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ABSTRACT

Existing scalable offline In-Context Reinforcement Learning (ICRL) methods have
predominantly relied on supervised training objectives, which are known for having
limitations in offline RL settings. In this work, we investigate the integration of
reinforcement learning (RL) objectives into a scalable offline ICRL framework.
Through experiments across more than 150 datasets derived from GridWorld and
MuJoCo environments, we demonstrate that optimizing RL objectives improves
performance by approximately 30% on average compared to the widely established
Algorithm Distillation (AD) baseline across various dataset coverages, structures,
expertise levels, and environmental complexities. Our results also reveal that
offline RL-based methods, outperform online approahces, which are not specifically
designed for offline scenarios. These findings underscore the importance of aligning
the learning objectives with RL’s reward-maximization goal and demonstrates that
offline RL is a promising direction for applying in ICRL settings.

1 INTRODUCTION

The advent of sequence generation models, particularly those based on the Transformer architecture
(Vaswani, 2017), has revolutionized many fields by enabling models to generalize beyond their
training domain. In particular, large language models can perform novel tasks by processing a textual
description and a few examples provided as input without any parameter updates, a phenomenon
known as in-context (IC) learning (Brown et al., 2020). This capability is highly desirable for solving
meta-reinforcement learning tasks (Beck et al., 2023), where the goal is to produce a model capable of
generalizing to unseen tasks. Recently appeared in-context RL (Moeini et al., 2025) aims to produce
general meta-RL models with scalable architectures analogous to Large Language Models. However,
training such models online is not feasible and may be unsafe. Offline pre-training increases the
applicability of ICRL by eliminating potentially costly or dangerous online interactions, as seen
in domains such as robotics, autonomous driving, and healthcare. However, current offline ICRL
methods face critical limitations.

Established approaches such as Algorithm Distillation (AD) (Laskin et al., 2022) and Decision-
Pretrained Transformer (DPT) (Lee et al., 2024), along with their variants, have shown promise in
offline ICRL. However, none of these methods explicitly optimize for the RL objective - maximizitaion
of cumulative reward. This oversight poses significant challenges when tackling offline RL tasks,
where leveraging RL to achieve optimal behavior is crucial (Kumar et al., 2022). While recent work
(Grigsby et al., 2023; Elawady et al., 2024) has explored scalable online ICRL, these methods rely
on numerous heuristics for effective performance and remain untested in offline settings, which are
inherently more challenging (Levine et al., 2020). See Appendix A for related work.

Our main goal is to investigate whether methods that optimize RL objective can achieve significantly
better results in offline ICRL and whether this improvements are universal across various axis. In
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Figure 1: Mean test NAUC scores across environments averaged over all constructed datasets.

particular, we aim to address the following questions: 1) Does explicit optimization of the RL
objective improve performance in offline ICRL? 2) How does the effectiveness of this optimization
depend on the coverage and quality of offline datasets? 3) Do we need specialized RL techniques
from the offline RL family for effective offline ICRL? 4) How would algorithms behave if we do not
have access to learning histories but rather a bunch of data? 5) Does RL better handle mixture of
dynamics and out-of-distribution dynamics? To answer these questions, we conduct an empirical
study using more than 150 datasets derived from the widely used GridWorld and MuJoCo (Todorov
et al., 2012) tasks. We compare several RL-based approaches with Algorithm Distillation, a strong
and widely adopted supervised baseline, to evaluate the impact of explicitly optimizing for reward in
offline ICRL. To our knowledge, this is the first study to explicitly optimize the RL objective in an
offline ICRL setting using a scalable Transformer architecture.

2 PRELIMINARIES

2.1 OFFLINE IN-CONTEXT REINFORCEMENT LEARNING

Reinforcement Learning (RL) is commonly formulated as a Partially Observable Markov Decision
Process (POMDP) defined by the tuple (S,A,O, P,R,Ω, γ). At each timestep, an agent receives an
observation o ∈ O, selects an action a ∈ A according to its policy π(a | o), and receives a reward
r = R(s, a). The goal is to learn an optimal policy π∗ that maximizes the expected cumulative
discounted reward: J(π) = E [

∑∞
t=0 γ

trt | π], where rt = R(st, at). Offline RL (Levine et al.,
2020) aims to learn such a policy solely from a fixed dataset D = {(oi, ai, ri, o′i)}Ni=1 without
further interaction with the environment. In-Context RL (ICRL) (Moeini et al., 2025) aims to enable
adaptation to new tasks purely through contextual learning, without explicit parameter updates.
Offline ICRL specifically trains models on pre-collected data to infer and adapt to novel tasks at
deployment.

2.2 ALGORITHM DISTILLATION

Algorithm Distillation (AD) (Laskin et al., 2022) is a scalable offline ICRL method that serves as a
strong baseline for subsequent works (Lee et al., 2024; Elawady et al., 2024). AD distills a policy
improvement operator from a dataset

D =
{(

τGi
1 , . . . , τGi

n

)
∼ AGi

| Gi ∈ p(G)
}N

i=1
,

where AGi
is an RL algorithm trained in environment Gi, and each trajectory τGi

j =(
oj1, a

j
1, r

j
1, . . . , o

j
T , a

j
T , r

j
T

)
represents interactions collected during training. The ordered sequence

of these trajectories is referred to as a learning history.

AD trains an autoregressive Transformer Mθ to predict the next action given a segment of learning
history and the current observation oj+C

k :

âj+C
k = Mθ

(
ojT−l, a

j
T−l, r

j
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j
T , a

j
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j
T , o
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k−1 , a
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j+C
k

)
.

After pretraining, Mθ can solve unseen tasks in-context without requiring parameter updates.
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Figure 2: Overview of our approach. As the input, our approach takes a sequence of trajectories
(without hard requirements on their structure) where each transition is represented with a tuple
consisting of previous action, previous reward, previous episode’s done flag, current episode timestep
and other sequence elements marked by different timestep subscripts (t and T ) to indicate their
potential origin from distinct trajectories. Then using the resulting context embedding ct to predict
both value functions and the policy output π (for continuous-action tasks). For continuous-action
settings, the Q-heads accept an action value as input, whereas in discrete tasks they simultaneously
predict values for all possible actions, following common practice. The V-head is employed only in
IQL, while the π head is used exclusively for continuous actions. Dashed arrows denote the absence
of gradient flow.

3 METHODOLOGY

3.1 RL INCORPORATION

In this study, we use Algorithm Distillation (AD) (Laskin et al., 2022), a transformer-based (Vaswani,
2017) architecture, as our baseline. AD’s objective is to predict the next action given the improving
learning history as context, where each step is represented as a tuple (state, previous action, previous
reward). In our implementation these tuples are encoded into a single token through concatenation.

We retain the same Transformer backbone as AD but introduce several modifications to incorporate
RL objectives: inspired by Grigsby et al. (2023), input tuples are augmented with previous done flags
to indicate episode termination and current episode step; the next-action prediction head is replaced
with value-function heads trained using corresponding RL loss functions. For continuous problems,
we also add the policy head. The illustration can be found in Figure 2.

We adopt three RL methods for discrete environments. Twin Deep Q Network (DQN) (Mnih, 2013):
A simple RL method without offline-specific components. Conservative Q-Learning (CQL) (Kumar
et al., 2020): A widely used offline RL approach that incorporates value-function pessimism. And
Implicit Q-Learning (IQL) (Kostrikov et al., 2021): A popular offline RL method based on implicit
regularization, known for its strong performance across diverse tasks. Inspired by the adaptation
of IQL for the NLP tasks with ILQL (Snell et al., 2022) we add the CQL term to the IQL loss
in discrete environments. We also run tests with continuous environments where we adopt TD3
(Fujimoto et al., 2018) as online baseline, it’s minimalist TD3+BC (Fujimoto & Gu, 2021) offline
modification and continuous IQL. During inference, discrete approaches predict actions using the
argmax operator while continuous use deterministic policy output. We refer to all of the RL methods
with IC- (In-Context) prefix, i.e. IC-DQN, IC-CQL, IC-IQL, IC-TD3 and IC-TD3+BC.

3.2 ENVIRONMENTS AND DATASETS

For most of our experiments we utilize two environments used by Laskin et al. (2022): Dark Room
(DR) and Dark Key-to-Door (K2D). DR is a discrete Markov Decision Process (MDP), while K2D is
a partially observable MDP (POMDP). Both environments involve a 2D grid where the agent can
move up, down, left, right, or remain stationary, observing only its current position at each step. These
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are popular environments that allow us to scale our experiments under the limited computational
budget for obtaining trustworthy conclusions. In Section 4.5 we introduce modified DR environment
for a separate set of experiments. We also run tests using popular continuous MuJoCo environments
widely used in meta RL research (Rakelly et al., 2019): HalfCheetahVel (HCV), AntDir (ANT),
HopperParams (HPP) and Walker2DParams (WLP).

In DR, the agent starts at the center of the grid and must navigate to an unknown target goal to receive
a reward of 1. In K2D, the agent starts at a random location and must first find a "key" (reward: 1)
and then reach a "door" (reward: 1), both of which have unknown locations. In both environments
episodes terminate either upon task completion or after a fixed number of steps. In HCV agent
must run with a fixed unknown velocity, in ANT agent has to navigate to the unknown point, and
in HPP and WLP agent must move as fast as possible avoiding falling but in different instances of
environments system parameters (e.g. gravity or masses) are randomized.

For DR we consider 9x9 version with episode length of 20 and 19x19 version with episode length
of 100. For K2D we test 9x9 version with 50 steps per episode and 13x13 version with 100 steps
per episode. This allows us to test performance across different levels of complexity. MuJoCo
environments are truncated after 200 steps.

For discrete environments, we collect training histories using the Q-learning (Watkins & Dayan,
1992) algorithm, varying the number of histories per target goal (1 or 5). For DR 9x9 we form
datasets for 70, 40 and 20 train targets, for DR 19x19 we collect histories with 300, 150 and 75
train targets, and for both K2D versions we created datasets with 1000, 500 and 250 train goals. For
continuous environments we collect learning histories from 100, 50 and 25 environments instances
using Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018). To analyze the impact of data quality,
we partition the trajectory datasets into three expertise levels early, mid and late by dividing
original datasets into three equal parts trajectory-wise.

We name datasets using the following convention: {environment name}[{grid size}]-{num training
targets}-{num histories per target}[-{expertise level}]. Absence of the expertise level in the name
indicates the full (complete) dataset. For example, "DR9-70-5" refers to a complete dataset from the
9x9 DR environment with 70 training targets and 5 histories per target. Additional dataset details are
provided in Appendix C.

3.3 EVALUATION

To assess the performance of trained policies, we roll out each policy over 100 successive episodes
for all discrete environments and track performance after 25, 50, and 100 (1, 2, 4) episodes. For
continuous environments we roll out over 4 episodes and track performance after 1, 2 and 4 episodes.1
Additionally, we compute the Normalized Area Under the Curve (NAUC)2 of episode performance.
We also report metrics from the rliable library (Agarwal et al., 2021) above the tracked ones for the
reliability.

The NAUC provides a single numerical value for comparing agents, as it captures the progression of
performance over episodes while being more robust to noise than fixed-episode evaluations. Tracking
performance at fixed episodes helps identify convergence rates and potential degradation during
rollouts. NAUC is used for selecting the best hyperparameters (details in Appendix B).

For the DR environments, we evaluate on all target goals that are excluded from the training set. For
all other environments, we use a fixed set of 100 random test targets or configurations that are not
part of the training data. To ensure robustness, we follow the evaluation protocol from Tarasov et al.
(2024b), using different random seeds for hyperparameter search and final evaluation.

4 EXPERIMENTAL RESULTS

We begin this section by comparing the overall performance of the selected methods using discrete
environments, demonstrating the suitability of the newly introduced NAUC metric for evaluation.

1Note that the optimal meta policy should be able to solve all the considered discrete tasks within four
episodes and continuous tasks within one or two episodes.

2The AUC value is divided by the expert policy AUC.
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Figure 3: Top: algorithms performance across tracked metrics averaged over all discrete datasets.
Bottom: rliable performance profiles of NAUC. Left: train targets. Right: test targets.

Subsequently, we analyze the performance of these methods across critical offline RL dimensions,
including data quality and coverage. Further, we investigate the impact of removing the assumption
of access to learning histories, which may not always hold in real-world scenarios (Zisman et al.,
2023). In addition, we test the ability to learn in a mixture of dynamics along with the handling
of out-of-distribution (OOD) dynamics and run the experiment in a challenging XLand-Minigrid
(Nikulin et al., 2023) environment. In the end, we show that benefits from using RL extend to
continuous environments.

4.1 OVERALL PERFORMANCE

For this analysis, we utilized all available discrete datasets. The top graphs in Figure 3 show the
averaged metrics for both test and train targets. Across the Dark Room (DR) and Dark Key-to-Door
(K2D) environments, we observe that the tested methods maintain stable performance throughout
rollouts, confirming that NAUC is a reliable metric for comparative analysis.

The bottom plots in Figure 3 display performance profiles based on NAUC. From these results,
several key observations can be made. First, RL-based approaches consistently outperform Algorithm
Distillation (AD) on average. Second, while all RL methods show similar performance on train
targets, there are notable differences on test targets. CQL achieves the best performance on test
targets (with a 28.8% average improvement compared to AD), IQL follows closely behind (23.7%
improvement) and DQN exhibits the weakest performance among the RL methods on average (16.6%
improvement). However, it is worth noting that we did not tune hyperparameters for DQN and reused
parameters from CQL, so the DQN’s performance has a potential for improvement.

Tabular results for each dataset are provided in Appendix F, and additional rliable metrics are included
in Appendix E.1. These metrics, including the Interquartile Mean (IQM) and mean values for both
NAUC and final scores, statistically validate the superior performance of CQL over other methods.

These findings support our core assumption that optimizing the RL objective is crucial for solving
ICRL problems. Moreover, the performance gap between offline RL methods and the online-focused
DQN highlights the advantages of offline RL algorithms in this setup. It is important to note that we
have very limited hyperparameters tuning of RL approaches compared to AD tuning and potential
gains might be even higher with equal tuning budgets (see Appendix B).

4.2 VARIOUS COVERAGE

In this part of the analysis, we explore the impact of dataset coverage, a critical property in the
offline RL setup (Schweighofer et al., 2021). Coverage is examined along two axes: the number of
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unique training targets and the number of learning histories per target. While multihistory coverage is
essential for AD, it may not be feasible in real-world scenarios. To investigate these aspects, we use
the complete datasets across all environments.
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Figure 4: NAUC score comparison between considered approaches for various dataset coverage
in terms of number of train targets and histories per target. Averaged over 4 test random seeds.
Confidence intervals depict std across seeds.

The NAUC scores for each dataset are shown in Figure 4. As expected, all methods perform better
with increased target coverage and more histories per target. However, the results highlight notable
differences in performance across methods. Offline RL approaches outperform AD across most
configurations. The exception is the DR9 datasets, where AD slightly surpasses offline RL in
scenarios with 20 and 40 targets when using only one history per target. DQN also outperforms
AD on average and, surprisingly, shows superior performance over offline RL approaches on DR19
tasks. In the more complex K2D environments, RL-based methods are significantly more robust to
the absence of multiple histories per target. For K2D, RL approaches achieve close performance
with the five histories per target setup once a sufficient target coverage level is reached. In contrast,
AD experiences a notable drop in performance without repeated targets, underscoring its reliance on
repetitive learning histories.

The key takeaway is that RL-based approaches are more data-efficient than AD and demonstrate
greater tolerance for limited target repetition in learning histories. This robustness makes RL methods
more suitable for real-world applications, where complete coverage and extensive learning histories
are often unattainable.

4.3 VARIOUS EXPERTISE

Dataset expertise is another critical factor in offline RL (Schweighofer et al., 2021). In this part of
the analysis, we evaluate the performance of different methods across discrete datasets of varying
expertise levels. The "complete" datasets represent full learning histories, which were originally
proposed for AD. The mid datasets include interpolation between low-quality and near-convergence
trajectories, resembling truncated versions of the complete datasets. In contrast, early and late
datasets reflect real-world scenarios: the former consists of low-quality data that is relatively easy to
gather, while the latter comprises near-optimal examples of problem solutions. Detailed statistics for
these datasets can be found in Appendix C.

Figure 5 shows the test NAUC scores for the various dataset types. AD performs notably poorly on
early datasets, failing to produce policies with NAUC scores higher than 0.4. In contrast, all RL
approaches achieve significantly higher scores. DQN emerges as the best-performing method in this
setup, likely because low-quality datasets require less regularization, allowing the agent to pursue
higher rewards. CQL, which is implemented with cross-entropy loss in discrete cases, can be viewed
as an interpolation between DQN and AD. Its performance is closer to AD when the regularization
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Figure 5: rliable performance profiles of NAUC for various discrete datasets expertise. Top, from left
to right: early, mid, late datasets. Bottom: complete learning histories.

coefficient is high, which limits its potential on low-quality datasets. Reducing CQL’s pessimism
might yield better results than DQN, but we did not test it due to computational constraints.

As anticipated, the mid and complete datasets exhibit similar performance trends, with AD remaining
the weakest approach and CQL leading, closely followed by IQL. Surprisingly, AD performs
competitively on late datasets with high coverage, despite the lower data diversity in these datasets.
In contrast, DQN’s performance on late datasets is significantly weaker than the offline RL methods,
further underscoring the importance of offline regularization. Additional rliable metrics and final
performance scores in Appendix E.2 statistically validate these observations.

In summary, the experiments highlight that RL-based methods outperform AD across datasets of
varying expertise levels. However, the results also suggest that the hyperparameters of offline RL
methods need to be carefully tuned to match the quality of the available data, an aspect not fully
explored in this iteration of the study.

4.4 NO LEARNING HISTORIES STRUCTURE
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Figure 6: NAUC test scores on DR19 and K2D13 datasets with different data structures. Top:
performance splitted across environments and dataset coverages. Bottom: rliable performance
profiles for random data order (left) and sorted samples (right).

Algorithm Distillation relies on the availability of progressing learning histories, with multiple
behavior policies collecting data for each task. In practice, however, such structured data is rarely
available. To address this, we conducted experiments to evaluate how all considered approaches
perform when the inherent ordering of learning histories is absent. First, we tested the algorithms
using a randomly shuffled dataset, which disrupts the sequential improvement that AD is designed
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to distill. To counteract this, we also investigated an approach to build some order: after randomly
sampling trajectories, we sort them based on their discounted return values. Although this sorting
method may be sensitive to the choice of discount factor, we found it to work effectively for some
tasks.

For these experiments, we used complete datasets from the DR19 and K2D13 environments with one
learning history per target, as this represents a more realistic scenario.

As illustrated in Figure 6, on average, RL approaches outperform AD when the data is randomly
ordered, with the sole exception of CQL on the DR19-300-1 dataset. Under random ordering, there is
little difference among the RL methods on K2D13, while on DR19 DQN exhibits notable superiority
– a result that is consistent with observations on highly sub-optimal (early) datasets. When the
unordered data is sorted by discounted return, offline RL methods consistently outperform both AD
and DQN in K2D environment. In the DR19 environment, however, only CQL (which can be seen as
an interpolation between AD and DQN) maintains its performance lead, while IQL shows diminished
results. Surprisingly, on DR19, both DQN and IQL perform better with randomly ordered data than
with sorted samples. We do not yet have a plausible explanation for this phenomenon or why it
appears exclusively in the simpler DR19 environment.

In summary, CQL demonstrates the best performance across different environments and dataset
coverages without learning histories access. Additional metrics presented in Appendix E.3 further
support this finding.

4.5 MIXTURE OF DYNAMICS
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Figure 7: Left: Visualization of the Janus test environment. Right: NAUC scores averaged over all
Janus datasets, with metrics reported separately for targets located in the first and second zones of
the Janus environment. The top values show performance when trained agents are deployed in the
standard DR19 environment, while the bottom values reflect performance when deployed in the Janus
grid.

In this experiment, we investigate how algorithms perform when trained on environments with
different dynamics and subsequently deployed into an environment featuring OOD dynamics. To this
end, we introduce a modified version of the DR19 environment, called Janus3. In the Janus setup,
learning histories are independently collected from two distinct instances of DR19, each governed
by a different dynamic function (for example, actions in the second instance may map to inverted
directions). Consequently, the training dataset includes examples of behavior under both dynamics,
yet no single history contains a mixture of these dynamics. After training the agent on this combined
dataset, we deploy it into a grid where the first half exhibits one dynamic and the second half the
other, as illustrated in the left graph of Figure 7. The complete datasets are collected using the
same configuration as for DR19, with the only modification being that for each learning history, the
underlying environment dynamic is uniformly selected at random.

3Ancient Roman two-faced god of duality.
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This experimental setup allows us to assess how effectively different approaches learn and generalize
across multiple dynamics, as well as how they cope with an environment that blends these dynamics in
a single deployment. Given the increased task complexity, we extended the number of rollout episodes
to 200. The results, presented in the right plot of Figure 7, indicate that when an agent is trained
on both dynamics and deployed into an environment featuring only one of them, its performance
remains comparable across dynamics. However, when tested in an environment that combines both
dynamics, performance decreases for both, with a more pronounced drop in one of the dynamics.
This discrepancy is likely influenced by the asymmetry of the test environment, where the central
starting position falls within the second dynamic. Ideally, a robust agent should perform uniformly
well under both dynamics.

Across all conditions, RL-based approaches continue to demonstrate superiority over AD. In isolated
tests, IQL outperforms AD by approximately 50%, while DQN and CQL achieve roughly twice
the performance of AD. In the Janus environment, RL methods better preserve performance under
one dynamic (as evidenced by the slopes of the performance lines) and exhibit slightly improved
performance under the other dynamic. It is not surprising that offline RL counterparts do not provide
benefits due to the fact that offline algorithms are supposed to avoid the OOD state-action pairs which
are unavoidable in the Janus setup and considered offline approaches do not provide guarantees for
this case. Tabular scores can be found in Appendix F.8.

4.6 XLAND-MINIGRID EVALUATION

Table 1: XLand-Minigrid trivial tiny dataset test tasks scores. Statistics are averaged over 4 random
seeds.

Metric AD IC-DQN IC-CQL IC-IQL
NAUC 0.22 ± 0.03 0.42 ± 0.03 0.40 ± 0.04 0.46 ± 0.03
Last episode mean return 0.21 ± 0.02 0.43 ± 0.05 0.39 ± 0.03 0.45 ± 0.05

To further validate our approach in more challenging settings, we evaluate our methods on the
XLand-Minigrid trivial environment (Nikulin et al., 2023) using datasets provided by Nikulin et al.
(2024). In order to keep the experiments tractable, we reduce the dataset size by selecting only one
learning history per rule set and retaining only the first third of transitions from each history. This
subsampling results in a dataset that is just 1% of the original size, which we refer to as the tiny
dataset.

Table 1 presents the performance results on this dataset, reporting both the NAUC and the mean
return from the last episode. The results show that RL-based approaches significantly outperform
AD: NAUC and mean return scores for RL methods are approximately twice as high as those for AD.
Among the RL approaches, DQN slightly outperforms CQL, while IQL achieves marginally better
performance than DQN.

It is noteworthy that in the original work (Nikulin et al., 2024), AD achieved a mean performance of
approximately 0.4 using 100 times more data and three times more rollout episodes (500 episodes
compared to 150 in our experiments). These findings clearly demonstrate that the benefits of explicitly
optimizing RL objectives extend to more complex and data-sparse environments.

4.7 CONTINUOUS STATE AND ACTION SPACES
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Figure 8: rliable performance profiles of NAUC for various continuous datasets expertise. Top, from
left to right: early, mid, late datasets. Bottom: complete learning histories.
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Thus far, our experiments have focused on discrete environments, which offer a controlled setting to
analyze the behavior of RL-based ICRL methods. However, many real-world applications – ranging
from robotics and autonomous driving to control tasks – operate in continuous state and action spaces.
In this subsection, we extend our experimental analysis to continuous environments to determine
how explicit RL objective optimization performs when faced with the additional challenges posed by
infinite state and action spaces. This exploration aims to bridge the gap between our current discrete
experiments and the demands of real-world applications, ultimately paving the way for broader
adoption and further refinement of offline ICRL methods.

In Figure 8, we present performance profiles for AD, the online RL method TD3 (Fujimoto et al.,
2018), its lightweight offline RL counterpart TD3+BC (Fujimoto & Gu, 2021) and IQL. Consistent
with our findings in Section 4.3, the offline RL approaches (TD3+BC and IQL) significantly outper-
form AD across most setups, with AD matching performance only on late (near-expert behavior)
datasets. IQL performs slightly worse than TD3+BC on average. Notably, a key difference emerges
between continuous and discrete environments: the online RL method (TD3) demonstrates lower
performance than AD in continuous domains, likely due to the more severe challenges posed by
out-of-distribution states and actions. These results underscore that ICRL methods incorporating
offline RL components not only achieve better performance but also highlight the critical importance
of the offline component in continuous settings. See Appendix E and Appendix F for more results
and metrics.

5 CONCLUSION AND FUTURE WORK

In this work, we have demonstrated that explicitly optimizing RL objectives is highly beneficial
for offline ICRL. Our experiments reveal that incorporating RL optimization leads to improved
performance across a variety of environments, dataset coverage levels, and dataset expertise and
structure conditions. In particular, even under much smaller hyperparameters tunning budget offline
RL approaches consistently outperform Algorithm Distillation and are usually more effective than
online methods, highlighting the advantages of offline-specific regularizations and methodologies in
many ICRL scenarios.

Future work should extend this study by evaluating more complex environments such as NetHack
(Küttler et al., 2020; Kurenkov et al., 2024) or more setups of XLand-MiniGrid (Nikulin et al., 2023;
2024). Additionally, it is essential to explore ICRL in settings with observations, e.g. Meta-World
(Yu et al., 2020), to further validate and generalize our findings.

Our approach can be further enhanced by incorporating several modifications that have proven
effective for Transformer-based RL solutions. For example, integrating adjustments from methods
like AMAGO and ReLIC (Grigsby et al., 2023; Elawady et al., 2024), employing N-gram heads
(Akyürek et al., 2024; Zisman et al., 2024), or adopting mixture-of-experts (MoE) architectures
(Shazeer et al., 2017; Obando-Ceron et al., 2024) could all contribute to improved performance.
Additionally, replacing the regression loss used for value functions with a classification objective
has demonstrated promising results (Farebrother et al., 2024) but should be carefully integrated in
offline setup (Tarasov et al., 2024a). These potential enhancements underscore the flexibility of our
framework and point to exciting avenues for future research.

It is also important to investigate usefulness of RL approaches in creating generalist models which
are trained to operate in various environments which was recently done for Algorithm Distillation
(Polubarov et al., 2025) or generalization to completely new environments as it was done by Raparthy
et al. (2023).

Another promising direction for future work is to investigate the application of offline In-Context
RL methods in an offline-to-online setting (Nair et al., 2020; Lee et al., 2022), where model weights
are updated during rollouts. While this approach does not offer benefits when using the supervised
objectives, the explicit RL objectives we optimize have the potential to further improve performance.

Overall, our results underscore the importance of aligning learning objectives with the intrinsic goals
of Reinforcement Learning, setting the stage for more robust and efficient offline ICRL methods.
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A RELATED WORK

A.1 OFFLINE REINFORCEMENT LEARNING

Offline RL aims to train agents that maximize reward using pre-collected datasets without interacting
with the environment. This setup introduces unique challenges, particularly in handling out-of-
distribution (OOD) state-action pairs (Levine et al., 2020). Over the years, this field has witnessed
rapid development, with various methods proposed to address these challenges (Kumar et al., 2020;
An et al., 2021; Kostrikov et al., 2021; Fujimoto & Gu, 2021). In our study we test widely adopted
offline RL baselines for offline ICRL setting in order to demonstrate benefits they bring as reward
maximization algorithms. For discrete environments we used Conservative Q-learning (CQL) (Kumar
et al., 2020) and Implicit Q-learning (IQL) (Kostrikov et al., 2021). Based on findings from Tarasov
et al. (2024c), for continuous environments we used IQL and simple yet effective (Tarasov et al.,
2024b) TD3+BC (Fujimoto & Gu, 2021) approach.

A prominent direction in offline RL involves modeling trajectories with Transformers through
supervised learning, as first introduced by Decision Transformer (DT) (Chen et al., 2021). However,
subsequent studies (Yamagata et al., 2023; Hu et al., 2024; Zhuang et al., 2024) demonstrated that
supervised approaches, which lack explicit reward maximization, often fail with low-quality datasets
or datasets which do not contain problem solving trajectories. They struggle to "stitch" suboptimal
trajectories into optimal policies – a limitation that can be addressed by methods that directly optimize
RL objectives. Our intuition tells that in the context of offline ICRL similar issues might arise when
reward is not maximized which is confirmed by our experiments.

A.2 SCALABLE IN-CONTEXT REINFORCEMENT LEARNING

Algorithm Distillation (AD) (Laskin et al., 2022) marked a significant step towards scalable In-Context
RL (ICRL) by leveraging Transformer architectures to learn an "improvement" operator. It does so
by distilling information from the training histories of single-task agents across various environments.
AD assumes access to complete training histories, which may not always be available. In this work
we demonstrate that RL-based approaches can levarage datasets more efficiently (especially datasets
with low-quality demonstrations) and are able to handle unstructured data better.

Decision-Pretrained Transformer (DPT) (Lee et al., 2024) introduced another approach, focusing
on predicting optimal actions from historical data and a given state. However, this method assumes
access to an oracle for optimal action sampling, which is often impractical. RL-based methods that
we test in this work do not require access to the oracle.

Neither AD, DPT, nor their follow-up modifications (Sinii et al., 2023; Schmied et al., 2024; Dai
et al., 2024; Huang et al., 2024; Son et al., 2024; Zisman et al., 2024) optimize RL objectives
during offline training. This omission can result in suboptimal policies, as these methods essentially
adapt supervised learning techniques like DT to the offline ICRL setting, without addressing the
fundamental reward maximization goal of RL.

Recent works such as AMAGO (Grigsby et al., 2023) and ReLIC (Elawady et al., 2024) have explored
scalable In-Context RL by incorporating off-policy RL techniques. These methods outperform
AD and DT in online RL setups but have yet to be tested in offline environments. Offline RL
presents distinct challenges—such as the inability to interact with the environment—that make direct
application of online approaches less effective (Fujimoto et al., 2019; Levine et al., 2020). This gap
underscores the need for offline-specific methods that explicitly optimize RL objectives. Moreover,
AMAGO and ReLIC rely on many implementation details and in this work we demonstrate that solid
performance can be achieved without complex modifications.

B ADDITIONAL EXPERIMENTAL DETAILS

All experiments were conducted using NVIDIA H100 GPUs.
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B.1 IMPLEMENTATION DETAILS

Our implementation of Algorithm Distillation (AD) is based on the Decision Transformer (DT)
codebase from Tarasov et al. (2024c). In our version, we remove the return-to-go input and merge
state, action, and reward into a single token. This tokenization strategy reduces the overall Transformer
sequence length, thereby decreasing both computation time and memory usage. When solving XLand-
Minigrid we use similar implementation from Nikulin et al. (2024).

When adapting AD for Reinforcement Learning, we add value function and policy heads (for
continuous problems) on top of the original AD backbone. The value heads heads are implemented
as two-layer multilayer perceptrons (MLPs) with a Leaky ReLU activation function between layers.
Policy heads are three-layer MLPs and analagous to AMAGO (Grigsby et al., 2023) we do not pass
gradients to the Transformer backbone from these heads to improve training stability. There are
also standard for RL target value function heads. To provide richer input information, we merge
the additional previous done flag and step number with the (state, previous action, previous reward)
token. In continuous environments Q value heads get the current action as additional input. For
continuous IQL we also had to add LayerNorm (Ba et al., 2016) into the heads in order to stabilize
learning process.

B.2 HYPERPARAMETERS CHOICE

For hyperparameter tuning, we use the NAUC metric to select the best model configuration. The
tuning is performed on the largest complete dataset, and the best hyperparameters are then applied
across other datasets, even though this may result in suboptimal performance, especialy for offline
RL approaches.

For AD, we tuned parameters that strongly influence performance, including attention dropout,
embedding dropout, and residual dropout (each varied over values {0.1, 0.3, 0.5}), label smoothing
for discrete environments (tested with values {0.1, 0.3}) and Transformer sequence length (tested
over {100, 200}). This tuning resulted in 54 candidate hyperparameter sets. The best values, along
with other general hyperparameter settings, are documented in Appendix D.

Due to computational constraints, the hyperparameters identified for AD were reused for the RL
approaches. In the case of CQL, we tuned the discount factor γ over values {0.8, 0.9, 0.95} for
XLand-Minigrid and {0.7, 0.8, 0.9} for other environments, and adjusted the CQL weight to be
within 0.1, 0.3, 0.5 for DR environments, within 0.3, 0.5, 1.0 for Dark K2D environments, within
0.01, 0.05, 0.1 for Janus, and within 0.01, 0.1, 0.5 for XLand-Minigrid. For DQN, we simply adopted
the γ values found for CQL without additional tuning. Discrete IQL was tuned over a discount factor
γ with the same configuration as for CQL, an IQL parameter τ over {0.5, 0.7, 0.9}, and used a CQL
weight of either 0.0 or the best value found for CQL. For TD3+BC we tuned discount factor over
{0.9, 0.95, 0.99} and BC weight over {0.1, 0.3, 1.0}, for TD3 we reuse TD3+BC best discount factor
and set BC weight to zero. For continuous IQL, we ran discount factor search over the same values as
for TD3+BC, IQL τ over {0.5, 0.7, 0.9} and IQL β over {1, 3, 10}. This tuning yielded 9 candidate
configurations for CQL and TD3+BC, 18 for discrete IQL, substantially fewer than those evaluated
for AD. For continuous IQL, it resulted in 27 candidates, which is twice less than AD search space.

Each approach was trained over a fixed number of epochs to account for varying dataset sizes: 30
epochs for DR9, HPP and WLP, 15 epochs for HCV, 10 epochs for DR19, K2D9 and ANT, 6 epochs
for K2D13. We track metrics after each epoch and report the mean value across multiple seeds for the
epoch according to the best NAUC value. Notably, we observed that AD exhibits greater instability
during training compared to the RL approaches, meaning that our design choices in the experimental
protocol tend to favor AD, yet its performance remains inferior.

Preliminary experiments indicated that an important hyperparameter controlling AD subsampling
is best set to 4 for DR and continous environments and 8 for K2D. When evaluating on incomplete
datasets, we reduced these values to 1 for DR and continuous environments and to 2 for K2D to
maintain a consistent number of trajectories. In Section 4.4 the subsample parameter was set to 1, as
it does not have any motivation there and would just discard a large number of trajectories.

For a complete list of hyperparameter values, please refer to Appendix D.
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C DATASETS DETAILS

In this section, we describe the data collection process and provide detailed statistics for each of the
obtained datasets. We do not provide data for Janus datasets as they are very similar to DR19.

C.1 DATA COLLECTION

Discrete Environments. To construct the complete discrete datasets, we employed a tabular Q-
learning algorithm (Watkins & Dayan, 1992) with a linearly decayed ϵ-greedy exploration strategy.
For the K2D environments, which are originally formulated as POMDPs and require memory to solve,
we doubled the state space by mapping each grid position to two distinct states: one corresponding to
the scenario where the key has not been collected and the other where it has. This transformation
effectively converts K2D into a fully observable MDP. The hyperparameter values used for Q-learning
across all dataset collections are provided in Table 2.

Table 2: Q-learning hyperparameters for DR and K2D data collection.

Hyperparameter Value

Learning rate 0.9933
Discount factor (γ) 0.9
Number of episodes 200

Continous Environments. For collecting the learning histories in continuous environments we used
SAC implementation from Clean RL (Huang et al., 2022). We kept most of the SAC hyperparameters
default and we present the varied subset in Table 3.

Table 3: SAC hyperparameters for HCV, ANT, HPP and WLP data collection.

Hyperparameter Value

Critic learning rate 3e-4 for HCV and ANT
1e-4 for HPP and WLP

Actor learning rate 3e-4 for HCV and ANT
1e-4 for HPP and WLP

Discount factor (γ) 0.99
Number of timesteps 100000 for HCV

400000 for ANT
10000 for HPP and WLP

Warm-up timesteps 2000

Datasets representing various levels of expertise are derived by segmenting the complete learning
histories into three equal parts on a trajectory-wise basis.

C.2 LEARNING CURVES

The learning curves presented in the following graphs illustrate the average returns for all datasets as
a function of the episode number within the learning history. By concatenating the early, mid, and
late segments, we obtain the complete dataset curves. We do not provide curves for the HPP and
WLP due to the variable amount of episodes for each learning history.
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Figure 9: Q-learning DR9 learning curves.
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Figure 10: Q-learning DR19 learning curves.
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Figure 11: Q-learning K2D9 learning curves.
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Figure 12: Q-learning DR13 learning curves.
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Figure 13: SAC HCV learning curves.
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Figure 14: SAC ANT learning curves.
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C.3 DATASETS STATISTICS

Table 4: XLand-MiniGrid trivial tiny statistics.

Dataset Size Mean trajectory length Mean trajectory return Success rate

XLand-MiniGrid trivial tiny 203090000 129.77 0.48 0.58

Table 5: DR9 datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return Success rate

DR9-20-1-early 21218 16.07 0.32 0.32
DR9-20-1-mid 13155 9.97 0.74 0.74
DR9-20-1-late 6497 4.92 0.98 0.98
DR9-20-1 41126 10.28 0.69 0.69

DR9-20-5-early 107351 16.27 0.31 0.31
DR9-20-5-mid 62630 9.49 0.78 0.78
DR9-20-5-late 31339 4.75 0.98 0.98
DR9-20-5 202655 10.13 0.69 0.69

DR9-40-1-early 44329 16.79 0.27 0.27
DR9-40-1-mid 28585 10.83 0.72 0.72
DR9-40-1-late 14164 5.37 0.98 0.98
DR9-40-1 87673 10.96 0.66 0.66

DR9-40-5-early 221731 16.80 0.27 0.27
DR9-40-5-mid 139820 10.59 0.73 0.73
DR9-40-5-late 72883 5.52 0.96 0.96
DR9-40-5 437283 10.93 0.65 0.65

DR9-70-1-early 77758 16.83 0.27 0.27
DR9-70-1-mid 48926 10.59 0.74 0.74
DR9-70-1-late 24940 5.40 0.98 0.98
DR9-70-1 152609 10.90 0.66 0.66

DR9-70-5-early 388911 16.84 0.27 0.27
DR9-70-5-mid 246344 10.66 0.73 0.73
DR9-70-5-late 127897 5.54 0.96 0.96
DR9-70-5 768396 10.98 0.65 0.65
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Table 6: DR19 datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return Success rate

DR19-75-1-early 420339 84.92 0.22 0.22
DR19-75-1-mid 280925 56.75 0.55 0.55
DR19-75-1-late 146170 29.53 0.82 0.82
DR19-75-1 853890 56.93 0.53 0.53

DR19-75-5-early 2131932 86.14 0.21 0.21
DR19-75-5-mid 1441194 58.23 0.54 0.54
DR19-75-5-late 733739 29.65 0.82 0.82
DR19-75-5 4338440 57.85 0.52 0.52

DR19-150-1-early 844293 85.28 0.22 0.22
DR19-150-1-mid 562681 56.84 0.55 0.55
DR19-150-1-late 289073 29.20 0.82 0.82
DR19-150-1 1708314 56.94 0.53 0.53

DR19-150-5-early 4225426 85.36 0.22 0.22
DR19-150-5-mid 2819202 56.95 0.55 0.55
DR19-150-5-late 1455768 29.41 0.82 0.82
DR19-150-5 8563461 57.09 0.53 0.53

DR19-300-1-early 1719628 86.85 0.20 0.20
DR19-300-1-mid 1161116 58.64 0.53 0.53
DR19-300-1-late 604069 30.51 0.81 0.81
DR19-300-1 3511094 58.52 0.52 0.52

DR19-300-5-early 8584583 86.71 0.20 0.20
DR19-300-5-mid 5870842 59.30 0.53 0.53
DR19-300-5-late 2993142 30.23 0.81 0.81
DR19-300-5 17580304 58.60 0.52 0.52

Table 7: K2D9 datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return Success rate

K2D9-250-1-early 776325 47.05 0.65 0.14
K2D9-250-1-mid 505820 30.66 1.68 0.70
K2D9-250-1-late 244008 14.79 1.98 0.98
K2D9-250-1 1536153 30.72 1.44 0.61

K2D9-250-5-early 3887625 47.12 0.65 0.14
K2D9-250-5-mid 2535825 30.74 1.68 0.70
K2D9-250-5-late 1227843 14.88 1.98 0.98
K2D9-250-5 7701588 30.81 1.44 0.61

K2D9-500-1-early 1560936 47.30 0.64 0.13
K2D9-500-1-mid 1021017 30.94 1.67 0.70
K2D9-500-1-late 494081 14.97 1.98 0.98
K2D9-500-1 3095911 30.96 1.44 0.61

K2D9-500-5-early 7800316 47.27 0.64 0.13
K2D9-500-5-mid 5066158 30.70 1.68 0.70
K2D9-500-5-late 2478549 15.02 1.98 0.98
K2D9-500-5 15446515 30.89 1.44 0.61

K2D9-1000-1-early 3127972 47.39 0.64 0.12
K2D9-1000-1-mid 2046177 31.00 1.68 0.70
K2D9-1000-1-late 994116 15.06 1.98 0.98
K2D9-1000-1 6208094 31.04 1.44 0.60

K2D9-1000-5-early 15621614 47.34 0.64 0.13
K2D9-1000-5-mid 10132408 30.70 1.69 0.70
K2D9-1000-5-late 4941080 14.97 1.98 0.98
K2D9-1000-5 30894006 30.89 1.44 0.61
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Table 8: K2D13 datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return Success rate

K2D13-250-1-early 1574100 95.40 0.57 0.10
K2D13-250-1-mid 1052247 63.77 1.55 0.60
K2D13-250-1-late 487589 29.55 1.95 0.95
K2D13-250-1 3137407 62.75 1.36 0.55

K2D13-250-5-early 7869792 95.39 0.57 0.10
K2D13-250-5-mid 5223538 63.32 1.56 0.61
K2D13-250-5-late 2391714 28.99 1.95 0.95
K2D13-250-5 15593413 62.37 1.36 0.56

K2D13-500-1-early 3151770 95.51 0.56 0.10
K2D13-500-1-mid 2125016 64.39 1.54 0.59
K2D13-500-1-late 986467 29.89 1.95 0.95
K2D13-500-1 6309472 63.09 1.36 0.55

K2D13-500-5-early 15777391 95.62 0.56 0.10
K2D13-500-5-mid 10642766 64.50 1.54 0.59
K2D13-500-5-late 4846718 29.37 1.95 0.95
K2D13-500-5 31478474 62.96 1.36 0.55

K2D13-1000-1-early 6301009 95.47 0.56 0.10
K2D13-1000-1-mid 4188247 63.46 1.55 0.61
K2D13-1000-1-late 1930904 29.26 1.95 0.95
K2D13-1000-1 12508282 62.54 1.36 0.56

K2D13-1000-5-early 31547429 95.60 0.56 0.10
K2D13-1000-5-mid 21152907 64.10 1.55 0.60
K2D13-1000-5-late 9596737 29.08 1.95 0.95
K2D13-1000-5 62722139 62.72 1.36 0.55

Table 9: HCV datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return

HCV-25-1-early 830000 200.00 -317.43
HCV-25-1-mid 830000 200.00 -183.93
HCV-25-1-late 830000 200.00 -102.40
HCV-25-1 2500000 200.00 -200.97

HCV-50-1-early 1660000 200.00 -332.00
HCV-50-1-mid 1660000 200.00 -198.24
HCV-50-1-late 1660000 200.00 -109.20
HCV-50-1 5000000 200.00 -212.86

HCV-100-1-early 3320000 200.00 -311.78
HCV-100-1-mid 3320000 200.00 -182.78
HCV-100-1-late 3320000 200.00 -99.38
HCV-100-1 10000000 200.00 -197.70
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Table 10: ANT datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return

ANT-25-1-early 3330000 200.00 173.81
ANT-25-1-mid 3330000 200.00 530.98
ANT-25-1-late 3330000 200.00 725.87
ANT-25-1 10000000 200.00 477.06

ANT-50-1-early 6660000 200.00 174.28
ANT-50-1-mid 6660000 200.00 512.84
ANT-50-1-late 6660000 200.00 699.77
ANT-50-1 20000000 200.00 462.46

ANT-100-1-early 13320000 200.00 176.09
ANT-100-1-mid 13320000 200.00 525.65
ANT-100-1-late 13320000 200.00 714.36
ANT-100-1 40000000 200.00 472.20

Table 11: HPP datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return

HPP-25-1-early 37549 21.35 17.11
HPP-25-1-mid 49040 27.88 33.49
HPP-25-1-late 160671 91.34 164.30
HPP-25-1 248832 46.89 71.72

HPP-50-1-early 75071 21.70 17.64
HPP-50-1-mid 97406 28.15 33.86
HPP-50-1-late 322563 93.23 166.08
HPP-50-1 497329 47.69 72.56

HPP-100-1-early 151372 21.90 17.73
HPP-100-1-mid 196313 28.40 34.34
HPP-100-1-late 642446 92.93 169.42
HPP-100-1 994458 47.73 73.85

Table 12: WLP datasets statistics.

Dataset Size Mean trajectory length Mean trajectory return

WLP-25-1-early 32114 20.92 3.30
WLP-25-1-mid 35679 23.24 6.51
WLP-25-1-late 179708 117.07 122.93
WLP-25-1 248319 53.67 44.19

WLP-50-1-early 64537 21.08 3.61
WLP-50-1-mid 72339 23.62 7.14
WLP-50-1-late 357409 116.72 120.60
WLP-50-1 496424 53.74 43.67

WLP-100-1-early 131731 21.05 4.10
WLP-100-1-mid 150639 24.08 9.28
WLP-100-1-late 706669 112.94 121.11
WLP-100-1 992983 52.61 44.73
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D HYPERPARAMETERS

Table 13: AD general hyperparameters. The approximate model size is 25,000,000 parameters for
XLand-MiniGrid and 12,500,000 parameters for other environments.

Hyperparameter Value

AD hyperparameters

Optimizer Adam (Kingma, 2014)
Batch size 512
Sequence length 100, HCV, ANT

120, DR9
200, K2D9, HPP, WLP
400, DR19 and K2D19
512, XLand-MiniGrid

Learning rate 0.0003
Learning schedule Constant
Adam betas (0.9, 0.99)
Clip grad norm 1.0
Weight decay 0.0
Subsample 4, for complete ANT and DR datasets

1, for incomplete DR and continuous datasets
8, for complete K2D datasets
2, for incomplete K2D and complete continuous (except ANT) datasets
0.5, for XLand-MiniGrid (XLand-MiniGrid AD implementation
uses different subsample strategy.)

Architecture

Number of layers 8, for XLand-MiniGrid
4, otherwise

Number of attention heads 8, for XLand-MiniGrid
4, otherwise

Embedding dimension 512
Activation function GELU

Table 14: AD per-environment tuned parameters.

Environment Attention Dropout Embedding Dropout Residual Dropout Label Smoothing

DR9 0.5 0.1 0.1 0.3
DR19 0.5 0.5 0.3 0.1
K2D9 0.1 0.5 0.1 0.3
K2D19 0.1 0.5 0.1 0.3
Janus 0.5 0.5 0.1 0.3
XLand-MiniGrid trivial tiny 0.1 0.5 0.1 0.3
HCV 0.1 0.1 0.5 -
ANT 0.3 0.1 0.1 -
HPP 0.3 0.3 0.3 -
WLP 0.1 0.5 0.5 -
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Table 15: CQL per-environment tuned parameters.

Environment Discount Factor γ CQL weight

DR9 0.7 0.3
DR19 0.8 0.3
K2D9 0.7 1.0
K2D19 0.7 1.0
Janus 0.8 0.01
XLand-MiniGrid trivial tiny 0.9 0.01

Table 16: Discrete IQL per-environment tuned parameters.

Environment Discount Factor γ CQL weight IQL τ

DR9 0.7 0.3 0.9
DR19 0.8 0.0 0.7
K2D9 0.7 1.0 0.5
K2D19 0.7 1.0 0.7
Janus 0.8 0.01 0.7
XLand-MiniGrid trivial tiny 0.9 0.0 0.9

Table 17: TD3+BC per-environment tuned parameters.

Environment Discount Factor γ BC weight

HCV 0.9 0.3
ANT 0.9 1.0
HPP 0.99 1.0
WLP 0.99 1.0
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E ADDITIONAL PLOTS AND METRICS

E.1 OVERALL PERFORMANCE
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Figure 15: Median, IQM and mean of NAUC computed with rliable approach across all available
discrete datasets. Top: train targets. Bottom: test targets.
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Figure 16: rliable performance profiles of the 100th episode scores across all available discrete
datasets. Left: train targets. Right: test targets.
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Figure 17: Median, IQM and mean of 100th episode scores computed with rliable approach across
all available discrete datasets. Top: train targets. Bottom: test targets.
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Figure 18: rliable metrics of the NAUC across all available continuous datasets. Top: performance
profiles. Bottom: median, IQM and mean.
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Figure 19: rliable performance profiles of 100th episode scores for various discrete datasets expertise.
Top, from left to right: early, mid, late datasets. Bottom: complete learning histories.
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Figure 20: Median, IQM and mean of NAUC and 100th episode scores computed with rliable
approach across early discrete datasets for test targets. Top: NAUC. Bottom: 100th episode
performance.
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Figure 21: Median, IQM and mean of NAUC and 100th episode scores computed with rliable approach
across mid discrete datasets for test targets. Top: NAUC. Bottom: 100th episode performance.
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Figure 22: Median, IQM and mean of NAUC and 100th episode scores computed with rliable
approach across late discrete datasets for test targets. Top: NAUC. Bottom: 100th episode
performance.
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Figure 23: Median, IQM and mean of NAUC and 100th episode scores computed with rliable
approach across complete discrete datasets for test targets. Top: NAUC. Bottom: 100th episode
performance.
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Figure 24: Median, IQM and mean of NAUC computed with rliable approach across continous
datasets for test instances.
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E.3 NO LEARNING HISTORIES STRUCTURE
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Figure 25: rliable performance profiles of the 100th episode scores on test targets across all DR19
and K2D13 complete datasets without learning histories. Left: random trajectories order. Right:
trajectories sorted within random subset.
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Figure 26: Median, IQM and mean of NAUC for test targets computed with rliable approach across
all DR19 and K2D13 complete datasets without learning histories. Top: random trajectories order.
Bottom: trajectories sorted within random subset.
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Figure 27: Median, IQM and mean of the 100th episode scores for test targets computed with rliable
approach across all DR19 and K2D13 complete datasets without learning histories. Top: random
trajectories order. Bottom: trajectories sorted within random subset.
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F TABULAR RESULTS

In this section, we provide numerical values of NAUC and final performance (after 100 episodes) for
all methods. Means and stds are computed over 4 random seeds.

F.1 DISCRETE TRAIN NAUC

Table 18: Train targets performances measured with NAUC on early datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-early 0.25 ± 0.03 0.26 ± 0.04 0.31 ± 0.04 0.33 ± 0.02
DR9-20-5-early 0.23 ± 0.00 0.64 ± 0.08 0.63 ± 0.05 0.55 ± 0.01
DR9-40-1-early 0.21 ± 0.00 0.42 ± 0.09 0.35 ± 0.05 0.37 ± 0.04
DR9-40-5-early 0.30 ± 0.04 0.72 ± 0.10 0.67 ± 0.04 0.75 ± 0.01
DR9-70-1-early 0.24 ± 0.04 0.56 ± 0.14 0.42 ± 0.03 0.34 ± 0.16
DR9-70-5-early 0.29 ± 0.03 0.81 ± 0.07 0.76 ± 0.05 0.64 ± 0.04
DR19-75-1-early 0.12 ± 0.01 0.25 ± 0.07 0.13 ± 0.02 0.18 ± 0.06
DR19-75-5-early 0.12 ± 0.01 0.60 ± 0.05 0.35 ± 0.03 0.32 ± 0.08
DR19-150-1-early 0.11 ± 0.01 0.30 ± 0.06 0.22 ± 0.06 0.16 ± 0.06
DR19-150-5-early 0.12 ± 0.01 0.65 ± 0.04 0.37 ± 0.04 0.29 ± 0.18
DR19-300-1-early 0.12 ± 0.01 0.31 ± 0.08 0.19 ± 0.03 0.03 ± 0.04
DR19-300-5-early 0.11 ± 0.02 0.68 ± 0.23 0.40 ± 0.03 0.33 ± 0.19
K2D9-250-1-early 0.13 ± 0.01 0.48 ± 0.09 0.14 ± 0.01 0.13 ± 0.01
K2D9-250-5-early 0.24 ± 0.02 0.77 ± 0.04 0.65 ± 0.01 0.61 ± 0.02
K2D9-500-1-early 0.16 ± 0.01 0.61 ± 0.03 0.41 ± 0.04 0.23 ± 0.08
K2D9-500-5-early 0.36 ± 0.02 0.84 ± 0.08 0.62 ± 0.02 0.57 ± 0.04
K2D9-1000-1-early 0.20 ± 0.01 0.71 ± 0.09 0.57 ± 0.03 0.53 ± 0.05
K2D9-1000-5-early 0.42 ± 0.01 0.87 ± 0.04 0.63 ± 0.01 0.55 ± 0.02
K2D13-250-1-early 0.12 ± 0.00 0.11 ± 0.02 0.12 ± 0.00 0.12 ± 0.01
K2D13-250-5-early 0.14 ± 0.01 0.68 ± 0.03 0.42 ± 0.01 0.40 ± 0.03
K2D13-500-1-early 0.12 ± 0.00 0.41 ± 0.05 0.12 ± 0.00 0.12 ± 0.00
K2D13-500-5-early 0.17 ± 0.01 0.68 ± 0.04 0.43 ± 0.04 0.38 ± 0.01
K2D13-1000-1-early 0.13 ± 0.01 0.58 ± 0.05 0.12 ± 0.01 0.12 ± 0.00
K2D13-1000-5-early 0.26 ± 0.02 0.56 ± 0.31 0.46 ± 0.01 0.42 ± 0.03

Average 0.19 0.56 0.40 0.35
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Table 19: Train targets performances measured with NAUC on mid datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-mid 0.55 ± 0.07 0.29 ± 0.10 0.42 ± 0.17 0.28 ± 0.13
DR9-20-5-mid 0.81 ± 0.04 0.67 ± 0.20 0.82 ± 0.02 0.77 ± 0.04
DR9-40-1-mid 0.51 ± 0.01 0.27 ± 0.13 0.62 ± 0.06 0.58 ± 0.07
DR9-40-5-mid 0.64 ± 0.07 0.50 ± 0.10 0.83 ± 0.01 0.80 ± 0.02
DR9-70-1-mid 0.57 ± 0.07 0.47 ± 0.10 0.71 ± 0.07 0.61 ± 0.09
DR9-70-5-mid 0.70 ± 0.07 0.77 ± 0.14 0.83 ± 0.03 0.86 ± 0.03
DR19-75-1-mid 0.25 ± 0.04 0.38 ± 0.07 0.28 ± 0.04 0.31 ± 0.08
DR19-75-5-mid 0.48 ± 0.02 0.73 ± 0.05 0.65 ± 0.01 0.70 ± 0.13
DR19-150-1-mid 0.26 ± 0.10 0.49 ± 0.06 0.38 ± 0.08 0.36 ± 0.09
DR19-150-5-mid 0.43 ± 0.07 0.81 ± 0.01 0.63 ± 0.03 0.78 ± 0.03
DR19-300-1-mid 0.28 ± 0.06 0.63 ± 0.07 0.48 ± 0.04 0.46 ± 0.11
DR19-300-5-mid 0.45 ± 0.03 0.85 ± 0.04 0.65 ± 0.07 0.73 ± 0.09
K2D9-250-1-mid 0.43 ± 0.02 0.89 ± 0.03 0.83 ± 0.03 0.85 ± 0.03
K2D9-250-5-mid 0.86 ± 0.05 0.94 ± 0.03 0.88 ± 0.02 0.91 ± 0.01
K2D9-500-1-mid 0.62 ± 0.02 0.93 ± 0.02 0.89 ± 0.01 0.88 ± 0.01
K2D9-500-5-mid 0.91 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.02
K2D9-1000-1-mid 0.71 ± 0.03 0.91 ± 0.01 0.88 ± 0.02 0.88 ± 0.01
K2D9-1000-5-mid 0.93 ± 0.01 0.96 ± 0.02 0.95 ± 0.01 0.96 ± 0.01
K2D13-250-1-mid 0.20 ± 0.03 0.81 ± 0.04 0.70 ± 0.05 0.63 ± 0.09
K2D13-250-5-mid 0.73 ± 0.03 0.85 ± 0.03 0.87 ± 0.03 0.85 ± 0.03
K2D13-500-1-mid 0.39 ± 0.05 0.81 ± 0.08 0.83 ± 0.03 0.80 ± 0.02
K2D13-500-5-mid 0.83 ± 0.02 0.91 ± 0.03 0.90 ± 0.02 0.89 ± 0.03
K2D13-1000-1-mid 0.64 ± 0.01 0.83 ± 0.06 0.87 ± 0.02 0.83 ± 0.04
K2D13-1000-5-mid 0.92 ± 0.02 0.92 ± 0.02 0.91 ± 0.01 0.95 ± 0.01

Average 0.59 0.73 0.74 0.73

Table 20: Train targets performances measured with NAUC on late datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-late 0.20 ± 0.16 0.21 ± 0.07 0.15 ± 0.06 0.16 ± 0.09
DR9-20-5-late 0.62 ± 0.10 0.20 ± 0.06 0.25 ± 0.07 0.26 ± 0.05
DR9-40-1-late 0.39 ± 0.12 0.07 ± 0.04 0.21 ± 0.02 0.13 ± 0.09
DR9-40-5-late 0.74 ± 0.01 0.25 ± 0.07 0.49 ± 0.14 0.53 ± 0.05
DR9-70-1-late 0.35 ± 0.14 0.16 ± 0.05 0.05 ± 0.07 0.19 ± 0.06
DR9-70-5-late 0.69 ± 0.05 0.29 ± 0.14 0.62 ± 0.06 0.66 ± 0.02
DR19-75-1-late 0.37 ± 0.07 0.08 ± 0.01 0.20 ± 0.05 0.06 ± 0.04
DR19-75-5-late 0.30 ± 0.05 0.49 ± 0.08 0.45 ± 0.04 0.41 ± 0.11
DR19-150-1-late 0.34 ± 0.06 0.16 ± 0.08 0.31 ± 0.08 0.08 ± 0.05
DR19-150-5-late 0.39 ± 0.11 0.45 ± 0.06 0.51 ± 0.04 0.61 ± 0.04
DR19-300-1-late 0.24 ± 0.03 0.16 ± 0.03 0.28 ± 0.09 0.31 ± 0.05
DR19-300-5-late 0.48 ± 0.08 0.49 ± 0.03 0.44 ± 0.04 0.52 ± 0.06
K2D9-250-1-late 0.37 ± 0.06 0.16 ± 0.02 0.57 ± 0.03 0.58 ± 0.03
K2D9-250-5-late 0.74 ± 0.03 0.78 ± 0.06 0.86 ± 0.04 0.86 ± 0.03
K2D9-500-1-late 0.54 ± 0.02 0.58 ± 0.02 0.81 ± 0.01 0.84 ± 0.02
K2D9-500-5-late 0.81 ± 0.02 0.85 ± 0.04 0.84 ± 0.03 0.84 ± 0.02
K2D9-1000-1-late 0.60 ± 0.02 0.70 ± 0.03 0.82 ± 0.02 0.80 ± 0.02
K2D9-1000-5-late 0.83 ± 0.02 0.86 ± 0.06 0.87 ± 0.02 0.82 ± 0.04
K2D13-250-1-late 0.30 ± 0.03 0.07 ± 0.00 0.19 ± 0.06 0.27 ± 0.07
K2D13-250-5-late 0.69 ± 0.05 0.65 ± 0.05 0.77 ± 0.03 0.80 ± 0.04
K2D13-500-1-late 0.46 ± 0.09 0.40 ± 0.03 0.59 ± 0.05 0.58 ± 0.08
K2D13-500-5-late 0.69 ± 0.10 0.70 ± 0.06 0.83 ± 0.02 0.85 ± 0.06
K2D13-1000-1-late 0.55 ± 0.07 0.51 ± 0.04 0.84 ± 0.02 0.86 ± 0.06
K2D13-1000-5-late 0.82 ± 0.04 0.79 ± 0.05 0.88 ± 0.03 0.86 ± 0.03

Average 0.52 0.42 0.54 0.54
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Table 21: Train targets performances measured with NAUC on complete datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1 0.68 ± 0.06 0.23 ± 0.08 0.60 ± 0.16 0.60 ± 0.08
DR9-20-5 0.77 ± 0.03 0.76 ± 0.05 0.87 ± 0.04 0.83 ± 0.03
DR9-40-1 0.57 ± 0.05 0.47 ± 0.07 0.69 ± 0.10 0.67 ± 0.08
DR9-40-5 0.66 ± 0.20 0.51 ± 0.10 0.84 ± 0.07 0.89 ± 0.02
DR9-70-1 0.72 ± 0.01 0.46 ± 0.10 0.77 ± 0.05 0.68 ± 0.05
DR9-70-5 0.70 ± 0.07 0.80 ± 0.11 0.89 ± 0.05 0.85 ± 0.03
DR19-75-1 0.19 ± 0.05 0.35 ± 0.14 0.44 ± 0.03 0.32 ± 0.08
DR19-75-5 0.48 ± 0.25 0.75 ± 0.02 0.71 ± 0.07 0.65 ± 0.03
DR19-150-1 0.29 ± 0.02 0.58 ± 0.08 0.46 ± 0.10 0.44 ± 0.20
DR19-150-5 0.62 ± 0.04 0.83 ± 0.03 0.72 ± 0.03 0.82 ± 0.04
DR19-300-1 0.23 ± 0.05 0.59 ± 0.07 0.49 ± 0.07 0.55 ± 0.05
DR19-300-5 0.70 ± 0.03 0.85 ± 0.06 0.75 ± 0.04 0.77 ± 0.08
K2D9-250-1 0.42 ± 0.03 0.88 ± 0.05 0.78 ± 0.06 0.82 ± 0.04
K2D9-250-5 0.85 ± 0.03 0.98 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
K2D9-500-1 0.60 ± 0.05 0.91 ± 0.03 0.92 ± 0.01 0.87 ± 0.03
K2D9-500-5 0.89 ± 0.02 0.98 ± 0.01 0.96 ± 0.00 0.96 ± 0.00
K2D9-1000-1 0.80 ± 0.03 0.95 ± 0.02 0.91 ± 0.02 0.94 ± 0.03
K2D9-1000-5 0.92 ± 0.02 0.96 ± 0.02 0.96 ± 0.00 0.96 ± 0.01
K2D13-250-1 0.22 ± 0.05 0.62 ± 0.06 0.57 ± 0.09 0.69 ± 0.05
K2D13-250-5 0.81 ± 0.01 0.83 ± 0.03 0.87 ± 0.03 0.90 ± 0.02
K2D13-500-1 0.39 ± 0.03 0.83 ± 0.06 0.87 ± 0.03 0.88 ± 0.02
K2D13-500-5 0.89 ± 0.01 0.94 ± 0.02 0.94 ± 0.01 0.94 ± 0.01
K2D13-1000-1 0.64 ± 0.07 0.88 ± 0.03 0.90 ± 0.03 0.92 ± 0.01
K2D13-1000-5 0.91 ± 0.02 0.91 ± 0.02 0.92 ± 0.02 0.95 ± 0.01

Average 0.62 0.74 0.78 0.78
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F.2 DISCRETE TEST NAUC

Table 22: Test targets performances measured with NAUC on early datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-early 0.18 ± 0.00 0.08 ± 0.03 0.16 ± 0.01 0.14 ± 0.02
DR9-20-5-early 0.17 ± 0.02 0.21 ± 0.05 0.23 ± 0.03 0.22 ± 0.04
DR9-40-1-early 0.18 ± 0.01 0.19 ± 0.04 0.20 ± 0.01 0.21 ± 0.01
DR9-40-5-early 0.21 ± 0.03 0.32 ± 0.09 0.40 ± 0.02 0.38 ± 0.04
DR9-70-1-early 0.19 ± 0.01 0.20 ± 0.06 0.24 ± 0.03 0.24 ± 0.07
DR9-70-5-early 0.22 ± 0.03 0.50 ± 0.11 0.50 ± 0.07 0.46 ± 0.06
DR19-75-1-early 0.12 ± 0.00 0.08 ± 0.02 0.10 ± 0.01 0.06 ± 0.02
DR19-75-5-early 0.12 ± 0.01 0.21 ± 0.01 0.17 ± 0.02 0.11 ± 0.03
DR19-150-1-early 0.12 ± 0.00 0.14 ± 0.03 0.14 ± 0.02 0.11 ± 0.02
DR19-150-5-early 0.12 ± 0.00 0.38 ± 0.02 0.23 ± 0.02 0.14 ± 0.08
DR19-300-1-early 0.12 ± 0.02 0.18 ± 0.00 0.15 ± 0.02 0.05 ± 0.01
DR19-300-5-early 0.12 ± 0.01 0.56 ± 0.13 0.34 ± 0.02 0.27 ± 0.13
K2D9-250-1-early 0.15 ± 0.00 0.38 ± 0.08 0.14 ± 0.00 0.14 ± 0.00
K2D9-250-5-early 0.23 ± 0.01 0.58 ± 0.02 0.58 ± 0.01 0.53 ± 0.01
K2D9-500-1-early 0.17 ± 0.01 0.61 ± 0.03 0.42 ± 0.05 0.24 ± 0.09
K2D9-500-5-early 0.37 ± 0.03 0.74 ± 0.06 0.58 ± 0.01 0.54 ± 0.04
K2D9-1000-1-early 0.22 ± 0.00 0.67 ± 0.07 0.63 ± 0.04 0.57 ± 0.03
K2D9-1000-5-early 0.45 ± 0.02 0.85 ± 0.02 0.67 ± 0.03 0.57 ± 0.03
K2D13-250-1-early 0.12 ± 0.00 0.08 ± 0.01 0.11 ± 0.00 0.11 ± 0.00
K2D13-250-5-early 0.13 ± 0.00 0.52 ± 0.02 0.38 ± 0.02 0.35 ± 0.02
K2D13-500-1-early 0.13 ± 0.00 0.37 ± 0.05 0.12 ± 0.00 0.12 ± 0.00
K2D13-500-5-early 0.16 ± 0.01 0.56 ± 0.01 0.42 ± 0.02 0.36 ± 0.01
K2D13-1000-1-early 0.12 ± 0.00 0.55 ± 0.05 0.12 ± 0.01 0.12 ± 0.00
K2D13-1000-5-early 0.26 ± 0.02 0.51 ± 0.28 0.44 ± 0.01 0.41 ± 0.02

Average 0.18 0.39 0.31 0.27
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Table 23: Test targets performances measured with NAUC on mid datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-mid 0.27 ± 0.02 0.07 ± 0.02 0.11 ± 0.07 0.09 ± 0.04
DR9-20-5-mid 0.34 ± 0.02 0.18 ± 0.05 0.33 ± 0.00 0.31 ± 0.03
DR9-40-1-mid 0.37 ± 0.04 0.12 ± 0.04 0.35 ± 0.03 0.34 ± 0.02
DR9-40-5-mid 0.40 ± 0.03 0.25 ± 0.07 0.49 ± 0.02 0.51 ± 0.01
DR9-70-1-mid 0.47 ± 0.03 0.32 ± 0.08 0.43 ± 0.03 0.42 ± 0.02
DR9-70-5-mid 0.46 ± 0.08 0.59 ± 0.13 0.77 ± 0.04 0.73 ± 0.02
DR19-75-1-mid 0.17 ± 0.03 0.14 ± 0.03 0.15 ± 0.01 0.09 ± 0.02
DR19-75-5-mid 0.22 ± 0.02 0.34 ± 0.04 0.30 ± 0.01 0.23 ± 0.07
DR19-150-1-mid 0.22 ± 0.03 0.27 ± 0.03 0.25 ± 0.02 0.15 ± 0.04
DR19-150-5-mid 0.28 ± 0.01 0.57 ± 0.03 0.45 ± 0.05 0.42 ± 0.04
DR19-300-1-mid 0.21 ± 0.03 0.43 ± 0.09 0.36 ± 0.03 0.27 ± 0.07
DR19-300-5-mid 0.36 ± 0.02 0.85 ± 0.02 0.61 ± 0.08 0.63 ± 0.12
K2D9-250-1-mid 0.35 ± 0.03 0.64 ± 0.06 0.73 ± 0.04 0.78 ± 0.05
K2D9-250-5-mid 0.68 ± 0.02 0.64 ± 0.02 0.80 ± 0.04 0.82 ± 0.06
K2D9-500-1-mid 0.56 ± 0.01 0.79 ± 0.05 0.86 ± 0.03 0.89 ± 0.01
K2D9-500-5-mid 0.86 ± 0.01 0.80 ± 0.04 0.91 ± 0.02 0.92 ± 0.02
K2D9-1000-1-mid 0.73 ± 0.03 0.83 ± 0.02 0.91 ± 0.01 0.93 ± 0.01
K2D9-1000-5-mid 0.93 ± 0.00 0.85 ± 0.03 0.94 ± 0.01 0.95 ± 0.00
K2D13-250-1-mid 0.18 ± 0.01 0.50 ± 0.05 0.56 ± 0.04 0.56 ± 0.06
K2D13-250-5-mid 0.53 ± 0.03 0.51 ± 0.02 0.75 ± 0.02 0.71 ± 0.09
K2D13-500-5-mid 0.71 ± 0.03 0.60 ± 0.05 0.82 ± 0.02 0.82 ± 0.04
K2D13-500-1-mid 0.35 ± 0.04 0.67 ± 0.09 0.78 ± 0.02 0.78 ± 0.04
K2D13-1000-1-mid 0.59 ± 0.02 0.80 ± 0.04 0.82 ± 0.01 0.80 ± 0.02
K2D13-1000-5-mid 0.87 ± 0.01 0.75 ± 0.05 0.91 ± 0.01 0.91 ± 0.02

Average 0.46 0.52 0.60 0.58

Table 24: Test targets performances measured with NAUC on late datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-late 0.15 ± 0.05 0.12 ± 0.04 0.11 ± 0.04 0.09 ± 0.03
DR9-20-5-late 0.34 ± 0.04 0.10 ± 0.02 0.10 ± 0.04 0.10 ± 0.05
DR9-40-1-late 0.33 ± 0.09 0.12 ± 0.03 0.16 ± 0.07 0.14 ± 0.04
DR9-40-5-late 0.50 ± 0.03 0.22 ± 0.03 0.34 ± 0.15 0.31 ± 0.05
DR9-70-1-late 0.35 ± 0.05 0.21 ± 0.12 0.25 ± 0.07 0.21 ± 0.04
DR9-70-5-late 0.63 ± 0.07 0.21 ± 0.14 0.58 ± 0.09 0.49 ± 0.06
DR19-75-1-late 0.23 ± 0.02 0.06 ± 0.01 0.11 ± 0.01 0.04 ± 0.02
DR19-75-5-late 0.21 ± 0.01 0.19 ± 0.02 0.21 ± 0.05 0.19 ± 0.06
DR19-150-1-late 0.26 ± 0.01 0.13 ± 0.04 0.19 ± 0.02 0.07 ± 0.03
DR19-150-5-late 0.39 ± 0.04 0.30 ± 0.05 0.38 ± 0.02 0.40 ± 0.03
DR19-300-1-late 0.30 ± 0.03 0.19 ± 0.02 0.23 ± 0.04 0.20 ± 0.08
DR19-300-5-late 0.45 ± 0.07 0.40 ± 0.03 0.43 ± 0.05 0.42 ± 0.05
K2D9-250-1-late 0.26 ± 0.02 0.10 ± 0.01 0.38 ± 0.01 0.39 ± 0.02
K2D9-250-5-late 0.47 ± 0.03 0.60 ± 0.03 0.72 ± 0.02 0.74 ± 0.03
K2D9-500-1-late 0.39 ± 0.01 0.48 ± 0.03 0.72 ± 0.03 0.75 ± 0.02
K2D9-500-5-late 0.71 ± 0.01 0.71 ± 0.02 0.83 ± 0.01 0.83 ± 0.01
K2D9-1000-1-late 0.48 ± 0.03 0.55 ± 0.02 0.80 ± 0.01 0.80 ± 0.01
K2D9-1000-5-late 0.82 ± 0.02 0.71 ± 0.03 0.86 ± 0.01 0.84 ± 0.02
K2D13-250-1-late 0.20 ± 0.01 0.08 ± 0.01 0.22 ± 0.02 0.25 ± 0.04
K2D13-250-5-late 0.43 ± 0.01 0.51 ± 0.02 0.65 ± 0.01 0.68 ± 0.02
K2D13-500-1-late 0.29 ± 0.01 0.38 ± 0.03 0.57 ± 0.01 0.53 ± 0.08
K2D13-500-5-late 0.58 ± 0.04 0.62 ± 0.05 0.79 ± 0.03 0.81 ± 0.05
K2D13-1000-1-late 0.45 ± 0.05 0.51 ± 0.03 0.75 ± 0.03 0.78 ± 0.05
K2D13-1000-5-late 0.75 ± 0.02 0.71 ± 0.03 0.85 ± 0.04 0.86 ± 0.03

Average 0.42 0.34 0.47 0.45
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Table 25: Test targets performances measured with NAUC on complete datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1 0.32 ± 0.02 0.08 ± 0.02 0.23 ± 0.05 0.20 ± 0.04
DR9-20-5 0.35 ± 0.02 0.22 ± 0.06 0.33 ± 0.03 0.34 ± 0.03
DR9-40-1 0.43 ± 0.03 0.20 ± 0.05 0.36 ± 0.09 0.35 ± 0.03
DR9-40-5 0.42 ± 0.07 0.27 ± 0.06 0.54 ± 0.03 0.53 ± 0.03
DR9-70-1 0.54 ± 0.07 0.33 ± 0.09 0.62 ± 0.09 0.56 ± 0.13
DR9-70-5 0.68 ± 0.02 0.72 ± 0.11 0.78 ± 0.04 0.79 ± 0.07
DR19-75-1 0.16 ± 0.01 0.13 ± 0.05 0.18 ± 0.00 0.10 ± 0.02
DR19-75-5 0.22 ± 0.11 0.39 ± 0.03 0.31 ± 0.00 0.23 ± 0.06
DR19-150-1 0.23 ± 0.02 0.31 ± 0.05 0.26 ± 0.04 0.22 ± 0.11
DR19-150-5 0.40 ± 0.01 0.64 ± 0.03 0.49 ± 0.04 0.50 ± 0.07
DR19-300-1 0.26 ± 0.01 0.47 ± 0.03 0.39 ± 0.04 0.36 ± 0.06
DR19-300-5 0.63 ± 0.04 0.82 ± 0.04 0.66 ± 0.02 0.73 ± 0.06
K2D9-250-1 0.33 ± 0.02 0.65 ± 0.02 0.65 ± 0.04 0.67 ± 0.05
K2D9-250-5 0.68 ± 0.02 0.69 ± 0.03 0.83 ± 0.01 0.86 ± 0.05
K2D9-500-1 0.50 ± 0.01 0.85 ± 0.05 0.87 ± 0.02 0.81 ± 0.05
K2D9-500-5 0.87 ± 0.01 0.85 ± 0.03 0.93 ± 0.01 0.94 ± 0.01
K2D9-1000-1 0.77 ± 0.02 0.89 ± 0.03 0.92 ± 0.01 0.94 ± 0.01
K2D9-1000-5 0.93 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 0.96 ± 0.01
K2D13-250-1 0.17 ± 0.02 0.50 ± 0.05 0.45 ± 0.09 0.55 ± 0.02
K2D13-250-5 0.52 ± 0.03 0.59 ± 0.02 0.83 ± 0.03 0.85 ± 0.01
K2D13-500-1 0.35 ± 0.02 0.75 ± 0.03 0.83 ± 0.04 0.83 ± 0.02
K2D13-500-5 0.78 ± 0.03 0.76 ± 0.04 0.89 ± 0.01 0.92 ± 0.00
K2D13-1000-1 0.60 ± 0.02 0.86 ± 0.05 0.86 ± 0.03 0.87 ± 0.02
K2D13-1000-5 0.89 ± 0.01 0.85 ± 0.01 0.92 ± 0.01 0.93 ± 0.00

Average 0.50 0.57 0.63 0.63
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F.3 DISCRETE TRAIN FINAL SCORES

Table 26: Train targets performances measured with 100th episode score on early datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-early 0.33 ± 0.08 0.25 ± 0.04 0.37 ± 0.11 0.36 ± 0.04
DR9-20-5-early 0.24 ± 0.05 0.73 ± 0.11 0.70 ± 0.00 0.62 ± 0.06
DR9-40-1-early 0.23 ± 0.06 0.45 ± 0.11 0.43 ± 0.03 0.44 ± 0.09
DR9-40-5-early 0.31 ± 0.02 0.73 ± 0.15 0.74 ± 0.05 0.83 ± 0.04
DR9-70-1-early 0.23 ± 0.06 0.65 ± 0.19 0.48 ± 0.05 0.35 ± 0.16
DR9-70-5-early 0.36 ± 0.08 0.89 ± 0.08 0.88 ± 0.07 0.76 ± 0.03
DR19-75-1-early 0.11 ± 0.02 0.31 ± 0.10 0.17 ± 0.05 0.18 ± 0.07
DR19-75-5-early 0.10 ± 0.03 0.65 ± 0.05 0.43 ± 0.03 0.38 ± 0.10
DR19-150-1-early 0.07 ± 0.05 0.32 ± 0.06 0.23 ± 0.06 0.23 ± 0.09
DR19-150-5-early 0.14 ± 0.05 0.81 ± 0.03 0.46 ± 0.04 0.36 ± 0.22
DR19-300-1-early 0.10 ± 0.03 0.32 ± 0.10 0.18 ± 0.04 0.01 ± 0.02
DR19-300-5-early 0.12 ± 0.05 0.79 ± 0.26 0.49 ± 0.10 0.39 ± 0.23
K2D9-250-1-early 0.26 ± 0.05 0.99 ± 0.11 0.25 ± 0.09 0.20 ± 0.10
K2D9-250-5-early 0.42 ± 0.13 1.57 ± 0.09 1.37 ± 0.04 1.17 ± 0.10
K2D9-500-1-early 0.33 ± 0.12 1.31 ± 0.08 0.90 ± 0.13 0.50 ± 0.13
K2D9-500-5-early 0.73 ± 0.15 1.80 ± 0.14 1.29 ± 0.07 1.12 ± 0.19
K2D9-1000-1-early 0.42 ± 0.13 1.45 ± 0.22 1.23 ± 0.14 1.20 ± 0.04
K2D9-1000-5-early 0.96 ± 0.11 1.83 ± 0.15 1.30 ± 0.11 1.10 ± 0.09
K2D13-250-1-early 0.29 ± 0.09 0.21 ± 0.09 0.23 ± 0.02 0.21 ± 0.09
K2D13-250-5-early 0.30 ± 0.04 1.42 ± 0.06 0.83 ± 0.10 0.92 ± 0.07
K2D13-500-1-early 0.21 ± 0.10 0.81 ± 0.13 0.20 ± 0.16 0.18 ± 0.07
K2D13-500-5-early 0.37 ± 0.07 1.42 ± 0.04 0.90 ± 0.11 0.83 ± 0.08
K2D13-1000-1-early 0.18 ± 0.04 1.20 ± 0.14 0.26 ± 0.08 0.25 ± 0.10
K2D13-1000-5-early 0.56 ± 0.11 1.18 ± 0.69 0.89 ± 0.16 0.76 ± 0.09

Average 0.31 0.92 0.63 0.56

36



Published as a workshop paper at SSI-FM - ICLR 2025

Table 27: Train targets performances measured with 100th episode score on mid datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-mid 0.67 ± 0.08 0.29 ± 0.10 0.42 ± 0.20 0.27 ± 0.13
DR9-20-5-mid 0.94 ± 0.04 0.69 ± 0.19 0.95 ± 0.04 0.89 ± 0.04
DR9-40-1-mid 0.61 ± 0.13 0.27 ± 0.14 0.79 ± 0.11 0.68 ± 0.11
DR9-40-5-mid 0.85 ± 0.04 0.52 ± 0.09 1.00 ± 0.00 0.99 ± 0.02
DR9-70-1-mid 0.71 ± 0.11 0.46 ± 0.15 0.82 ± 0.06 0.85 ± 0.07
DR9-70-5-mid 0.89 ± 0.04 0.81 ± 0.16 0.95 ± 0.03 0.98 ± 0.02
DR19-75-1-mid 0.26 ± 0.04 0.42 ± 0.11 0.35 ± 0.06 0.36 ± 0.10
DR19-75-5-mid 0.63 ± 0.08 0.83 ± 0.08 0.70 ± 0.02 0.71 ± 0.14
DR19-150-1-mid 0.29 ± 0.14 0.52 ± 0.10 0.42 ± 0.11 0.39 ± 0.12
DR19-150-5-mid 0.54 ± 0.06 0.89 ± 0.02 0.71 ± 0.03 0.93 ± 0.02
DR19-300-1-mid 0.35 ± 0.10 0.71 ± 0.09 0.64 ± 0.02 0.51 ± 0.14
DR19-300-5-mid 0.62 ± 0.08 0.98 ± 0.02 0.73 ± 0.08 0.81 ± 0.09
K2D9-250-1-mid 0.85 ± 0.09 1.87 ± 0.07 1.70 ± 0.13 1.76 ± 0.07
K2D9-250-5-mid 1.79 ± 0.09 1.96 ± 0.04 1.89 ± 0.07 1.88 ± 0.04
K2D9-500-1-mid 1.27 ± 0.05 1.96 ± 0.04 1.88 ± 0.05 1.77 ± 0.05
K2D9-500-5-mid 1.93 ± 0.04 2.00 ± 0.00 1.95 ± 0.03 1.95 ± 0.06
K2D9-1000-1-mid 1.39 ± 0.16 1.90 ± 0.03 1.88 ± 0.05 1.86 ± 0.03
K2D9-1000-5-mid 1.99 ± 0.02 1.96 ± 0.04 2.00 ± 0.00 1.99 ± 0.02
K2D13-250-1-mid 0.39 ± 0.15 1.80 ± 0.04 1.55 ± 0.11 1.45 ± 0.23
K2D13-250-5-mid 1.45 ± 0.07 1.85 ± 0.06 1.94 ± 0.05 1.90 ± 0.09
K2D13-500-5-mid 1.76 ± 0.11 1.96 ± 0.04 1.93 ± 0.04 1.94 ± 0.06
K2D13-500-1-mid 0.89 ± 0.17 1.85 ± 0.13 1.79 ± 0.07 1.76 ± 0.17
K2D13-1000-1-mid 1.32 ± 0.06 1.93 ± 0.08 1.79 ± 0.12 1.82 ± 0.05
K2D13-1000-5-mid 1.96 ± 0.04 1.96 ± 0.02 1.99 ± 0.02 2.00 ± 0.00

Average 1.01 1.27 1.28 1.27

Table 28: Train targets performances measured with 100th episode score on late datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-late 0.20 ± 0.15 0.21 ± 0.08 0.15 ± 0.06 0.16 ± 0.09
DR9-20-5-late 0.69 ± 0.14 0.19 ± 0.05 0.26 ± 0.06 0.26 ± 0.05
DR9-40-1-late 0.42 ± 0.15 0.07 ± 0.04 0.21 ± 0.02 0.13 ± 0.09
DR9-40-5-late 0.88 ± 0.02 0.30 ± 0.14 0.57 ± 0.20 0.63 ± 0.05
DR9-70-1-late 0.36 ± 0.17 0.18 ± 0.05 0.05 ± 0.06 0.20 ± 0.07
DR9-70-5-late 0.85 ± 0.12 0.27 ± 0.13 0.85 ± 0.09 0.81 ± 0.03
DR19-75-1-late 0.48 ± 0.10 0.11 ± 0.02 0.26 ± 0.10 0.07 ± 0.05
DR19-75-5-late 0.42 ± 0.13 0.54 ± 0.09 0.49 ± 0.07 0.44 ± 0.12
DR19-150-1-late 0.42 ± 0.12 0.18 ± 0.09 0.39 ± 0.08 0.08 ± 0.05
DR19-150-5-late 0.51 ± 0.15 0.50 ± 0.04 0.60 ± 0.04 0.68 ± 0.04
DR19-300-1-late 0.30 ± 0.06 0.14 ± 0.03 0.37 ± 0.15 0.30 ± 0.06
DR19-300-5-late 0.60 ± 0.13 0.49 ± 0.05 0.60 ± 0.07 0.63 ± 0.13
K2D9-250-1-late 0.82 ± 0.26 0.29 ± 0.07 1.32 ± 0.16 1.35 ± 0.10
K2D9-250-5-late 1.65 ± 0.06 1.77 ± 0.06 1.86 ± 0.06 1.85 ± 0.05
K2D9-500-1-late 1.21 ± 0.11 1.26 ± 0.05 1.71 ± 0.06 1.79 ± 0.07
K2D9-500-5-late 1.74 ± 0.10 1.86 ± 0.07 1.80 ± 0.09 1.81 ± 0.03
K2D9-1000-1-late 1.30 ± 0.11 1.54 ± 0.05 1.81 ± 0.03 1.74 ± 0.07
K2D9-1000-5-late 1.80 ± 0.07 1.87 ± 0.06 1.89 ± 0.05 1.80 ± 0.07
K2D13-250-1-late 0.67 ± 0.17 0.14 ± 0.05 0.45 ± 0.22 0.58 ± 0.23
K2D13-250-5-late 1.64 ± 0.09 1.54 ± 0.21 1.71 ± 0.09 1.79 ± 0.04
K2D13-500-1-late 0.95 ± 0.30 1.06 ± 0.07 1.40 ± 0.09 1.39 ± 0.32
K2D13-500-5-late 1.68 ± 0.14 1.63 ± 0.10 1.87 ± 0.06 1.94 ± 0.05
K2D13-1000-1-late 1.33 ± 0.22 1.25 ± 0.14 1.90 ± 0.06 1.88 ± 0.16
K2D13-1000-5-late 1.88 ± 0.13 1.77 ± 0.04 1.94 ± 0.02 1.92 ± 0.07

Average 0.95 0.80 1.02 1.01
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Table 29: Train targets performances measured with 100th episode score on complete datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1 0.80 ± 0.08 0.23 ± 0.07 0.74 ± 0.20 0.66 ± 0.08
DR9-20-5 0.93 ± 0.06 0.79 ± 0.05 0.99 ± 0.02 0.98 ± 0.03
DR9-40-1 0.74 ± 0.05 0.51 ± 0.09 0.82 ± 0.16 0.83 ± 0.05
DR9-40-5 0.79 ± 0.27 0.56 ± 0.12 0.94 ± 0.05 1.00 ± 0.00
DR9-70-1 0.89 ± 0.07 0.51 ± 0.15 0.93 ± 0.05 0.77 ± 0.04
DR9-70-5 0.86 ± 0.10 0.88 ± 0.12 0.99 ± 0.02 0.99 ± 0.02
DR19-75-1 0.18 ± 0.11 0.36 ± 0.14 0.51 ± 0.13 0.38 ± 0.07
DR19-75-5 0.58 ± 0.32 0.82 ± 0.04 0.80 ± 0.11 0.70 ± 0.08
DR19-150-1 0.37 ± 0.04 0.71 ± 0.16 0.62 ± 0.08 0.50 ± 0.24
DR19-150-5 0.82 ± 0.04 0.96 ± 0.04 0.83 ± 0.07 0.95 ± 0.06
DR19-300-1 0.32 ± 0.11 0.75 ± 0.06 0.60 ± 0.07 0.68 ± 0.08
DR19-300-5 0.88 ± 0.07 0.95 ± 0.05 0.94 ± 0.05 0.92 ± 0.05
K2D9-250-1 0.85 ± 0.19 1.82 ± 0.13 1.63 ± 0.16 1.75 ± 0.12
K2D9-250-5 1.86 ± 0.07 2.00 ± 0.00 1.98 ± 0.02 1.98 ± 0.02
K2D9-500-1 1.39 ± 0.12 1.95 ± 0.03 1.93 ± 0.02 1.88 ± 0.10
K2D9-500-5 1.94 ± 0.02 2.00 ± 0.00 1.99 ± 0.02 2.00 ± 0.00
K2D9-1000-1 1.65 ± 0.10 2.00 ± 0.00 1.95 ± 0.06 1.94 ± 0.08
K2D9-1000-5 1.96 ± 0.04 1.99 ± 0.02 2.00 ± 0.00 2.00 ± 0.00
K2D13-250-1 0.40 ± 0.11 1.45 ± 0.15 1.24 ± 0.28 1.48 ± 0.18
K2D13-250-5 1.71 ± 0.10 1.87 ± 0.07 1.98 ± 0.02 1.98 ± 0.02
K2D13-500-1 0.93 ± 0.10 1.85 ± 0.09 1.87 ± 0.06 1.86 ± 0.08
K2D13-500-5 1.92 ± 0.07 1.98 ± 0.02 2.00 ± 0.00 2.00 ± 0.00
K2D13-1000-1 1.32 ± 0.21 1.93 ± 0.05 1.89 ± 0.09 1.94 ± 0.04
K2D13-1000-5 1.99 ± 0.02 1.99 ± 0.02 2.00 ± 0.00 2.00 ± 0.00

Average 1.09 1.29 1.34 1.34
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F.4 DISCRETE TEST FINAL SCORES

Table 30: Test targets performances measured with 100th episode score on early datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-early 0.16 ± 0.06 0.07 ± 0.02 0.15 ± 0.03 0.14 ± 0.02
DR9-20-5-early 0.18 ± 0.04 0.22 ± 0.07 0.28 ± 0.03 0.24 ± 0.05
DR9-40-1-early 0.16 ± 0.06 0.20 ± 0.05 0.19 ± 0.05 0.20 ± 0.07
DR9-40-5-early 0.20 ± 0.03 0.37 ± 0.15 0.45 ± 0.04 0.41 ± 0.03
DR9-70-1-early 0.23 ± 0.05 0.20 ± 0.08 0.30 ± 0.04 0.34 ± 0.10
DR9-70-5-early 0.16 ± 0.08 0.70 ± 0.13 0.55 ± 0.06 0.64 ± 0.11
DR19-75-1-early 0.12 ± 0.02 0.09 ± 0.04 0.09 ± 0.01 0.05 ± 0.02
DR19-75-5-early 0.11 ± 0.03 0.24 ± 0.02 0.19 ± 0.01 0.13 ± 0.02
DR19-150-1-early 0.11 ± 0.03 0.17 ± 0.03 0.14 ± 0.03 0.14 ± 0.02
DR19-150-5-early 0.12 ± 0.04 0.47 ± 0.04 0.26 ± 0.02 0.17 ± 0.10
DR19-300-1-early 0.11 ± 0.02 0.19 ± 0.01 0.13 ± 0.04 0.06 ± 0.01
DR19-300-5-early 0.14 ± 0.02 0.72 ± 0.17 0.35 ± 0.01 0.32 ± 0.16
K2D9-250-1-early 0.30 ± 0.03 0.77 ± 0.15 0.30 ± 0.05 0.24 ± 0.04
K2D9-250-5-early 0.46 ± 0.07 1.20 ± 0.05 1.20 ± 0.01 1.07 ± 0.03
K2D9-500-1-early 0.36 ± 0.06 1.26 ± 0.07 0.80 ± 0.13 0.47 ± 0.15
K2D9-500-5-early 0.78 ± 0.03 1.56 ± 0.14 1.16 ± 0.05 1.12 ± 0.07
K2D9-1000-1-early 0.47 ± 0.02 1.42 ± 0.15 1.35 ± 0.07 1.19 ± 0.02
K2D9-1000-5-early 0.91 ± 0.11 1.81 ± 0.04 1.39 ± 0.08 1.19 ± 0.06
K2D13-250-1-early 0.20 ± 0.02 0.17 ± 0.02 0.26 ± 0.04 0.23 ± 0.02
K2D13-250-5-early 0.26 ± 0.02 1.06 ± 0.02 0.81 ± 0.10 0.71 ± 0.07
K2D13-500-1-early 0.20 ± 0.03 0.73 ± 0.07 0.25 ± 0.03 0.20 ± 0.02
K2D13-500-5-early 0.31 ± 0.08 1.17 ± 0.04 0.81 ± 0.06 0.77 ± 0.04
K2D13-1000-1-early 0.29 ± 0.06 1.16 ± 0.12 0.24 ± 0.04 0.23 ± 0.05
K2D13-1000-5-early 0.53 ± 0.08 1.09 ± 0.60 0.86 ± 0.06 0.82 ± 0.01

Average 0.29 0.71 0.52 0.46
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Table 31: Test targets performances measured with 100th episode score on mid datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-mid 0.29 ± 0.06 0.07 ± 0.02 0.11 ± 0.07 0.10 ± 0.04
DR9-20-5-mid 0.39 ± 0.02 0.18 ± 0.06 0.34 ± 0.05 0.33 ± 0.01
DR9-40-1-mid 0.43 ± 0.03 0.14 ± 0.06 0.43 ± 0.06 0.38 ± 0.04
DR9-40-5-mid 0.43 ± 0.03 0.24 ± 0.07 0.62 ± 0.03 0.62 ± 0.04
DR9-70-1-mid 0.59 ± 0.19 0.30 ± 0.08 0.41 ± 0.05 0.59 ± 0.05
DR9-70-5-mid 0.52 ± 0.13 0.70 ± 0.16 0.91 ± 0.00 0.89 ± 0.08
DR19-75-1-mid 0.19 ± 0.05 0.16 ± 0.03 0.15 ± 0.01 0.09 ± 0.03
DR19-75-5-mid 0.27 ± 0.03 0.39 ± 0.06 0.32 ± 0.01 0.26 ± 0.08
DR19-150-1-mid 0.24 ± 0.07 0.29 ± 0.03 0.28 ± 0.03 0.17 ± 0.05
DR19-150-5-mid 0.34 ± 0.02 0.67 ± 0.01 0.52 ± 0.06 0.51 ± 0.04
DR19-300-1-mid 0.24 ± 0.04 0.48 ± 0.11 0.43 ± 0.03 0.32 ± 0.09
DR19-300-5-mid 0.46 ± 0.04 0.95 ± 0.01 0.70 ± 0.09 0.75 ± 0.14
K2D9-250-1-mid 0.74 ± 0.11 1.40 ± 0.12 1.55 ± 0.10 1.63 ± 0.13
K2D9-250-5-mid 1.41 ± 0.07 1.40 ± 0.03 1.77 ± 0.07 1.77 ± 0.13
K2D9-500-1-mid 1.11 ± 0.05 1.78 ± 0.10 1.84 ± 0.06 1.88 ± 0.02
K2D9-500-5-mid 1.86 ± 0.03 1.79 ± 0.08 1.93 ± 0.04 1.96 ± 0.04
K2D9-1000-1-mid 1.53 ± 0.11 1.89 ± 0.05 1.92 ± 0.04 1.95 ± 0.01
K2D9-1000-5-mid 1.97 ± 0.02 1.90 ± 0.04 2.00 ± 0.01 2.00 ± 0.00
K2D13-250-1-mid 0.34 ± 0.07 1.11 ± 0.10 1.18 ± 0.14 1.29 ± 0.15
K2D13-250-5-mid 1.12 ± 0.06 1.11 ± 0.03 1.75 ± 0.11 1.65 ± 0.24
K2D13-500-5-mid 1.52 ± 0.07 1.39 ± 0.09 1.80 ± 0.02 1.90 ± 0.04
K2D13-500-1-mid 0.72 ± 0.10 1.56 ± 0.20 1.73 ± 0.03 1.72 ± 0.09
K2D13-1000-1-mid 1.20 ± 0.06 1.83 ± 0.07 1.78 ± 0.04 1.77 ± 0.03
K2D13-1000-5-mid 1.85 ± 0.01 1.65 ± 0.10 1.96 ± 0.02 1.94 ± 0.03

Average 0.82 0.97 1.10 1.10

Table 32: Test targets performances measured with 100th episode score on late datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1-late 0.15 ± 0.05 0.13 ± 0.04 0.11 ± 0.04 0.09 ± 0.04
DR9-20-5-late 0.40 ± 0.03 0.09 ± 0.01 0.08 ± 0.03 0.10 ± 0.05
DR9-40-1-late 0.35 ± 0.11 0.12 ± 0.04 0.16 ± 0.07 0.14 ± 0.04
DR9-40-5-late 0.61 ± 0.12 0.24 ± 0.08 0.41 ± 0.20 0.37 ± 0.07
DR9-70-1-late 0.36 ± 0.06 0.20 ± 0.12 0.25 ± 0.08 0.20 ± 0.04
DR9-70-5-late 0.75 ± 0.08 0.27 ± 0.17 0.73 ± 0.06 0.64 ± 0.11
DR19-75-1-late 0.27 ± 0.04 0.06 ± 0.02 0.13 ± 0.02 0.04 ± 0.02
DR19-75-5-late 0.26 ± 0.02 0.20 ± 0.02 0.23 ± 0.07 0.20 ± 0.07
DR19-150-1-late 0.33 ± 0.02 0.13 ± 0.04 0.21 ± 0.03 0.06 ± 0.04
DR19-150-5-late 0.47 ± 0.05 0.32 ± 0.07 0.45 ± 0.04 0.44 ± 0.04
DR19-300-1-late 0.36 ± 0.06 0.18 ± 0.01 0.30 ± 0.05 0.22 ± 0.11
DR19-300-5-late 0.57 ± 0.10 0.43 ± 0.04 0.55 ± 0.07 0.52 ± 0.07
K2D9-250-1-late 0.53 ± 0.10 0.18 ± 0.01 0.89 ± 0.02 0.83 ± 0.04
K2D9-250-5-late 0.98 ± 0.04 1.35 ± 0.11 1.53 ± 0.05 1.63 ± 0.07
K2D9-500-1-late 0.85 ± 0.05 1.18 ± 0.08 1.59 ± 0.06 1.64 ± 0.05
K2D9-500-5-late 1.62 ± 0.02 1.64 ± 0.05 1.80 ± 0.07 1.82 ± 0.03
K2D9-1000-1-late 1.05 ± 0.11 1.35 ± 0.12 1.77 ± 0.04 1.73 ± 0.03
K2D9-1000-5-late 1.87 ± 0.02 1.67 ± 0.04 1.90 ± 0.04 1.85 ± 0.03
K2D13-250-1-late 0.39 ± 0.08 0.18 ± 0.03 0.44 ± 0.08 0.51 ± 0.09
K2D13-250-5-late 0.93 ± 0.05 1.13 ± 0.06 1.39 ± 0.03 1.48 ± 0.08
K2D13-500-1-late 0.62 ± 0.05 0.95 ± 0.09 1.27 ± 0.07 1.24 ± 0.20
K2D13-500-5-late 1.33 ± 0.10 1.42 ± 0.09 1.80 ± 0.05 1.82 ± 0.11
K2D13-1000-1-late 0.98 ± 0.09 1.22 ± 0.05 1.68 ± 0.08 1.73 ± 0.08
K2D13-1000-5-late 1.73 ± 0.04 1.64 ± 0.04 1.91 ± 0.06 1.91 ± 0.06

Average 0.74 0.68 0.90 0.88
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Table 33: Test targets performances measured with 100th episode score on complete datasets.

Dataset AD IC-DQN IC-CQL IC-IQL

DR9-20-1 0.39 ± 0.04 0.08 ± 0.02 0.28 ± 0.09 0.22 ± 0.06
DR9-20-5 0.41 ± 0.06 0.24 ± 0.07 0.40 ± 0.04 0.38 ± 0.03
DR9-40-1 0.57 ± 0.03 0.23 ± 0.05 0.46 ± 0.14 0.40 ± 0.02
DR9-40-5 0.57 ± 0.13 0.27 ± 0.09 0.66 ± 0.05 0.60 ± 0.04
DR9-70-1 0.68 ± 0.10 0.34 ± 0.16 0.75 ± 0.12 0.61 ± 0.20
DR9-70-5 0.86 ± 0.05 0.80 ± 0.16 0.95 ± 0.05 0.93 ± 0.08
DR19-75-1 0.18 ± 0.02 0.14 ± 0.06 0.22 ± 0.01 0.10 ± 0.01
DR19-75-5 0.26 ± 0.14 0.44 ± 0.04 0.36 ± 0.01 0.27 ± 0.07
DR19-150-1 0.25 ± 0.03 0.35 ± 0.07 0.31 ± 0.07 0.25 ± 0.13
DR19-150-5 0.52 ± 0.04 0.75 ± 0.03 0.61 ± 0.07 0.58 ± 0.07
DR19-300-1 0.30 ± 0.04 0.55 ± 0.07 0.43 ± 0.06 0.45 ± 0.10
DR19-300-5 0.82 ± 0.06 0.96 ± 0.04 0.82 ± 0.01 0.88 ± 0.04
K2D9-250-1 0.67 ± 0.05 1.44 ± 0.04 1.33 ± 0.08 1.39 ± 0.12
K2D9-250-5 1.50 ± 0.07 1.52 ± 0.04 1.78 ± 0.04 1.86 ± 0.11
K2D9-500-1 1.07 ± 0.07 1.87 ± 0.08 1.87 ± 0.05 1.76 ± 0.11
K2D9-500-5 1.89 ± 0.01 1.85 ± 0.05 1.96 ± 0.02 1.99 ± 0.01
K2D9-1000-1 1.64 ± 0.09 1.97 ± 0.02 1.97 ± 0.02 1.98 ± 0.01
K2D9-1000-5 1.98 ± 0.01 1.98 ± 0.00 2.00 ± 0.01 2.00 ± 0.00
K2D13-250-1 0.36 ± 0.02 1.20 ± 0.18 0.97 ± 0.23 1.17 ± 0.08
K2D13-250-5 1.17 ± 0.09 1.35 ± 0.09 1.86 ± 0.07 1.89 ± 0.01
K2D13-500-1 0.79 ± 0.08 1.76 ± 0.01 1.77 ± 0.08 1.82 ± 0.05
K2D13-500-5 1.71 ± 0.06 1.71 ± 0.07 1.94 ± 0.02 1.97 ± 0.02
K2D13-1000-1 1.27 ± 0.09 1.90 ± 0.11 1.84 ± 0.06 1.90 ± 0.03
K2D13-1000-5 1.92 ± 0.03 1.88 ± 0.03 1.99 ± 0.01 1.99 ± 0.01

Average 0.91 1.07 1.15 1.14
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F.5 CONTINUOUS TEST NAUC

Table 34: Test instances performances in continuous environments measured with NAUC on early
datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-early 0.57 ± 0.03 0.59 ± 0.03 0.62 ± 0.03 0.61 ± 0.17
HCV-50-1-early 0.55 ± 0.01 0.53 ± 0.10 0.79 ± 0.02 0.60 ± 0.25
HCV-100-1-early 0.48 ± 0.05 0.52 ± 0.21 0.71 ± 0.06 0.91 ± 0.02
ANT-25-1-early 0.44 ± 0.02 0.41 ± 0.01 0.55 ± 0.01 0.46 ± 0.09
ANT-50-1-early 0.46 ± 0.01 0.42 ± 0.02 0.60 ± 0.02 0.51 ± 0.12
ANT-100-1-early 0.48 ± 0.02 0.43 ± 0.05 0.67 ± 0.02 0.58 ± 0.14
HPP-25-1-early 0.26 ± 0.23 0.21 ± 0.00 0.55 ± 0.09 0.67 ± 0.17
HPP-50-1-early 0.37 ± 0.27 0.21 ± 0.01 0.84 ± 0.11 0.60 ± 0.26
HPP-100-1-early 0.34 ± 0.18 0.21 ± 0.00 0.73 ± 0.42 0.74 ± 0.13
WLP-25-1-early 0.40 ± 0.15 0.83 ± 0.00 1.14 ± 0.03 1.15 ± 0.03
WLP-50-1-early 0.30 ± 0.17 0.83 ± 0.01 1.16 ± 0.01 1.19 ± 0.01
WLP-100-1-early 0.40 ± 0.21 0.83 ± 0.00 1.17 ± 0.02 1.20 ± 0.01

Average 0.42 0.50 0.80 0.77

Table 35: Test instances performances in continuous environments measured with NAUC on mid
datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-mid 0.81 ± 0.01 0.38 ± 0.11 0.93 ± 0.03 0.82 ± 0.04
HCV-50-1-mid 0.80 ± 0.02 0.52 ± 0.09 0.98 ± 0.02 0.91 ± 0.01
HCV-100-1-mid 0.86 ± 0.02 0.45 ± 0.15 1.02 ± 0.00 0.97 ± 0.01
ANT-25-1-mid 0.35 ± 0.01 0.26 ± 0.01 0.52 ± 0.04 0.53 ± 0.02
ANT-50-1-mid 0.41 ± 0.03 0.27 ± 0.04 0.66 ± 0.04 0.68 ± 0.03
ANT-100-1-mid 0.47 ± 0.02 0.24 ± 0.04 0.84 ± 0.01 0.83 ± 0.03
HPP-25-1-mid 0.33 ± 0.08 0.38 ± 0.30 0.56 ± 0.12 0.82 ± 0.09
HPP-50-1-mid 0.35 ± 0.06 0.38 ± 0.30 0.76 ± 0.07 0.99 ± 0.03
HPP-100-1-mid 0.37 ± 0.05 0.71 ± 0.29 0.65 ± 0.38 0.94 ± 0.01
WLP-25-1-mid 0.60 ± 0.35 0.83 ± 0.00 1.10 ± 0.01 1.12 ± 0.01
WLP-50-1-mid 0.28 ± 0.20 0.87 ± 0.04 1.10 ± 0.01 1.15 ± 0.02
WLP-100-1-mid 0.39 ± 0.34 0.84 ± 0.02 1.07 ± 0.02 1.09 ± 0.02

Average 0.50 0.51 0.85 0.90

Table 36: Test instances performances in continuous environments measured with NAUC on late
datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-late 0.96 ± 0.02 0.30 ± 0.01 0.82 ± 0.08 0.67 ± 0.23
HCV-50-1-late 1.00 ± 0.02 0.50 ± 0.15 0.95 ± 0.02 0.46 ± 0.17
HCV-100-1-late 1.02 ± 0.00 0.65 ± 0.08 1.01 ± 0.02 0.86 ± 0.12
ANT-25-1-late 0.25 ± 0.03 -0.29 ± 0.10 0.45 ± 0.04 0.41 ± 0.02
ANT-50-1-late 0.36 ± 0.02 -0.20 ± 0.12 0.56 ± 0.03 0.58 ± 0.02
ANT-100-1-late 0.48 ± 0.05 -0.05 ± 0.11 0.76 ± 0.03 0.68 ± 0.02
HPP-25-1-late 1.17 ± 0.09 0.21 ± 0.30 1.02 ± 0.04 0.69 ± 0.34
HPP-50-1-late 1.06 ± 0.05 0.79 ± 0.05 1.06 ± 0.04 1.03 ± 0.22
HPP-100-1-late 1.09 ± 0.04 0.82 ± 0.02 0.97 ± 0.03 0.69 ± 0.38
WLP-25-1-late 1.15 ± 0.01 0.91 ± 0.05 1.12 ± 0.01 1.13 ± 0.02
WLP-50-1-late 1.16 ± 0.01 0.87 ± 0.07 1.11 ± 0.02 1.13 ± 0.01
WLP-100-1-late 1.17 ± 0.01 0.84 ± 0.02 1.11 ± 0.01 1.14 ± 0.01

Average 0.91 0.45 0.91 0.79
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Table 37: Test instances performances in continuous environments measured with NAUC on complete
datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1 0.76 ± 0.03 0.50 ± 0.03 0.90 ± 0.02 0.73 ± 0.06
HCV-50-1 0.79 ± 0.04 0.61 ± 0.05 0.98 ± 0.01 0.90 ± 0.04
HCV-100-1 0.84 ± 0.03 0.57 ± 0.04 0.95 ± 0.03 0.88 ± 0.10
ANT-25-1 0.40 ± 0.02 0.28 ± 0.02 0.77 ± 0.03 0.76 ± 0.03
ANT-50-1 0.41 ± 0.02 0.31 ± 0.02 0.89 ± 0.02 0.91 ± 0.02
ANT-100-1 0.43 ± 0.02 0.22 ± 0.09 1.03 ± 0.03 1.12 ± 0.02
HPP-25-1 1.14 ± 0.04 0.52 ± 0.31 0.96 ± 0.03 1.03 ± 0.07
HPP-50-1 0.97 ± 0.03 0.37 ± 0.29 1.01 ± 0.07 0.95 ± 0.17
HPP-100-1 1.06 ± 0.05 0.49 ± 0.29 1.06 ± 0.03 1.07 ± 0.04
WLP-25-1 0.62 ± 0.30 0.92 ± 0.05 1.09 ± 0.01 1.13 ± 0.02
WLP-50-1 1.15 ± 0.01 0.86 ± 0.04 1.11 ± 0.00 1.14 ± 0.02
WLP-100-1 1.11 ± 0.02 0.84 ± 0.03 1.12 ± 0.01 1.12 ± 0.01

Average 0.81 0.54 0.99 0.98

F.6 CONTINUOUS TEST 0-SHOT

Table 38: Test instances performances of the first rollout episode in continuous environments
measured with return on early datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-early -220.88 ± 12.71 -216.98 ± 11.24 -195.75 ± 12.36 -203.54 ± 61.11
HCV-50-1-early -226.05 ± 2.65 -234.09 ± 34.27 -145.02 ± 9.76 -208.96 ± 87.45
HCV-100-1-early -252.61 ± 15.14 -236.58 ± 71.26 -167.89 ± 16.19 -100.60 ± 5.49
ANT-25-1-early 296.45 ± 15.06 276.53 ± 10.25 396.82 ± 10.75 315.65 ± 73.67
ANT-50-1-early 312.87 ± 10.10 286.16 ± 21.89 443.73 ± 20.54 364.51 ± 102.41
ANT-100-1-early 335.23 ± 19.18 292.10 ± 40.28 507.59 ± 15.86 414.96 ± 118.52
HPP-25-1-early 70.16 ± 45.37 59.92 ± 0.92 128.53 ± 17.04 153.59 ± 34.73
HPP-50-1-early 92.26 ± 54.04 60.23 ± 1.39 186.88 ± 22.43 138.56 ± 53.00
HPP-100-1-early 81.68 ± 38.08 59.98 ± 1.00 160.95 ± 93.44 162.59 ± 28.93
WLP-25-1-early 90.60 ± 34.63 183.04 ± 0.29 250.06 ± 6.48 250.81 ± 8.46
WLP-50-1-early 68.30 ± 36.22 182.75 ± 1.06 254.51 ± 3.10 260.00 ± 3.45
WLP-100-1-early 90.52 ± 44.10 183.19 ± 0.21 257.57 ± 4.77 263.04 ± 0.63

Average 61.54 74.69 173.16 150.88

Table 39: Test instances performances of the first rollout episode in continuous environments
measured with return on mid datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-mid -144.43 ± 4.02 -281.79 ± 35.57 -99.10 ± 9.57 -128.08 ± 7.88
HCV-50-1-mid -145.12 ± 6.35 -239.95 ± 26.18 -82.35 ± 5.22 -99.88 ± 4.52
HCV-100-1-mid -127.20 ± 6.50 -255.47 ± 53.90 -68.67 ± 2.03 -80.13 ± 4.35
ANT-25-1-mid 221.32 ± 17.53 151.01 ± 9.08 368.69 ± 47.00 379.55 ± 22.53
ANT-50-1-mid 264.25 ± 24.07 159.72 ± 29.75 498.22 ± 39.80 523.85 ± 35.23
ANT-100-1-mid 327.30 ± 21.66 129.54 ± 28.38 641.88 ± 6.17 631.84 ± 25.30
HPP-25-1-mid 83.21 ± 16.85 94.06 ± 60.11 130.49 ± 24.03 181.91 ± 19.12
HPP-50-1-mid 87.11 ± 8.47 94.00 ± 60.09 169.52 ± 12.86 218.14 ± 6.05
HPP-100-1-mid 89.27 ± 9.61 160.51 ± 58.46 142.99 ± 83.97 207.09 ± 2.06
WLP-25-1-mid 134.39 ± 77.04 182.78 ± 0.80 241.65 ± 2.48 244.75 ± 3.17
WLP-50-1-mid 61.60 ± 37.31 191.04 ± 8.61 240.21 ± 2.30 251.76 ± 5.87
WLP-100-1-mid 88.13 ± 73.03 185.02 ± 4.51 237.71 ± 7.18 240.59 ± 5.59

Average 78.32 47.54 201.77 214.28
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Table 40: Test instances performances of the first rollout episode in continuous environments
measured with return on late datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-late -90.65 ± 5.90 -310.54 ± 4.94 -138.33 ± 21.60 -187.80 ± 75.81
HCV-50-1-late -80.11 ± 6.86 -239.39 ± 51.84 -91.72 ± 8.79 -255.96 ± 58.87
HCV-100-1-late -70.57 ± 1.70 -189.29 ± 32.35 -72.90 ± 6.92 -122.16 ± 41.06
ANT-25-1-late 134.41 ± 27.34 -314.67 ± 79.10 322.36 ± 40.44 276.73 ± 22.98
ANT-50-1-late 226.56 ± 9.01 -239.67 ± 103.66 417.01 ± 29.61 422.26 ± 14.96
ANT-100-1-late 333.57 ± 44.83 -110.66 ± 90.69 595.82 ± 27.73 514.41 ± 20.74
HPP-25-1-late 257.15 ± 19.85 61.20 ± 60.66 223.65 ± 6.98 160.56 ± 65.08
HPP-50-1-late 232.62 ± 10.70 177.48 ± 10.66 231.47 ± 9.88 228.31 ± 43.02
HPP-100-1-late 240.23 ± 7.26 183.94 ± 4.57 214.53 ± 5.90 157.99 ± 77.44
WLP-25-1-late 252.27 ± 1.76 200.43 ± 10.59 246.99 ± 4.64 247.37 ± 4.98
WLP-50-1-late 253.73 ± 1.86 190.96 ± 14.73 245.21 ± 3.92 245.41 ± 2.79
WLP-100-1-late 257.50 ± 2.49 185.19 ± 3.90 243.79 ± 2.43 249.52 ± 2.51

Average 162.23 -33.75 203.16 161.39

Table 41: Test instances performances of the first rollout episode in continuous environments
measured with return on complete datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1 -159.11 ± 9.96 -243.09 ± 8.07 -100.69 ± 9.79 -153.71 ± 22.02
HCV-50-1 -155.25 ± 14.95 -202.80 ± 17.80 -78.41 ± 5.83 -96.91 ± 14.95
HCV-100-1 -132.12 ± 11.34 -223.83 ± 10.49 -90.97 ± 7.47 -102.68 ± 35.25
ANT-25-1 260.28 ± 16.57 169.30 ± 16.66 580.73 ± 25.74 583.55 ± 35.53
ANT-50-1 273.01 ± 18.56 193.74 ± 16.41 686.60 ± 14.75 705.95 ± 13.92
ANT-100-1 282.22 ± 17.18 124.20 ± 68.25 804.79 ± 24.51 903.03 ± 19.30
HPP-25-1 255.59 ± 11.33 121.74 ± 62.44 211.72 ± 6.57 226.34 ± 13.86
HPP-50-1 215.10 ± 6.01 92.90 ± 58.08 223.82 ± 10.52 207.17 ± 39.44
HPP-100-1 232.62 ± 9.27 117.72 ± 59.35 231.18 ± 7.09 233.35 ± 7.11
WLP-25-1 136.92 ± 66.61 201.06 ± 10.72 236.39 ± 2.67 247.13 ± 6.48
WLP-50-1 250.49 ± 1.95 190.35 ± 8.43 241.80 ± 1.75 248.35 ± 3.43
WLP-100-1 243.97 ± 4.13 186.02 ± 5.81 244.99 ± 4.45 244.25 ± 4.11

Average 141.98 60.61 266.00 270.49

F.7 CONTINUOUS TEST FINAL SCORES

Table 42: Test instances performances of the 4th rollout episode in continuous environments measured
with return on early datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-early -220.27 ± 10.64 -216.15 ± 7.26 -187.76 ± 7.24 -199.02 ± 62.56
HCV-50-1-early -222.63 ± 4.79 -232.30 ± 37.14 -144.25 ± 6.33 -208.40 ± 87.96
HCV-100-1-early -238.62 ± 13.55 -235.61 ± 72.85 -169.86 ± 20.42 -101.70 ± 7.59
ANT-25-1-early 326.96 ± 21.36 276.64 ± 12.45 394.83 ± 9.52 326.52 ± 77.87
ANT-50-1-early 330.73 ± 13.11 280.53 ± 19.65 437.84 ± 21.84 357.35 ± 97.74
ANT-100-1-early 348.13 ± 13.21 287.63 ± 44.14 497.54 ± 27.44 420.80 ± 119.04
HPP-25-1-early 69.71 ± 44.99 59.92 ± 0.91 133.83 ± 18.61 153.69 ± 34.75
HPP-50-1-early 91.93 ± 54.10 60.21 ± 1.37 183.49 ± 25.17 138.11 ± 51.90
HPP-100-1-early 83.96 ± 35.38 59.98 ± 0.98 158.39 ± 91.98 165.28 ± 28.19
WLP-25-1-early 91.89 ± 35.17 183.40 ± 0.57 249.73 ± 6.05 251.75 ± 6.51
WLP-50-1-early 69.34 ± 37.06 182.85 ± 0.80 254.60 ± 2.52 259.35 ± 4.71
WLP-100-1-early 90.62 ± 44.10 183.22 ± 0.46 256.69 ± 4.30 263.17 ± 1.24

Average 68.48 74.19 172.09 152.24
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Table 43: Test instances performances of the 4th rollout episode in continuous environments measured
with return on mid datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-mid -134.48 ± 3.56 -284.53 ± 35.44 -98.42 ± 10.31 -126.23 ± 7.78
HCV-50-1-mid -137.81 ± 6.95 -234.04 ± 30.58 -81.65 ± 5.05 -98.54 ± 4.35
HCV-100-1-mid -121.71 ± 5.17 -264.95 ± 49.55 -68.81 ± 1.03 -81.75 ± 6.35
ANT-25-1-mid 253.87 ± 18.76 153.26 ± 4.51 394.57 ± 26.40 403.92 ± 20.90
ANT-50-1-mid 314.18 ± 31.27 156.40 ± 37.07 504.20 ± 33.82 516.62 ± 17.09
ANT-100-1-mid 351.32 ± 17.21 136.17 ± 33.15 662.59 ± 8.88 667.48 ± 35.57
HPP-25-1-mid 76.54 ± 17.71 93.75 ± 59.55 132.09 ± 24.44 181.37 ± 19.54
HPP-50-1-mid 82.01 ± 8.86 94.03 ± 60.12 167.93 ± 13.21 217.87 ± 5.81
HPP-100-1-mid 84.13 ± 7.77 160.74 ± 58.60 142.65 ± 83.98 207.48 ± 2.01
WLP-25-1-mid 134.25 ± 77.26 182.51 ± 0.92 244.71 ± 2.75 244.95 ± 2.84
WLP-50-1-mid 68.14 ± 52.88 190.68 ± 8.14 243.05 ± 5.79 253.67 ± 4.80
WLP-100-1-mid 91.81 ± 83.73 184.87 ± 4.30 235.25 ± 4.51 237.75 ± 4.37

Average 88.52 47.41 206.51 218.72

Table 44: Test instances performances of the 4th rollout episode in continuous environments measured
with return on late datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1-late -90.90 ± 5.69 -310.27 ± 5.34 -133.34 ± 27.29 -183.96 ± 80.78
HCV-50-1-late -80.48 ± 7.41 -238.50 ± 54.31 -94.12 ± 8.01 -260.40 ± 55.57
HCV-100-1-late -72.25 ± 2.57 -197.66 ± 27.44 -70.92 ± 6.14 -118.99 ± 35.02
ANT-25-1-late 157.69 ± 35.91 -312.21 ± 82.17 314.88 ± 22.20 279.86 ± 14.61
ANT-50-1-late 250.33 ± 30.26 -242.14 ± 105.57 424.98 ± 19.28 439.85 ± 25.70
ANT-100-1-late 386.29 ± 34.52 -100.55 ± 99.34 605.69 ± 13.62 508.49 ± 16.07
HPP-25-1-late 254.75 ± 17.57 61.32 ± 61.46 218.08 ± 6.55 155.96 ± 70.33
HPP-50-1-late 224.88 ± 8.33 177.31 ± 10.46 231.93 ± 10.07 225.00 ± 47.23
HPP-100-1-late 226.75 ± 12.30 183.90 ± 4.57 212.45 ± 3.33 158.24 ± 77.56
WLP-25-1-late 251.62 ± 1.87 200.73 ± 10.87 249.07 ± 3.11 246.40 ± 4.21
WLP-50-1-late 254.88 ± 2.10 189.56 ± 12.18 247.18 ± 3.80 246.61 ± 2.76
WLP-100-1-late 258.04 ± 2.87 185.39 ± 3.96 244.10 ± 2.65 249.25 ± 2.77

Average 168.47 -33.59 204.16 162.19

Table 45: Test instances performances of the 4th rollout episode in continuous environments measured
with return on complete datasets.

Dataset AD IC-TD3 IC-TD3+BC IC-IQL

HCV-25-1 -137.99 ± 6.51 -246.07 ± 10.92 -97.39 ± 7.06 -152.26 ± 21.52
HCV-50-1 -126.71 ± 12.30 -208.23 ± 11.86 -80.84 ± 3.98 -102.25 ± 19.10
HCV-100-1 -121.41 ± 11.54 -221.09 ± 16.37 -90.01 ± 8.74 -112.84 ± 38.29
ANT-25-1 299.17 ± 25.54 169.21 ± 18.56 604.39 ± 46.33 582.13 ± 17.10
ANT-50-1 306.79 ± 22.22 190.44 ± 13.15 695.14 ± 15.47 704.26 ± 19.52
ANT-100-1 320.41 ± 26.25 121.99 ± 76.33 812.39 ± 44.33 893.94 ± 5.97
HPP-25-1 233.29 ± 8.55 122.08 ± 62.79 210.01 ± 6.47 225.81 ± 13.75
HPP-50-1 211.35 ± 2.16 92.84 ± 57.92 222.60 ± 13.03 210.21 ± 35.40
HPP-100-1 221.10 ± 10.98 116.96 ± 58.84 229.78 ± 6.97 234.06 ± 8.13
WLP-25-1 141.21 ± 64.92 201.35 ± 10.81 235.46 ± 4.94 246.65 ± 6.30
WLP-50-1 251.47 ± 1.27 190.00 ± 8.00 242.39 ± 0.43 248.17 ± 3.68
WLP-100-1 248.44 ± 2.69 185.97 ± 5.84 242.39 ± 3.76 244.71 ± 3.65

Average 153.93 59.62 268.86 268.55
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F.8 JANUS TEST NAUC TABLES

Table 46: Janus NAUC scores for Dynamic 1 test targets when deployed in DR19.

Dataset AD IC-DQN IC-CQL IC-IQL

Janus19-75-1 0.21 ± 0.01 0.14 ± 0.03 0.10 ± 0.06 0.08 ± 0.04
Janus19-75-5 0.20 ± 0.02 0.32 ± 0.07 0.34 ± 0.03 0.24 ± 0.03
Janus19-150-1 0.15 ± 0.01 0.22 ± 0.04 0.28 ± 0.04 0.15 ± 0.06
Janus19-150-5 0.16 ± 0.08 0.59 ± 0.01 0.58 ± 0.04 0.41 ± 0.17
Janus19-300-1 0.17 ± 0.02 0.32 ± 0.03 0.34 ± 0.11 0.23 ± 0.03
Janus19-300-5 0.31 ± 0.15 0.86 ± 0.06 0.78 ± 0.05 0.74 ± 0.07

Average 0.20 0.41 0.40 0.31

Table 47: Janus NAUC scores for Dynamic 2 test targets when deployed in DR19.

Dataset AD IC-DQN IC-CQL IC-IQL

Janus19-75-1 0.22 ± 0.01 0.10 ± 0.02 0.14 ± 0.03 0.09 ± 0.03
Janus19-75-5 0.20 ± 0.02 0.33 ± 0.05 0.31 ± 0.02 0.20 ± 0.04
Janus19-150-1 0.16 ± 0.01 0.20 ± 0.06 0.24 ± 0.05 0.17 ± 0.02
Janus19-150-5 0.20 ± 0.01 0.63 ± 0.02 0.64 ± 0.03 0.47 ± 0.03
Janus19-300-1 0.15 ± 0.01 0.27 ± 0.01 0.32 ± 0.05 0.21 ± 0.04
Janus19-300-5 0.21 ± 0.20 0.86 ± 0.05 0.82 ± 0.02 0.73 ± 0.05

Average 0.19 0.40 0.41 0.31

Table 48: Janus NAUC scores for Dynamic 1 test targets when deployed in Janus grid.

Dataset AD IC-DQN IC-CQL IC-IQL

Janus19-75-1 0.09 ± 0.10 0.09 ± 0.04 0.11 ± 0.05 0.12 ± 0.04
Janus19-75-5 0.08 ± 0.01 0.30 ± 0.06 0.27 ± 0.03 0.17 ± 0.06
Janus19-150-1 0.08 ± 0.07 0.23 ± 0.02 0.24 ± 0.04 0.17 ± 0.05
Janus19-150-5 0.08 ± 0.06 0.42 ± 0.04 0.45 ± 0.05 0.44 ± 0.03
Janus19-300-1 0.13 ± 0.03 0.25 ± 0.05 0.28 ± 0.11 0.20 ± 0.11
Janus19-300-5 0.18 ± 0.06 0.77 ± 0.10 0.63 ± 0.16 0.63 ± 0.09

Average 0.11 0.34 0.33 0.29
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Table 49: Janus NAUC scores for Dynamic 2 test targets when deployed in Janus grid.

Dataset AD IC-DQN IC-CQL IC-IQL

Janus19-75-1 0.01 ± 0.01 0.04 ± 0.02 0.02 ± 0.01 0.04 ± 0.00
Janus19-75-5 0.01 ± 0.00 0.07 ± 0.01 0.08 ± 0.02 0.06 ± 0.01
Janus19-150-1 0.05 ± 0.05 0.11 ± 0.02 0.09 ± 0.04 0.10 ± 0.02
Janus19-150-5 0.04 ± 0.04 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.01
Janus19-300-1 0.05 ± 0.03 0.09 ± 0.03 0.06 ± 0.02 0.04 ± 0.02
Janus19-300-5 0.07 ± 0.04 0.09 ± 0.02 0.09 ± 0.02 0.06 ± 0.03

Average 0.04 0.08 0.07 0.06

Table 50: Janus NAUC scores for all targets when deployed in Janus grid.

Dataset AD IC-DQN IC-CQL IC-IQL

Janus19-75-1 0.05 ± 0.06 0.07 ± 0.03 0.06 ± 0.03 0.08 ± 0.02
Janus19-75-5 0.04 ± 0.01 0.18 ± 0.03 0.18 ± 0.02 0.12 ± 0.03
Janus19-150-1 0.06 ± 0.06 0.17 ± 0.01 0.17 ± 0.04 0.13 ± 0.03
Janus19-150-5 0.06 ± 0.05 0.24 ± 0.03 0.26 ± 0.02 0.24 ± 0.02
Janus19-300-1 0.09 ± 0.03 0.17 ± 0.04 0.16 ± 0.05 0.11 ± 0.06
Janus19-300-5 0.12 ± 0.05 0.40 ± 0.05 0.33 ± 0.08 0.32 ± 0.06

Average 0.07 0.20 0.19 0.17
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