is a truck, and the bus is positioned behind it. Several 
people can be seen walking along or standing near both the bus and truck. They are likely pedestrians going about daily activities or waiting for public 
transportation. The scene captures the bustling atmosphere of a busy urban environment with various modes transportation in use. It highlights how public 
transportation, such as buses, plays a crucial role in the daily lives of city dwellers. Overall, it is a typical day in a large metropolitan area with people 
commuting and going about their daily routines.

Self-Reward

The image features a blue and white bus driving down a city street, with a large building in the background. The bus is the main focus of the scene, occupying a 
significant portion of the image. A few cars can be seen on the street, with one car positioned behind and to the left of the bus, and another car located further 
down the street on the right side.There are several people in the scene, with one person standing near the left edge of the image, another person closer to the 
center, and a third person on the right side of the street. They appear to be pedestrians going about their daily activities. Additionally, a traffic light is visible in 
the background, indicating that the bus is driving in an urban environment with traffic regulations.

LLaVA-1.5

Visual Tokens Text TokensCSR (Ours)

Self-Reward

LLaVA-1.5

Generate Responses Visualize Attentions

Figure 6: Comparison of attention maps. After optimizing the model with CSR, the attention scores allocated to visual
tokens increase, indicating that CSR effectively redirects the model’s attention toward the input visual information during
the response generation process.

simplify our analysis without loss of generality, we consider a single score for each response y and define the image-response
relevance score RI(y) = ⟨U⊤

1 xv, U
⊤
2 y⟩.

We assume the ground truth ytruth = V ∗
1 xv + V ∗

2 xt + ϵy with weights V ∗
1 ∈ Rdv×dv and V ∗

2 ∈ Rdv×dt . In CSR,
we assume the conditional distribution at iteration t, πθt(y | x) with θt = (V1, V2), follows a Gaussian distribution
πθt(y | x) ∝ exp(−∥y − (V1xv + V2xt)∥2/σ2), where V1 ∈ Rdv×dv and V2 ∈ Rdv×dt are the weights matrices for the
image and text inputs respectively, and σ > 0 is the standard deviation. As the likelihood is monotonically decreasing with
respect to ∥y−(V1xv+V2xt)∥2, we consider the self-generated instruction-following score RT (y) = −∥y−(V1xv+V2xt)∥2.
Then the calibrated reward score becomes R(y) = λ ·RI(y) + (1− λ) ·RT (y), for some λ ∈ [0, 1]. In theoretical analysis,
we consider a simpler version of CSR, where we assume yw = argmaxy R(y) (whose distribution is denoted by p∗θt(y | x)),
and yl is the text output generated by πθt(y | x). As R(y) depends on λ, we denote the solution θt+1 by θt+1(λ). In the
special case where λ = 1, this corresponds to the setting where we do not use the image-response relevance score at all.

To evaluate the quality of the text output y, we consider a regression problem where there is an outcome z associated with
the ground-truth text output ytruth: z = β∗⊤ytruth with β∗ ∈ Rdt . We evaluate the quality of y by considering the loss
function L(y) = minβ∈Rdt E[(z − β⊤y)2]. We then have the following theorem.

Theorem D.1. Suppose that π∗
θt
(y | x) lies in the LLM space {πθ(y | x) : θ ∈ Θ}, ∥β∗⊤V ∗⊤

1 β∗∥ ≫ ∥β∗⊤V ∗⊤
2 β∗∥ and

∥β∗⊤V ⊤
1 β∗∥ ≪ ∥β∗⊤V ⊤

2 β∗∥, then there exists λ < 1, such that

Eπθt+1(λ)(y|x)[L(y)] < Eπθt+1(1)(y|x)[L(y)].
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Our theoretical analysis implies that as long as ∥β∗⊤V ⊤
1 β∗∥ ≪ ∥β∗⊤V ⊤

2 β∗∥, which happens when the model tends to
prioritize textual information over visual input. By incorporating the image-response relevance score (corresponding to
λ < 1), CSR is able to increase the attention on image signals in generating y. As a result, the solution produced by CSR
will be better than the method without using the image-response relevance score (corresponding to λ = 1).

D.1. Proofs

Proof of Theorem D.1. Let us first denote the distribution of yw by π∗
θt
(y | x). As we take yw = argmaxy R(y), this

distribution is a point mass. As a result, the global minimizer to (4) will then converge to π∗
θt
(y | x).

In the following, we analyze how π∗
θt
(y | x) is shaped.

By the CSR procedure, we have

yw = argmax
y

(1− λ))⟨U⊤
1 xv, U

⊤
1 y⟩ − λ∥y − V1xv + V2xt∥2 =

1− λ

λ
U1U

⊤
1 xv + V1xv + V2xt.

We can see that CSR up-weights the signal of the image input.

Then

L(y) = min
β∈Rdt

E[(z − β⊤y)2] = min
β∈Rdt

E[(β∗⊤ytruth − β⊤y)2]

= min
β∈Rdt

E[(β∗⊤(V ∗
1 xv + V ∗

2 xt))− β⊤y)2] + V ar(ϵy)∥β∗∥2

We have

E[(β∗⊤(V ∗
1 xv + V ∗

2 xt))− β⊤y)2] = E[(β∗⊤ (V ∗
1 xv + V ∗

2 xt))

− β⊤
(
(
1− λ

λ
U1U

⊤
1 + V1)xv + V2xt

)
)2]

As we assume ∥V1∥
∥β∗⊤V ∗

1 ∥ ≪
∥V2∥

∥β∗⊤V ∗
2 ∥ and due to the smoothness over parameters. Without loss of generality, we prove the

claim for the case where ∥V1∥ = 0, that is, V1=0.

In this case, we want to show that there exists λ ∈ (0, 1), such that

min
β∈Rdt

E[(β∗⊤ (V ∗
1 xv + V ∗

2 xt))− β⊤
(
(
1− λ

λ
U1U

⊤
1 )xv + V2xt

)
)2]

< min
β∈Rdt

E[(β∗⊤ (V ∗
1 xv + V ∗

2 xt))− β⊤ (V2xt))
2]

Due to the independence between xv and xt, the right-hand sides is lower bounded by β∗⊤V ∗
1 Cov(xt)V

∗⊤
1 β∗.

The left-hand side, on the other hand, can be upper bounded by the value when we take β0 such that 1−λ
λ U1U

⊤
1 β0 =

U1U
⊤
1 V ∗⊤

1 β∗, which equals to β∗⊤V ∗
1 (I − U1U

⊤
1 )Cov(xt)(I − U1U

⊤
1 )V ∗⊤

1 β∗.

As we assume ∥β∗⊤V ∗⊤
1 β∗∥ ≫ ∥β∗⊤V ∗⊤

2 β∗∥, this is a dominating term when the left-hand side is evaluated at β0.

In addition, we assume Cov(ξ1) is well-conditioned, implying Cov(xt) is well-conditioned, and therefore

β∗⊤V ∗
1 (I − U1U

⊤
1 )Cov(xt)(I − U1U

⊤
1 )V ∗⊤

1 β∗ < β∗⊤V ∗
1 Cov(xt)V

∗⊤
1 β∗.

We complete the proof.

E. Related Work
Large Visual-Language Model Hallucination. Recently, the rapid development of visual-language alignment methods (Liu
et al., 2023b; Alayrac et al., 2022; Radford et al., 2021; Team, 2024) and LLMs (Chiang et al., 2023; Touvron et al., 2023;
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Jiang et al., 2023; Tunstall et al., 2023; AI et al., 2024) has significantly accelerated the progress of LVLMs, which extend
LLMs with visual modalities and demonstrate impressive visual understanding by unifying the encoding of visual and
text tokens (Li et al., 2023b; Dai et al., 2024; Zhu et al., 2023; Bavishi et al., 2023). However, LVLMs still face the
problem of hallucination (Zhou et al., 2023), where generated text descriptions contradict the visual modality information.
Various approaches have been proposed to address hallucination in LVLMs, including enhancing dataset quality for fine-
tuning (Gunjal et al., 2024; Sun et al., 2023; Liu et al., 2023a; Li et al., 2023d), manipulating the decoding process (Huang
et al., 2023; Leng et al., 2023b; Yu et al., 2024; Han et al., 2024; Chen et al., 2024b; Leng et al., 2023a), and leveraging
external closed-source models to facilitate post-hoc mitigation of hallucination (Zhou et al., 2023; Yin et al., 2023). Though
these approaches alleviate hallucination to some extent, they do not focus directly on improving modality alignment.

Preference and Modality Alignment. In large models, alignment is necessary to ensure their behavior aligns with
human preferences (Ziegler et al., 2020; Rafailov et al., 2023; Jaques et al., 2020). In LVLMs, alignment manifests
as modality misalignment, where the generated textual responses are supposed to follow the input visual information.
Recently, preference optimization has been used to address the modality misalignment problem. These optimizations
involve preference data curated by human annotators (Sun et al., 2023; Gunjal et al., 2024; Yu et al., 2023a) and additional
models (e.g., GPT-4) (Li et al., 2023d; Zhou et al., 2024). While these methods improve the ability of LVLMs to align
modalities, their reliance on human annotation or additional models is resource-intensive and may introduce additional biases.
Furthermore, these models cannot fully capture the inherent preferences of LVLMs, making the curated preference data less
effective. Instead, CSR leverages a calibrated self-rewarding strategy, aiming to stimulate the LVLMs’ self-correction and
enhancement capabilities, thereby further improving modality alignment.

Self-Improvement in Large Language Models. Self-improvement emerges as a powerful paradigm for LLMs to enhance
themselves without significant external intervention. For example, self-rewarding and online alignment (Huang et al.,
2022) propose a method that selects consistent answers generated by the model to fine-tune itself, thereby improving its
reasoning ability. Similarly, (Chen et al., 2024a) utilizes self-play to enhance the model’s performance by distinguishing its
self-generated responses from those in human-annotated training data. Unlike prior methods that primarily target LLMs,
CSR addresses the modality misalignment issue in LVLMs during the preference modeling process by introducing visual
constraints, making it particularly well-suited for LVLMs.
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