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Abstract—One of the crucial challenges taken in document
analysis is mathematical expression recognition. Unlike text
recognition which only focuses on one-dimensional structure
images, mathematical expression recognition is a much more
complicated problem because of its two-dimensional structure
and different symbol size. In this paper, we propose using a
Hybrid Vision Transformer (HVT) with 2D positional encoding as
the encoder to extract the complex relationship between symbols
from the image. A coverage attention decoder is used to better
track attention’s history to handle the under-parsing and over-
parsing problems. We also showed the benefit of using the [CLS]
token of ViT as the initial embedding of the decoder. Experiments
performed on the IM2LATEX-100K dataset have shown the
effectiveness of our method by achieving a BLEU score of 89.94
and outperforming current state-of-the-art methods.

Index Terms—Mathematical Expression Recognition, Vision
Transformer, Encoder-Decoder, OCR

I. INTRODUCTION

Mathematical expression recognition is one of the impor-
tant processes in scientific documents analysis [1]. Despite
the importance of this task, solving mathematical expression
recognition is still very challenging. One of the reasons for
the difficulty of math recognition compared to normal text
recognition is that math formula usually has 2-D spatial
structure relationship [2] instead of 1-D ones from normal text
data. The spatial structure relationship of math formula is pre-
sented by many math symbols such as superscript, subscript,
fraction symbol, etc. The traditional approach usually solves
this problem in two stages. First, the character segmentation
stage is used to segment each character in math formula
and then classify it based on the given vocabulary. Second,
the structural analysis stage is used to identify the spatial
relationships between all characters of the math formula.

Due to the success of sequence to sequence (Seq2seq) ar-
chitecture [3] from machine translation problems, many recent
works have applied this architecture to many other fields,
including speech recognition [4], text recognition [5], image
captioning [6]. Seq2seq architecture includes two main parts:
encoder and decoder. Mathematical expression recognition can
also be considered a sequence translation problem, where the
input, in this case, is the image of math expression and the
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Fig. 1. A general overview of our proposed framework

output is a 1-D sequence of LaTeX. Therefore, we can use the
Seq2seq approach to solve the mathematical expression recog-
nition problem. Indeed, recent works have proposed many
variants of Seq2seq architecture [2], [7]–[10] and achieved
many promising results. Despite that, the design of these
architectures still has many limitations. For example, Deng
et al. [7] introduced a multi-row encoder to capture the non-
left-to-right relationships of math symbols better, or Zhang
et al. [8] with a multi-scale encoder using DenseNet [11] to
handle the different size of symbols. Recently, Zelun Wang
and Jyh Charn Liu [12] had designed a convolutional neural
network (CNN) backbone with an additional 2D positional
encoding and performed sequence-level learning based on
reinforcement learning. These models entirely depend on the
feature extracted by a CNN. They so lack global information,
which is necessary for modeling spatial relationships between
different math symbols since math expressions can contain
related symbols which are far apart, limiting them in recog-
nizing long expressions. Inspired by the success of Vision
Transformer (ViT) [13] architecture, we propose a novel
Hybrid Vision Transformer (HVT) approach to acting as an
encoder of the Seq2seq model to alleviate the lacking of global
information problem. An HVT consists of a CNN backbone,
a 2D positional encoding (2DPE), and a stacking of multiple
ViT blocks. Image’s features are first extracted by a CNN
backbone to reduce input size and get high-level information
then are encoded with global information using ViT to return
the annotation vectors [14]. 2D positional encoding helps
the feature maps reserve more spatial information for both
vertical and horizontal directions. For the decoder, we follow
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the coverage attention idea from [14] by using an additional
coverage vector to align the attention weights. Furthermore,
we also leverage the [CLS] token embedding of ViT as the
initial hidden state for our decoder. In general, our architec-
ture includes three main stages as shown in Fig. 1: Feature
extraction and context modeling using HVT in the encoder
and prediction in the decoder. Experiments on benchmark
dataset IM2LATEX-100K have shown a competitive result and
achieved a new state-of-the-art (SOTA) result with a BLEU
score of 89.94, an image exact match rate of 86.48. Our main
contributions can be summarized as follows:

A novel Hybrid Vision Transformer approach for the en-
coder of the Seq2seq model.

Re-design the Seq2seq framework in both the encoder and
the decoder to better suit the math recognition problems and
achieve the SOTA result on the IM2LATEX-100K dataset.

Extensive ablation experiments and analysis.
Our remaining sections are organized as follows: Review the
related work, present our proposed method, perform experi-
ments and analyze results, and give conclusions and future
work.

II. RELATED WORK

Mathematical expression recognition has been an interesting
research topic for a long time. Before the rise of the deep
learning era, researchers usually proposed new methods
based on two main approaches: rule-based and grammar-
based methods. These methods require knowledge about
mathematical grammar and tedious work to design suitable
rules. In the theory point of view, mathematical expression
recognition problem can be considered a image-based
sequence prediction problem which can be solved by a
Seq2seq model. With the rise of deep learning, many Seq2seq
models [3] which learn directly from data are being proposed
and achieved better performance than previous non-deep
methods. Deng et al. [7] is considered the first paper to use the
Seq2seq model for this problem. In their work, they proposed
to use a multi-row encoder to learn the spatial structure of
math formulas better. As an improvement from Deng et al.,
Zhang et al. [14] integrate a coverage vector into the attention
module to deal with over parsing in mathematical expression
recognition. The coverage vector gives attention module
information about the history of alignment in the past to push
attention weight to appropriate local regions of feature maps.
Zhang et al. [8] have introduced a novel multi-scale encoder
to better capture different sizes of math symbols, usually in
handwriting math expressions. Using a multi-scale encoder,
the model can learn the representation of large and small
symbols. Bender et al. [15] focused on extracting fine-grained
features from math images. In order to handle the neglect of
key features when perform attention causing the decoder to
give wrong prediction, Li et al. [16] used a drop attention
module to randomly suppress features in training phase,
thus, make the model more robust. Yan et al. [2] proposed a
decoder that used a CNN instead of the recurrent network to
speed up the training and predicting process. Pang et al. [10]

use a global-context network to aggregate different global
features using a global context module integrated into a CNN
backbone. Their backbone is not optimized for text-based
recognition compared to ours. It has a more well-designed
CNN backbone for math recognition and is entirely based on
ViT to capture global dependencies and position information.

III. METHODOLOGY

A. Problem definition

Mathematical expression recognition can be considered as
a sequence prediction problem where the input is a grayscale
image X ∈ RH×W and the LaTeX ground truth sequence
Y = {y1, y2, · · · , yτ} with vocabulary of size K and the
length of the sequence is τ . The goal of our model is to convert
the input image into the corresponding LaTeX sequence by
finding a mapping function f such that f(X) = Y. In practice,
we can just find a function f ′ which is an approximation
of function f . In this paper, we achieve this purpose by
training our model using a dataset of pairs of the image-
LaTeX sequences in a supervised manner. Fig. 2a demonstrates
our proposed architecture including HVT for the encoder and
coverage attention for the decoder.

B. Hybrid Vision Transformer as encoder

Our HVT consists of two modules: First, a CNN is con-
sidered as a backbone to extract high-level feature from
input image. Second, a context modeling module consists of
many ViT block stacks together to further enhance feature
embedding by modeling global information and capture long-
range dependencies between different feature of the feature
maps.

The ViT can perform feature representation of image data
for image classification task as shown in [13] by their capa-
bility of learning internal relationship between pixels in the
images using self-attention mechanism without the need of
stacking multiple CNN layers. Therefore, ViT can be served
as a perfect encoder in the encoder-decoder framework. While
recent works are still based on a recurrent neural network to
model context information from the feature maps, one of the
most commonly used is bidirectional LSTM (BiLSTM) which
can combine the context in both directions of the feature maps.
However, BiLSTM will become a bottleneck of the whole
architecture due to the sequential design.

Due to the missing of inductive bias in localization com-
pared to CNN as claimed in [13], ViT needs a lot of training
data to attend on small distances like CNN [17]. To make our
model converge easily, we add a supporting CNN backbone
before the ViT blocks to encode the image’s local regions into
high-level features.

1) Backbone: We design our ResNet model based on [18].
Our ResNet-based backbone consists of 32 layers with 4
ResNet blocks. In order to handle text-based images ap-
propriately, stride values at third pooling layer and sixth
convolutional layer are changed to (1,2) instead of (2,2) so
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Fig. 2. The proposed architecture pipeline and illustration of ViT block.

that feature maps can have a larger width making them easier
to cover a correct receptive field of a symbol.

Specifically, give an image X ∈ RH×W , the corresponding
output feature maps is F ∈ RHf×Wf×C , where Hf = H

32 +1,
Wf = W

4 + 1, C is number of output channels.

2) Vision Transformer: We follow the standard design of
ViT from [13] as shown in Fig. 2b, such that each ViT
block contains a self-attention layer to calculate attention
probabilities between query vector q and key matrix K and a
feed-forward-network (FFN) which consists of two multilayer
perceptron layers (MLP). In order to pay attention to different
subspace of different symbols’ positions, we further apply
multi-head self-attention instead of single-head. Similar to the
original Transformer [19], ViT uses LayerNorm (LN) [20]
to stabilize the learning process. Specifically, given F ∈
RHf×Wf×C as the output feature map from the backbone, in
order to convert F to the correspond representation of input of
ViT which is a sequence of 1D token embeddings, we further
apply a CNN layer with kernel size of p × p and strides of
p× p, where p is defined as the patch size of a patch image,
to create a new feature map F ∈ R

Hf
p ×

Wf
p × D, where D

is embedding dimensions. The result is finally flattened into a
sequence of tokens E ∈ RN×D known as patch embeddings
with N =

Hf×Wf

p2 is the number of patches.
ViT also provides an additional token xclass as a learnable em-
bedding which is called [CLS] token inspired by the idea used
in BERT [21], [CLS] token is concatenated with other spatial
tokens in the current patch embeddings E , in the training
process, information is forced to flow from all other tokens to
[CLS] token through a self-attention mechanism, thus [CLS]
token embedding can be considered as a global representation
of image features and can be used as an initial hidden state
for model’s decoder instead of using whole encoder’s output
feature maps. Moreover, due to the permutation-invariant of

self-attention that treats all tokens in sequence as bag-of-word,
positional embeddings Epos with the same dimension D as
patch embeddings are incorporated with patch embeddings to
provide position information. The final vector H0 calculated
by Eqs. 1 is considered as the input vector to ViT.

H0 = [xclass,E] +Epos (1)

Where E ∈ RN×D,Epos ∈ R(N+1)×D. Given L ViT blocks
of our HVT, Eq. 2 performs two general steps in the total
process of a single ViT block. The MHSA layer first processes
the input sequence to mix the information in all tokens in a
global context manner. Therefore, one token can accumulate
information about other tokens’ spatial or semantic features
throughout the training process. In mathematical expression
recognition, MHSA helps model learn to extract spatial struc-
ture for structure analysis and semantic information for symbol
recognition. The second step of this process is to go through an
FFN. An FFN combines two MLP layers, one layer transforms
hidden embeddings from D to 4D dimension and one layer
converts 4D back to D dimension. The FFN helps integrate
information independently in each token of the sequence.

Concretely, given input sequence H0 ∈ R(N+1)×D we
first project it into query Qh, key Kh, value Vh matrix for
each head h ∈ [1, Nhead] of MHSA layer using learnable
matrix Wh

Q ∈ Rdq×D, Wh
K ∈ Rdk×D, Wh

V ∈ Rdv×D, in
our case dq = dk = dv = D

Nhead
. An MHSA layer, as

shown in Eq. 3 performs self-attention on multiple heads and
concatenates the result of all heads together, then projects
back to the D dimension using WO ∈ RNhead.d

v×D. The
final output in Eq. 4 consists of N + 1 elements, including
N spatial embedding vectors of the image {h1

L, h
2
L, · · · , hN

L }
called annotation vectors A and [CLS] token embedding (i.e.
h0
L).
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{
H′

ℓ = MHSA (LN (Hℓ−1)) +Hℓ−1

Hℓ = FFN (LN (H′
ℓ)) +H′

ℓ
ℓ ∈ [1, L] (2)

MHSAℓ(Q,K,V) =
[
SA1

ℓ , SA
2
ℓ , · · · , SAH

ℓ

]
×WO (3)

[
h0
L, h

1
L, h

2
L, · · · , hN

L

]
= HL (4)

3) 2D Positional Encoding: Unlike the natural image, a
math image has a strong semantic correlation between dif-
ferent components in the formula, such position information
about nested or hierarchical components needs to be reserved
carefully. Under this assumption, we propose 2DPE which
using 2D sinusoidal positional encoding similar to [22]. 2DPE
performs 1D positional encoding from [19] on two dimensions
of the input features and then concatenates them to gain the
final output.
Concretely, (H,W ) is height and width of the feature maps
and D is embedding dimension, the position embedding of the
feature maps is calculated by our 2DPE using Eq. 5:

2DPE(H,W,D) = [PE(h, i),PE(w, j)] (5)

Where i ∈ [0, D/2) , j ∈ [D/2, D), [.] denotes concatenate
operation. The embedding for each dimension can be obtained
as follow: PE (pos, t) = sin

(
pos /10000t/

D
4

)
PE (pos, t+ D

4 ) = cos
(
pos /10000t/

D
4

) (6)

Where t ∈ [0, D/4), PE denotes 1D sinusoidal positional
encoding, and pos denotes any position in the horizontal (w)
or vertical direction (h).

C. Coverage attention for Decoder

To deal with variable input length of math image and
variable output length of LaTeX sequence, we choose RNN-
based with attention mechanism [23] as our decoder. At every
time step t, our decoder calculate a fixed-size intermediate
vector also known as context vector ct ∈ RD based on
a weighted sum between the annotation vectors A and the
attention weight αααt ∈ RN . By using ct, our decoder can
generate a suitable LaTeX symbol and also be independent of
variable input-output length. We consider using unidirectional
LSTM instead of traditional recurrent neural networks to
overcome the vanishing gradient problem.
At training phase, each groundtruth (GT) token y is first
transformed using an embedding layer as shown in Fig. 2 into
a vector e so that tokens which have high correlation (e.g. ’[’,
’]’) can have similar embedding.
At time step 0, we choose vector embedding of [CLS] token
(i.e. h0

L) as the initial hidden state. Different from [24]
approach, we further apply an MLP layer to h0

L to integrate
more information. Coverage attention similar to [14] is applied
to our decoder to make it more robust with under-parsing
and over-parsing problems. Coverage vector is created by

summing all previous attention weights ααα and performing a
convolution operation (Conv) to aggregate information of the
history alignments as shown in Eq. 7 and therefore it can guide
the decoder on future prediction to put attention on appropriate
regions. {

βββt =
∑t−1

l=1 αααl

ft = Conv(βββt)
(7)

Where ft indicates coverage vector at step t, β0 is set to vector
0. In summary, the output ŷt ∈ RK at step t is calculated by
Eq. 8.  ct = Attention(st−1,A, ft))

st = RNN(st−1, [ct, et])
ŷt = Softmax(st)

(8)

Where Attention is attention operation as described in [14],
RNN is a recurrent layer specifically a LSTM layer, Softmax
is a softmax layer to output probability distribution, [.] denotes
concatenate operation, sj is decoder hidden state of step j ∈
[0, τ ], et is embedding vector of yt GT token. At time step 0,
s0 = MLP(h0

L).

IV. EXPERIMENTS

This section presents our experiment on the benchmark
dataset and compares it with other SOTA models. We also per-
form an extensive ablation study to analyze the effectiveness of
each component in our model, and finally, some visualization
of the attention weight in both encoder and decoder.

A. Dataset

We choose to use a benchmark dataset IM2LATEX-100k
[25] created by crawling from 60000 research papers on
arXiv. The dataset contains 103,556 LaTeX representation
of mathematical expressions in total. The length of each
LaTeX sequence is change from 38 to 997. Each sequence is
rendered to PDF format using pdflatex compiler and converted
to PNG image in grayscale format using ImageMagick. The
final dataset is split into 3 partitions including train set with
83,883 formulas, validation set with 9319 formulas, and test
set with 10,354 formulas.
We follow the same preprocessing strategy as [7] by applying
a parsing algorithm on raw LaTeX sources to create tokenized
LaTeX labels. We then create a vocabulary V from all unique
LaTeX tokens with three addition tokens, including [SOS],
[EOS], and [PAD] tokens. Our vocabulary V contains 499
tokens. All images of the same size will be grouped into the
same bucket. This way can help to reserve the 2D structure
of math images, which is different from normal text images.

B. Implementation details

1) Architecture: For our HVT configuration, we set the
number of output channels of ResNet-based backbone to
C = 512. Different from the original setting of ViT from [13],
we reduce the number of heads to Nhead = 8 and we only use
L = 6 ViT blocks to encode the image’s feature, we choose
the dimension the patch embedding to D = 256, dimension
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of FFN layer to dffn = 1024. ince we perform patchify on
feature maps, we choose a small patch size p = 2. For the
decoder, we apply a filter with a kernel size of 5× 5 and an
output channel of 128 to the coverage vector; both the hidden
state of LSTM and the embedding size of the input token are
set to demb = 256. We adopt a dropout [26] technique with
drop rate 0.1 as a regularization method to reduce over-fitting.

2) Training and inference: In the training phase, at every
time step, the decoder will receive the embedding of the
ground truth token, also known as teacher forcing. In the
inference phase, the output LaTeX sequence is predicted token
by token at every time step. Moreover, to prevent the predicted
output from sampling from a sub-optimal distribution, we use
beam search with beam size set to 5 to get the output token.
The entire model is trained from scratch without using any
pretrained weight for 300K iterations with a batch size of 32
using AdamW [27] optimizer with an initial learning rate set
to 5×10−4 and the decay rate of 2×10−6. After every step, the
learning rate is adjusted by using a warm-up cosine schedule.
A simple data augmentation strategy that includes random
scale and rotation is adopted to better optimize ViT. All
experiments are implemented using PyTorch and conducted
on GPU NVIDIA V100 32GB.

3) Evaluation: We also consider evaluating our model’s
performance using text- and image-based metrics. For text-
based metrics, we use BLEU-4 score [28], text edit distance
(TED) which compute the Levenshtein distance between the
GT sequence and the prediction at token level, and the
sequence accuracy (Acc) which return 1 if the prediction and
GT are exactly the same else 0. For image-based metrics, we
evaluate on the rendered images of predicted LaTeX sequences
and GT images using the same metrics used in [7] including
image edit distance (IED), and exact match accuracy without
spaces (EMA w/o space).

C. Compare between other SOTA methods

We demonstrate the effectiveness of our proposed model
by comparing it with previous methods on IM2LATEX-100K
test set. Our method achieves a better result than [10] which
proves the effectiveness of using ViT compared to a global
context module from [10]. Especially, for image-base metric
as EMA, our method obtain a significant improvement of
about 2.4% compared to [9] which proves the potential of our
method in capturing the image’s structure. Besides, Acc result
which is very low compare to other metrics has shown the
ambiguities in LaTeX grammar where many LaTeX sequences
can represent the same visual structure.

D. Ablation Study

1) Contribution of main components: To better understand
the effectiveness of each component in our proposed method,
we extensively compare the performance of the baseline model
with other model’s versions when we alternately replace each
component of the baseline with our proposed ones.
For the baseline, we choose VGG [29] architecture as the
backbone and do not use any context modeling module,

TABLE I
COMPARISON BETWEEN DIFFERENT METHODS ON IM2LATEX-100K.

Method Acc BLEU-4 EDA EMA
(w/o space)

Global Context [10] - 89.72 90.07 82.13
Double Attention [9] - 89.4 90.9 84.1
MI2LATEX w/o reinforce [12]* - 89.08 91.09 82.13
Ours 48.39 89.94 92.23 86.48

* We only consider the MI2LATEX version without second
training phase.

attention mechanism (Attn) without coverage vector similar to
[23] is used as the prediction head. For feature extraction, we
compare VGG backbone with our ResNet-based. For context
modeling, we choose BiLSTM from [23], we also experiment
on a ViT version which receives 1D feature maps called ViT-
1D by collapsing the height of input feature maps into one
together with our’s ViT-2D to perform the comparison. For
prediction, we consider using a transformer decoder from
[19] and our coverage attention (Coverage-Attn) against the
baseline. Detail of the all experiment setting and the results
of ablation experiments are shown in Table II and III.
According to the results, using our ResNet-based instead of
VGG as the backbone has improved the baseline by a large
margin on all evaluation metrics, especially the accuracy has
increased by 15%. This suggests that a ResNet model for text
recognition is a good choice for our backbone. In the context
modeling component, we can observe that adding the ViT-
2D module gives the best performance. It shows the ability to
model a better long-range dependencies compared to BiLSTM
and reserve a 2D spatial structure compared to ViT-1D. Using
coverage attention for the baseline instead of [23] also gives
a better result than using the transformer decoder, which
indicates the importance of the coverage vector in keeping
the alignment history.

TABLE II
DETAIL OF ABLATION EXPERIMENT SETTING, WHERE ‘NONE’ INDICATE

EMPTY MODULE.

Experiment
Encoder

Pred.
Feat. Context.

Baseline VGG None Attn
V1 ResNet None Attn
V2 VGG ViT-1D Attn
V3 VGG BiLSTM Attn
V4 VGG ViT-2D Attn
V5 VGG None Transformer Decoder
V6 VGG None Coverage-Attn
V7 ResNet ViT-2D Coverage-Attn

2) Contribution of 2d positional encoding: To study the
impact of 2D positional encoding, we compare the result when
using 1D positional encoding similar to [13], [19] and our
2DPE before entering the ViT. Table IV shows that using our
2DPE has a better result on all metrics. Significantly, the EMA
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TABLE III
ABLATION EXPERIMENTS ON DIFFERENT KEY COMPONENTS OF OUR

APPROACH EVALUATE ON IM2LATEX-100K VALIDATION SET.
PARTICULARLY, FEAT. DENOTE FEATURE EXTRACTION, CONTEXT.
DENOTE CONTEXT MODELING, AND PRED. DENOTE PREDICTION.

Acc BLEU-4 TED params
Component Experiment % % % ×106

Feat.
Baseline 22.15 79.12 77.32 7.05
V1 37.55 85.90 89.90 45.76

Context.
Baseline 22.15 79.12 77.32 7.05
V2 34.97 87.73 92.23 12.13
V3 43.69 90.61 94.52 9.75
V4 44.42 91.48 94.88 12.19

Pred.
Baseline 22.15 79.12 77.32 7.05
V5 42.06 90.12 93.04 15.52
V6 42.58 90.23 93.12 7.09

Overall V7 49.30 92.33 95.60 50.95

has improved by approximately 4%. Experiment’s result is
evaluated on IM2LATEX-100K test set.

TABLE IV
COMPARISON BETWEEN TWO POSITIONAL ENCODING METHOD WHEN

APPLY TO OUR PROPOSED METHOD.

Positional Encoding Acc BLEU-4 IED EMA (w/o space)

1D 45.78 88.84 89.31 82.93
2D 48.39 89.94 92.23 86.48

3) Contribution of [CLS] token embedding vector: To study
the impact of using [CLS] token embedding as an initial
hidden state for the decoder, we compare the result when not
using initial embedding and when using it. Table V shows
that 2D positional encoding has obtained a better result than
the 1D positional encoding approach. Experiment’s result is
evaluated on IM2LATEX-100K test set.

TABLE V
COMPARISON ON TWO INITIAL HIDDEN STATE SETTINGS WHEN APPLY TO

OUR PROPOSED METHOD.

Use init Acc BLEU-4 IED EMA (w/o space)

✓ 48.39 89.94 92.23 86.48
✗ 43.87 81.73 89.36 81.02

E. Discussion

1) The effect of LaTeX sequence length: Given the ground
truth of LaTeX sequences, we manually group them into
different groups based on their length to investigate the effect
of LaTeX sequence length on the performance of our method.
To prove the consistency of our method to the sequence
length, we compare the average EMA (w/o space) between
our method and the baseline model on different group lengths.
Fig. 3 shows that our method is very robust to the length of
LaTeX sequences while the baseline’s performance decreases
significantly. Our method still has the EMA of more than 71%
when sequence length is more significant than 100 and has
26% for a sequence with more than 150 tokens.

Fig. 3. Comparison between our proposed method and the baseline model at
different sequence length.

2) Encoder visualization: The input of ViT is the sequence
of embedding vector of spatial locations in the input image
plus the embedding of [CLS] token. Fig. 4 shows the self-
attention map of the [CLS] token embedding when attending
to all other spatial embedding vectors. This visualization has
confirmed the usefulness of using our HVT in modeling global
information between different math symbols in the images.

Fig. 4. Examples of self-attention map of [CLS] token embedding.

3) Decoder visualization: We visualize the step-by-step
decoding process using coverage attention on an example math
expressions of IM2LATEX-100K testing in Fig. 5. At each
step, the attention map shows that the model correctly aligns
some local region on the image to the corresponding math
symbol.

Fig. 5. Visualization of a step-by-step decoding process using our method
on example math expression image.

4) Limitation: Fig. 6 has shown that despite the strong
ability to capture the global dependencies and correlation
between symbols in math image, and the capable symbol
recognition mechanism through coverage attention help the
model to implicitly learn about the grammar rules, it still
suffers from the lack of specific knowledge about grammar.
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(a) Groundtruth

(b) Prediction

Fig. 6. An example of our model’s prediction about the correctness in
spatial structure and symbol correlation but misunderstanding in the syntactic
relationships.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel Hybrid Vision
Transformer approach combined with the embedding vector
of [CLS] token as the initial hidden state of the decoder
allowing the model to extract more sophisticated relationships.
Our architecture includes three main stages, which are feature
extraction, context modeling and prediction. Our approach has
proved the effectiveness when compared to other approaches.
Our model has achieved a SOTA performance on the well-
know public dataset IM2LATEX-100K. In the future, our
research will focus on appending synthetic LaTeX information
into the Seq2seq model to better handle more complicated
math expression structure. Besides, we will build a complete
system to be able to provide products to users.
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