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ABSTRACT

Although the neural radiance field (NeRF) exhibits high-fidelity visualization on
the rendering task, it still suffers from rendering defects in complex scenes. One
of the primary reasons is the limited model capacity. However, directly increasing
the network’s width and depth cannot significantly improve the rendering quality.
To address this issue, existing work adopts scene partitioning and assigns different
3D points to different network parameters. However, a 3D point may be invisible
to some rays due to occlusions in complex scenes. On such a point, training with
those rays that do not contain valid information about the point might interfere
with the NeRF training. Based on the above intuition, we allocate model param-
eters in the ray dimension and propose a Gate-guided Mutual Learning frame-
work for neural rendering (GML-NeRF). Specifically, we construct an ensemble
of sub-NeRFs and train a soft gate module to assign the gating scores to these
sub-NeRFs based on specific rays. The gate module is jointly optimized with the
sub-NeRF ensemble, enabling it to learn the preference of sub-NeRFs for differ-
ent rays automatically. Furthermore, we introduce depth-based mutual learning
to enhance the rendering consistency among multiple sub-NeRFs and mitigate the
depth ambiguity. Experiments on five diverse datasets demonstrate that GML-
NeRF can enhance the rendering performance across a wide range of scene types
compared with existing single-NeRF and multi-NeRF methods.

1 INTRODUCTION

Novel view synthesis is an important task within the domains of computer vision and computer
graphics, playing an essential role in a variety of applications, such as autonomous driving, aug-
mented reality, virtual reality, game rendering, and so on. Recently, Neural Radiance Field
(NeRF) (Mildenhall et al., 2021) has emerged as a promising solution, achieving high-fidelity visu-
alizations on the novel view synthesis task. It implicitly encodes 3D scenes through neural networks
and trains the networks using multi-view consistency and volume rendering.

Despite NeRF’s excellent scene representation ability, it still suffers from rendering defects when
dealing with complex scenes, such as 360-degree unbounded scenes (Zhang et al., 2020; Barron
et al., 2022) and large indoor or outdoor scenes with free shooting trajectories (Wang et al., 2023;
Turki et al., 2022; Tancik et al., 2022). One of the main reasons is the limited capacity of the NeRF
model. However, directly increasing the network’s width and depth yields marginal improvement in
the rendering quality (Müller et al., 2022).

To address the limitation, a recent scene partitioning method proposes to allocate different 3D points
to multiple NeRFs and trains them independently (Zhenxing & Xu, 2022). This approach, where
each NeRF’s parameters encode specific regions of the 3D space, indeed leads to improved rendering
performance compared to a single NeRF model. Nonetheless, this approach might struggle to cope
with complex scenes (with many occlusions and arbitrary shooting trajectories).

Let us consider a simple case of a 360-degree unbounded scene with a central object (truck) and a
distant object (car), in which NeRF needs to encode both objects. As illustrated in Figure 1a, a 3D
point located on the distant object can be observed from ray-1 and ray-2, but is invisible to ray-3
due to the occlusion presented by the central object. If we use the point-based scene partitioning
scheme that assigns 3D points around the two objects to two sub-NeRFs respectively, when NeRF-1
learns the 3D point located on the distant object, all three rays will be used for training. However,
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Figure 1: A case in 360-degree unbounded scenes (bird-eye view). (a) In the point-based multi-
NeRF framework, model parameters are allocated in the point dimension, which is not visibility-
aware. Due to the occlusion by central object, distant object is invisible to ray-3 and training NeRF-
1 with ray-3 could interfere with the rendering. (b) The ray-based multi-NeRF framework considers
the variable visibility of objects to different rays and allocates parameters in the ray dimension.

ray-3 does not contribute any meaningful information about the distant object, potentially interfering
with the training process of NeRF-1. In contrast, considering the different visibility of the object to
different rays, our intuition is that assigning the rays terminating at the distant object to NeRF-1 and
the rays terminating at the central object to NeRF-2 could be better, as shown in Figure 1b.

The above intuition inspires us to allocate model parameters in the ray dimension rather than
the point dimension, realizing a visibility-aware multi-NeRF framework. To this end, we propose a
gate-guided multi-NeRF mutual learning framework for neural rendering (GML-NeRF). Within the
GML-NeRF framework, an ensemble of sub-NeRFs assigns different model parameters to different
rays through a soft gate module. With the help of the soft gate module, sub-NeRFs’ outputs are
fused by post-volume-rendering fusion to yield final rendering results. Notably, the gate module is
jointly optimized with NeRF, allowing it to automatically learn the preference of each sub-NeRF
for various rays in an end-to-end manner. This learnable parameter allocation design makes
GML-NeRF generally applicable to diverse scenes, which stands in contrast to prior multi-NeRF
methods (Turki et al., 2022; Tancik et al., 2022) that rely on manually defined allocation rules.

Building upon the gate-guided multi-NeRF framework, we introduce a depth-based mutual learning
method to enhance the rendering consistency among multiple sub-NeRFs. Specifically, in addition to
learning the ground-truth colors, sub-NeRFs teach each other with their rendered depth. Traditional
NeRF methods may struggle with generalization to novel views despite accurately rendering training
views, as they often fail to capture precise geometry (Deng et al., 2022; Zhang et al., 2020). In
contrast, our depth-based mutual learning approach serves as a form of geometric regularization,
alleviating the depth ambiguity and thereby avoiding overfitting.

To verify the effectiveness and general applicability of GML-NeRF, we conduct experiments on var-
ious datasets, including real object dataset, 360-degree unbounded scenes, and large outdoor/indoor
scenes with free shooting trajectories. The results show that GML-NeRF effectively boosts render-
ing quality and outperforms other multi-NeRF methods across different types of scenes.

2 RELATED WORK

2.1 NEURAL RADIANCE FIELD

Neural Radiance Field (NeRF) (Mildenhall et al., 2021) has received much attention since it was
proposed. It uses MLPs to implicitly represent 3D objects or scenes, achieving realistic rendering
results. Due to the success of NeRF in high-quality rendering, there have been intensive studies on
NeRF’s extension, including but not limited to increasing NeRF’s training or inference efficiency (Yu
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et al., 2021; Fridovich-Keil et al., 2022; Reiser et al., 2021; Sun et al., 2022; Müller et al., 2022),
applying NeRF to complex scenes (large/unbounded/poor-textured) (Martin-Brualla et al., 2021;
Zhang et al., 2020; Barron et al., 2022; Wei et al., 2021; Tancik et al., 2022; Turki et al., 2022;
Zhenxing & Xu, 2022), applying NeRF to other tasks (surface reconstruction/scene editing) (Yariv
et al., 2021; Oechsle et al., 2021; Wang et al., 2021a; Liu et al., 2021; Yang et al., 2021; 2022),
increasing NeRF rendering quality in few-shot setting (Jain et al., 2021; Kim et al., 2022; Niemeyer
et al., 2022; Deng et al., 2022). In this work, we aim to increase NeRF’s rendering quality in complex
scenes, and our GML-NeRF acts as a multi-NeRF framework, which can leverage the techniques
proposed by these single-NeRF researches.

2.2 MULTI-NERF REPRESENTATION

Compared to rendering 3D objects and face-forward small scenes in the original NeRF (Mildenhall
et al., 2021), some work applies NeRF to the more complex scenes. Due to the limited model capac-
ity, the multi-NeRF method is widely adopted to scale up model capacity and allocate model param-
eters to improve the rendering quality. For outdoor unbounded scenes, NeRF++ (Zhang et al., 2020)
proposes the sphere inversion transformation to map an infinite space to a bounded sphere first, and
it uses two NeRFs to model the foreground and background regions respectively. For large scenes,
Block-NeRF (Tancik et al., 2022), Mega-NeRF (Turki et al., 2022), and Switch-NeRF (Zhenxing &
Xu, 2022) partition the scenes into multiple parts which are processed by different NeRFs, in image,
pixel and point dimension respectively. The former two methods adopt hand-crafted scene partition-
ing schemes based on manually defined data allocation rules, which are impractical and have limited
application scenes. Besides, they adopt a hard allocation scheme and need other processes to im-
prove rendering consistency. Switch-NeRF (Zhenxing & Xu, 2022) implements a learning-based
scene partition scheme motivated by Mixture-of-Experts (MoE) (Shazeer et al., 2017a). Despite its
effectiveness in drone scenes, it allocates model parameters in the point dimension, which limits
the rendering performance in the more complex scenes with occlusions. In this work, we propose
a gate-guided multi-NeRF mutual learning framework, performing the allocation in the ray dimen-
sion. Compared to other multi-NeRF methods, GML-NeRF boosts the rendering quality in various
types of scenes without the need for prior scene knowledge.

3 PRELIMINARY

NeRF (Mildenhall et al., 2021) uses neural networks to represent 3D scenes implicitly. Two MLPs
model the density and color of spatial points respectively. The input of density MLP Fσ is the 3D
coordinate of spatial point x. As the contribution of each spatial point to the rendered color can be
different when observing from different views, the input of color MLP Fc includes view direction
θ and the feature f output by density MLP. NeRF proposes the volume rendering method to render
each pixel of an image. Specifically, each pixel on the images corresponds to a ray. NeRF samples
N points along the ray and renders the pixel’s color Ĉ(r) by discretely summing density σi and
color ci of each point i, which approximates the integral C(r) as follows:

C(r) =

∫ +∞

0

w(t)c(t)dt Ĉ(r) =

N∑
i=1

wici, (1)

Ti = exp

−
i−1∑
j=1

σjδj

 wi = Ti

(
1− e−δiσi

)
, (2)

where ti is the distance between i-th sample’s position and the starting point of the ray, δi = ti+1−ti
is the distance between adjacent samples and Ti represents the probability that the ray travels from
the start to point i without hitting. The NeRF optimization is based on color supervision.

4 GML-NERF

NeRF faces the challenge of limited model capacity when rendering complex scenes (Zhang et al.,
2020; Wang et al., 2023; Zhenxing & Xu, 2022). However, directly increasing the number of model
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Figure 2: The overview of GML-NeRF. We construct a multi-NeRF framework based on the hybrid
representation, where the feature grid is shared for all sub-NeRFs and the MLP decoders are inde-
pendent. (Left) Given a ray, the soft gate module encodes the ray’s data and outputs a soft score.
Then, guided by the gating score, sub-NeRFs’ outputs are fused after the volume rendering pro-
cess. (Right) The fused rendered depth of the ray is used to regularize each sub-NeRF’s geometric
encoding and increase the rendering consistency.

parameters yields marginal improvement in the rendering quality (Müller et al., 2022), posing an
important research question: “how to effectively scale up the capacity of NeRF”. While the multi-
NeRF methods have been proposed as an effective technique in response to this question, they
still faces limitations in handling complex scenes (with many occlusions and arbitrary shooting
trajectories). In this work, we propose a gate-guided mutual learning framework (GML-NeRF),
effectively scaling up the model’s capacity to handle complex scenes by allocating model parameters
in the ray dimension. Figure 2 gives an overview of GML-NeRF.

In the following, we first analyze the limitations of existing multi-NeRF methods and demonstrate
the motivations of GML-NeRF in Section 4.1. Then, we introduce the design of gate-guided multi-
NeRF fusion in Section 4.2 and depth-based mutual learning method in Section 4.3. Finally, we
describe the training losses of GML-NeRF in Section 4.4.

4.1 MOTIVATIONS OF GML-NERF

Existing multi-NeRF methods can be categorized into two categories according to the dimension of
model parameter allocations: point- and ray-based multi-NeRF methods.

Point-based multi-NeRF method. These methods divide the 3D space in the point dimen-
sion (Zhang et al., 2020; Wang et al., 2023; Zhenxing & Xu, 2022). 3D points in different regions
are computed by different sub-NeRFs. Although they perform well on open scenes with few oc-
clusions, they are not “visibility-aware”, which might hinder their performances on complex scenes
with many occlusions: These methods do not consider the different visibility of a target region to
different views. For example, the front side of an object is not visible when it is observed from the
back view or it is blocked by an occlusion. Training the sub-NeRF with rays that do not contain any
valid information about the target region might interfere with the training.

Ray-based multi-NeRF method. Existing ray-based multi-NeRF methods allocate the training
rays to different sub-NeRFs and train sub-NeRFs independently (Tancik et al., 2022; Turki et al.,
2022). Block-NeRF and Mega-NeRF perform the ray allocation in the image-granularity and pixel-
granularity respectively. Both of them need a manually defined allocation rule, which requires
concrete knowledge of the application scenes and cannot be easily adapted to other types of scenes.
For example, the former work trains sub-NeRFs in large-scale road scenes with prior knowledge of
the image shooting position distribution on the road, and the latter one trains sub-NeRFs in the open
drone scenes and allocates the rays by partitioning the intersecting positions between the rays and a
horizontal plane. Despite their promising performances on these specific types of scenes, defining a
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ray allocation rule for complex scenes lacking prior scene-specific knowledge remains challenging,
especially when the scenes are captured with arbitrary shooting trajectories.

Requirements on the multi-NeRF framework. As discussed above, the complex scenes may con-
tain many occlusions and be captured with arbitrary shooting trajectories, which poses challenges
for the point-based multi-NeRF methods and manually defined ray allocation rules. For these com-
plex scenes, an improved method should be both visibility-aware and easy to apply to different
types of scenes, motivating us to design a ray-based multi-NeRF framework in a learnable way.

4.2 GATE-GUIDED MULTI-NERF FUSION

In order to allocate model parameters in the ray dimension, we design a multi-NeRF model structure
and introduce a soft gate module to produce soft NeRF allocation for each ray in a learnable way.

Multi-NeRF Structure. Considering the importance of training efficiency on the practicabil-
ity of NeRF frameworks, we combine the implicit and explicit representations following Instant-
NGP (Müller et al., 2022). When performing a forward computation with a single NeRF, we first
extract the feature of the 3D point from a feature grid, and then we compute its density and color
using tiny MLP networks. Despite the training efficiency of the hybrid representation, it needs to ex-
plicitly store most of the learnable parameters, leading to increasing memory overhead. To mitigate
this issue, we employ a shared feature grid among sub-NeRFs and keeping MLP decoders indepen-
dent, avoiding a significant increase in the number of parameters and training complexity. Besides,
as different rays may pass through the same region of 3D space, weight sharing for the feature grid
might help training, while ray specialties are still maintained by independent MLP decoders.

Soft Gate Module. We incorporate a soft gate module to assign gating scores to the sub-NeRFs for
each ray. The soft gate module is jointly optimized with NeRF, enabling it to learn the preference of
each sub-NeRF for different rays in an end-to-end manner. In contrast to manually assigning training
rays to sub-NeRFs, this learnable parameter allocation design makes GML-NeRF generally appli-
cable to diverse scenes lacking prior scene-specific knowledge, as we will verified in Section 5.2.
In Section 5.2, we will also show that the gate module can learn to assign reasonable gating
scores that reflects the object visibility of rays, aligning with our intuition that visibility-aware
parameter allocation is important.

Specifically, we employ a four-layer MLP followed by a Softmax as the gate module. The soft
gate module takes the starting point and direction (o,d) of a ray r as the input, and outputs the soft
gating scores G(r) of the multiple sub-NeRFs associated with this ray. Instead of applying any
sparsification strategies on the gating score G(r) as in previous work (Zhenxing & Xu, 2022), such
as top-k gating function (Shazeer et al., 2017b), we use soft gating scores to enhance the consistency
of the rendered results.

As discussed in Section 3, each ray corresponds to a pixel on the image. Following the volume
rendering process, we can obtain K rendered colors for each ray, where K is the number of sub-
NeRFs. Subsequently, multi-NeRFs’ outputs are fused in a post-volume-rendering ordering to obtain
the final rendering results. The fused color C̃(r) of the ray r can be written as below:

C̃(r) =

K∑
k=1

Gk(r)Ĉk(r), (3)

where Gk(r) is the k-th element of gating score G(r) and Ĉk(r) is the rendered color of k-th sub-
NeRF for the ray r.

4.3 DEPTH-BASED MUTUAL LEARNING

Within our multi-NeRF framework, we introduce a mutual learning method to enhance the render-
ing consistency of sub-NeRFs, wherein each sub-NeRF not only learns from ground truth but also
learns from each other. Due to the lack of the ground-truth for per-ray depth, NeRF may fail to learn
accurate geometry despite accurately rendering training views, which adversely affects its general-
ization to novel views. To address this, we perform mutual learning with the rendered depths of
sub-NeRFs, which serves as a form of geometric regularization. The per-ray depth estimation D̂(r)
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can be written as Equation 4, where ti is the i-th sample’s distance from the starting point on the ray.

D̂(r) =

N∑
i=1

witi, (4)

In practice, we first fuse the rendered depths of sub-NeRFs guided by the gating score G(r), and
then we use the L2 distance to quantify the match of each sub-NeRF’s rendered depth D̂k(r) and
the fused depth D̃(r). Our depth-based mutual learning loss is defined as below, where R is the set
of sampled rays:

Ldml =
∑
r∈R

n∑
k=1

∥D̂k(r)− D̃(r)∥2, (5)

Compared to directly averaging sub-NeRFs’ depth predictions as in traditional mutual learning
frameworks, the gate-guided fused depth D̃(r) is more accurate, as the gating score G(r) reflects
the prediction confidence of each sub-NeRF for the ray r.

4.4 THE OVERALL TRAINING LOSS

The overall loss function of GML-NeRF is given by:
L = Lc + λ1Ldml + λ2Lcv, (6)

where Lc =
∑

r∈R ∥C(r)− C̃(r)∥2 (C(r) is the ground truth color value of ray r) is the rendering
loss. And λ1 and λ2 are the weights for regularization terms. Lcv is the balancing regularization
on the Coefficient of Variation of the soft gating scores, which encourages a balanced allocation
of model parameters for training rays and prevents the gate module from collapsing onto a specific
sub-NeRF. The details of Lcv are described in Appendix A.1.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

Datasets. We use five datasets from different types of scenes to evaluate our GML-NeRF. (1) Ob-
ject dataset: we take Masked Tanks-And-Temples dataset (MaskTAT) (Knapitsch et al., 2017) for
evaluation, which are photographed objects with masked background; (2) 360-degree inward-facing
datasets: we take NeRF-360-v2 dataset (Barron et al., 2022) and Tanks-And-Temples (TAT) dataset
with unmasked background (Knapitsch et al., 2017) to evaluate on scenes with large dynamic depth
range; (3) free shooting-trajectory datasets: we conduct experiments on Free-Dataset (Wang et al.,
2023) and ScanNet dataset (Dai et al., 2017), which are large outdoor and indoor scenes respec-
tively. Both larger view range and more irregular shooting trajectories pose greater challenges for
NeRF rendering.

Baselines. We compare our GML-NeRF with two types of methods: one type uses the grid-based
NeRF framework as we do, including PlenOctrees (Yu et al., 2021), DVGO (Sun et al., 2022),
Instant-NGP (Müller et al., 2022) and F2-NeRF (Wang et al., 2023). The other one is the MLP-
based NeRF method, including NeRF (Mildenhall et al., 2021), NeRF++ (Zhang et al., 2020), mip-
NeRF (Barron et al., 2021) and mipNeRF360 (Barron et al., 2022), which is inefficient in training
and needs almost one day for training in complex scenes. Note that we also implement the NGP-
version of Block-NeRF (Tancik et al., 2022), Switch-NeRF (Zhenxing & Xu, 2022) and Mega-
NeRF (Turki et al., 2022) to validate the superiority of GML-NeRF to other multi-NeRF methods.
See Appendix A for the implementation details and Appendix E for the discussion of Mega-NGP.

5.2 COMPARATIVE STUDIES

GML-NeRF achieves higher rendering quality than existing single- and multi-NeRF methods.
We report the main quantitative results on the complex scenes and the object dataset in Table 1 and
Table 6 respectively. Within no more than one hour of training, GML-NeRF achieves higher ren-
dering quality compared to other fast training methods and multi-NeRF methods, including Switch-
NGP and Block-NGP. We can also see that while GML-NeRF is designed for complex scene render-
ing, it can also improve the rendering performance of objects. We also integrate GML-NeRF with
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Ground Truth NeRF++ MipNeRF360short Instant-NGP GML-NeRF
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Figure 3: Qualitative comparisons on three complex scenes. GML-NeRF achieves better recovery
of details for distant objects and less textured regions such as the wall. (Zoom in for the details.)

Table 1: Quantitative results in complex scenes.

Methods
TAT NeRF-360-v2 Free-Dataset

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF++ 20.419 0.663 0.451 27.211 0.728 0.344 24.592 0.648 0.467
MipNeRF360 22.061 0.731 0.357 28.727 0.799 0.255 27.008 0.766 0.295

MipNeRF360-short* 20.078 0.617 0.508 25.484 0.631 0.452 24.711 0.648 0.466
DVGO 19.750 0.634 0.498 25.543 0.679 0.380 23.485 0.633 0.479
Instant-NGP 20.722 0.657 0.417 27.309 0.756 0.316 25.951 0.711 0.312
F2-NeRF – – – 26.393 0.746 0.361 26.320 0.779 0.276

Switch-NGP† 20.512 0.654 0.432 26.524 0.740 0.331 25.755 0.694 0.341
Block-NGP† 20.783 0.659 0.415 27.436 0.761 0.298 26.015 0.702 0.325

GML-NeRF 21.708 0.672 0.398 27.871 0.769 0.298 26.449 0.719 0.285
* MipNeRF360 requires nearly one day for training. For a fair comparison, we also report its results with one hour training.
† We adapt Switch-NeRF and Block-NeRF to the Instant-NGP fast training framework.

recently SOTA single-NeRF framework-ZipNeRF (Barron et al., 2023), named GML-ZipNeRF, in
Appendix G. As shown in Table 13 , GML-ZipNeRF obtains better rendering performance, validat-
ing GML-NeRF’s potential for integration with different frameworks.

GML-NeRF achieves better recovery of distant details and accurate rendering for less textured
regions. The qualitative results are shown in Figure 3. Compared to other methods, GML-NeRF
achieves better rendering quality in both outdoor and indoor scenes. In outdoor scenes, GML-NeRF
produces detailed and realistic rendering results for the sky, road and other distant objects. In indoor
scenes, GML-NeRF generates more accurate details for less textured regions such as the wall. GML-
NeRF takes advantage of the gate-guided parameters allocation in the ray dimension to effectively
boost the model’s performance. More results on the ScanNet dataset are shown in Appendix B.

The gate module learns to reasonably assign gating scores. We visualize how the gate module
performs the allocation in the ray dimension in Figure 4. (1) In the Truck scene (left), the depth
range between the center object and the background is large. The gate module assigns different
preferences to sub-NeRF1 in these two regions and distinguishes the foreground/background re-
gions. (2) In a more open scene with fewer occlusions (middle), the Playground scene, the gate
module allocates model parameters according to the direction of rays. (3) In the Train scene
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Figure 4: Visualization of the gating scores of sub-NeRF1 on two different views. GML-NeRF
obtains different and reasonable parameter allocation in different types of scenes.

(right), sub-NeRF1 has different preferences for the two sides of the train. Such a scene is more
like an object, where assigning different model parameters to different sides of the object helps
improve the performance. This visualization explains why GML-NeRF also works well on sim-
ple object datasets. The above results demonstrate that GML-NeRF learns a reasonable parameter
allocation across different types of scenes.
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Figure 5: Scalability study of GML-NeRF.

Scaling up NeRF with the GML-NeRF frame-
work is more effective than scaling the MLP
width, increasing the feature grid size, or
adding more feature grids. By default, we set
the number of sub-NeRFs to 2 in all experiments.
As shown in Figure 5, when the number of sub-
NeRFs increases, GML-NeRF consistently ob-
tains average performance gains on the Scan-
Net dataset while only marginally increasing the
number of model parameters. Compared with di-
rectly increasing the hidden dimension of MLP
decoders or the size of feature grid, GML-NeRF
has a better performance-model size scalability.
See Appendix F for additional results on GML-
NeRF’s scalability.

5.3 ABLATION STUDIES

In this section, we conduct ablation studies on GML-NeRF using the TAT dataset (Knapitsch et al.,
2017). The key takeaways from our results are summarized bellow and some additional ablation
studies and analysis are presented in the Appendix D.

Importance of the gate-guided multi-NeRF fusion and depth-based mutual learning. The abla-
tion results of the two key components of GML-NeRF are shown in Table 2. Uniform fusion simply
averages multi-NeRF outputs to get final rendering results without a gate module. In this way, all
the sub-NeRFs focus on all the training rays instead of having their own preferences, which can
not effectively improve rendering quality. For the depth-based mutual learning method, we observe
that it helps provide a smoother and more reasonable depth prediction, as shown in Figure 6. In
addition to improving rendering consistency, it also acts as a geometric regularization to reduce the
ambiguity of geometry modeling and avoid overfitting.

Importance of the ray-level allocation. We evaluate the results of different fusion dimensions in
Table 3. Compared to fusing multi-NeRFs’ outputs in the point dimension, our ray-based method
performs better, validating the superiority of the visibility-aware multi-NeRF method.

Importance of pixel-granularity fusion. We compare different fusion granularity in Table 4. In
the image-granularity fusion, all pixels of an image have the same preference for model parameters,
which may not be reasonable. An illustrative example is an image capturing both the central object
and the background region, such as the Truck scene shown in Figure 4. In such a case, the rays hitting
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Figure 6: Depth visualization comparison between w/o Ldml and w/ Ldml on TAT dataset. Zoom in
to see the details of sky and ground.

Table 2: Ablation results of gate-guided multi-NeRF fusion and depth-based mutual learning.

Method Metric M60 Playground Train Truck Avg

Uniform fusion
PSNR↑ 19.229 22.863 17.531 23.569 20.798
SSIM↑ 0.633 0.694 0.596 0.746 0.667
LPIPS↓ 0.431 0.414 0.451 0.345 0.411

w/o depth mutual loss
PSNR↑ 18.912 23.399 17.371 24.665 21.087
SSIM↑ 0.621 0.694 0.589 0.758 0.666
LPIPS↓ 0.436 0.402 0.449 0.329 0.404

GML-NeRF
PSNR↑ 19.051 23.901 19.369 24.509 21.708
SSIM↑ 0.631 0.689 0.612 0.757 0.672
LPIPS↓ 0.429 0.402 0.431 0.333 0.399

these two regions should be assigned different model parameters. In contrast, pixel-granularity
fusion provides a more fine-grained understanding of the image and scene.

Table 3: Ablation results of fusion dimensions.

Fusion Dimension PSNR↑ SSIM↑ LPIPS↓
Point-level 20.796 0.661 0.413

Ray-level (Ours) 21.708 0.672 0.399

Table 4: Ablation results of fusion granularity.

Fusion Granularity PSNR↑ SSIM↑ LPIPS↓
Image-level 21.503 0.669 0.408

Pixel-level (Ours) 21.708 0.672 0.399

6 CONCLUSION AND OUTLOOKS

This work proposes a gate-guided mutual learning framework (GML-NeRF) for neural rendering.
To alleviate the issue of limited model capacity in complex scenes, we construct a multi-NeRF
framework and allocate model parameters in the ray dimension. This allocation is guided by a learn-
able soft gate module, allowing different sub-NeRFs to focus on specific rays rather than uniformly
distributing their attention across all rays. Additionally, we propose a depth-based mutual learn-
ing method that improves the multi-NeRF rendering consistency and reduces the depth ambiguity,
thereby improving generalization to novel views. Extensive experiments validate that GML-NeRF
is effective and applicable to various types of datasets.

As GML-NeRF has showcased superior scaling performance than directly enlarging the MLP, we
prospect its broader application in larger and more complex scenes in the future. Beyond scaling
up NeRF for modeling more complex scenes, scaling up NeRF for enhanced generalization to novel
scenes is of great application and research interests (Chen et al., 2021; Wang et al., 2021b). The
adaption of GML-NeRF to cross-scene neural rendering is an interesting direction to explore for
future work.
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A IMPLEMENTATION DETAILS

A.1 IMPLEMENTATION DETAILS OF GML-NERF

Architecture Details. Our GML-NeRF is built upon Instant-NGP (Müller et al., 2022) using a third-
party PyTorch implementation 1 and costs no more than one hour of training. We follow the original
architecture of Instant-NGP with 16 levels of resolution. The hash table length at each resolution
is fixed to 219. The density and color MLP comprise one and two hidden layers with 64 channels
respectively.

Training Details. For Instance-NGP and our GML-NeRF, we train the NeRFs for 20k iterations on
a single RTX-3090 GPU. We use Adam optimizer with a batch size of 8192 rays and a learning rate
decaying from 1× 10−2 to 3× 10−4. For the weights of the regularization terms in Equation 6, λ1

is set to 1 × 10−4 on NeRF-360-v2 and Free dataset, and is set to 5 × 10−3 on other datasets. We
set λ2 to 1 × 10−2 on all the datasets. By default, the number of sub-NeRFs is set to 2, and it is
sufficient to achieve significant rendering quality improvement.

Some previous work has observed that the gate module tends to converge to an imbalanced state,
where it always produces large weights for the same few sub-models (Shazeer et al., 2017b; Wang
et al., 2022; Zhenxing & Xu, 2022). Such an imbalance problem exists in GML-NeRF as well. Once
the gate module is trapped in a local optimum solution, it will always choose a specific sub-NeRF
for rendering and can’t effectively allocate model parameters in the ray dimension.

Following (Shazeer et al., 2017b; Wang et al., 2022), we adopt the regularization on the Coefficient
of Variation of the soft gating scores, which encourages a balanced allocation of model parameters
for training rays. The CV loss function is given by

Lcv =
Var(G(R))(∑n
k=1 Gk(R)/n

)2 , (7)

Gk(R) =
∑
r∈R

Gk(r), (8)

where G(R) is the set
{
Gk(R)

}n

k=1
. Note that some work also uses the load-balanced loss to en-

courage multi-models to receive roughly equal numbers of training examples (Shazeer et al., 2017b;
Zhenxing & Xu, 2022). However, this optimization objective is too strict and unsuitable for our
framework.

A.2 IMPLEMENTATION DETAILS OF SWITCH-NGP

Switch-NeRF (Zhenxing & Xu, 2022) constructs a point-based multi-NeRF framework based on
MLP-based NeRF structure. Given a 3D point x, it first extracts high-level point feature S(x) using
a linear layer, which will be sent to the gate module to obtain the gating scores. Then, they apply a
Top-1 function on the gating scores to determine which NeRF expert should be activated. The output
feature of the chosen expert will be multiplied by the gating score corresponding to the expert and
obtain the fused point feature. Finally, the fused point feature is sent to the unified MLPs to predict
the density σ and color c.

As illustrated in Figure 7, we build an NGP-version of Switch-NeRF, named Switch-NGP. Since
NGP contains a feature grid in the form of the hash table, we directly use the feature grid to obtain
the high-level point feature S(x) of the point x. Switch-NeRF has validated the importance of a
unified head, wherein the gating score is multiplied by the high-level features rather than the density
or color predictions, which makes the gating and prediction more stable in training. We also perform
the multi-NeRF fusion in the point-feature dimension by inserting extra K feature MLPs before the
density MLP. Each expert in Switch-NGP corresponds to a tiny feature MLP with two hidden layers
and 64 channels.

The training details of Switch-NGP is the same as GML-NeRF, as described in Section A.1.

1https://github.com/kwea123/ngp pl
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Figure 7: The overview of Switch-NGP.

A.3 IMPLEMENTATION DETAILS OF BLOCK-NGP

Block-NeRF (Tancik et al., 2022) applies the multi-NeRF method to the street scene, which also
allocates model parameters in the ray dimension but in the image-level granularity. Specifically,
Block-NeRF places one NeRF at each intersection and directly allocates the training images to multi-
NeRFs according to the image shooting positions. We implement an NGP-version Block-NeRF,
named Block-NGP, which can be applied to various types of scenes without prior knowledge. After
getting all the training images, we first use the clustering algorithm (KMeans) to cluster the image
shooting positions, and the number of clusters is set the same as the number of sub-NeRFs. During
the training process, each training image is allocated to the corresponding sub-NeRF according to
the clustering results, and the training of sub-NeRFs is independent.

B EXPERIMENTS ON SCANNET DATASET

We compare GML-NeRF with other multi-NeRF methods on the ScanNet dataset (Dai et al., 2017),
an indoor scene RGB-D dataset. Compared to other outdoor datasets, ScanNet contains more
texture-less regions like the floors and the walls, which poses more challenges for neural render-
ing. We conduct experiments in four complete scenes in ScanNet, namely scene0046, scene0276,
scene0515 and scene0673. For each scene, we train NeRFs with the whole image set (more than
one thousand images with 484 × 648 resolution for each scene) and test on one-sixteenth of the
images. The quantitative and qualitative results are shown in Table 5 and Figure 8 respectively. Our
GML-NeRF outperforms other multi-NeRF methods and renders less blur.

Table 5: Quantitative results on ScanNet dataset.

Methods Metrics scene0046 scene0276 scene0515 scene0673 Avg

NGP
PSNR↑ 28.504 29.996 28.159 25.278 27.984
SSIM↑ 0.839 0.835 0.786 0.686 0.786
LPIPS↓ 0.413 0.421 0.448 0.472 0.438

Switch-NGP
PSNR↑ 28.135 29.614 27.814 25.140 27.676
SSIM↑ 0.834 0.831 0.779 0.684 0.782
LPIPS↓ 0.421 0.431 0.456 0.473 0.445

Block-NGP
PSNR↑ 28.728 30.214 28.332 25.444 28.180
SSIM↑ 0.842 0.840 0.789 0.688 0.790
LPIPS↓ 0.408 0.416 0.443 0.469 0.434

GML-NeRF
PSNR↑ 29.440 30.871 29.149 25.759 28.805
SSIM↑ 0.851 0.843 0.800 0.690 0.796
LPIPS↓ 0.396 0.405 0.427 0.469 0.424
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Figure 8: Qualitative comparisons on ScanNet dataset. Compared to other multi-NeRF methods,
GML-NeRF renders less blur and achieves better recovery of details.

C PER-SCENE RESULTS

We provide the per-scene quantitative results on the Mask-TAT dataset, TAT dataset, NeRF-360-v2
dataset and Free dataset in Table 6, Table 7, Table and Table respectively. The results are reported
in the metric of PSNR.

Table 6: Scene breakdown on the Mask-TAT dataset.

Methods Ignatius Truck Barn Caterpillar Family Avg

NeRF 25.43 25.36 24.05 23.75 30.29 25.78
MipNeRF 29.037 23.19 28.481 28.016 29.009 27.547

PlenOctrees 28.19 26.83 26.8 25.29 32.85 27.99
DVGO 28.16 27.15 27.01 26.00 33.75 28.41

Instant-NGP 28.431 27.562 27.611 26.065 34.092 28.752
Switch-NGP 28.184 27.34 27.472 25.75 33.711 28.491
Block-NGP 28.202 27.621 27.768 26.06 34.081 28.746

GML-NeRF 29.806 28.163 28.701 27.445 34.756 29.774

Table 7: Scene breakdown on the TAT dataset.

Methods M60 Playground Train Truck Avg

NeRF 16.86 21.55 16.64 20.85 18.975
NeRF++ 17.964 22.914 18.194 22.603 20.419

MipNeRF-360 20.091 24.27 19.741 24.144 22.062

MipNeRF360short 18.394 22.682 17.738 21.497 20.078
DVGO 17.292 22.62 17.783 21.306 19.750

Instant-NGP 18.914 22.832 17.707 23.428 20.720
Switch-NGP 18.619 22.661 17.523 23.243 20.512
Block-NGP 18.879 22.555 18.048 23.651 20.783

GML-NeRF 19.051 23.901 19.369 24.509 21.708
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Table 8: Scene breakdown on the NeRF-360-v2 dataset.

Methods bicycle bonsai counter garden kitchen room stump Avg

NeRF 21.818 29.028 26.980 23.640 27.164 30.097 22.934 25.952
NeRF++ 21.426 31.67 27.717 24.801 29.468 30.621 24.770 27.210

MipNeRF360 22.861 32.97 29.291 26.014 31.987 32.685 25.278 28.727

MipNeRF360short 21.264 28.040 26.366 23.214 26.552 29.636 23.313 25.484
DVGO 21.652 27.919 26.432 23.851 26.282 31.677 20.988 25.543

F2-NeRF 21.311 30.036 25.873 23.694 28.935 29.421 24.251 26.217
Instant-NGP 24.203 31.374 25.665 25.312 30.278 31.534 22.799 27.309
Switch-NGP 23.859 30.012 24.359 25.164 29.865 31.127 21.284 26.524
Block-NGP 24.186 31.684 25.704 25.288 30.382 31.569 23.241 27.436

GML-NeRF 24.550 32.439 25.230 25.634 31.062 32.863 23.312 27.871

Table 9: Scene breakdown on the Free dataset

Methods Hydrant Lab Pillar Road Sky Stair Grass Avg

NeRF 16.569 17.342 20.944 19.793 15.925 18.731 22.439 18.820
NeRF++ 22.948 23.718 26.353 24.916 25.059 27.647 21.504 24.592

MipNeRF360 25.03 26.57 29.22 27.07 26.99 29.79 24.39 27.008

MipNeRF360short 23.281 24.412 26.789 24.158 25.369 27.139 21.827 24.711
DVGO 22.315 23.123 25.345 23.242 24.736 25.844 19.794 23.485

Instant-NGP 23.29 26.084 28.683 26.302 26.05 28.158 23.088 25.951
F2-NeRF 24.34 25.92 28.76 26.76 26.41 29.19 22.87 26.32

Switch-NGP 23.197 25.901 28.08 26.155 26.034 28.097 22.819 25.755
Block-NGP 23.663 26.682 28.103 25.989 26.283 28.395 22.988 26.015

GML-NeRF 24.463 25.751 28.871 26.827 27.235 28.562 23.433 26.449
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Figure 9: Qualitative comparisons on the MaskTAT dataset.
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Table 10: Additional ablation results.

Method Metric M60 Playground Train Truck Avg

Equal DML
PSNR↑ 18.929 23.108 19.012 24.625 21.419
SSIM↑ 0.625 0.686 0.610 0.758 0.670
LPIPS↓ 0.431 0.405 0.432 0.332 0.400

Independent feature grids
PSNR↑ 18.765 22.839 18.958 24.493 21.264
SSIM↑ 0.625 0.697 0.614 0.762 0.675
LPIPS↓ 0.431 0.405 0.417 0.325 0.395

Uniform fusion w/o DML
PSNR↑ 19.229 22.863 17.531 23.569 20.798
SSIM↑ 0.633 0.694 0.596 0.746 0.667
LPIPS↓ 0.431 0.414 0.451 0.345 0.411

Uniform fusion w/ DML
PSNR↑ 19.005 22.766 17.532 23.513 20.704
SSIM↑ 0.627 0.695 0.592 0.747 0.665
LPIPS↓ 0.434 0.411 0.453 0.341 0.410

w/o CV loss
PSNR↑ 18.743 22.795 17.245 23.395 20.545
SSIM↑ 0.619 0.683 0.587 0.731 0.655
LPIPS↓ 0.445 0.419 0.465 0.354 0.421

Half CV loss
PSNR↑ 19.114 24.003 19.462 24.518 21.774
SSIM↑ 0.625 0.689 0.606 0.758 0.670
LPIPS↓ 0.433 0.404 0.430 0.334 0.400

GML-NeRF
PSNR↑ 19.051 23.901 19.369 24.509 21.708
SSIM↑ 0.631 0.689 0.612 0.757 0.672
LPIPS↓ 0.429 0.402 0.431 0.333 0.399

D ADDITIONAL ABLATION STUDIES

We add additional ablation studies on the TAT dataset to further analyze the mechanism of GML-
NeRF, including structural design, depth-mutual learning and CV balanced regularization. The re-
sults are shown in Table 10.

Gate-guided depth mutual learning. In GML-NeRF, we use the gate-guided fused depth as the
target depth to regularize sub-NeRFs’ geometry and avoid overfitting. By contrast, when we directly
use the average of the sub-NeRFs’ rendering depths as the target depth, which means all sub-NeRFs
have equal regularization strength (Equal DML), the rendering quality will be slightly worse. The
results highlights the pivotal role of gate-guided depth mutual learning. Using the gated-guided
fused depth as the target depth differently penalizes sub-depths based on the gating scores and in-
crease the accuracy of the geometry regularization. We also observe that depth mutual learning has
no effect in the case of uniform fusion due to the low accuracy of the averaged depth.

Structural design. In GML-NeRF, we adopt a multi-NeRF structure with a shared feature grid and
an ensemble of MLP-decoders. We further analyze the reason behind the performance improvement
and explore the performance of independent feature grids. As Table 10 shows, the model employing
a shared feature grid (GML-NeRF) outperforms its counterpart with multiple independent feature
grids, which highlights the effect of independent MLP decoders rather than feature grid. We at-
tribute this observation and the performance gained by GML-NeRF into two aspects. (1)Within
the hybrid representation, the feature grid is responsible for encoding features of 3D spatial points,
while the MLP encoder is designed to encode view information. The crucial design of independent
MLP decoders aligns with our visibility-aware motivation, thereby enhancing the view-dependent
effect. (2)The training complexity will also increase as the trainable parameters increase. With the
limited amount of training data, increasing the number of feature grids leads to poor convergence.
By contrast, as different rays may pass through the same region of 3D space, weight sharing for
the feature grid helps to facilitate training. Although the number of learnable parameters hardly
increases, GML-NeRF achieves a more optimal capacity allocation in the ray dimension, helping to
increase the model’s generalization ability.

CV balanced regularization. As introduced in Section A.1, we adopt the regularization on the
Coefficient of Variation of the soft gating scores to prevent the gate module from collapsing onto

17



Under review as a conference paper at ICLR 2024

a specific sub-NeRF while maintaining sub-NeRF’s different specialties. Without CV balanced
regularization, the rendering quality degrades significantly. Besides, we apply the CV regularization
only for the first half of the training time and find that the performance is comparable to GML-NeRF,
The results prove that such regularization would not interfere with the learning of the gate module.

E DISCUSSION OF MEGA-NGP

Mega-NeRF (Turki et al., 2022) applies the multi-NeRF method to the drone scenes, allocating
model parameters in the ray dimension and the pixel-level granularity. Specifically, it allocates rays
by partitioning the intersecting points between rays and scenes. Such a method is suitable for drone
scenes, where the top-down perspective allows for the approximation of ray-scene intersections by
intersecting with a set horizontal plane. However, in unstructured scenes captured by free trajec-
tories, the intersecting points between rays and scenes cannot be determined before the training is
completed, limiting the applicability of Mega-NeRF to such scenes.

Since there is no straightforward implementation to determine the ray intersections before training,
we adopt an alternative implementation for NGP-version Mega-NeRF, which employs a clustering
algorithm to divide rays directly based on their origins and directions. The clustering process is of-
fline and same as the one in Block-NGP. During the training process, each training pixel is allocated
to one corresponding sub-NeRF according to the clustering results. To ensure a fair comparison, the
model structure of Mega-NGP is the same as the one in GML-NeRF, following the implementation
of Block-NGP. We conduct a comprehensive evaluation across all datasets and the experimental re-
sults are shown in Table 11. Mega-NGP yields similar results to Block-NGP, which is less effective
than our GML-NeRF.

Table 11: Comparison with Mega-NGP and GML-NeRF

Method Metric TAT 360v2 Free Dataset ScanNet

Mega-NGP
PSNR↑ 20.843 27.482 25.855 28.1
SSIM↑ 0.659 0.761 0.696 0.786
LPIPS↓ 0.415 0.311 0.332 0.437

GML-NeRF
PSNR↑ 21.708 27.87 26.449 28.87
SSIM↑ 0.672 0.769 0.719 0.797
LPIPS↓ 0.399 0.298 0.285 0.424

F MORE SCALABILITY STUDIES

We provide the per-scene results of scalability studies on the ScanNet dataset in Table 12 which are
reported in the metric of PSNR.

Table 12: Scene breakdown of scalability studies on the ScanNet dataset.

Method 004600 027600 051500 067304 Avg

Instant-NGP 28.504 29.996 28.159 25.278 27.984

GML-NeRF-size2 29.440 30.871 29.149 25.759 28.805

GML-NeRF-size3 29.878 31.242 29.470 25.944 29.134

GML-NeRF-size4 30.018 31.31 29.679 26.063 29.268

Furthermore, we observe that the model with four sub-NeRFs converges faster than the one with two
sub-NeRFs while achieving better rendering quality with the same training iterations, as Figure 10
shows. The ease of training convergence can be attributed to two aspects. On the one hand, the
feature grid is shared among multi-NeRFs, and thus, the number of learnable parameters increases
marginally. On the other hand, as the neural network is better at fitting low-frequency information,
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our gate module (a 4-layer MLP without sinusoidal position encoding) has implicitly incorporated
”smoothness prior”, leading to closer rays to be more possibly assigned closer gating scores.
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Figure 10: Convergence curve on the ScanNet dataset.

19



Under review as a conference paper at ICLR 2024

G INTEGRATION OF GML-NERF AND ZIP-NERF

As a multi-NeRF training framework, GML-NeRF is essentially orthogonal to the structure and
training method of single-NeRF. For the benefit of training efficiency and its wide application, we
build and validate GML-NeRF upon the Instant-NGP. Nevertheless, it can also be integrated with
other single-NeRF frameworks, such as ZipNeRF (Barron et al., 2023) (a SOTA single-NeRF frame-
work).

We implement a ZipNeRF version of GML-NeRF, named GML-ZipNeRF, and evaluate the perfor-
mance on the 360v2 dataset. Similar to GML-NeRF, GML-ZipNeRF adopts a shared feature grid
and multiple MLP decoders. The training settings are kept the same as the original paper, including
the training iterations and batch size. As shown in Table 13, integrated with GML-NeRF, ZipNeRF
can also obtain performance gains, validating GML-NeRF’s effectiveness and potential for integra-
tion with different frameworks.

Considering that different frameworks have different characteristics, researchers may choose dif-
ferent frameworks based on specific situational requirements. Adapting GML-NeRF to different
single-NeRF frameworks remains an interesting point to be explored in the future.

Table 13: Comparison with ZipNeRF and GML-ZipNeRF.

Methods bicycle bonsai counter garden kitchen room stump Avg

ZipNeRF 21.019 33.052 25.982 24.330 32.843 34.777 25.406 28.201

GML-ZipNeRF 20.488 33.486 26.372 24.603 33.120 35.795 25.581 28.492
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