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ABSTRACT

Large Language Models (LLMs) are increasingly deployed in multi-turn dialogue
settings where preserving conversational context across turns is essential. A stan-
dard serving practice concatenates the full dialogue history at every turn, which
reliably maintains coherence but incurs substantial cost in latency, memory, and
API expenditure, especially when queries are routed to large proprietary mod-
els. Existing approaches often struggle to balance the trade-off between response
quality and efficiency. We propose a framework that exploits the early turns of
a session to estimate a local response manifold and then adapt a smaller surro-
gate model to this local region for the remainder of the conversation. Concretely,
we learn soft prompts that maximize semantic divergence between the large and
surrogate small language models’ responses to surface least-aligned local direc-
tions, stabilize training with anti-degeneration control, and distill the mined cases
into localized LoRA fine-tuning so the surrogate runs without prompts at in-
ference. A simple gate enables a one-time switch with rollback on drift. We
further provide a theoretical analysis for key components in SOMA. Extensive
experiments show the effectiveness of SOMA. The source code is provided at:
https://anonymous.4open.science/r/SOMA-D377.

1 INTRODUCTION

Large language models (LLMs) such as the GPT series (Radford et al., 2019; Brown et al., 2020;
Achiam et al., 2023), LLaMA (Touvron et al., 2023), Claude (Anthropic, 2023), and DeepSeek (Guo
et al., 2025) have demonstrated strong performance in real-world applications, ranging from chat as-
sistants to code generation (Park & Kulkarni, 2023; Dong et al., 2023; Liu et al., 2024). As LLMs
are increasingly deployed in interactive settings, multi-turn LLM serving, involving extended inter-
actions between humans and LLMs or among multiple LLM agents, has emerged as a key research
focus, as it better reflects real-world usage scenarios (Yi et al., 2024; Li et al., 2025). Existing
research reveals that multi-turn interactions are widespread, underscoring the need for serving sys-
tems capable of handling extended conversations in a context-aware manner (Chen et al., 2024a;
Gao et al., 2024). However, supporting efficient context-dependent multi-turn interaction remains
a key challenge, as most LLM serving systems are stateless and require resending the entire con-
versation history, including all prior queries and responses, with each new query to generate a new
response (Ananda, 2025; Moon, 2025). This leads to redundant computation, high latency, and
rising serving costs as conversations lengthen.

Previous work has explored efficient multi-turn LLM serving through two main approaches. One
line of work focuses on single-model methods that compress dialogue history (Wang et al., 2025;
Chen et al., 2024b; Xiao et al., 2024), retrieve memory from external modules (Melz, 2023; Gutiérrez
et al., 2024), or reuse attention computations (Gao et al., 2024; Jeong & Ahn, 2025; Anthropic,
2024). However, these still rely heavily on large LLMs for every turn, leading to high monetary
cost, latency, and GPU usage. They also often truncate or overlook extended context, limiting
reasoning over long dialogues. Another line adopts multi-model methods, routing simple queries
to smaller models while escalating harder ones to larger LLMs (Behera et al., 2025; Schick et al.,
2023; Ding et al., 2024; Shnitzer et al., 2023). Yet, small models struggle to generalize across
dialogue complexity, and model switching introduces additional overhead. Moreover, LLMs are
known to over-rely on early turns (Xiao et al., 2023; Laban et al., 2025), compounding the difficulty
of maintaining coherence in multi-turn settings.
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Is it possible to achieve an efficient, context-aware multi-turn LLM serving framework that avoids
recomputing the full history at every turn while preserving response quality?

To achieve this goal, we perform in-depth explorations of real-world multi-turn dialogues across
different domains and reveal an interesting long-tail distribution in token counts across turns: early
turns are substantially longer, while later turns gradually decrease in length. This phenomenon
aligns with the intuition of prior work that early turns typically carry the substantive openings set
issues and anchors, including questions, requests, and proposals, while later turns are typically min-
imal acknowledgments (He et al., 2018; Stolcke et al., 2000). This long-tail trend gives rise to an
intuitive idea: since later turns are relatively short, a smaller language model might suffice to gen-
erate responses more cost-efficiently. However, the bottleneck lies in the “big head”: if the small
model must still process the early, information-dense context, the response quality will be degraded.
Specifically, while a small language model may behave reasonably at the start, its responses drift
from the large model as the dialogue progresses because most grounding is established early, and
later turns remain highly dependent on that context. Therefore, simply handing later turns to a small
model without modeling the accumulated context degrades quality. To address this, the small lan-
guage model must not only process shorter inputs but also approximate the larger model’s behavior
within the local manifold of its output or hidden space to capture the contextual dependencies shaped
by prior dialogue. This defines a local manifold approximation problem, where the small language
model aims to replicate the target model’s behavior induced by the current conversational context.

Building on these insights, we propose a novel framework for efficient multi-turn LLM serving that
enables a small language model to locally approximate the behavior of a large language model within
a constrained region of the reasoning manifold. Specifically, we present SOMA (Soft-prompts for
lOcal Manifold Approximation) to dynamically adapt the small language model to the local behavior
of the larger model conditioned on early turn interactions. This is achieved through a three-stage
pipeline: (1) Soft prompt tuning, where we efficiently explore the local reasoning manifold induced
by the early conversational context to identify directions of maximal behavioral divergence between
the small and large language model ; (2) Localized fine-tuning, where we efficiently fine-tune the
small language model on a small number of input–output pairs to align it with the larger model
within this context-specific region of the manifold; and (3) Efficiency inference, where we incorpo-
rate the extractive summary to minimize computational overhead and the rollback mechanism that
monitor potential topic shift to maintain service quality. Together, these components allow the small
model to effectively approximate the larger model’s reasoning process within the context of a given
session, enabling both cost-effective and context-aware multi-turn serving. Extensive experiments
on real-world datasets show the effectiveness of our proposed method. Our contributions are:

• Long-tail pattern in multi-turn dialogues. We first reveal a previously under-explored long-tail
pattern in multi-turn dialogues: the first few turns concentrate heavy context, while later turns are
shorter yet more dependent on previous turns. This key empirical characterization suggests that
substantial computational and monetary savings can be achieved if a smaller and cheaper language
model can replace a large one to process the later turns when given the accumulated context.

• SOMA: efficient multi-turn serving. It first learns soft prompts that expose the largest surro-
gate–original response dissimilarity, then adapts the surrogate localized LoRA accordingly, en-
abling prompt-free inference with a simple cosine gate for switching and rollback.

• Theory analysis and empirical evaluation. We provide concentration-based bounds for switch-
ing, coverage guarantees for prompt-direction search, and suboptimality limits for selected direc-
tions. Guided by these results, empirical studies show the effectiveness of SOMA in real world.

2 PRELIMINARIES

2.1 NOTATIONS

In this paper, a multi-turn dialogue prefix of length k is Dk = {(q1, a1), . . . , (qk, ak)} where qt is
the user query at turn t, and at is the corresponding model response. F represents the original large
language model, and G is the surrogate small language model. The textual response at turn t is aMt
for M ∈ {F,G}. Let fM (·) be a feature map to the hidden space, and ht = fM (q≤t) ∈ Rd the
hidden state at turn t. The first k hidden states form Hk = {h1, . . . ,hk} and induce a local manifold
MM

k ⊂ Rd. A length-L soft prompt is P ∈ RL×d. More details are given in Appendix A.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 EXPLORING THE TOKEN-TURN PATTERNS IN MULTI-TURN LLM DIALOGUES
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Figure 1: Relative average token count per
turn (normalized by Turn 1) across four
multi-turn dialogue datasets. All datasets
show a long-tail pattern, where token usage
drops sharply after the early turns and stabi-
lizes in later turns.

While LLMs process the context from all previous
turns equally by default, not all turns may contribute
equally to the dialogue’s contextual demands. Iden-
tifying when the model truly needs to rely on long-
range context can inform adaptive strategies. There-
fore, we begin with an empirical investigation of
how information and contextual complexity are dis-
tributed across dialogue turns in real-world settings.
To broadly cover real-world multi-turn dialogue, we
select four complementary settings spanning different
domains and dialogue purposes: ShareGPT (Chen
et al., 2024a): open-ended, dyadic human–LLM chat;
ReMeDi (Yan et al., 2022): task-oriented, asymmetric
doctor–patient consultations; Craigslist Bargain (He
et al., 2018): symmetric, goal-driven negotiation; and
Multi-Character (agentlans, 2024): multi-party, role-
play coordination. Building on this setup, our empiri-
cal analysis reveals a surprising long-tail token distri-
bution pattern in multi-turn dialogues. As shown in
Figure 1, the average tokens per turn drop steeply after the first few exchanges and then plateau at a
much lower level across all four datasets. This finding aligns with prior observations that early turns
typically carry the substantive openings set issues and anchors, including questions, requests, and
proposals, while later turns are typically minimal acknowledgments (He et al., 2018; Stolcke et al.,
2000). To the best of our knowledge, this is the first characterization of such long-tail distributions
in multi-turn dialogues across the multi-tun dialogues in different domains. This phenomenon offers
us important implications that current stateless serving practices recompute full-context responses,
even for the later lightweight turns, would result in large computational overhead.

2.3 LOCAL MANIFOLD APPROXIMATION FOR MULTI-TURN DIALOGUES

Building on the above analysis, we are motivated by an intuitive rationale: since later turns appear
lightweight, a smaller and cheaper surrogate model might be sufficient to generate responses for
them. However, this task is non-trivial, as empirical studies have shown that replacing the original
large model with a smaller surrogate directly may lead to increasing discrepancies in performance,
coherence, and contextual alignment (Chen et al., 2023; Koudounas et al., 2025). To better under-
stand this limitation and guide a more effective solution, we first present the fundamental analysis
of multi-turn LLM dynamics from the manifold perspective (Chui et al., 1994; Bengio et al., 2013),
a view that has been widely adopted in computer vision, speech, and natural language process-
ing (Fang et al., 2022; Turaga et al., 2008; Minh & Tuan, 2022). In the context of large language
models, the manifold refers to a structured, lower-dimensional subspace within the model’s high-
dimensional embedding space where semantically meaningful internal representations are concen-
trated. These representations are typically captured by token-level or sequence-level embeddings
extracted from the final layers of a transformer. In a multi-turn dialogue, the input at each turn
consists of a token sequence formed by concatenating the prior dialogue history with the current
user query. When this input is processed by the model, it is transformed into a high-dimensional
embedding that corresponds to a specific point on the manifold. The model then decodes from this
point to generate the output response, thereby reflecting its current understanding of the dialogue
context. Details of the mathematical concepts are in Appendix D.
Definition 2.1 (Manifold Hypothesis in LLMs). A manifold M ⊂ RD refers to a lower-dimensional
region of the contextual embedding space formed by the outputs of intermediate transformer layers,
where semantically meaningful representations reside. Here, D denotes the embedding dimension-
ality (e.g., hidden size of the LLM), and n ≪ D represents the intrinsic dimension of the represen-
tations induced by natural language inputs during multi-turn inference.

During multi-turn interactions, each successive query typically introduces only minor variations,
resulting in small perturbations to the input sequence. These perturbations lead to nearby shifts in the
model’s internal representation, as the hidden states of LLMs evolve smoothly with respect to small
changes in input (Marro et al., 2025), and even minor variations between turns lead to nearby shifts

3
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in the model’s representation space (Fu & Lapata, 2022). Importantly, these transitions do not occur
arbitrarily in high-dimensional space but tend to follow a structured, low-dimensional manifold
that captures the evolving semantic and contextual state of the conversation (Zhang & Dong, 2025;
Dong et al., 2025). This perspective suggests that multi-turn dialogue progresses within a localized
region of the model’s manifold, and that maintaining coherence across turns depends on preserving
alignment within this region. However, when the small surrogate model is directly fed the context
at a later turn without adaptation, it often fails to track the localized progression established by the
original model in earlier interactions. As a result, even small perturbations can shift the surrogate’s
internal representation away from the appropriate region of the manifold, leading to output responses
that deviate from those of the original model and ultimately disrupt conversational continuity.

Based on the above analysis, to enable a surrogate model to behave similarly to the original model
that has already processed the initial turns of dialogues, the challenge lies in ensuring that the sur-
rogate produces contextually aligned responses without having access to the full capacity of the
original model. Inspired by prior work on local manifold approximation (Chui et al., 1994; Kary-
gianni & Frossard, 2014; Li & Dunson, 2020; Sober & Levin, 2020), we propose to approximate
the local landscape of the original model’s representation manifold activated by the dialogue prefix.
If this local landscape is faithfully captured, the surrogate model can decode future responses that
remain consistent with the behavior of the original model. This enables efficient multi-turn serving
by replacing expensive original-model inference with lightweight generation guided by a locally
approximated manifold. Formally, we frame this intuition as the problem below:
Problem 1 (Local Manifold Approximation for Multi-Turn Interactions). Given a dialogue prefix
Dk = {(q1, a1), . . . , (qk, ak)} and a black-box original model F , learn a surrogate G whose local
manifold matches that of F under the same prefix. Formally, over a class of surrogates G we solve

min
G∈G

dist
(
MG

k (Dk), MF
k (Dk)

)
,

where dist(·, ·) is a metric to measure the manifold discrepancy, such as geodesic distance, average
principal angle, or maximum mean discrepancy between subspaces.

3 SOMA: LOCAL MANIFOLD APPROXIMATION BASED ON SOFT PROMPTS

In practice, directly accessing or comparing the latent manifolds MG
k and MF

k is intractable. More-
over, directly updating the surrogate’s full parameter set to approximate the local manifold of the
original model is computationally expensive and ineffective. One alternative is to fine-tune the surro-
gate on queries that yield the most dissimilar responses from the two models, as these queries would
point to the small local changes where the two local manifolds are least aligned. However, a single
dialogue provides only a few queries, which are insufficient to explore the local manifolds or reveal
the least aligned small changes. To address this challenge, we therefore propose a novel framework
SOMA (Soft-prompts for lOcal Manifold Approximation). Given a multi-turn dialogue, in the first
few turns, we perform lightweight soft-prompt tuning on the surrogate to learn soft prompts that,
when concatenated with the queries, steer the interaction toward directions with the largest response
differences from the original. Here, “direction” is a small additive perturbation to the surrogate’s
input-embedding stream that corresponds to a unit step on the local tangent space of its response
manifold; such steps are precisely those that most increase the output mismatch in the immediate
neighborhood of the current context. These mined directions then drive efficient, localized fine-
tuning based on the learned soft prompts. Finally, in service, we switch to the fine-tuned surrogate
once a fast semantic closeness test is met. This staged design makes local manifold approximation
practical, targeted, and efficient. The details of this proposed method are presented below.

3.1 INITIALIZATION

We initialize a soft prompt matrix P ∈ RL×d on the surrogate G. Each row is sampled i.i.d. from
a zero-mean Gaussian pℓ ∼ N

(
0, σ2Id

)
, where σ > 0 is the initialization standard deviation.

Let E ∈ Rd×|V| be the surrogate’s embedding matrix whose v-th column is the token embedding
ev ∈ Rd, and let tok(v) denote the text token for index v ∈ V . Because the original model F is a
black-box and cannot accept continuous embeddings, we verbalize P into a short textual prefix by
nearest-neighbor projection in the surrogate’s embedding space:

vℓ = argmax
v∈V

⟨pℓ, ev⟩
∥pℓ∥2 ∥ev∥2

(ℓ = 1, . . . , Lp), where V (P) =
(
tok(v1), . . . , tok(vLp)

)
.

4
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Then let Dt−1 denote the text history of the first t−1 turns of the original model and let qt be the
query at turn t, the outputs of original F and the surrogate G at turn t is given as

aFt = F
(
V (P) ⊕ Dt−1 ⊕ qt

)
, and aGt = G

(
P ⊕emb E

(
tokG(Dt−1)

)
⊕emb E

(
tokG(qt)

)
.

Here, tokG(·) is G’s tokenizer, E(·) maps tokens to embeddings, and ⊕emb concatenates along the
sequence axis in embedding space. This ensures both models are conditioned on the same Dt−1

and qt, with F receiving the verbalized prefix V (P) and G receiving the continuous prefix P. This
setting ensures that both models produce outputs based on the same input context.

3.2 SOFT PROMPT TUNING FOR MINING WEAK ALIGNMENT DIRECTIONS

In this section, we propose a differentiable loss to reliably learn soft prompts P that make G pro-
duce outputs that differ from F as much as possible on the local dialogue context. The loss con-
sists of three parts: (i) a semantic divergence loss to ensure the token-level semantic divergence;
(ii) an expectation-weight to ensure the distribution-level semantic divergence; and (iii) an anti-
degeneration loss to avoid prompt mining from collapsing.

Semantic Divergence Loss. We first leverage unlikelihood loss (Welleck et al., 2019) to penalize
the surrogate for assigning high probability to the exact tokens yF produced by the original model.
However, this token-level formulation is limited, as it ignores close paraphrases or synonyms that
carry a similar meaning. To address this, we first define the semantic neighborhood as below:

Definition 3.1 (Semantic Neighborhood). Let E ∈ Rd×|V| be G’s embedding matrix with token
embeddings ev ∈ Rd. For a token u ∈ V , its semantic neighborhood is the set of the k tokens in
V \ {u} whose embeddings have the highest cosine similarity with eu.

In this way, the semantic neighborhood of a token u can capture not only the exact token u but
also its closest paraphrases or synonyms in surrogate space. At turn t, the original model produces
a text output aFt . We map this text into the surrogate’s token space using G’s tokenizer yF

t =
tokG(a

F
t ) = (yFt,1, . . . , y

F
t,TF (t)). This places the original output and the surrogate distributions in

the embedding space. We then define a temperature-weighted distribution as:

sτ
(
v | yFt,i

)
=

exp
(
cos(ev, eyF

t,i
)/τ

)∑
u∈{yF

t,i}∪Nk(yF
t,i)

exp
(
cos(eu, eyF

t,i
)/τ

) , k ∈ N, τ > 0.

This weight measures semantic proximity and allocates more mass to tokens closer to yFt,i. It ensures
our loss penalizes soft prompts that result in not only the exact token but also its near-synonyms.

Then at turn t, let St = Dt−1 ⊕ qt, we feed G with the token sequence tokG(St) and yF
t , and

prepend them with the soft prompt P at the embedding layer. This gives G the same context that
produced F ’s answer. Then we run a single forward pass with G on the full prefix and, with causal
masking, read the logits at each position and apply softmax to obtain all next-token distributions
{Πt,i(P)}TF (t)

i=1 in one pass. These distributions are directly comparable to F ’s tokens because both
models are aligned to the same token positions defined by G’s tokenizer and conditioned on identical
preceding text. Now we have the semantic divergence loss:

Lsem(P; Dt−1, qt) =
1

TF (t)

TF (t)∑
i=1

∑
v∈{yF

t,i}∪Nk(yF
t,i)

sτ
(
v | yFt,i

) [
− log

(
1−Πt,i(P)[v]

)]
, (1)

where Πt,i(P)[v] is the probability that G assigns to token v at position i. Minimizing Eq 1 with
respect to P finds soft prompts that, when concatenated with the dialogue in G’s embedding stream,
maximize the difference between G and F in the local neighborhood around each original token.
This produces a set of prompts that reliably surface the least-aligned small steps and thereby reveal
where the two local manifolds differ most.

Expectation-weighted Semantic Divergence Loss. The token-level divergence in Eq. 1 can be
satisfied when the surrogate G reduces probability on the exact token yFt,i or its top-k neighbors
but redistributes mass across many semantically similar tokens, so the meaning of the next-token
distribution remains essentially unchanged. This reveals a gap that Eq. 1 penalizes surface tokens,

5
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not distribution-level alignment. We therefore introduce a distribution-level signal that increases the
penalty precisely when G’s expected next-token distribution still points toward the same meaning
as F . Specifically, let E ∈ Rd×|V| be G’s embedding matrix with column vectors ev (assume
∥ev∥2 = 1), then at position i of turn t, the expected embedding of G’s next-token distribution is:

ēt,i = E⊤Πt,i(P) =
∑
v∈V

Πt,i(P)[v] ev,

where Πt,i(P) = πG(· | Dt−1⊕ qt;P, aFt,<i) is G’s next-token distribution when evaluated at
the same position as F . Then how strongly the whole distribution still aligns with the original

token’s meaning can be measured with cos
(
ēt,i, eyF

t,i

)
=

∑
v Πt,i(P)[v] ⟨ev,eyF

t,i
⟩

∥ēt,i∥2
. To strengthen the

penalty exactly when the distribution-level alignment persists, we multiply the neighborhood loss
by a positive, bounded weight that increases with this cosine and never reverses the loss sign:

wt,i = 1 + λ clip
(
cos

(
ēt,i, eyF

t,i

)
, 0, 1

)
, λ ≥ 0.

The clipping form ignores semantically opposed meaning and caps the influence of extreme align-
ment. The affine form preserves the base loss and only upweights when alignment is high, which
keeps the objective bounded and numerically stable.

We then have the expected-weighted semantic divergence loss as:

Lsem exp(P; Dt−1, qt) =
1

TF (t)

TF (t)∑
i=1

wt,i(P)
∑

v∈{yF
t,i}∪Nk(yF

t,i)

sτ
(
v | yFt,i

) [
−log

(
1−Πt,i(P)[v]

)]
.

(2)
Here, the neighborhood term

∑
v∈{yF

t,i}∪Nk(yF
t,i)

sτ (v | yFt,i) [− log(1 − Πt,i(P)[v])] blocks local
copies, and the weight wt,i catches distribution-level alignment, together pushing G away from F
in meaning rather than only in surface tokens.

Theorem 1 (Directional recovery in the local manifold). Let J(P) be the Jacobian of G’s log
next-token probabilities with respect to the rows of P under the aligned-prefix conditioning, and let
C = E[J⊤J] be the empirical discrepancy Fisher matrix induced by Eq. 2 over the initial window
of turns. Under local smoothness and a rank–r discrepancy assumption, any minimizer of Eq. 2
produces soft prompts whose span captures at least a (1 − ε) fraction of the top-r eigenmass of C,
where ε decreases with the neighborhood size k and the number of tokens in the window.

Remark 1. The learned soft prompts implement small, structured steps on the response manifold at
the current dialogue state. Their span approximates the main steps where F and G move differently.

Anti-degeneration regularizer. Soft-prompt mining can collapse if the surrogate G concentrates
probability on a few high-frequency tokens, yielding repetitive or bland continuations that carry little
information about where G and F truly differ (Li et al., 2023; Holtzman et al., 2019; Meister et al.,
2023). To keep the optimization informative and consistent with local manifold exploration, we
add a lightweight training-time diversity term that preserves entropy in G’s next-token distributions
near the prompt–context boundary. Using the previous {Πt,i(P)}TF (t)

i=1 , we maximize the average
entropy over the last K positions of the concatenated input seen by G:

Htail(P; t) =
1

K

∑
i∈tail(t,K)

[
−
∑
v∈V

Πt,i(P)[v] log Πt,i(P)[v]
]
,

and include the penalty Ldeg(P; t) = −β Htail(P; t) with a small β > 0. This regularizer reuses
logits from the same forward pass (no extra compute), raises diversity exactly where the soft prompt
interacts with the context, and prevents degenerate solutions, thereby enabling P to surface mean-
ingful, least-aligned small steps for subsequent fine-tuning.

Final loss and optimization. For a minibatch of turns B, we have the final loss as:

J (P) =
1

|B|
∑
t∈B

[
Lsem exp(P; Dt−1, qt) − β Htail(P; t)

]
+ λ ∥P∥2F
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Here β > 0 controls anti-degeneration strength, and λ > 0 regularizes the prompt scale. During the
optimization, we minimize J (P) with AdamW, updating only P while freezing G’s weights. We
also use gradient clipping to match gradient scales. To ensure efficient optimization, for each token
position along the original model’s answer prefix, we query an ANN index over G’s L2-normalized
token embeddings to obtain the top-k neighbors of yFt,i. When computing the expectation-based
weight, we form the expected embedding ēt,i using a top-m truncation of Πt,i(P), avoiding a dense
sum over |V|. With a single forward pass over the shared prefix for all positions, SOMA’s time
complexity is O

(
TF (d log |V|+ kd+md)

)
where d the hidden size, |V| the vocabulary size, TF the

number of prefix tokens from F at which we read G’s next-token distribution.

3.3 EFFICIENT LOCALIZED FINE-TUNING AND INFERENCE

We use the learned soft prompts concatenated with text inputs St = Dt−1⊕ qt to pair with original
outputs aFt and fine-tune the surrogate G with LoRA (Hu et al., 2022) adapters. Concretely, we
freeze all base weights of G, attach low-rank adapters to attention/MLP projections, and minimize a
small objective over the local batch Bloc: LFT(ΘLoRA) =

1
|Bloc|

∑
t∈Bloc

NLL
(
aFt

∣∣G(St;ΘLoRA)
)
+

α
(
1− cos(ϕ(aGt ), ϕ(a

F
t ))

)
. In this paper ϕ(·) is all-MiniLM-L6-v2 (Reimers & Gurevych, 2019).

After we switch to fine-tuned G, the learned soft prompts are no longer needed. To reduce the
tokens needed, we further keep a fixed-budget extractive summary of the early dialogue and always
append the last K turns verbatim. We split past turns into sentences, embed them with the encoder
ϕ(·), maintain a running centroid of past content, and at each new turn greedily select sentences
that are most relevant to the current query (high cosine to its embedding), representative of the
conversation so far (high cosine to the centroid), and non-redundant with already selected sentences.
We concatenate the chosen sentences to fit a token budget and use this summary with the recent
turns as the prompt for G, which requires no calls to the original. To ensure service quality, we
continuously monitor similarity between a sliding average of recent queries and the centroid to
determine if a potential topic shift has occurred. That is, if this falls below a threshold or a quick
recheck indicates growing divergence, we roll back for the next turn by querying F once, refresh the
summary on the new window, and then continue with G.

4 THEORETICAL ANALYSIS

We analyze two practical knobs in SOMA to guide the selection of hyperparameters in experiments.
Details of proof are in the Appendix E.

4.1 HOW MANY TURNS ARE EXPECTED TO ACCEPT THE FINE-TUNED SURROGATE?

At turn t, let St = Dt−1⊕ qt be the shared text and let aFt , a
G
t be the textual outputs of F and the

fine-tuned surrogate G. Let Gap(St) ∈ [0, 1] be a bounded discrepancy score that is 0 if the outputs
are semantically identical and 1 at maximal divergence (e.g., Gap(St) = 1 − cos(ϕ(aGt ), ϕ(a

F
t )) ).

Define the population objective F ⋆ = ES∼Q[Gap(S)] and F̂B = 1
|B|

∑
S∈B Gap(S) for a batch

B of post–warm–start contexts. If the stream exhibits mild dependence, write |B|eff for the effective
size (e.g., |B|/(1 + 2

∑
k≥1 ρk) under lag–k autocorrelations ρk).

Warm start. We first observe W turns to estimate the local context distribution Q̂W (no updates),
then evaluate any candidate surrogate on the warm-start window.

Lemma 1 (Warm–start generalization). Let Gap(S) ∈ [0, 1] and assume a weakly dependent stream
with effective size Weff . Then with probability at least 1− δ,

∣∣∣ 1
W

W∑
t=1

Gap(St)− EGap(S)
∣∣∣ ≤

√
2 log(2/δ)

Weff
.

.

Post–warm–start detection. Let a newly fine-tuned surrogate have empirical improvement ∆ =

F̂ old
B − F̂ new

B on a post–warm–start batch B. Assume ∆ is sub–Gaussian with proxy σ2
∆/|B|eff.
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Theorem 2 (Detection bound for switching). Let ∆ = F̂ old
B − F̂ new

B on a post–warm–start batch B,

with ∆ sub-Gaussian of proxy σ2
∆/|B|eff . Fix ε > 0 and δ ∈ (0, 1). If |B|eff ≥ 2σ2

∆

ε2 log 1
δ +

2
3ε log

1
δ , then Pr(∆ ≥ ε) ≥ 1− δ.

Corollary 1 (Switching rule). If F̂ old
B − F̂ new

B ≥ ε for a batch meeting Theorem 2, switching is
justified at level 1− δ.
Corollary 2 (Decision error). Combining Lemma 1 and Theorem 2, the total decision error from
warm–start approximation and batch detection is at most η + ε with confidence 1− 2δ.

4.2 HOW MANY SOFT–PROMPT CANDIDATES PER ITERATION?

Assume the objective restricted to the local tangent near a reference prompt P0 admits a quadratic
model with positive semidefinite curvature HT whose dominant energy lies in an ract–dimensional
active subspace (ract ≪ d). Let u1 be the leading eigenvector of HT in this subspace. Each
soft–prompt candidate is a unit vector um sampled uniformly from this active subspace.
Theorem 3 (Coverage of the best local direction). Let the active subspace have dimension ract ≥ 1,
and let u1 be the target unit direction. Draw M i.i.d. unit candidates {u(c)

m }Mm=1 uniformly on
S ract−1. For any angle threshold θ ∈ (0, π/2],

Pr
(

min
1≤m≤M

∠(u(c)
m ,u1) ≤ θ

)
≥ 1−

(
1− (sin θ) ract−1

)M

.

Lemma 2 (Directional suboptimality). Let HT ⪰ 0 be the curvature on the active subspace with
eigenvalues λ1 ≥ · · · ≥ λract ≥ 0 and top eigenvector u1. For any unit û with ∠(û,u1) ≤ θ,

û⊤HT û ≥ λ1 cos
2 θ, hence λ1 − û⊤HT û ≤ λ1 sin

2 θ.

Corollary 3. To ensure coverage probability at least 1− δ at angle θ, M ≥ log(1/δ)

log
(
1−(sin θ) ract−1

) .
5 EMPRICAL STUDIES OF THE EFFECTIVNESS OF SOMA

In this section, we empirically evaluate the effectiveness of SOMA by addressing the following
questions: RQ1: How well does SOMA perform against baselines? RQ2: How much efficiency
does SOMA improve? RQ3: How does each component of SOMA affect the performance?

Datasets. We evaluate on six multi-turn datasets: ShareGPT (Chen et al., 2024a), ReMeDi (Yan
et al., 2022), Craigslist (He et al., 2018), Multi-Char (agentlans, 2024), MATH (Hendrycks et al.,
2021), and MT-Bench (Zheng et al., 2023). More details are shown in Appendix B.1

Models and baselines. For LLaMA (Touvron et al., 2023) we use LLaMA-3.1-70B (original) and
LLaMA-2-7B (surrogate); for Qwen (Bai et al., 2023) we use Qwen-3-8B (original) and Qwen-
3-0.6B (surrogate). Baselines: (i) Original; (ii) Surrogate; (iii) History-Prefix (surrogate with the
original’s full history up to the current turn); (iv) History-FT (fine-tune surrogate on the original’s
history and serve latter turns); (v) single-model approach: LLMLingua-2 (compressing chat histo-
ries (Pan et al., 2024)); (vi) Multi-model approach: RouteLLM routing (original for complex and
surrogate for simple) (Ong et al., 2024). Additional details are provided in Appendix B.3.

Evaluation Metrics. Response quality is evaluated by the similarity of each method’s output to
the original model’s output. We use three LLM judges—GPT-OSS (OpenAI, 2025), DeepSeek-
V3, and Gemma-2-27B as in Appendix B.4, and report the average rating across judges to reduce
single-judge bias. Efficiency is measured by average tokens per dialogue and throughput (tokens/s).

Implementation. We instantiate all knobs directly based on Section 4. First, the switching window
W and the acceptance batch size follow the detection bound (Thm. 2) together with warm-start
generalization (Lemma 1). Concretely, after a warm start of W turns large enough to make the
generalization error O(W

−1/2
eff ) small, we choose |B|eff so that the bound on Pr(∆ ≥ ε) exceeds

0.95 for the empirically estimated σ∆. The number of parallel soft-prompt candidates M is set via
the spherical-cap coverage guarantee (Thm. 3) and the directional suboptimality bound (Lemma 2).
The cosine gate is calibrated to the target error budget using Cor. 2: we select a threshold that limits
false switches to ≤ 5% on the warm-start window and require m=2–3 consecutive hits for stability.
Further details appear in Appendix B.2.
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Table 1: Similarity percentage to the original model across six datasets for LLaMA family.

ShareGPT ReMeDi Craigslist Multi-Char MATH MT-Bench Avg
Surrogate 79.2 ± 2.18 82.7 ± 1.95 74.3 ± 2.36 70.8 ± 1.73 66.2 ± 2.91 77.5 ± 2.04 75.1 ± 5.98
History-Prefix 86.1 ± 1.67 87.9 ± 1.55 82.4 ± 1.72 84.7 ± 1.69 80.3 ± 3.83 87.2 ± 1.58 84.8 ± 2.94
History-FT 93.4 ± 2.12 91.8 ± 2.09 90.3 ± 1.23 89.1 ± 2.23 87.6 ± 2.26 92.4 ± 1.14 90.8 ± 2.18
LLMLingua-2 84.6 ± 1.72 86.4 ± 1.63 80.8 ± 1.91 82.9 ± 1.58 78.1 ± 2.77 85.3 ± 1.66 83.0 ± 3.03
RouteLLM 95.3 ± 1.44 92.5 ± 1.07 91.0 ± 1.86 91.4 ± 1.23 89.6 ± 1.95 93.2 ± 1.12 92.2 ± 1.78

SOMA 96.4 ± 1.91 93.2 ± 0.98 91.9 ± 2.49 92.3 ± 1.05 90.7 ± 1.12 94.1 ± 0.91 93.1 ± 1.99

5.1 EXPERIMENTAL RESULTS

SOMA consistently performs similarly to the original model and outperforms baselines. As
shown in Table 1, SOMA has the highest similarity to the original’s responses consistently. Com-
pared with SOMA, the Surrogate alone has limited ability and struggles in complex turns; History-
Prefix supplies the full history of original model but the surrogate itself still has limited ability;
History-FT trains on full original history but can only learn superficial phrasing since the supervision
information is limited; LLMLingua-2 sometimes negelects important context details; RouteLLM
switches models but never improves the small model itself. Dataset-wise, SOMA’s gains are largest
on MATH and Multi-Character compared with surrogate, where later turns require careful carry-
over of constraints and multi-step reasoning, and our designed expectation-weighted divergence and
the anti-degeneration guard make the mined cases informative here. Improvements are smaller on
MT-Bench and ShareGPT, where some baselines perform well due to easier queries, but SOMA can
consistently win, as SOMA improved the surrogate. More results are in Appendix F.1.

RouteLLM
Original

Surrogate
History-Prefix

History-FT
LLMLingua-2SOMA

104

9 × 103

2 × 104

A
vg

. t
ok

en
s/
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ia

lo
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e LLaMA
Qwen

Figure 2: Average tokens per dialogue
across methods. SOMA uses the fewest
tokens, yielding the highest efficiency
and reduced compute/API cost.

SOMA is the most efficient method. As shown in
Figure 2, SOMA consistently outperforms baselines in
terms of efficiency. The reason is that SOMA stops re-
sending the growing history and serves the remaining
turns with the adapted small model with a compressed
context. Original and RouteLLM are the most expensive
as both repeatedly transmit long contexts to a large model,
and RouteLLM also pays routing overhead when it esca-
lates. History-Prefix remains high since it forwards the
full history to the surrogate every turn; History-FT saves
some tokens but still carries long prompts. LLMLingua-
2 compresses history and helps, yet summaries + con-
trol prompts keep usage above SOMA. Surrogate only
reduces tokens versus Original but lacks the switch-and-
adapt step, so it cannot drop the history tail as aggres-
sively. Overall, SOMA achieves the best cost efficiency on both LLaMA and Qwen. The results on
throughput are presented in Appendix F.2.

ShareGPT
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Multi-Char

MATH
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Figure 3: Ablation Study (LLaMA).

Ablation Study. As shown in Figure 3, the full
SOMA achieves the highest similarity. Removing the
anti-degeneration loss (w/o ADL) consistently drops per-
formance, while removing both the expectation-weight
and ADL (w/o ExpW+ADL) yields the larger decline,
showing that entropy regularization prevents collapse and
distribution-level weighting is critical. The ablation study
on Qwen is presented in Appendix F.3

6 CONCLUSION

We present SOMA, an efficient multi-turn serving framework that replaces a large original model
with a small language model within a dialogue’s local context. SOMA first mines the least-aligned
local steps via soft-prompt optimization with anti-degeneration control, then distills them into local-
ized LoRA fine-tuning so the surrogate can run without prompts at inference. A simple cosine-based
gate enables fast switching and rollback under drift. Experiments on diverse real-world datasets
demonstrate strong fidelity to the original model with substantially lower cost and latency.
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A NOTATIONS

This section summarizes all notations used throughout this paper.

Table 2: Notation summary.

Symbol Meaning

Dk Dialogue prefix {(qt, at)}kt=1
q≤t Full history up to turn t
F, G Original (large) model; surrogate (small) model
ht = fM (q≤t) Hidden state at turn t for model M
Hk {h1, . . . ,hk}, first-k hidden states
MM

k Local response manifold induced by Dk under M
V , E G’s vocabulary; embedding matrix E ∈ Rd×|V|

Πt Next-token distribution of G at turn t; entry Πt[v]
ev Embedding of token v (column of E)
P ∈ RL×d Soft prompt (row-wise prompt tokens in embedding space)
V(P) Verbalization for prompt P
Nk(u) k nearest neighbors of token u by cosine in E
et,i Expected embedding et,i = E⊤Πt,i at position i
wt,i Expectation-weighted factor for semantic divergence loss
|B|eff Effective batch size (accounts for dependence)
∆ Empirical improvement (old–new) on a post-warm-start batch

B REPRODUCIBILITY

In this section, we introduce the details of the experiments in this paper for reproducibility. At the
same time, we have uploaded all necessary code to our GitHub repository to reproduce the results
presented in this paper: https://anonymous.4open.science/r/SOMA-D377. All major
experiments are encapsulated as shell scripts, which can be conveniently executed. We introduce the
details for reproducibility in the subsections below.

B.1 REAL-WORLD DATASETS

In this section, we briefly present the real-world graph datasets used in this paper, and all
these datasets are commonly used datasets in multi-turn conversation tasks. ShareGPT (Chen
et al., 2024a) is a large-scale collection of high-quality image–text conversations and captions.
ReMeDi (Yan et al., 2022) is a multi-domain Chinese medical dialogue corpus of doctor–patient
conversations. Craigslist (He et al., 2018) contains multi-turn buyer–seller negotiation chats from
Craigslist, enabling study of bargaining strategies and goal-directed dialogue. Multi-Char (agent-
lans, 2024) provides multi-character conversational scenarios with role specifications to evaluate
coordination and role consistency in multi-party dialogue. MATH (Hendrycks et al., 2021) is a
benchmark of competition-style math problems with step-by-step solutions designed to assess math-
ematical reasoning in language models. MT-Bench (Zheng et al., 2023) is a multi-turn benchmark to
assess response quality across diverse tasks. In this study, we filter out the non-context-dependent
dialogues in these datasets.

B.2 IMPLEMENTATION OF SOMA

We implement SOMA based on PyTorch with HuggingFace Transformers, serve inference via
vLLM with FlashAttention (Shah et al., 2024), and run on one node with 4× 80G A100 GPUs.
Soft–prompt tuning optimizes only the prompt tensor P∈RL×d on the surrogate G using AdamW,
cosine decay, gradient clipping, and a KV cache for a single forward pass per turn. The ob-
jective combines unlikelihood on a semantic neighborhood, an expectation–weighted penalty us-
ing the truncated top–m expectation, and a light anti-degeneration entropy term. The mined
prompt–response pairs are then used to adapt G with LoRA on attention projections (rank r), keep-
ing the base weights frozen; early stopping is triggered by validation divergence. At inference, a
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cosine closeness gate with a lightweight sentence encoder decides a one–time switch to the adapted
surrogate; the window W and acceptance batch |B| follow the detection bound, the number of paral-
lel candidates M follows the coverage guarantee, and (k,m) follow the efficiency analysis. Prompt
length L ∈ {4, 8, 16, 32, 64}; learning rate η ∈ [1×10−4, 5×10−3]; AdamW weight decay λwd ∈
[0, 10−2]; gradient clip ∈ [0.5, 1.0]; neighborhood size k ∈ {20, 50, 100}; expectation truncation
m∈{50, 100, 200}; temperature τ ∈ [0.4, 1.2]; expectation weight λ∈ [0.5, 2.0]; anti–degeneration
weight β ∈ [0.02, 0.15]; LoRA rank r ∈ {4, 8, 16, 32} with scale αlora ∈ {4, 8, 16, 32}; LoRA LR
ηlora ∈ [5×10−5, 2×10−3]; warm–start window W ∈ [3, 12] turns; acceptance batch |B| ∈ [6, 24]
contexts; parallel candidates M ∈{3, 4, 5}; switch threshold ε∈ [0.05, 0.12] with mcons∈{2, 3}.

B.3 IMPLEMENTATION OF BASELINES

Original: We query the large model (family-appropriate: LLaMA-3.1-70B or Qwen-3-8B) with the
full dialogue history at every turn to get the responses.

Surrogate: We query the small model (LLaMA-2-7B or Qwen-3-0.6B) with the full dialogue his-
tory at every turn to get the responses.

History-Prefix: The surrogate receives the entire conversation produced by the Original up to t−1
and generates at; no parameter updates are performed. The switching is the same as SOMA.

History-FT: We fine-tune the surrogate on (St, a
F
t ) pairs where St is the Original’s full context up

to t and aFt is the next reply, using LoRA on attention projections with early stopping; inference
then runs the fine-tuned surrogate without the Original. The switching is the same as SOMA.

LLMLingua-2 (Pan et al., 2024): We compress the Original’s history at each turn with LLMLingua-
2 and feed the compressed summary to the surrogate; we follow the authors’ recommended settings.

RouteLLM (Ong et al., 2024): We adopt the released router to choose between the Original and the
surrogate per turn (complex vs. simple queries), following the original settings from the paper.

B.4 IMPLEMENTATION OF LLM JUDGE

The prompt for the LLM judge to evaluate the response similarity score is shown in Figure 4 fol-
lowing the recommendation from (Bai et al., 2024).

B.5 PACKAGES REQUIRED FOR IMPLEMENTATION

We perform all experiments on a server equipped with Nvidia A6000 GPUs. Below we list the key
packages and their versions used in our implementation:

• Python == 3.10

• pytorch == 2.8.0 + CUDA 12.8

• torchvision == 0.19.0

• torchaudio == 2.8.0

• numpy == 1.26.x

• pandas == 2.2.x

• scipy == 1.12.x

• cmake == 3.28+

• ninja == 1.11+

• ipython == 8.x

• psutil == 5.9+

• vllm == 0.10.2

• transformers == 4.56.1

• accelerate == 1.9.0

• bitsandbytes == 0.46.1
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You are an impartial evaluator.
You are evaluating the AI assistant’s capabilities in solving a problem posed by ‘Human’. 
Assess the assistant’s performance based on the following criteria:

1. Accuracy: Verify the correctness of the AI assistant’s answer against the ground truth 
(reference solution).
2. Reasoning: Assess the completeness, clarity, and logical soundness of the step-by-step 
reasoning process.
3. Context Integration: Consider whether the assistant integrates relevant prior dialogue or 
context that influences the solution.
4. Communication: Appraise how clearly and effectively the assistant communicates its 
reasoning to aid understanding.

Score Guidelines (0.0 to 1.0):
- 1.0: Completely correct answer and meticulously clear, step-by-step reasoning that is 
logically sound and instructional.
- 0.7–0.9: Correct answer with a well-articulated reasoning process that includes the necessary 
steps and promotes understanding.
- 0.4–0.6: Partially correct answer with some minor reasoning flaws or omissions.
- 0.0–0.3: Incorrect answer and/or poor reasoning that lacks clarity or logic.

Only respond with a single score between 0.0 and 1.0. Do not include any explanation.
---

Reference Solution:
{Original Response}
Candidate Answer:
{Surrogate Response}

Score:

Figure 4: Instructions for the LLM judge to evaluate the response similarity.

• sentencepiece == 0.2.0
• tiktoken == 0.11.0
• einops == 0.8.1
• datasets == 4.0.0
• huggingface-hub == 0.34.2
• safetensors == 0.5.3
• ray == 2.49.1
• scikit-learn == 1.7.1
• fastapi == 0.116.2
• uvicorn == 0.35.0

C RELATED WORK

Efficient LLM for Multi-turn Dialogues. Recent efforts to improve multi-turn LLM serving effi-
ciency fall into two main paradigms. The first involves single-model approaches that reduce context
length or reuse computation. These include summarization and context compression (Wang et al.,
2025; Chen et al., 2024b; Xiao et al., 2024), memory augmentation (Melz, 2023; Gutiérrez et al.,
2024), and caching and attention reuse (Gao et al., 2024; Jeong & Ahn, 2025; Anthropic, 2024).
While effective in lowering per-turn cost, these methods still rely on repeated large-model inference,
which also leads to high API expenses, latency, and GPU demand. Moreover, they may truncate or
underutilize dialogue context, harming performance on complex tasks. The second paradigm adopts
multi-model approach, using smaller models for simple queries and escalating difficult ones to
larger LLMs (Behera et al., 2025; Schick et al., 2023; Ding et al., 2024), typically via model rout-
ing (Shnitzer et al., 2023) and distillation (Hinton et al., 2015). However, pre-trained small models
often generalize poorly on complex multi-turn dialogues, while switching models adds inefficiency.
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Local Manifold Approximation. Local manifold approximation techniques aim to exploit the man-
ifold hypothesis by modeling high-dimensional data as lying on locally low-dimensional subspaces,
enabling more efficient representation and inference. Classical approaches such as Locally Linear
Embedding (LLE) (Roweis & Saul, 2000) and Local Tangent Space Alignment (LTSA) (Zhang et al.,
2007) approximate local neighborhoods through linear projections, while kernel-based methods like
Laplacian eigenmaps (Belkin & Niyogi, 2003) and diffusion maps (Coifman & Lafon, 2006) pre-
serve local geometric structure via nonlinear embeddings. Recent work has extended these ideas
using deep learning. For instance, neural network–based tangent space estimators (Sun et al., 2020)
and local contrastive learning methods (Xiong et al., 2020; Zeng et al., 2021) enable the extraction of
manifold-aware representations in complex domains. In computer vision, local manifold modeling
underpins point cloud upsampling (Fang & Wang, 2025) by fitting Gaussian patches to local regions,
while in representation learning, neighbor-preserving mappings such as t-SNE (Van der Maaten &
Hinton, 2008) and UMAP (McInnes et al., 2018) uncover latent structure by maintaining local prox-
imity. In graph-based learning, manifold-regularized GNNs (Ngo & Vo, 2023) exploit smoothness
over graph-induced manifolds to enhance generalization. Despite their effectiveness across domains,
local manifold approximation remains largely unexplored in the context of efficient multi-turn LLM
serving, where dynamically adapting smaller models to the local reasoning manifold conditioned on
dialogue history presents a promising and under-investigated direction.

D MATHEMATICAL CONCEPTS

Here we provide a more comprehensive view of the relevant concepts that can be helpful to under-
stand the idea of stratification as discussed in the main body of the paper.
Definition D.1 (Preimage). Let f : X 7→ Y be a function from a set X (domain) to a set Y
(codomain). For any subset N ⊆ Y , the preimage of N under f , denoted f−1(N), is defined as:

f−1(N) = {x ∈ X | f(x) ∈ N}.

In other words, f−1(N) consists of all elements in the domain X that are mapped into the subset N
of the codomain Y .
Definition D.2 (Metric Space). A set X , whose elements are called points, is said to be a metric
space if for any two points p, q ∈ X , there is an associated real number d(p, q), called the distance
from p to q, such that:

1. d(p, q) ≥ 0, and d(p, q) = 0 ⇐⇒ p = q;

2. d(p, q) = d(q, p) (symmetry);

3. d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X (triangle inequality).

Any function satisfying these properties is called a distance function, or a metric.
Definition D.3 (Neighborhood). Let X be a metric space. A set Nr(p) ⊂ X is called a neighbor-
hood of a point p ∈ X if it consists of all points q ∈ X such that d(p, q) < r for some radius r > 0.
The number r is called the radius of the neighborhood.
Definition D.4 (Continuous). Let X and Y be two topological spaces. A function f : X 7→ Y is
continuous if for each point x ∈ X and each neighborhood N of f(x) in Y , the set f−1(N) is a
neighborhood of x ∈ X .
Definition D.5 (Topological Equivalence or Homeomorphism). A function h : X 7→ Y is called a
homeomorphism if it is one-to-one, continuous, and has a continuous inverse function. When such
a function exists, X and Y are called homeomorphic (or topologically equivalent) spaces.
Definition D.6 (Open Set). A subset U ⊆ X is called an open set if for every point p ∈ U , there
exists a neighborhood Nr(p) ⊆ U . That is, each point in U has some ”wiggle room” around it that
still lies entirely within U .
Definition D.7 (Countable Base (Second Countability)). Let X be a topological space. A collection
B of open subsets of X is called a base (or basis) for the topology on X if for every open set U ⊆ X
and every point x ∈ U , there exists a set B ∈ B such that

x ∈ B ⊆ U.
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If there exists a base B that is countable, then the space X is said to be second countable or to have
a countable base.
Definition D.8 (Hausdorff Space). A topological space with the property that two distinct points
can always be surrounded by disjoint open sets is called a Hausdorff space.

Essentially, Hausdorff spaces are the spaces where any two points being “far off” is defined.
Definition D.9 (Manifold). A manifold of dimension n is a second-countable Hausdorff topological
space in which each point has a neighborhood homeomorphic to Euclidean space Rn.
Definition D.10 (Smooth Manifold). A smooth manifold is a manifold M equipped with a collection
of coordinate charts (i.e., homeomorphisms φ : U → Rn for open sets U ⊆ M) such that all
transition maps between overlapping charts,

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj),

are infinitely differentiable (i.e., C∞). This structure is known as a smooth atlas, and it allows
calculus to be performed on the manifold.

E THEORETICAL RESULTS AND PROOFS

We first model weak dependence in the dialogue stream via an effective sample size. For a bounded,
stationary sequence {Zt} with lag-ℓ autocorrelation ρ(ℓ), define

Neff :=
N

1 + 2
∑N−1

ℓ=1

(
1− ℓ

N

)
ρ(ℓ)

∈ (0, N ] .

when ρ(ℓ) ≡ 0, Neff = N ; positive correlation reduces Neff .

Directional Recovery for the Expectation–Weighted Loss

Statement (Theorem 1). Under local smoothness, bounded expectation weights in Eq. equation 2,
and a rank–r discrepancy for the discrepancy Fisher C = E[J(P)⊤J(P)], any minimizer P̂ of
Eq. equation 2 has row span that captures at least a (1 − ε) fraction of the top-r eigenmass of C,
with ε→0 as the window size grows and neighborhood size k increases within the local region.

Proof of Theorem 1. Step 1 (Per-event loss and local expansion). Index events by z = (t, i)
(turn and position). Let the per-event loss be

ℓ(P; z) = w(z)
∑

v∈S(z)

sτ (v | z)
[
− log

(
1− πG(v | z;P)

)]
, S(z) = {yFt,i} ∪ Nk(y

F
t,i).

Write pv(P; z) = πG(v | z;P) and expand around P = 0. Using the chain rule for the softmax
parameterization,

log(1−pv) = log(1−pv|0)−
1

1− pv|0
(
∇pv

)⊤
vec(P)−1

2

pv|0
(1− pv|0)2

(
vec(P)⊤∇ log pv

)2
+o(∥P∥2),

where ∇ denotes gradient w.r.t. vec(P) and we used the softmax identity ∇pv = pv∇ log pv . Sum-
ming over v ∈ S(z) with bounded weights w(z)sτ (· | z) cancels the linear term due to local
stationarity under aligned-prefix conditioning (the gradient at 0 integrates to zero across the seman-
tic neighborhood; this is the standard property behind Gauss–Newton/Fisher approximations). Thus
the second-order term dominates:

ℓ(P; z) =
1

2

∥∥Jz vec(P)
∥∥2
2
+ o(∥P∥2),

where Jz stacks rows
√
w(z)sτ (v | z)∇ log pv(0; z)

⊤ for v ∈ S(z).
Step 2 (Summation over the window and Fisher form). Sum over z in the initial window
and take expectation (over the empirical distribution of aligned-prefix contexts). We obtain the
Gauss–Newton surrogate

L(P) =
1

2
vec(P)⊤C vec(P) + o(∥P∥2), C = E

[
J(0)⊤J(0)

]
,
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which is a discrepancy Fisher matrix with importance weights folded into J.

Step 3 (Row-span parametrization and Ky Fan). Let P ∈ RL×d. Any P factorizes as P = AU⊤

with U ∈ Rd×L having orthonormal columns spanning the row space and A ∈ RL×L. Then

vec(P) = (U⊗ IL) vec(A), L(P) =
1

2
vec(A)⊤

(
U⊤CU⊗ IL

)
vec(A) + o(∥A∥2).

Including the ridge λ∥P∥2F = λ∥A∥2F from the main loss, the minimum over A for fixed U is
proportional to Tr(U⊤CU). Maximizing Tr(U⊤CU) over U⊤U = IL is solved by the top-L
eigenvectors of C (Ky Fan’s variational principle). Hence the optimal row span equals the top-L
eigenspace of C.

Step 4 (Empirical approximation and eigenspace stability). We work with an empirical Fisher
Ĉ formed from finitely many events and finite k. Under bounded weights and local smoothness,
∥Ĉ − C∥op → 0 as the window size grows; increasing k within the local isotropy region reduces
variance and retains locality. Davis–Kahan perturbation then gives that the top-r eigenspaces of Ĉ
and C are close, with principal angles bounded by O(∥Ĉ −C∥op/gap), where gap is the spectral
gap below λr(C). Consequently, the row span of any empirical minimizer P̂ captures at least a
(1− ε) fraction of the top-r eigenmass of C with ε → 0 as the window grows and k increases up to
the local isotropy scale. □

When to Switch: Warm–Start Generalization and Batch Detection.

Statement (Lemma 1). With probability at least 1− δ,∣∣∣F̂W − F ⋆
∣∣∣ ≤

√
2 log(2/δ)

Weff
, F̂W =

1

W

W∑
t=1

Gap(St), F ⋆ = ES∼Q[Gap(S)].

Proof of Lemma 1. Step 1 (Centering and boundedness). Let Zt = Gap(St) − F ⋆ ∈ [−1, 1]

with E[Zt] = 0. Then F̂W − F ⋆ = 1
W

∑W
t=1 Zt.

Step 2 (Variance proxy under dependence). For stationary {Zt} with autocovariance γ(ℓ) =
Cov(Zt, Zt+ℓ), we have

Var
( 1

W

W∑
t=1

Zt

)
=

1

W 2

W∑
t,s=1

γ(|t− s|) = 1

W

(
γ(0) + 2

W−1∑
ℓ=1

(
1− ℓ

W

)
γ(ℓ)

)
.

Let σ2 := γ(0) ≤ 1/4 (since Zt ∈ [−1, 1]) and ρ(ℓ) := γ(ℓ)/γ(0) when γ(0) > 0. Then

Var
( 1

W

W∑
t=1

Zt

)
≤ σ2

W

(
1 + 2

W−1∑
ℓ=1

(
1− ℓ

W

)
ρ(ℓ)

)
.

Define the effective size Weff as in the preliminaries. Then Var
(

1
W

∑W
t=1 Zt

)
≤ σ2/Weff .

Step 3 (Concentration with effective size). A Hoeffding/Rio inequality for bounded, weakly de-
pendent sequences yields

Pr
(∣∣F̂W − F ⋆

∣∣ ≥ u
)

≤ 2 exp
(
− 2u2Weff

(b− a)2

)
, a = −1, b = 1.

Thus Pr(|F̂W − F ⋆| ≥ u) ≤ 2 exp(−2u2Weff). Set the right-hand side to δ and solve for u to
obtain u =

√
(2 log(2/δ))/Weff . □

Statement (Theorem 2). Let ∆ = F̂ old
B − F̂ new

B on a batch B of effective size |B|eff . Assume
∆ − E[∆] is sub–exponential with proxy (ν, b): E[exp(λ(∆ − E∆))] ≤ exp(λ

2ν2

2 ) for |λ| ≤ 1/b.
Then for any ε > 0 and δ ∈ (0, 1),

|B|eff ≥ 2ν2

ε2
log

1

δ
+

2b

3 ε
log

1

δ
=⇒ Pr(∆ ≥ ε) ≥ 1− δ.
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Proof of Theorem 2. Step 1 (Bernstein tail bound). For sub–exponential X := ∆ − E[∆] with
proxy (ν, b),

Pr(X ≤ −t) ≤ exp
(
− t2

2ν2 + 2bt/3

)
, t > 0.

This is the standard one-sided Bernstein inequality derived from the MGF condition.

Step 2 (From mean gain to high-probability gain). We seek Pr(∆ ≥ ε) ≥ 1− δ. Write
Pr(∆ < ε) = Pr

(
∆− E[∆] < ε− E[∆]

)
= Pr

(
X < −t

)
, t := E[∆]− ε.

If the expected gain satisfies E[∆] ≥ ε then t ≥ 0 and

Pr(∆ < ε) ≤ exp
(
− t2

2ν2 + 2bt/3

)
≤ exp

(
− ε2

2ν2 + 2bε/3

)
,

using monotonicity of t 7→ t2/(2ν2 + 2bt/3) on t ≥ 0. To make this ≤ δ it suffices that
ε2

2ν2 + 2bε/3
≥ log(1/δ) ⇐⇒ 2ν2 log(1/δ) +

2b

3
ε log(1/δ) ≤ ε2.

Rearranging gives the stated sufficient condition on |B|eff once we note that the proxies ν2, b scale
as 1/|B|eff for averages. Equivalently, write ν2 = ν̃2/|B|eff and b = b̃/|B|eff for single-sample
proxies (ν̃2, b̃), then solve for |B|eff :

|B|eff ≥ 2ν̃2

ε2
log

1

δ
+

2b̃

3 ε
log

1

δ
.

We re-denote (ν̃2, b̃) as (ν2, b) in the theorem statement. □

Corollary 4 (Choosing W and |B|). Pick W so that the warm–start generalization error is at most
η: Weff ≥ 2 log(2/δ)/η2. Then choose |B| via Theorem 2 for target improvement ε and confidence
1− δ. The total decision error (from warm–start approximation and batch detection) is bounded by
η + ε at confidence 1− 2δ.

Proof of Corollary 4. Lemma 1 ensures |F̂W − F ⋆| ≤ η with prob. ≥ 1 − δ when Weff ≥
2 log(2/δ)/η2. Theorem 2 ensures Pr(∆ ≥ ε) ≥ 1 − δ when the batch bound holds. By a union
bound, the probability that both events hold is at least 1 − 2δ. If both hold, the total decision error
(warm–start approximation plus detection slack) is at most η + ε. □

How Many Soft–Prompt Candidates? Coverage and Suboptimality

Statement (Theorem 3). Let the active local subspace be ract–dimensional with unit sphere
Sract−1. Fix v1 and draw i.i.d. u1, . . . ,uM ∼ Unif(Sract−1). Then for any θ ∈ (0, π/2],

Pr
(

min
m≤M

∠(um,v1) ≤ θ
)

≥ 1−
(
1− (sin θ) ract−1

)M

.

Proof of Theorem 3. Step 1 (Exact cap probability). WLOG set v1 as the north pole. For
U ∼ Unif(Sract−1), the random variable T = ⟨U ,v1⟩ has density fT (t) ∝ (1 − t2)(ract−3)/2 on
t ∈ [−1, 1]. Hence Pr(∠(U ,v1) ≤ θ) = Pr(T ≥ cos θ) = Isin2 θ(

ract−1
2 , 1

2 ).

Step 2 (Lower bound). For θ ∈ (0, π/2], sin θ ∈ (0, 1] and we have the elementary bound

Isin2 θ

(
ract−1

2 , 1
2

)
≥ (sin θ) ract−1.

(Proof: Ix(a, b) = 1
B(a,b)

∫ x

0
ta−1(1 − t)b−1dt ≥ 1

B(a,b)

∫ x

0
ta−1dt = xa

aB(a,b) ≥ xa since
aB(a, b) ≤ 1 for a ≥ 1/2, b ≥ 1/2; let x = sin2 θ and a = (ract − 1)/2.)

Step 3 (Independence across M samples). Thus, for one sample, pθ := Pr(∠(U ,v1) ≤ θ) ≥
(sin θ)ract−1. The probability none among M falls in the cap is (1− pθ)

M ≤ (1− (sin θ)ract−1)M .
Therefore

Pr
(

min
m≤M

∠(um,v1) ≤ θ
)
= 1− (1− pθ)

M ≥ 1−
(
1− (sin θ)ract−1

)M

.

□
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Statement (Lemma 2). If ∠(û,v1) ≤ θ and HT ⪰ 0 with top eigenpair (λ1,v1), then

û⊤HT û ≥ λ1 cos
2θ ⇒ λ1 − û⊤HT û ≤ λ1 sin

2θ.

Proof of Lemma 2. Decompose û = cos θ v1 + sin θw with ∥w∥2 = 1 and w ⊥ v1. Then

û⊤HT û = λ1 cos
2θ +

∑
j≥2

λj⟨vj ,w⟩2 sin2θ ≥ λ1 cos
2θ,

since λj ≥ 0. Subtract from λ1 to obtain the residual bound. □

Proof of Corollary 3. We require 1 − (1 − (sin θ)ract−1)M ≥ 1 − δ. Equivalently (1 −
(sin θ)ract−1)M ≤ δ, giving

M ≥ log(1/δ)

log
(
(1− (sin θ)ract−1)−1

) .
□

F ADDITIONAL EXPERIMENT RESULTS

In this section, we present additional experiment results to complement the main paper.

F.1 RESPONSE QUALITY FOR QWEN

To further answer how well SOMA performs against baselines with different backbone models,
we replicate our full evaluation on a second model family (Qwen). Beyond the LLaMA results
in Table 1, Table 3 reports the similarity percentage of each method’s responses to the original
model across six datasets when the original is Qwen-3-8B and the surrogate is Qwen-3-0.6B. The
experimental setting, judge, and data splits are identical to those used for LLaMA. Overall,SOMA
remains the top method across datasets. In every dataset, SOMA achieves the highest similarity to
the original model, mirroring the pattern observed for LLaMA. This reinforces that our approach
generalizes across architectures and tokenizer vocabularies. One thing to notice is that, compared
with Table 1, similarities are generally lower and per–dataset standard deviations are larger. This
gap is expected for three reasons: (i) the capacity gap between Qwen-3-8B and Qwen-3-0.6B is
substantially larger than that between LLaMA-3.1-70B and LLaMA-2-7B, making the imitation
task intrinsically harder; (ii) differences in pretraining and instruction alignment lead to stronger
style and reasoning mismatches that a small LoRA has to compensate for; and (iii) tokenization
and calibration differences (e.g., subword boundaries and logit scaling) introduce additional noise in
the token-level comparison used by the judge, which inflates variance. But taken together, Table 1
and Table 3 show that SOMA provides a consistent quality boost over competitive baselines while
preserving the token/throughput advantages of using a small surrogate. In the more challenging
Qwen setting, the absolute ceiling is lower, but the relative benefit of SOMA is as strong or stronger,
indicating that our local adaptation is especially valuable when the small–large gap is wide.

F.2 DETAILS OF EFFICIENCY RESULTS

To proxy the API cost for different datasets, we measured the average tokens per dialogue for all
methods on six datasets in each family. As shown in Figure 5 and Figure 6, SOMA consistently
uses the fewest tokens per dialogue. This comes from switching to the adapted small model after a
short warm start, so we stop re-encoding the long head and drop soft prompts at service time. As
a result, SOMA avoids the large token budgets of Original and History-Prefix, and is leaner than
Surrogate/History-FT because later turns are no longer as SOMA compressed the full history for
later turns. The effect is most visible on Qwen, where early turns are proportionally heavier and the
savings from early truncation are larger.

To examine the runtime when using different methods on real-world datasets, we tested the through-
put (tokens/sec) for all methods on the same six datasets. The results in Figure 7 and Fig-
ure 8 show SOMA matches or exceeds the speed of Surrogate/History-FT and clearly outperforms
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Table 3: Similarity percentage to the original model across six datasets for the Qwen family.

ShareGPT ReMeDi Craigslist Multi-Char MATH MT-Bench Avg

Surrogate 50.9 ± 1.21 63.5 ± 2.87 48.2 ± 3.40 44.7 ± 3.54 42.6 ± 1.70 40.4 ± 0.81 48.4 ± 8.31
History-Prefix 70.5 ± 1.15 75.7 ± 2.01 63.0 ± 2.23 65.5 ± 0.91 51.3 ± 2.45 53.6 ± 2.32 63.3 ± 9.47
History-FT 76.4 ± 1.68 79.2 ± 2.61 74.5 ± 3.56 63.2 ± 1.74 65.9 ± 1.70 62.7 ± 0.72 70.3 ± 7.23
LLMLingua-2 68.9 ± 1.32 74.1 ± 2.14 61.2 ± 2.67 63.4 ± 1.18 49.8 ± 2.03 51.7 ± 1.45 61.5 ± 7.92
RouteLLM 79.6 ± 1.04 81.9 ± 1.36 75.1 ± 2.91 72.8 ± 1.62 67.3 ± 1.21 68.0 ± 0.96 74.1 ± 5.43

SOMA 81.0 ± 0.93 83.2 ± 1.21 76.4 ± 3.85 74.2 ± 2.53 68.7 ± 1.28 69.2 ± 1.08 75.5 ± 5.97

Original/History-Prefix. The gain is explained by two design choices validated in the experiment:
(i) after switching, responses are produced by the small model; and (ii) inputs are shorter because
the long head is not reprocessed every turn. Thus, SOMA delivers surrogate-level throughput while
maintaining high similarity to the original model’s outputs.

F.3 ABLATION STUDY FOR QWEN

To test whether the findings in Section 5.1 that each component of SOMA performs well can general-
ize beyond LLaMA, we repeated the ablations on the Qwen family (Figure 9). Same as the LLaMA
results, we evaluate SOMA, SOMA w/o ADL (removing the anti-degeneration entropy regularizer),
and SOMA w/o ExpW+ADL (removing both the expectation-weighted term and ADL). We find the
same pattern: the full SOMA achieves the highest similarity on every dataset; dropping ADL consis-
tently lowers scores, showing that preserving tail entropy during prompt mining prevents probability
collapse and stabilizes learning; removing both components hurts the most, especially on harder sets,
confirming that the expectation-weighted term is crucial for penalizing distribution-level semantic
alignment that token-level unlikelihood misses. Overall, the Qwen ablations echo the LLaMA study
and demonstrate that both ADL and expectation-weighting are necessary for consistent gains.

F.4 CASE STUDY: SOMA DELIVERS BROAD AND BALANCED GAINS ACROSS ABILITIES

To examine how SOMA improves specific capabilities compared with baselines, we follow the MT-
Bench-101 benchmark (Bai et al., 2024) and run a fine-grained evaluation on the LLaMA family.
We use the same LLM judge as in the main experiments and the benchmark’s prompts; scores are
on a 0–10 scale, where higher is better. As shown in Figure 10, SOMA delivers the largest gains
on the harder skills—reasoning and questioning—precisely where the original model most exceeds
the surrogate. At the same time, SOMA lifts memory, understanding, rephrasing, and interference,
indicating that the learned local adaptation not only reduces the high-level reasoning gap but also
strengthens general dialog competence. Overall, SOMA yields a consistently stronger and more
balanced ability profile than History-Prefix, History-FT, and the raw surrogate.

F.5 CASE STUDY: LATER SWITCHING POINTS CORRELATE WITH LOWER FINAL SIMILARITY

To understand when does SOMA switch to the fine-tuned surrogate during service, we sweep the
warm-start window W ∈ [1, 15] turns and, for each dataset, measure the final SOMA similarity
after switching at W . Figure 11 shows consistent patterns that simpler, goal-anchored dialogues
(ShareGPT, ReMeDi, Craigslist) exceed high similarity after only a few turns, whereas reasoning-
heavy or multi-party settings (MATH, Multi-Char) require longer context before plateauing. The
curves rise steeply for small W (early turns carry most supervision) and exhibit diminishing returns
thereafter, indicating that late turns add little for local adaptation. Figure 12 plots the plateau score
against the best W per dataset and reveals a clear negative association (Pearson r = −0.64): tasks
needing more warm-start evidence achieve lower final similarity, reflecting higher intrinsic difficulty
and a larger behavior gap between the large and small models. Practically, this suggests short win-
dows for general chats and longer windows for compositional reasoning or multi-agent dialogues.
Also, once the sweep window goes beyond the point where the curve starts to flatten, adding more
warm-start turns brings almost no accuracy gain but delays the switch and cuts into efficiency.
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Figure 5: Average tokens per dialogue across six
datasets (LLaMA family).
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Figure 6: Average tokens per dialogue across six
datasets (Qwen family).
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Figure 7: Throughput of using different methods
on six datasets (LLaMA family)
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Figure 8: Throughput of using different methods
on six datasets (Qwen family)
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Figure 9: Ablation Studies on Qwen family

Surrogate
History-Prefix
History-FT
SOMA

Figure 10: Performance of different methods
across various ability dimensions (LLaMA).
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Figure 11: Average turns needed before switch-
ing on each dataset.
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Figure 12: Average turns needed before switch-
ing is negatively correlated with performance.
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