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Abstract

Diffusion models have achieved impressive performance in generating high-quality
and diverse synthetic data. However, their success typically assumes a class-
balanced training distribution. In real-world settings, multi-class data often follow
a long-tailed distribution, where standard diffusion models struggle, producing
low-diversity and lower-quality samples for tail classes. While this degradation is
well-documented, its underlying cause remains poorly understood. In this work,
we investigate the behavior of diffusion models trained on long-tailed datasets and
identify a key issue: the latent representations (from the bottleneck layer of the
U-Net) for tail class subspaces exhibit significant overlap with those of head classes,
leading to feature borrowing and poor generation quality. Importantly, we show
that this is not merely due to limited data per class, but that the relative class im-
balance significantly contributes to this phenomenon. To address this, we propose
COntrastive Regularization for Aligning Latents (CORAL), a contrastive latent
alignment framework that leverages supervised contrastive losses to encourage
well-separated latent class representations. Experiments demonstrate that CORAL
significantly improves both the diversity and visual quality of samples generated
for tail classes relative to state-of-the-art methods. The implementation code is
available at https://github.com/SankarLab/coral-lt-diffusion.

1 Introduction

Diffusion models (DMs) [1, 2] have achieved impressive performance in generating high-quality and
diverse samples across a range of domains. However, their success typically relies on class-balanced
training data. In practice, many real-world datasets exhibit long-tailed class distributions, where a
small number of head classes contain the majority of samples, while many tail classes are significantly
underrepresented [3]. Under such imbalance, DMs often fail to generate faithful and diverse outputs
for tail classes, instead exhibiting feature borrowing, where samples from rare classes display a mix
of tail and head features [4].

Recent work has sought to improve generative models under long-tailed class distributions by
addressing sampling imbalance and promoting class-aware generation. Class-Balancing Diffusion
Models (CBDMs) [5] introduce a regularizer that encourages balanced sampling across classes by
penalizing deviations from a target distribution. In particular, the approach enhances tail generation
based on the model prediction on the head class. This increased reliance on the model prediction
and conditional priors introduces bias and can potentially reduce robustness (e.g., lead to class
entanglement) during training. To address these limitations, Zhang et al. [6] propose a Bayesian
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framework with weighted denoising score-matching and a gating mechanism to selectively transfer
information from head to tail classes. Other works incorporate contrastive learning [7], a key
technique in metric learning [8], to improve class separability. For example, Yan et al. [4] propose
a probabilistic contrastive approach that reduces overlap among class-conditional distributions to
enhance tail-class generation. While these approaches have improved performance in imbalanced
settings, they primarily operate in the ambient image space or introduce latent representations
external to the denoising process. In contrast, relatively little attention has been given to structuring
class representations within the latent space of the denoising network itself, highlighting a key gap in
current methods.

The core generative process relies on a neural architecture that processes data through a lower-
dimensional latent space. Current models predominantly use the U-Net architecture [2, 9], which
incorporates an encoder-bottleneck-decoder structure consisting of convolutional neural networks
to downsample, followed by a multilayer perceptron, and then upsampling by further convolutional
neural networks back into image space. There are skip connections from the encoder to the decoder
to preserve data and feature information and mitigate vanishing gradients. It has been shown that
the U-Net’s bottleneck output carries semantic meaning [10]. One of our key observations is that,
under long-tailed distributions, tail-class samples tend to occupy regions in this latent space that
overlap heavily with head classes. This overlap — which we refer to as representation entanglement
— undermines model’s the ability to preserve class-specific features, leading to poor generative
performance for tail classes. We base this observation on extensive visualizations of long-tailed
datasets for diffusion using various distance-preserving mappings. Figure 1 illustrates this effect for
t-SNE [11] and shows how tail-class representations are absorbed into dominant clusters.

To address this, we propose COntrastive Regularization for Aligning Latents (CORAL), a contrastive
latent alignment method that operates directly on the latent representations within the denoising
network. Inspired by metric learning and its applications to learning representations [12, 13, 14],
CORAL augments the encoder of the denoising U-Net with a projection head applied to the bottleneck
output. The resulting projected embeddings are trained using a supervised contrastive loss, which
is then combined with the standard diffusion objective. This encourages the model to pull together
representations of samples from the same class while pushing apart those from different classes,
thereby promoting class-wise separation in the latent space. In contrast to prior work that applies
contrastive losses in the ambient or auxiliary latent spaces, CORAL regularizes the internal feature
space of the diffusion model itselfprecisely where representation entanglement arises.

Our contributions are summarized as follows:

• Empirical analysis of long-tailed diffusion behavior: We provide evidence that diffusion models
trained on long-tailed data are prone to representation entanglement in the latent space of the
denoising U-Net, particularly at the bottleneck layer, which contributes to low-quality tail-class
generation.

• Identification of representation entanglement as a root cause: We show that the generation
failure for tail classes stems from entanglement in the model’s latent feature representations induced
by severe class imbalance, revealing a previously unexplored failure mode.

• Proposal of CORAL: We introduce COntrastive Regularization for Aligning Latents (CORAL), a
contrastive latent alignment method that encourages separation between class-wise latent represen-
tations by augmenting the diffusion model with a supervised contrastive loss applied to projected
bottleneck features.

• Improved tail-class generation: Through extensive experiments on several long-tailed datasets
(CIFAR10-LT, CIFAR100-LT [15], CelebA5 [16]), we demonstrate that CORAL significantly
improves both the diversity and visual fidelity of tail-class samples, outperforming prior approaches.
Moreover, we provide qualitative and quantitative evidence that CORAL promotes class-wise
separation in the latent space of the denoising network, directly addressing the class entanglement
that impairs tail-class generation.
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Figure 1: t-SNE visualizations of U-Net bottleneck features. The dataset visualized is CIFAR10-LT
where the tail-to-head ratio is 0.01, i.e., the head class (airplane) is 100 times more represented than
the tail class (truck), with an exponential decay in-between. Real CIFAR10-LT samples are passed
through models trained under different settings. Shown are (left) DDPM [2] trained on the original
balanced CIFAR-10 dataset, (middle) DDPM trained on CIFAR10-LT with an imbalance ratio of
0.01, and (right) CORAL trained under the same imbalanced setting. In the balanced case, class
representations are moderately separated, though some overlap remains. Under imbalance, DDPM
exhibits substantial overlap between head and tail classes, an effect we refer to as representation
entanglement, which degrades generation quality for tail classes. CORAL mitigates this effect by
promoting class-wise separation in the latent space.

2 Related Work

2.1 Related Work

Diffusion Models for Imbalanced Data Standard methods for class-conditioned diffusion sampling
include classifier guidance (CG) [17], which requires a separately trained classifier, and classifier-free
guidance (CFG) [18], which jointly trains conditional and unconditional denoisers. While widely
used, both CG and CFG struggle to generate diverse, high-quality samples for underrepresented tail
classes [4].

Several recent approaches have been proposed to improve tail-class performance in diffusion models,
most of which operate in the ambient (image) space. For example, Class-Balancing Diffusion Models
(CBDMs) [5] introduce a regularizer that penalizes deviations from a balanced class distribution,
guiding the model to allocate more capacity to underrepresented classes during training. Time-
dependent importance weighting [19] adjusts the loss based on sampling time to mitigate bias,
while oriented calibration [6] uses Bayesian gating mechanisms to transfer knowledge from head to
tail classes (H2T) during unconditional generation and from tail to head (T2H) during conditional
generation. DiffROP [4] applies a contrastive regularization based on KL divergence to reduce
class-conditional overlap at the output level.

In contrast to these ambient-space approaches, CORAL operates directly in the latent space of
the diffusion model. Specifically, CORAL introduces a supervised contrastive loss on projected
bottleneck features from the denoising U-Net, encouraging class-wise separation through metric
learning. This latent-space regularization provides a more direct and structured means of disentangling
class representations.

Relatedly, Han et al. [20] propose LDMLR, which generates synthetic latent features for long-tailed
datasets using a DDIM trained on encoder representations from a fixed model. While effective for
long-tailed recognition, LDMLR operates as a post hoc feature augmentation method and does not
modify the generative process. For the same objective of long-tailed recognition, Shao et al. [21]
use a chosen classifier’s feature space to guide the diffusion model for the tail classes and filter out
out-of-distribution samples during generation. In contrast, CORAL directly regularizes the latent
space during training, promoting class separation within the diffusion model without relying on a
separate inference model.

Contrastive Learning in Latent-Variable Generative Models Contrastive learning (CL) is a
widely adopted technique for structuring embedding spaces in supervised, self-supervised, and metric
learning settings [7, 8]. Recent work has extended CL to generative models: DiffROP [4] applies
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a probabilistic contrastive loss in the ambient space to reduce overlap between class-conditional
output distributions in diffusion models; CONFORM [22] introduces contrastive regularization over
attention maps to improve semantic alignment in text-to-image generation. TVAE [13] and Tri-VAE
[14] both incorporate a triplet loss into a variational autoencoder (VAE) framework: TVAE for
general representation learning and Tri-VAE for anomaly detection. While TVAE uses a standard
VAE architecture, Tri-VAE employs a U-Net with a projection head at the bottleneck, similar in
spirit to CORAL. However, neither method involves diffusion and both modify the decoder path.
In contrast, CORAL is, to the best of our knowledge, the first to introduce a projection head at the
bottleneck of a diffusion model and apply supervised contrastive learning during training without
altering the generative decoder.

3 Preliminaries and Problem Setup
3.1 Diffusion Models

Generative DMs were first introduced in [1], which formulated data generation as a Markovian
denoising process grounded in non-equilibrium thermodynamics. The approach was later popularized
by Ho et al. [2], who introduced a simplified objective and fixed variance schedule, significantly
improving sample quality and training stability.

DMs generate data by gradually adding noise to a sample in a forward (noising) process and then
learning to denoise in a reverse (denoising) process. The forward process gradually corrupts a data
sample x0 ∼ q(x0) over T discrete time steps by adding Gaussian noise:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) and q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), 1 ≤ t ≤ T,

(1)
where {βt ∈ (0, 1)}Tt=1 is a predefined variance schedule. As t increases, the distribution of xt

transitions from close to q(x0) to approximately standard Gaussian. One can express the marginal
distribution at any timestep t as q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), where ᾱt =

∏t
s=1(1− βs).

The reverse process is modeled by a neural network that approximates the conditional distribution
q(xt−1|xt) using a learnable Gaussian distribution given by

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) and pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (2)

where the terminal distribution is typically set to p(xT ) = N (0, I) and the variance is often fixed
as Σθ(xt, t) = σ2

t I. Rather than predicting µθ directly, it is common to reparameterize the mean in
terms of the added noise εθ(xt, t) and train the network to predict this noise.

This leads to the simplified training objective introduced by [2], in which the model εθ(xt, t) is
trained to predict the Gaussian noise ε ∼ N (0, I) that was used to perturb the clean input x0 into a
noised version xt, for a randomly sampled timestep t ∼ U({1, . . . , T}):

Ldiff = Et,x0,ε

[
||ε− εθ (xt, t)||22

]
. (3)

In practice, the noise predictor εθ is implemented using an image-to-image U-Net parameterized by
θ, and the expectation operator is replaced by the empirical sample average for every t.

Classifier-Free Guidance When label information is available, classifier-free guidance (CFG)
[18] has become a widely adopted technique for improving conditional diffusion models. Instead
of training a separate classifier to guide generation, CFG modifies the denoising model εθ in (3) to
support both conditional and unconditional generation. During training, the model εθ(xt, t,y) is
optimized using class labels y; for a chosen fraction puncond of samples, the training process ignores
labels to learn the unconditional model with y = ∅.

Finally, at sampling time, conditional guidance is applied by combining the conditional and uncondi-
tional predictions to recover x0 from xt:

εCFG
θ (xt, t,y) = (1 + ω)εθ(xt, t,y)− ωεθ(xt, t), (4)

where ω > 0 is a guidance weight controlling the strength of conditioning.
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Figure 2: CORAL architecture and workflow on CelebA-5. (a) The five-class CelebA-5 training
data is input to the U-Net architecture. (b) Denoising U-Net. The white inset shows an actual
t-SNE visualization of the U-Net latent representations due to CORAL. (c) CORAL’s addition to the
standard DDPM architecture: a projection head MLP consisting of a single dense layer followed
by normalization. (d) The output from the U-Net and the projection head are used to compute the
corresponding diffusion and contrastive losses. (e) The contrastive loss is scaled by a time-dependent
weighting function, λ(t), and added to the standard diffusion loss to obtain the CORAL loss. (f)
Samples are obtained from a trained CORAL model.

3.2 Metric Learning and Contrastive Approaches

Metric learning aims to map inputs into an embedding space where semantically similar examples
are close together and dissimilar ones are far apart. Instead of designing distance functions manually,
modern methods use neural networks to learn transformations that make standard distances (e.g.,
Euclidean or cosine) meaningful for the task. This learned embedding captures complex similarity
structures aligned with supervision.

3.2.1 Contrastive Loss Functions

Contrastive loss functions are a fundamental tool in metric learning, designed to shape embedding
spaces so that semantically similar samples are close together, while dissimilar samples are pushed
apart. Early formulations, such as the triplet loss [23], enforce a margin between anchor-positive
and anchor-negative pairs using triplets of labeled samples where each triplet contains an anchor, a
positive (same class as anchor), and a negative (different class from anchor). While effective, triplet
loss can suffer from slow convergence and inefficient sampling. More recent advancements such
as the supervised contrastive loss (SupCon) [24] generalize this idea by leveraging all positives and
negatives in a mini-batch, offering greater stability and improved sample efficiency during training.

Supervised Contrastive Loss SupCon [24] generalizes triplet loss by comparing each anchor to
multiple positives and negatives within a batch, improving both convergence stability and overall
performance. Let z ∈ Rd denote the `2-normalized embedding of a sample. The loss is defined as:

LSupCon = −
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τSC)∑

s∈S(i) exp(zi · zs/τSC)
(5)

where I is the set of all indices in the batch, S(i) = I \ {i} denotes the set of all sample indices
in the batch excluding the anchor i, P (i) ⊆ S(i) is the set of indices corresponding to positive
samples that share the same class as the anchor, and τSC is a temperature parameter that controls the
concentration (sharpness) of the similarity distribution. Lower values of τSC (e.g., τSC ≈ 0.1) sharpen
the distribution, placing greater emphasis on harder positive and negative pairs and increasing the
gradient magnitude (|∇LSC| ∝ 1/τSC).

4 Our Method

In this section, we present our method, COntrastive Regularization for Aligning Latents (CORAL),
designed to enhance class separation in diffusion models trained on long-tailed datasets. The core
insight behind CORAL is that the latent space of the denoising U-Netspecifically, its bottleneck
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layerplays a central role in shaping generative behavior. In long-tailed settings, we observe that
latent representations of tail-class samples often overlap with those of head classes, resulting in
representation entanglement and degraded generation quality (see Figure 1 for a visualization of the
CIFAR10-LT dataset). Our comparisons between models trained on balanced and imbalanced data
indicate that this overlap arises from head classes dominating parameter updates, resulting in less
structured latent representations for tail classes.

CORAL introduces two targeted modifications to standard diffusion training: a lightweight projection
head applied to the U-Net bottleneck and a supervised contrastive loss term. The U-Net bottleneck
contains compress semantic information before decoder expansion, making it the optimal intervention
point. These additions allow CORAL to regularize the latent space directly, promoting intra-class
clustering and inter-class separation during training. The contrastive signal complements the diffusion
objective, helping maintain semantic distinctions across classes, especially for underrepresented ones.
Figure 2 illustrates the CORAL framework using CelebA-5 [16], a 5-class LT subset of CelebA [25],
as an example dataset.

CORAL builds on established principles of contrastive representation learning, where projection
heads have been shown to capture task-related information more effectively than direct feature space
constraints [12, 26]. The projection head enables better representation learning by decoupling the
contrastive objective from the main diffusion features, allowing the model to learn disentangled
representations in an auxiliary embedding space while the main bottleneck features continue to
serve the diffusion objective. Learned metric embeddings through projection heads enable inherently
separated class representations.

Architectural Modification Standard diffusion models employ a U-Net architecture [2] to parame-
terize the denoising function. While the forward diffusion process operates in the high-dimensional
ambient space, the U-Net processes information through a compressed latent space, with the bot-
tleneck layer playing a central role in the models representational capacity. Prior work has shown
that this bottleneck encodes semantically meaningful features [10], making it a natural point for
intervention. CORAL leverages this architectural structure by adding a small projection head fφ
(e.g., a fully-connected linear layer followed by a normalization layer) to the bottleneck output. This
projection maps the latent representation of each sample into a normalized embedding space suitable
for contrastive learning. During training, we apply a supervised contrastive loss on these embeddings
to encourage class-wise separation.

Training Objective The overall training objective for CORAL augments the standard diffusion
loss with a contrastive alignment term applied to the projected latent representations to obtain

LCORAL = Ldiff + λ(t) · Lcon, (6)

where Ldiff is the standard diffusion training loss, such as the noise prediction objective defined in (3),
Lcon is a contrastive loss applied to the projected bottleneck features, and λ(t) is a time-dependent
weighting function. While we use Lcon = LSupCon in our experiments, the framework is general and
supports any contrastive loss. The weighting function λ(t) is defined as:

λ(t) = w · exp
(
1− t/T

τr

)
, t ∈ {0, 1, . . . , T} (7)

where w is the base contrastive weight, T is the total number of diffusion steps, and τr is the
temperature parameter that controls the decay rate. Although in general τr > 0, our results with the
SupCon loss suggest that a range between [0.5, 1.0] works best.

This dynamic weighting scheme places greater emphasis on the contrastive objective during the
earlier (less noisy, t ≈ 0) denoising steps, where a meaningful semantic structure is more recoverable,
and gradually reduces its influence at later steps (t ≈ T ), where noise dominates the input. This
encourages more discriminative latent representations during the most informative stages of training.

Training Procedure To train our proposed CORAL method, we modify the standard diffusion
training procedure to incorporate both contrastive latent regularization and classifier-free guidance.
Algorithm 1 summarizes the full training pipeline. For each mini-batch, we first sample diffusion
timesteps and generate noisy inputs via the standard DDPM forward process. In line with CFG
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training protocol [18], we randomly drop class labels with a fixed probability to enable joint training
of conditional and unconditional denoising. The noisy inputs and (possibly masked) labels are passed
through the U-Net to compute the standard diffusion loss. Simultaneously, we extract bottleneck
features from the U-Net encoder, project them via the projection head fθ, and compute a supervised
contrastive loss using the original (unmasked) class labels. We then compute the total loss LCORAL
given in (6) Model parameters are updated using backpropagation on LCORAL.

Algorithm 1 CORAL Training Procedure

Input: Dataset D, model εθ, projection head fφ, total diffusion steps T , guidance dropout
probability puncond, contrastive weight schedule λ(t)

Initialize: Parameters θ, φ
for each mini-batch of size B do

for each sample (x
(i)
0 , y(i)) in mini-batch do

Sample timestep t ∼ U({1, . . . , T})
Sample noise ε(i) ∼ N (0, I)

Compute noised inputs: x(i)
t =

√
ᾱtx

(i)
0 +

√
1− ᾱtε

(i)

Drop labels with probability puncond: ỹ(i) = ∅ w.p. puncond

Predict noise: ε̂(i) = εθ(x
(i)
t , t, ỹ(i))

Extract bottleneck features h(i)
t of x(i)

t from U-Net encoder
Compute projected embeddings: z(i)t = fφ(h

(i)
t )

end for
Compute diffusion loss: Ldiff =

1
B

∑B
i=1 ‖ε(i) − ε̂(i)‖22

Compute contrastive loss Lcon using {(z(i)t , y(i))}Bi=1 (e.g., using (6) for SupCon)
Compute total loss: LCORAL = Ldiff + λ(t) · Lcon

Update (θ, φ) using gradients of LCORAL

end for

5 Experimental Setup and Results

5.1 Experimental Setup

Datasets We evaluate CORAL on three class-imbalanced image generation benchmarks: CIFAR10-
LT, CIFAR100-LT [27], and CelebA-5 [25]. CIFAR10/100 datasets contain 32× 32 color images
broken into 10 and 100 classes, respectively, while CelebA-5 consists of 64× 64 cropped face images
in 5 classes corresponding to hair color. For CIFAR10-LT and CIFAR100-LT, we simulate long-tailed
distributions by applying an exponential decay to the class frequencies, controlled by an imbalance
factor ρ ∈ {0.01, 0.001}. This results in the most frequent (head) class appearing 1/ρ times more
often than the rarest (tail) class, with intermediate classes following an exponentially decreasing
trend. CelebA-5 is naturally imbalanced; for our experiments, we use a reduced version containing
only 20% of the original samples. Additional details can be found in the supplement.

Implementation Our implementation builds on the codebase from [5], with modifications to
support contrastive latent regularization. We use a U-Net backbone with multi-resolution attention
and dropout, consistent across all experiments. We use the SupConLoss implementation from [28].
Training was run on NVIDIA A100 (80 GB SXM) and H100 GPUs. Key training and architectural
hyperparameters are summarized in the supplement.

Evaluation Metrics We compute the standard FID [29] and IS [30] to capture both quality and
diversity of the generated images. We additionally compute both standard precision and recall for
distributions (PRD) and improved recall [31] (labeled as Recall in Table 1). Standard PRD uses
k-means clustering on InceptionV3 features with 2000 clusters (20 times the number of classes
for CIFAR-100) to compute F8 and F1/8 scores [32]. F8 emphasizes recall (diversity) and F1/8

emphasizes precision (quality). The improved PRD metrics employ k-nearest neighbor manifold
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Table 1: Comparison of methods on long-tailed image generation benchmarks.
Dataset Method FID (↓) IS (↑) F8 (↑) Recall (↑) F1/8 (↑)

CIFAR10-LT
(ρ = 0.01)

DDPM [2] 6.17 9.43 0.87 0.52 0.94
CBDM [5] 5.62 9.28 0.96 0.57 0.95
T2H [6] 7.01 9.63 0.89 0.54 0.95
CORAL (ours) 5.32 9.69 0.97 0.59 0.97

CIFAR10-LT
(ρ = 0.001)

DDPM [2] 13.05 9.10 0.87 0.53 0.85
CBDM [5] 12.74 9.05 0.87 0.56 0.89
T2H [6] 12.80 8.97 0.87 0.55 0.88
CORAL (ours) 11.03 9.13 0.90 0.56 0.89

CIFAR100-LT
(ρ = 0.01)

DDPM [2] 7.70 13.20 0.87 0.50 0.89
CBDM [5] 6.02 12.92 0.91 0.56 0.90
T2H [6] 6.78 12.97 0.88 0.54 0.89
CORAL (ours) 5.37 13.53 0.92 0.59 0.91

CelebA-5
DDPM [2] 10.28 2.90 0.90 0.52 0.89
CBDM [5] 8.74 2.74 0.92 0.57 0.90
T2H [6] 9.50 2.63 0.89 0.53 0.87
CORAL (ours) 8.12 2.97 0.94 0.59 0.92

estimation (k = 3) on VGG16 features [33], providing more robust estimates of sample quality
and coverage. These metrics collectively provide a comprehensive assessment; in particular, F1/8

measures generation fidelity while improved recall and F8 capture the diversity of the generated
distribution. FID captures a mixture of both quality and diversity. For overall metric calculations, we
use the balanced version of the datasets for the real data to ensure fair evaluation. All metrics are
computed on 50,000 generated samples to ensure statistical reliability. During sampling, class labels
are drawn from a uniform distribution across all classes for equal representation.

Baselines We compare CORAL’s performance against that of DDPM, CBDM, and T2H for the
following datasets: CIFAR10-LT with ρ = 0.01 and ρ = 0.001, as well as CIFAR100-LT. For
the CelebA-5 dataset, we compare CORAL with DDPM and CBDM. T2H is not included as its
implementation for CelebA-5 is not available. We use the publicly available implementations for
DDPM [2], CBDM [5], and T2H [6] to train the models with provided parameters, where available,
generate synthetic samples, and report results for each of these methods.

5.2 Experimental Results

Comparison of Metrics In Table 1, we compare the performance of CORAL against standard
DDPM, as well as state-of-the-art baselines CBDM and T2H. CORAL consistently outperforms all
baselines across all datasets and evaluation metrics, demonstrating its effectiveness in improving both
the quality and diversity of generated samples.

Per-Class FID Figure 3 presents the per-class FID scores for CIFAR10-LT with ρ = 0.001,
representing a more extreme class imbalance. CORAL consistently outperforms baseline methods
across nearly all classes. The gains are particularly notable for the tail classes. Whereas both CBDM
and T2H exhibit degraded performance on tail classes, CORAL maintains stable performance across
both head and tail classes. For per-class FID analysis in Figure 3, we generate 5K samples for each
class and compare against the 5K real samples from the balanced dataset for that specific class.

Latent Space Visualizations Our experimental results clearly show that CORAL achieves better
performance by explicitly enforcing class-wise separation in the latent space. In Figure 1, we present
t-SNE visualizations of U-Net bottleneck representations for CIFAR10-LT with an imbalance ratio
of ρ = 0.01, comparing models trained with DDPM (on both the original balanced CIFAR-10 and
CIFAR10-LT) and with CORAL on CIFAR10-LT. Figure 2 visualizes the separated representations
(using t-SNE) learned by CORAL for the CelebA-5 dataset. Additional visualizations for the other
datasets using both t-SNE and UMAP [34] are included in Appendix D. In particular, our plots for a
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Figure 3: Per-class FID (↓) for the CIFAR10-LT dataset with an imbalance factor ρ = 0.001

balanced dataset with a limited number of samples per class show that the observed representation
entanglement arises predominantly from class imbalance in the training distribution.

Generation Quality Figure 4 presents generated samples from CBDM, T2H, and CORAL for the
tulips class (class 92) in CIFAR100-LT. Visually, CORAL produces samples that are both more
diverse and of higher fidelity compared to the other methods. These qualitative differences align with
the quantitative improvements observed in Table 1, where CORAL achieves superior performance
across all evaluated metrics. CBDM suffers from mode collapse by producing smaller flowers with
excessive grass backgrounds borrowed from head animal classes. T2H shows diminished class
fidelity as tulips resemble other flower types due to over-transfer from head to tail classes. In contrast,
CORAL generates tulips that reflect appropriate scale and structure, with distinctive features and
backgrounds consistent with the training data. This demonstrates CORALs ability to balance the
trade-off between preserving tail-class characteristics and promoting sample diversity. Additional
visualizations are provided in Appendix B.

Figure 4: Comparison of generated samples from the class tulips (class 92) in CIFAR100-LT,
ρ = 0.01. CBDM (left), T2H (middle), and CORAL (right). CORAL shows increased diversity and
fidelity relative to existing approaches.

Comparing Contrastive Regularization in Ambient and Latent Space CORAL differs funda-
mentally from ambient space contrastive regularization methods in both its approach and effectiveness.
CORAL operates directly within the diffusion model’s internal latent space, specifically at the U-Net
bottleneck layer augmented with a projection head, where semantic representations are formed and
class-discriminative embeddings are learned. This architectural difference is crucial because CORAL
addresses the representation entanglement where tail-class samples overlap heavily with head-class
representations. In contrast, ambient space contrastive regularization methods enforce separation
constraints on the image space. Table 2 provides empirical validation of CORAL’s design choices.
The results show that learned separation in the latent space scales more effectively than separation in
the ambient space.
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Dataset Method FID (↓) IS (↑) Recall (↑)

CIFAR10-LT
(ρ = 0.01)

DDPM [2] 6.17 9.43 0.52
Ambient Space Contrastive 5.85 9.18 0.55
CORAL (ours) 5.32 9.69 0.59

Table 2: Comparison of contrastive regularization strategies on CIFAR10-LT, ρ = 0.01.

Ablation Studies We have performed extensive ablation studies for various hyperparameters,
including the SupCon temperature τSC, the time-dependent weighting function temperature τr, and
the CFG sampling parameter ω; these plots can be found in Appendix C.

6 Concluding Remarks
Broader Impacts As generative models have become more widely utilized in practice, their
representativeness becomes more impactful. Tail class generation has become a key method to
address long-tailed recognition tasks such as disease detection where real data is limited. While
generated images have the potential to cause harm, e.g. deepfakes or bias amplification, CORAL
helps to mitigate the bias introduced by dataset imbalance.

Limitations While CORAL is able to produce diverse and high quality images when trained on
heavily imbalanced datasets, its power comes at the cost of additional computational complexity.
This limitation is shared by all comparable methods, though it can be reduced by finetuning with the
CORAL loss rather than fully training.

Conclusions Ensuring high-quality sample generation for tail classes of long-tailed datasets remains
a major challenge. In addressing this challenge, we have revealed a previously unknown cause for the
poor performance of DMs: the (U-Net) latent representations for the tail classes completely overlap
with those for the head classes, thereby severely limiting the guidance of the former. Our method,
CORAL, significantly enhances both the diversity and fidelity of diffusion model outputs relative
to the state-of-the-art by separating and realigning the latent space representations, especially for
the long-tail classes using contrastive losses. We have demonstrated that CORAL performs well for
datasets with both extreme imbalance and many classes, and our results suggest that disentangling in
the latent space is more effective than rebalancing and increased guidance in the ambient space.
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A Additional Dataset and Experimental Setup Details

Long-Tail Datasets Balanced datasets can be artificially transformed into long-tail (LT) datasets by
assigning class sample counts according to a geometric progression governed by an imbalance ratio
ρ. In this formulation, the head class has the maximum number of samples, N , while the tail class
has approximately ρN samples. The number of samples in class i is given by:

ni =
⌊
Nρ

i
C−1

⌋
(8)

where N is the number of samples in the head class, ρ is the imbalance ratio (0 < ρ < 1),
i ∈ {0, 1, . . . , C − 1} is the class index, and C is the total number of classes.

CIFAR10-LT and CIFAR100-LT The original CIFAR10 and CIFAR100 datasets each consist of
a training set with 50k images uniformly distributed across 10 or 100 classes, respectively. Their
long-tailed variants, CIFAR10-LT and CIFAR100-LT [27], introduce an exponential decay in class
frequency from class 0 to the final class. Common long-tail imbalance ratios include ρ = 0.01 and
ρ = 0.001. Specifically for ρ = 0.01, CIFAR10-LT contains 12,406 images, with the first head class
comprising 5,000 samples and the last tail class only 50. CIFAR100-LT has 10,847 images, with the
head class containing 500 samples and the tail just 5.

Experiments on CIFAR10-LT and CIFAR100-LT were conducted using NVIDIA A100 80GB SXM
GPUs. Training took approximately 7 hours, and sampling required 8 hours. For DDPM, CBDM,
and CORAL, the hyperparameters used were: a learning rate of 2× 10−4, batch size of 128, Adam
optimizer with default momentum parameters, dropout rate of 0.1, 150k training steps, and T = 1000
diffusion steps. For T2H, all settings remained the same except for the number of training steps,
which was increased to 200k.

CelebA-5 CelebA-5 [16] is a five-class subset of the CelebA dataset, composed of samples labeled
with exactly one of the following hair colors: black, brown, blonde, gray, or bald. Samples with
multiple or missing labels are excluded. The dataset is naturally imbalanced, with black- and
brown-haired individuals significantly outnumbering those with gray hair or baldness.

Experiments on CelebA-5 were run on NVIDIA H100 GPUs. Training took approximately 18 hours,
and sampling required 22 hours. All models were trained with a learning rate of 3× 10−4 and a batch
size of 128, with all remaining hyperparameters kept consistent with the CIFAR experiments.

Hyperparameters We summarize the regularization hyperparameters and sampling guidance scale
ω used for each method and dataset. The sub-tables correspond to DDPM (top left), CBDM (top
right), T2H (bottom left), and CORAL (bottom right), respectively. For CORAL, the base contrastive
weight, w, in (7) was set to 0.01.

DDPM [2]
Dataset ω

CIFAR10-LT (ρ = 0.01) 0.8
CIFAR10-LT (ρ = 0.001) 1.0
CIFAR100-LT (ρ = 0.01) 0.8
CelebA-5 0.6

CBDM [5]
Dataset ω τcb

CIFAR10-LT (ρ = 0.01) 1.0 1.0
CIFAR10-LT (ρ = 0.001) 1.8 1.0
CIFAR100-LT (ρ = 0.01) 1.6 1.0
CelebA-5 1.0 50.0

T2H [6]
Dataset ω

CIFAR10-LT (ρ = 0.01) 1.0
CIFAR10-LT (ρ = 0.001) 1.7
CIFAR100-LT (ρ = 0.01) 1.5
CelebA-5 1.0

CORAL (ours)
Dataset ω τSC τr

CIFAR10-LT (ρ = 0.01) 0.6 0.12 0.8
CIFAR10-LT (ρ = 0.001) 1.0 0.10 1.0
CIFAR100-LT (ρ = 0.01) 0.8 0.09 1.0
CelebA-5 0.7 0.12 0.8

Table 3: Hyperparameter settings for each method.
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We follow the code implementation for CBDM [5] with the regularization weight τcb = τ/T , where
τ is the original weight defined in [5], and T is the total number of diffusion timesteps. For T2H
[6], we use the code implementation with direct distance-based weighting that does not require a
regularization parameter.

B Additional Results

Generated Images We generate images for CIFAR10-LT, CIFAR100-LT, and CelebA-5 to evaluate
the effectiveness of CORAL in addressing the challenges of diffusion models trained on long-tailed
datasets. Randomly selected examples are shown in Figures 5 to 7, illustrating how our contrastive
latent alignment framework improves both the quality and diversity of generated samples, particularly
for tail classes.

Figures 5 and 6 show generated samples for CIFAR10-LT and CIFAR100-LT, respectively, with
ρ = 0.01. CORAL successfully disentangles latent representations to generate high-quality, diverse
samples for the underrepresented classes. CORAL preserves the distinctive characteristics of each
class, effectively mitigating feature borrowing from head to tail classes. The visual quality of
these results highlights the effectiveness of CORALs latent space regularization in promoting class
separation and maintaining clean, well-structured features in the generated outputs.

Figure 7 displays generated samples for CelebA-5, demonstrating CORALs ability to handle naturally
imbalanced data. The dataset exhibits pronounced class imbalance across five hair color categories
(black, brown, blond, gray, and bald) with the head class containing nearly 15 times more samples
than the tail class. In such imbalanced settings, latent representations for tail classes often become
entangled with those of head classes. CORAL effectively preserves class-specific features, producing
diverse and realistic images in all categories.

Figure 5: Generated samples produced by CORAL on the CIFAR10-LT dataset with ρ = 0.01.
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Figure 6: Generated samples produced by CORAL on the CIFAR100-LT dataset with ρ = 0.01.

Figure 7: Generated samples produced by CORAL on the CelebA-5 dataset.
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C Ablation Studies

Effects of Hyperparameters Figure 8 illustrates the effect of three key hyperparameters on
CORALs performance for CIFAR10-LT with imbalance ratio ρ = 0.01, measured by FID. The
supervised contrastive temperature, τSC, in (5) achieves optimal performance at τSC = 0.12, beyond
which FID increases sharply.

For the decay rate temperature, τr, in (7), the best performance is observed at τr = 0.8. FID remains
relatively stable for 0.7 ≤ τr ≤ 0.9, with a steep increase outside of this range. These findings
support our hypothesis that contrastive regularization is most effective when applied toward the end
of the denoising process (i.e., when t ∼ 0).

Finally, for the CFG scale, ω, in (4), FID traces a convex curve with optimal performance at ω = 0.6.
This indicates a trade-off between leveraging class-conditional information (ω > 0) and avoiding over-
conditioning that could limit sample diversity (ω � 0.6). These results underscore the importance of
careful hyperparameter tuning in CORAL to achieve an optimal balance between sample fidelity and
diversity, particularly for long-tailed datasets.
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Figure 8: Effect of regularization hyperparameters and guidance scales on FID. From left to
right: FID vs τSC, FID vs τr, and FID vs ω for the CIFAR10-LT dataset. Coral stars mark the lowest
FID achieved for each hyperparameter.

CORAL on Balanced Datasets We also evaluate CORAL on two balanced datasets, CIFAR10 and
CIFAR100, using FID as the performance metric. Even in the absence of class imbalance, CORAL
outperforms DDPM and CBDM in terms of FID. This improvement stems from CORALs contrastive
loss, which promotes class-wise separation in the latent space even in balanced settings, as illustrated
in Figure 9. Importantly, this separation is achieved without compromising fidelity or diversity, as
reflected in the consistently strong FID scores.

Dataset Method FID (↓)

CIFAR10
DDPM [2] 3.84
CBDM [5] 3.61
CORAL (ours) 3.30

CIFAR100
DDPM [2] 3.91
CBDM [5] 3.37
CORAL (ours) 2.86

Table 4: Comparison of methods on CIFAR10 and CIFAR100 image generation.
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Figure 9: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP on
CIFAR-10 (balanced). Each row shows a different method trained on CIFAR-10, listed from top to
bottom: DDPM [18], CBDM [5], and CORAL (ours).
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D Comparison with Other Methods

Latent Space Visualization Figure 10 visualizes the latent representations from the U-Net bot-
tleneck layer using t-SNE [11] (left), UMAP [34] (middle), and LocalMAP [35] (right) for DDPM
[18], CBDM [5], T2H [6], and CORAL trained on CIFAR10-LT with an imbalance ratio of ρ = 0.01.
CORAL exhibits markedly improved class-wise separation in latent space, mitigating the representa-
tional entanglement that typically causes feature mixing between head and tail classes. Figure 11
presents analogous visualizations for CelebA-5 across all methods except T2H, for which no imple-
mentation is available on this dataset.

Comparison with Baseline Methods We compare CORAL with baseline methods and highlight
its strengths to address long-tailed generation in diffusion models.

• CBDM: Introduces a distribution adjustment regularizer during training that encourages similarity
between generated images across different classes, transferring knowledge from head classes to
tail classes. CBDM [5] suffers from mode collapse because its regularization loss encourages the
model to produce similar outputs across different class conditions.

• T2H: Employs weighted denoising score matching to transfer knowledge from head classes to tail
classes by using head samples as denoising targets for noisy tail samples. Its performance depends
on both label distribution and sample similarity. T2H’s [6] score substitution mechanism could
potentially lead to mode collapse when noisy tail samples are consistently mapped to the same
limited set of head references due to similarity-based selection.

• CORAL: As demonstrated in our experimental results, CORAL consistently outperforms both
CBDM and T2H across a range of evaluation metrics, with particularly strong gains in tail classes.
Our experimental results across multiple datasets highlight the strengths of CORAL:
1. Mode Stability: CORAL prevents mode collapse, and generates class-consistent and visually

diverse samples. As can be seen in the generated samples. This is in contrast to CBDM, which
often fails to preserve class identity, e.g., by generating class-conditioned samples displaying
attributes of other classes, as shown in Figure 4.
CORAL effectively reduces undesirable interclass feature borrowing in the class labeled datasets
we consider. At the same time, CORAL allows the transfer of non-discriminative features that
facilitate generalization, as shown in Figure 4.

2. Adaptive Regularization: CORAL incorporates time-dependent regularization into the con-
trastive loss. This adaptive weighting enhances separation during the later stages of denoising,
when outputs are less noisy and more semantically meaningful. Figure 8 shows that contrastive
regularization is most effective when applied toward the end of the denoising process.

3. Latent Disentanglement: CORALs strength lies in leveraging the lower-dimensional latent
space of the denoising U-Net, which has been shown to capture semantically meaningful
structure [10]. CORAL achieves effective inter-class disentanglement in the latent space by
employing a linear projection head (see Figure 2), resulting in high-fidelity and class-aligned
generated samples. These effects are illustrated in Figure 10 for CIFAR10-LT with ρ = 0.01 and
in Figure 11 for CelebA-5, using latent space visualizations from t-SNE, UMAP, and LocalMAP.
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Figure 10: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP on
CIFAR10-LT with an imbalance ratio of ρ = 0.01. Each row shows a different method trained on
CIFAR10-LT, listed from top to bottom: DDPM [18], CBDM [5], T2H [6], and CORAL.
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Figure 11: Visualizations of U-Net bottleneck features using t-SNE, UMAP, and LocalMAP on
CelebA-5. Each row shows a different method trained on CelebA-5, listed from top to bottom:
DDPM [18], CBDM [5], and CORAL.
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