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ABSTRACT

In the real world, data is often noisy, affecting not only the quality of features but
also the accuracy of labels. Current research on mitigating label errors stems pri-
marily from advances in deep learning, and a gap exists in exploring interpretable
models, particularly those rooted in decision trees. In this study, we investigate
whether ideas from deep learning loss design can be applied to improve the robust-
ness of decision trees. In particular, we show that loss correction and symmetric
losses, both standard approaches, are not effective. We argue that other directions
need to be explored to improve the robustness of decision trees to label noise.

INTRODUCTION AND RELATED WORK

Label errors, also known as label noise, are widespread. Recent estimates indicate that commonly
used research data, which is usually assumed to be clean, contains up to 10% label corruption (North-
cutt et al., 2021). This problem has received considerable attention in the deep learning community,
resulting in several techniques to improve robustness of neural networks to incorrect labels. These
methods are surveyed in Han et al. (2021) and Song et al. (2023). Despite these efforts, work on
interpretable machine learning methods, such as decision trees, remains limited. Existing research
highlights the resilience of decision trees to symmetric label noise in specific scenarios, particularly
in binary classification with large sample sizes Ghosh et al. (2017). However, broader scenarios and
enhancements in this context remain understudied. Most efforts involving tree-based algorithms fo-
cus on improving robustness of ensembles such as Random Forest (Yang et al., 2019; Zhou et al.,
2019) or gradient boosting (Miao et al., 2016), with little attention given to individual decision trees.
This raises a natural question: Can recent advances in deep learning be applied to conventional de-
cision tree induction? Recognizing the limited exploration of this research direction Nanfack et al.
(2022), our study aims to investigate this question. In particular, we investigate whether loss de-
sign approaches including loss correction and symmetric loss functions can be effectively adapted
to tree-based algorithms.

THEORETICAL ANALYSIS

We consider c-class classification problems. Let X ∈ Rm be the feature space and Y ∈ Rc be
the label space. Let (X,Y ) ∈ X × Y be random variables from which we observe the data set
{(xi, yi)}ni=1, where each xi is a vector representing m features and yi is a one-hot encoded vector
label indicating one of c classes. The observed data are assumed to be affected by noise; each (xi, yi)

is drawn from a distribution (X, Ỹ ) which is related to the true labels by the noise transition matrix
T (x) ∈ [0, 1]c×c, where Ta,b(x) = P (Ỹ = b|Y = a,X = x).

A loss function L maps a true and predicted label to a loss value; learning searches for a model
that minimizes the empirical loss 1

n

∑n
i=1 L(yi, ŷi) for predictions ŷi. Decision tree learning using

Gini gain or information gain minimizes the empirical mean squared error or cross-entropy loss,
respectively, as shown in Appendix A.1. For both, the loss-minimizing values vℓ ∈ Rc for leaves
ℓ are the weighted means vℓ = argminv

∑n
i=1 µℓ(xi)L(yi, v) =

∑n
i=1 µℓ(xi)yi/(

∑n
i µℓ(xi))

where µℓ is the data membership function in leaf ℓ, taking values in {0, 1}.
Impurity-based tree growth is invariant to forward loss correction. Loss correction (Patrini
et al., 2017) assumes the transition matrix T is known and incorporates it into the loss function so

∗Preferred contact: research@lukaszsztukiewicz.com

1



Published as a Tiny Paper at ICLR 2024

that the loss minimizer is, in expectation, the same as if the model had been trained on clean data.
In particular, forward correction uses corrected loss LT (yi, ŷ

i) = L(yi, T ŷi).
Theorem 1. For any loss function where the minimizing leaf value is the weighted mean, the loss
value for a given tree structure is invariant to forward loss correction.

The proof is in Appendix A.2. From this we conclude that, while forward loss correction may change
leaf values, it ultimately does not affect the learned tree structure. Therefore forward correction can
be applied by simply learning a tree as usual, then replacing the leaf values with vℓ ← T−1vℓ, as
shown in the proof. Typically, however, the true class is observed the most frequently, so this cor-
rection is unlikely to change the plurality class of leaves, and thus unlikely to improve performance.

In addition to forward correction, there is a related method called backward correction (Patrini et al.,
2017). For decision trees, backward correction reduces to simply fitting to data {(xi, T

−1yi)}ni=1,
as shown in the Appendix A.3. Unlike forward correction, this can result in different tree structure.

Symmetric loss functions are not suitable for decision tree growth. Symmetric loss functions
have the property that there exists some constant C such that, for any ŷ,

∑c
k=1 L(ek, ŷ) = C,

where ek is the indicator (one-hot) vector with 1 at index k. Under certain assumptions, they are
theoretically tolerant to label noise and improve performance of models trained on data with noisy
labels compared to models trained with conventional loss functions (Charoenphakdee et al., 2019).
Here we assume one-hot training labels, that is, that there are no pseudo-labels in the data.
Theorem 2. For any symmetric, non-negative loss function, there exist loss-minimizing leaf values
that are plurality indicators.

The proof is in Appendix A.4. Here “plurality” is a multi-class generalization of majority that
refers to the most frequent class, without implying that its frequency is greater than one half. The
assignment of leaf values to a plurality class indicator poses challenges to tree growth because,
particularly with imbalanced data, it frequently occurs that all potential splits lead to both children
nodes having the same leaf value, resulting in zero gain. Thus, symmetric loss functions are not
suitable for decision tree growth.

EMPIRICAL ANALYSIS

We evaluate the impact of these types of loss correction on the performance of decision tree-based
models. We include decision trees, random forests, and ExtraTrees using implementations from
the popular scikit-learn library. We use six benchmark data sets from the OpenML data set repos-
itory (Vanschoren et al., 2014), outlined in Appendix Table 1. We add a type of label noise called
Noise Completely At Random (Frénay & Kabán, 2014), where each sample has a probability of η
to be flipped to another label uniformly at random. We use η from 0% to 40% in increments of 10%.

Figure 1 shows the results on ”wine” data set. The results of complete six data sets are included in
Appendix Figure 2, Figure 3, Figure 4. Overall, there is a lack of evidence that either type of loss
correction improves performance of trees under label noise, confirming our theoretical findings.

Figure 1: Performance of Decision Tree, Extra Trees and Random Forest models on ”wine” data
set. We show forward and backward loss-corrected models as well models without loss correction
measured by the weighted F1 score. Reported scores are the averages of ten fold cross-validation
ploted with standard deviation.

CONCLUSION
Based on our findings, we can conclude that popular techniques of loss design employed in deep
learning algorithms to robustly learn models in the presence of label noise are not applicable to
decision tree induction. As a result, there is a need for alternative methods that cater specifically to
robust learning of decision trees.
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A THEORY AND PROOFS

This section contains proofs and other support of theoretical claims made in the main paper.

A.1 TREE FITTING AS LOSS MINIMIZATION

Decision tree fitting recursively splits the input space into leaves such that each split maximally
reduces the impurity of the labels in each leaf, summed over the leaves weighted by the number of
samples in each. Here we show that these impurity functions are equivalent to loss functions used
in parametric learning. We will use the following identities:

1. The total weight of data at a given leaf is wℓ =
∑n

i=1 µℓ(xi).

2. A leaf value is the mean label of data belonging to the leaf: vℓ = 1
wℓ

∑n
i=1 µℓ(xi)yi.

3. The predicted value is the value of the leaf to which the sample belongs: ŷi =
∑

ℓ µℓ(xi)vℓ.

First we show that Gini gain is equivalent to mean squared error loss. The impurity associated with
Gini gain is as follows.

1

n

∑
ℓ

wℓ(1− v⊤ℓ vℓ)

1

n

∑
ℓ

wℓ(1− 2v⊤ℓ vℓ + v⊤ℓ vℓ)

= 1− 2

n

∑
ℓ

wℓv
⊤
ℓ vℓ +

1

n

∑
ℓ

wℓv
⊤
ℓ vℓ

= 1− 2

n

∑
ℓ

wℓv
⊤
ℓ

(
1

wℓ

n∑
i=1

µℓ(xi)yi

)
+

1

n

∑
ℓ

(
n∑

i=1

µℓ(xi)

)
v⊤ℓ vℓ

= 1− 2

n

∑
ℓ

v⊤ℓ

(
n∑

i=1

µℓ(xi)yi

)
+

1

n

n∑
i=1

∑
ℓ

µℓ(xi)v
⊤
ℓ vℓ

For the rightmost term, recall that, for each i, µℓ(xi) is 1 for exactly one leaf and zero for all others.

= 1− 2

n

n∑
i=1

(∑
ℓ

µℓ(xi)vℓ

)⊤

yi +
1

n

(
n∑

i=1

∑
ℓ

µℓ(xi)vℓ

)⊤( n∑
i=1

∑
ℓ

µℓ(xi)vℓ

)

=
1

n

n∑
i=1

1− 2ŷ⊤yi + ŷ⊤ŷ

Since yi is an indicator, y⊤i yi = 1.

=
1

n

n∑
i=1

y⊤i yi + ŷ⊤ŷ − 2y⊤ŷi

=
1

n

n∑
i=1

∥y − ŷ∥2

This is the mean squared error.
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Next we show that information gain is equivalent to cross-entropy loss. The impurity associated
with information gain is as follows.

1

n

∑
ℓ

wℓv
⊤
ℓ log vℓ

=
1

n

∑
ℓ

wℓ
1

wℓ

(
n∑

i=1

µℓ(xi)yi

)⊤

log vℓ

=
1

n

∑
ℓ

n∑
i=1

µℓ(xi)y
⊤
i log vℓ

=
1

n

n∑
i=1

y⊤i

(∑
ℓ

µℓ(xi) log vℓ

)

For each i, µℓ(xi) is 1 for exactly one leaf and zero for all others.

=
1

n

n∑
i=1

y⊤i log

(∑
ℓ

µℓ(xi)vℓ

)

=
1

n

n∑
i=1

y⊤i log ŷ

This is the cross-entropy loss.

A.2 PROOF OF THEOREM 1

Assume the leaf values that minimize the loss are the weighted mean of the training data labels
in each leaf. Let vℓ denote this weighted mean for leaf ℓ. Forward loss correction uses loss
LT (yi, ŷi) = L(yi, T ŷi); and so the minimizing leaf value v

(T )
ℓ is

v
(T )
ℓ = argmin

v

n∑
i=1

µℓ(xi)LT (yi, v)

= argmin
v

n∑
i=1

µℓ(xi)L(yi, T v).

By substitution we have

Tv
(T )
ℓ = argmin

v

n∑
i=1

µℓ(xi)L(yi, v)

= vℓ

so v
(T )
ℓ = T−1vℓ. Then the total corrected loss is

∑
ℓ

n∑
i=1

µℓ(xi)LT (yi, v
(T )
ℓ )

=
∑
ℓ

n∑
i=1

µℓ(xi)L(yi, TT−1vℓ)

=
∑
ℓ

n∑
i=1

µℓ(xi)L(yi, vℓ),

which is the same as the loss without forward correction.
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A.3 BACKWARD LOSS CORRECTION FOR DECISION TREES

Let L⃗ : Rc → Rc map a prediction ŷ to the loss for each possible observed class, that is, L⃗(ŷ) =

(L(ek, ŷ))ck=1. Backward loss correction uses corrected loss LT (y, ŷ) = y⊤T−⊤L⃗(ŷ) where T−⊤

is the inverse transpose of T .

For a decision tree, the backward corrected loss is as follows.
n∑

i=1

LT (yi, ŷi)

=
∑
ℓ

n∑
i=1

µℓ(xi)LT (yi, vℓ)

=
∑
ℓ

n∑
i=1

µℓ(xi)y
⊤
i T

−⊤L⃗(vℓ)

=
∑
ℓ

c∑
k=1

(
n∑

i=1

µℓ(xi)y
⊤
i T

−⊤

)
k

L(ek, vℓ)

=
∑
ℓ

c∑
k=1

w
(T )
k L(ek, vℓ).

which is the same as uncorrected loss, but with corrected weight

w
(T )
k =

(
n∑

i=1

µℓ(xi)y
⊤
i T

−⊤

)
k

as opposed to the uncorrected weights

wk =

n∑
i=1

µℓ(xi)1{yi = ek}.

Thus, assuming the minimizing value of L is the weighted mean, then the minimizer of the corrected
loss is likewise the weighted mean.

v
(T )
ℓ =

∑c
k=1 w

(T )
k ek∑c

k=1 w
(T )
k

=

∑c
k=1(w

(T )
1 , . . . , w

(T )
c )∑c

k=1 w
(T )
k

=

∑n
i=1 µℓ(xi)y

⊤
i T

−⊤∑n
i=1 µℓ(xi)

∑
k(yiT

−⊤)k

Since y⊤i T
−⊤ represents a probability, it sums to 1.

=

∑n
i=1 µℓ(xi)y

⊤
i T

−⊤∑n
i=1 µℓ(xi)

This is the usual leaf value, but computed with labels yi changed to y⊤i T
−⊤. Moreover, plugging

this back into the loss, we have the following.
n∑

i=1

LT (yi, ŷi) =
∑
ℓ

n∑
i=1

µℓ(xi)y
⊤
i T

−⊤L⃗(v(T )
ℓ )

Assume y⊤L⃗(ŷ) = L(y, ŷ) (shown later).

=
∑
ℓ

n∑
i=1

µℓ(xi)L(y⊤i T−⊤, v
(T )
ℓ )
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This is the usual loss, but computed with labels yi changed to y⊤i T
−⊤.

Since both the corrected loss and corrected leaf values can be computed by simply swapping in the
corrected labels, we can learn the corrected tree by simply fitting a tree as usual to the corrected data
set {(xi, y

⊤
i T

−⊤)}ni=1, written equivalently as {(xi, T
−1yi)}ni=1.

We now show that the assumption y⊤L⃗(ŷ) = L(y, ŷ) holds for the loss functions corresponding to
commonly used decision tree impurities.

For mean squared error, corresponding to Gini gain, we have

y⊤L⃗(ŷ) =
c∑

k=1

yk∥ek − ŷ∥2

=

c∑
k=1

yk(1 + ŷ⊤ŷ − 2e⊤k ŷ)

Recall that y is an indicator, so
∑c

k=1 yk = 1 and y⊤y = 1.

= y⊤y + ŷ⊤ŷ − 2y⊤ŷ

= ∥y − ŷ∥2

= L(y, ŷ).

For cross-entropy loss, corresponding to information gain, we have

y⊤L⃗(ŷ) = −
c∑

k=1

yk(e
⊤
k log ŷ)

= −
c∑

k=1

yk log ŷk

= L(y, ŷ).

A.4 PROOF OF THEOREM 2

Assume the loss function L is non-negative and symmetric, that is, for any ŷ,
∑c

k=1 L(ek, ŷ) = C.
Then loss at a single leaf ℓ is as follows.

n∑
i=1

µℓ(xi)L(yi, vℓ)

7



Published as a Tiny Paper at ICLR 2024

Let wk =
∑n

i µℓ(xi)1{yi = ek} denote the weight of class k at leaf ℓ. Without loss of generality,
assume w1 ≥ wk for k > 1, that is, label 1 is a plurality label.

=

c∑
k=1

wkL(ek, vℓ)

= w1L(e1, vℓ) +
c∑

k=2

(wk + (w1 − w1))L(ek, vℓ)

= w1

c∑
k=1

L(ek, vℓ) +
c∑

k=2

(w1 − wk)L(ek, vℓ)

= w1C +

c∑
k=2

(w1 − wk)L(ek, vℓ) (L is symmetric)

≥ w1C (L is non-negative & w1 ≥ wk)

= w1

c∑
k=1

L(ek, e1) (L is symmetric)

≥
c∑

k=1

wkL(ek, e1) (w1 ≥ wk)

=

n∑
i=1

µℓ(xi)L(yi, e1)

This is the loss with vℓ = e1. Therefore the leaf value vℓ = e1, the indicator of a plurality label, is a
minimizer of the loss.

B DATA SETS USED IN EXPERIMENTS

data set OpenML ID n m c

iris 61 150 4 3
optdigits 28 5620 64 10
pendigits 32 10992 16 10
vehicle 54 846 18 4
wine 187 178 13 3
wdbc 1510 569 30 2

Table 1: Description of the data sets used in experimental study.

C EXPERIMENTAL RESULTS
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Figure 2: Performance of Decision Tree forward and backward loss-corrected models as well models
without loss correction measured by the weighted F1 score on six benchmarking data sets. Reported
scores are the averages of ten fold cross-validation ploted with standard deviation.
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Figure 3: Performance of Random Forest forward and backward loss-corrected models as well
models without loss correction measured by the weighted F1 score on six benchmarking data sets.
Reported scores are the averages of ten fold cross-validation ploted with standard deviation.
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Figure 4: Performance of Extra Trees forward and backward loss-corrected models as well models
without loss correction measured by the weighted F1 score on six benchmarking data sets. Reported
scores are the averages of ten fold cross-validation ploted with standard deviation.
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Data set iris optdigits pendigits
Noise Ratio Model Loss Correction Type

0 DecisionTree Backward 0.946 ± 0.052 0.903 ± 0.015 0.966 ± 0.005
0 DecisionTree Forward 0.946 ± 0.052 0.903 ± 0.015 0.966 ± 0.005
0 DecisionTree No Correction 0.946 ± 0.052 0.903 ± 0.015 0.966 ± 0.005
0 ExtraTrees Backward 0.966 ± 0.047 0.986 ± 0.005 0.995 ± 0.005
0 ExtraTrees Forward 0.966 ± 0.047 0.986 ± 0.005 0.995 ± 0.005
0 ExtraTrees No Correction 0.966 ± 0.047 0.986 ± 0.005 0.995 ± 0.005
0 RandomForest Backward 0.953 ± 0.054 0.967 ± 0.012 0.986 ± 0.005
0 RandomForest Forward 0.953 ± 0.054 0.967 ± 0.012 0.986 ± 0.005
0 RandomForest No Correction 0.953 ± 0.054 0.967 ± 0.012 0.986 ± 0.005

10 DecisionTree Backward 0.857 ± 0.083 0.788 ± 0.022 0.846 ± 0.010
10 DecisionTree Forward 0.813 ± 0.115 0.786 ± 0.014 0.848 ± 0.011
10 DecisionTree No Correction 0.813 ± 0.115 0.786 ± 0.014 0.848 ± 0.011
10 ExtraTrees Backward 0.912 ± 0.063 0.982 ± 0.004 0.990 ± 0.000
10 ExtraTrees Forward 0.919 ± 0.069 0.982 ± 0.004 0.990 ± 0.000
10 ExtraTrees No Correction 0.919 ± 0.069 0.982 ± 0.004 0.990 ± 0.000
10 RandomForest Backward 0.906 ± 0.064 0.965 ± 0.010 0.985 ± 0.005
10 RandomForest Forward 0.906 ± 0.064 0.965 ± 0.011 0.982 ± 0.004
10 RandomForest No Correction 0.906 ± 0.064 0.965 ± 0.011 0.982 ± 0.004

20 DecisionTree Backward 0.707 ± 0.160 0.697 ± 0.013 0.740 ± 0.015
20 DecisionTree Forward 0.747 ± 0.095 0.692 ± 0.017 0.743 ± 0.012
20 DecisionTree No Correction 0.747 ± 0.095 0.692 ± 0.017 0.743 ± 0.012
20 ExtraTrees Backward 0.852 ± 0.083 0.977 ± 0.005 0.982 ± 0.004
20 ExtraTrees Forward 0.867 ± 0.083 0.977 ± 0.007 0.985 ± 0.005
20 ExtraTrees No Correction 0.867 ± 0.083 0.977 ± 0.007 0.983 ± 0.005
20 RandomForest Backward 0.886 ± 0.085 0.964 ± 0.011 0.979 ± 0.006
20 RandomForest Forward 0.886 ± 0.085 0.963 ± 0.011 0.980 ± 0.005
20 RandomForest No Correction 0.886 ± 0.085 0.963 ± 0.011 0.980 ± 0.005

30 DecisionTree Backward 0.633 ± 0.114 0.602 ± 0.021 0.647 ± 0.020
30 DecisionTree Forward 0.642 ± 0.094 0.605 ± 0.030 0.646 ± 0.025
30 DecisionTree No Correction 0.641 ± 0.095 0.605 ± 0.030 0.646 ± 0.025
30 ExtraTrees Backward 0.764 ± 0.086 0.971 ± 0.007 0.969 ± 0.003
30 ExtraTrees Forward 0.770 ± 0.069 0.969 ± 0.006 0.966 ± 0.005
30 ExtraTrees No Correction 0.777 ± 0.069 0.969 ± 0.006 0.966 ± 0.005
30 RandomForest Backward 0.739 ± 0.105 0.956 ± 0.008 0.974 ± 0.005
30 RandomForest Forward 0.739 ± 0.105 0.955 ± 0.008 0.974 ± 0.007
30 RandomForest No Correction 0.739 ± 0.105 0.954 ± 0.008 0.973 ± 0.007
40 DecisionTree Backward 0.598 ± 0.101 0.520 ± 0.024 0.556 ± 0.014

40 DecisionTree Forward 0.634 ± 0.075 0.516 ± 0.021 0.549 ± 0.017
40 DecisionTree No Correction 0.634 ± 0.075 0.516 ± 0.021 0.549 ± 0.017
40 ExtraTrees Backward 0.672 ± 0.054 0.956 ± 0.007 0.940 ± 0.007
40 ExtraTrees Forward 0.664 ± 0.047 0.952 ± 0.009 0.937 ± 0.008
40 ExtraTrees No Correction 0.664 ± 0.047 0.953 ± 0.008 0.937 ± 0.007
40 RandomForest Backward 0.638 ± 0.052 0.948 ± 0.013 0.953 ± 0.007
40 RandomForest Forward 0.646 ± 0.049 0.944 ± 0.011 0.954 ± 0.007
40 RandomForest No Correction 0.646 ± 0.049 0.944 ± 0.011 0.954 ± 0.007

Table 2: Detailed performance of forward, backward loss-corrected models and models without loss
correction measured by the weighted F1 score on ”iris”, ”optdigits” and ”pendigits” data sets. Scores
are the averages of ten fold cross-validation reported with standard deviation.
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Data set vehicle wdbc wine
Noise Ratio Model Loss Correction Type

0 DecisionTree Backward 0.692 ± 0.049 0.928 ± 0.030 0.886 ± 0.087
0 DecisionTree Forward 0.692 ± 0.049 0.928 ± 0.030 0.886 ± 0.087
0 DecisionTree No Correction 0.692 ± 0.049 0.928 ± 0.030 0.886 ± 0.087
0 ExtraTrees Backward 0.739 ± 0.051 0.972 ± 0.019 0.983 ± 0.038
0 ExtraTrees Forward 0.739 ± 0.051 0.972 ± 0.019 0.983 ± 0.038
0 ExtraTrees No Correction 0.739 ± 0.051 0.972 ± 0.019 0.983 ± 0.038
0 RandomForest Backward 0.746 ± 0.035 0.960 ± 0.022 0.971 ± 0.040
0 RandomForest Forward 0.746 ± 0.035 0.960 ± 0.022 0.971 ± 0.040
0 RandomForest No Correction 0.746 ± 0.035 0.960 ± 0.022 0.971 ± 0.040

10 DecisionTree Backward 0.645 ± 0.060 0.805 ± 0.054 0.801 ± 0.090
10 DecisionTree Forward 0.641 ± 0.049 0.805 ± 0.054 0.777 ± 0.064
10 DecisionTree No Correction 0.641 ± 0.049 0.805 ± 0.054 0.777 ± 0.064
10 ExtraTrees Backward 0.753 ± 0.058 0.938 ± 0.028 0.959 ± 0.054
10 ExtraTrees Forward 0.759 ± 0.067 0.938 ± 0.028 0.965 ± 0.040
10 ExtraTrees No Correction 0.759 ± 0.067 0.938 ± 0.028 0.965 ± 0.040
10 RandomForest Backward 0.737 ± 0.068 0.934 ± 0.023 0.931 ± 0.044
10 RandomForest Forward 0.744 ± 0.068 0.934 ± 0.023 0.926 ± 0.046
10 RandomForest No Correction 0.744 ± 0.068 0.934 ± 0.023 0.926 ± 0.046

20 DecisionTree Backward 0.533 ± 0.084 0.734 ± 0.031 0.727 ± 0.109
20 DecisionTree Forward 0.540 ± 0.092 0.730 ± 0.042 0.729 ± 0.124
20 DecisionTree No Correction 0.540 ± 0.092 0.730 ± 0.042 0.729 ± 0.124
20 ExtraTrees Backward 0.709 ± 0.061 0.901 ± 0.053 0.950 ± 0.041
20 ExtraTrees Forward 0.708 ± 0.067 0.890 ± 0.062 0.937 ± 0.031
20 ExtraTrees No Correction 0.709 ± 0.067 0.890 ± 0.062 0.937 ± 0.031
20 RandomForest Backward 0.714 ± 0.077 0.890 ± 0.070 0.943 ± 0.037
20 RandomForest Forward 0.718 ± 0.073 0.886 ± 0.073 0.933 ± 0.043
20 RandomForest No Correction 0.718 ± 0.073 0.886 ± 0.073 0.928 ± 0.052

30 DecisionTree Backward 0.506 ± 0.050 0.633 ± 0.051 0.612 ± 0.110
30 DecisionTree Forward 0.503 ± 0.054 0.638 ± 0.051 0.639 ± 0.116
30 DecisionTree No Correction 0.503 ± 0.054 0.638 ± 0.051 0.639 ± 0.116
30 ExtraTrees Backward 0.670 ± 0.074 0.821 ± 0.040 0.857 ± 0.079
30 ExtraTrees Forward 0.687 ± 0.049 0.832 ± 0.046 0.857 ± 0.079
30 ExtraTrees No Correction 0.684 ± 0.048 0.832 ± 0.046 0.857 ± 0.079
30 RandomForest Backward 0.686 ± 0.042 0.838 ± 0.062 0.842 ± 0.053
30 RandomForest Forward 0.680 ± 0.049 0.852 ± 0.069 0.853 ± 0.056
30 RandomForest No Correction 0.679 ± 0.047 0.852 ± 0.069 0.858 ± 0.078

40 DecisionTree Backward 0.426 ± 0.059 0.561 ± 0.060 0.598 ± 0.138
40 DecisionTree Forward 0.428 ± 0.052 0.556 ± 0.089 0.602 ± 0.089
40 DecisionTree No Correction 0.428 ± 0.052 0.556 ± 0.089 0.602 ± 0.089
40 ExtraTrees Backward 0.582 ± 0.049 0.599 ± 0.080 0.755 ± 0.112
40 ExtraTrees Forward 0.574 ± 0.050 0.623 ± 0.083 0.782 ± 0.120
40 ExtraTrees No Correction 0.577 ± 0.052 0.623 ± 0.083 0.782 ± 0.120
40 RandomForest Backward 0.614 ± 0.017 0.621 ± 0.018 0.785 ± 0.112
40 RandomForest Forward 0.617 ± 0.008 0.632 ± 0.010 0.785 ± 0.112
40 RandomForest No Correction 0.617 ± 0.008 0.632 ± 0.010 0.785 ± 0.112

Table 3: Detailed performance of forward, backward loss-corrected models and models without loss
correction measured by the weighted F1 score on ”vehicle”, ”wdbc” and ”wine” data sets. Scores
are the averages of ten fold cross-validation reported with standard deviation.
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