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Abstract

Generative Flow Networks (GFlowNets) are pow-
erful samplers for distributions over composi-
tional objects (e.g., graphs). In this work, we ana-
lyze GFlowNets from three fundamental perspec-
tives: stability, expressiveness, and assessment.

For stability, we analyze how fluctuations in
balance conditions impact the accuracy of
GFlowNets. Our theoretical results suggest that i)
the effect of balance violations is heterogeneous
across the state graph and ii) each node’s influ-
ence on GFlowNet’s accuracy is tied to the reward
associated with its descendants. We leverage
these insights to propose a weighted balance loss
that leads to faster training convergence.

Regarding expressiveness, we consider
GFlowNets for graph generation. We prove
that, given a suitable state graph, GFlowNets
can accurately learn any distribution supported
over trees. Strikingly, however, we show
simple combinations of state graphs and reward
functions that cause GFlowNets to fail, i.e.,
for which balance is unattainable. We propose
leveraging embeddings of children’s states to
circumvent this limitation and thus increase the
expressiveness of GFlowNets, provably.

Lastly, we propose a theoretically sound and
computationally tractable metric for assessing
GFlowNets. We experimentally show it is a better
proxy for distributional correctness than popular
evaluation protocols.
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1. Introduction
Generative flow networks (GFlowNets, Bengio et al.,
2021; 2023) are reward-driven generative models for
compositional objects (e.g., sequences or graphs) that
have been successfully employed in several scientific
domains (Bengio et al., 2021; da Silva et al., 2023; Deleu
et al., 2022; 2023; Jain et al., 2022; 2023; Zhang et al.,
2023b). In essence, GFlowNets cast sampling from an
unnormalized distribution as solving a network flow
problem (Bazaraa et al., 2004). Starting from an initial
state, GFlowNets create valid samples by drawing a series
of actions according to a (forward) policy network.

While most works on GFlowNets are primarily empir-
ical, developing a deeper theoretical understanding of
GFlowNets is key to designing better models and assessment
methodologies that are both theoretically sound and practi-
cally efficacious. In this regard, Bengio et al. (2021; 2023)
laid out the technical foundations for GFlowNets, showing
that a model satisfying the imposed balance conditions sam-
ples from the target discrete distribution. Lahlou (2023)
extended this theory to the context of probability measures
supported on arbitrary topological spaces. Also recently,
the relationship of GFlowNets with variational inference
(Malkin et al., 2023), reinforcement learning (Tiapkin et al.,
2024), and diffusion models (Garipov et al., 2023) has been
formally established. Despite these advances, important
theoretical questions with practical implications remain an
uncharted territory, including (i) How do balance violations
impact GFlowNets’ accuracy? (ii) How does the parame-
terization of the policy networks affect the expressive power
of GFlowNets? (iii) How to diagnose whether a GFlowNet
correctly samples from a target distribution?

This paper establishes a series of results to address these
fundamental questions. Firstly, we provide bounds on the
total variation of GFlowNets as functions of balance fluctua-
tions/violations. By considering tree-structured state graphs
with identical rewards, we show that flow imbalances at
different depths have a non-uniform impact on the approx-
imation capabilities of GFlowNets — more specifically,
balance mismatches near the root state may have a higher
impact than those near terminal states. We also extend our
analysis to show that similar results hold for general directed
acyclic state graphs (DAGs) and multimodal target distribu-
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Table 1: Main contributions of this work. Highlighted items represent methodological advancements.

Section 3: Stability
Sensitivity to local failures for tree-shaped SGs and uniform targets Thm. 1
Sensitivity to local failures for general SGs and targets Thm. 2
Formulation of weighted DB loss and comparison against DB Eq. 7, Fig. 7

Section 4: Expressive power of GNN-based GFlowNets
Universal approximation of distributions over trees Thm. 3
Representational limits of 1-WL GFlowNets Thm. 4
Formulation of Look-Ahead (LA) GFlowNets Eq. 4
LA-GFlowNets ≻ Standard GFlowNets Thm. 5, Fig. 4

Section 5: Assessment
Definition of FCS as a tractable goodness-of-fit metric Def. 1
Relationship between FCS and TV Thm. 6, Cor. 1
Concentration inequality for FCS and TV Cor. 2
FCS is a good approximation to TV Sec. 5.1
Unsoundness of commonly used evaluation protocols Thm. 7, Sec. 5.2

tions. To illustrate the pragmatic benefits of these insights,
we devise a novel self-normalized importance sampling es-
timator for the detailed balance loss — GFlowNet’s only
transition-decomposable learning objective. Results in Sec-
tion 3 suggest our approach often leads to faster convergence
relative to the traditional one.

Secondly, we study the distributional limits of GFlowNets
when sampling graph-structured objects. Notably, most
applications of GFlowNets consist of sampling from
distributions over graphs, which render graph neural
networks (GNNs) (Gilmer et al., 2017; Gori et al., 2005; Xu
et al., 2019a) particularly convenient to parameterize policy
networks. In fact, GNNs are often used to parameterize the
policies in practice (Bengio et al., 2021; Deleu et al., 2023;
Zhang et al., 2023b; Zhu et al., 2023). With this in mind, we
provide constructions exposing their shortcomings. While
GNN-based GFlowNets can express any distribution over
trees under mild conditions, we show that there are simple
state graphs and target distributions that no GFlowNet can
sample from. We leverage our analysis to introduce look-
ahead GFlowNets (LA-GFlowNets), a simple yet effective
scheme to provably boost the expressiveness of GFlowNets.
In essence, LA-GFlowNet incorporates children-state
embeddings as inputs to the forward policy. This allows LA-
GFlowNets to distinguish actions that lead to distinguishable
states but cannot be told apart by the Weisfeiler-Leman
(WL) (Weisfeiler & Lehman, 1968) test.

Finally, we provide a theoretically sound framework for
the distributional assessment (i.e., goodness-of-fit) of
GFlowNets in high-dimensional state spaces. To this ex-
tent, we propose the flow consistency in sub-graphs (FCS)

metric. Put simply, FCS consists of a Monte Carlo estimate
of the average L1 error wrt a distribution of "cuts" of the
target’s support. The FCS metric serves as a proxy for the
absolute error between a GFlowNet’s sampling distribution
and its target. This is extremely valuable for real-world
applications, in which the target’s support is usually too
large to be enumerated. We empirically show that FCS
highly correlates with the (often intractable) L1 error. In
contrast, popular evaluation metrics poorly capture distri-
butional correctness, e.g., the number of high-reward states
visited during training and the average reward of the top-k
scoring states (Bengio et al., 2021; Jang et al., 2024; Kim
et al., 2024; Pan et al., 2023a).

In Table 1, we summarize the main contributions of this
work. Section 3 analyzes the distributional correctness of
GFlowNets as a function of balance violations and leverages
theoretical insights to propose the WDB loss. Section 4 dis-
cusses the representational limits of GFlowNets for graph
domains and proposes LA-GFlowNets as a way to boost
the expressive power of GNN-based GFlowNets. Finally,
Section 5 proposes FCS as a theoretically grounded metric
to assess the accuracy of GFlowNets well-suited to high-
dimensional settings. Importantly, all sections of this work
provide experiments to substantiate our theoretical analy-
ses, illustrating the claims and demonstrating the practical
relevance of the methodological contributions.

2. Background
Notations. Let X be a finite set of terminal states, R be
an unnormalized distribution over X . We define the set of
states S as an extension of X comprising two distinctive
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elements: an initial state, so ∈ S, and a final state, sf ∈ S .
We hence define a weakly connected DAG G = (S, E),
termed state graph (SG), such that (i) there are no incoming
edges/transitions to so; (ii) for each x ∈ X , there is a
directed path from so to x; (iii) there is an edge from each
x to sf , which is not directly connected to any other state in
S; and (iv) there are no outgoing edges from sf . A forward
policy over G is a function pF : S × S → R+ for which
pF (s, ·) is a probability measure supported on s’s children in
G, denoted by child(s). A backward policy pB is a forward
policy over G’s transpose. For a trajectory τ = (sj)

h
j=0 on

G, we write pF (τ) =
∏

i=1...h pF (si−1, si) for the induced
distribution over trajectories. Finally, a flow is a function
F : S → R+ s.t. F |X = R. Throughout the work, we
denote the cardinality operator as #. For a trajectory τ , #τ
denotes its number of transitions.

GFlowNets. We denote a GFlowNet by a tuple
(G, pF , pB , F ) composed of a SG G, parametric functions
for pF , F , and pB . By definition (Bengio et al., 2021;
2023), the model’s parameters are estimated to ensure that
the marginal distribution over X induced by trajectories
starting at so matches in proportion a given reward function
R : X → R+ defined on the set X , i.e.,

pT (x) =
∑
τ⇝x

pF (τ) ∝ R(x) ∀x ∈ X , (1)

in which τ ⇝ x denotes that τ ’s last transition is (x, sf ).
In practice, pF is often parameterized by a GNN (Bengio
et al., 2021; Zhang et al., 2023b) or a transformer (Deleu
et al., 2022; Kim et al., 2024) and pB is a fixed uniform
policy (Deleu et al., 2022; Malkin et al., 2022; 2023; Shen
et al., 2023; Zhou et al., 2024). Training GFlowNets aims
to satisfying either the detalied balance (DB) (Bengio et al.,
2023) condition for all (s, s′) ∈ E :{

F (s)pF (s, s
′) = F (s′)pB(s

′, s) if s′ ̸= sf ,

F (s)pF (s, s
′) = R(s) otherwise,

(2)

or the trajectory balance (TB) (Malkin et al., 2022) condi-
tion F (so)pF (τ) = pB(τ |x)R(x) for all complete trajecto-
ries. Both of these balance conditions provably imply Equa-
tion (1). When one of such conditions is not satisfied by the
GFlowNet, we say that the underlying flow network is im-
balanced. To estimate the parameters of pF , one commonly
employs a variant of SGD to minimize the expectation of
the log-squared difference between the left- and right-hand
sides of balance conditions. When enforcing DB, the loss
function — denoted LDB(pF , pB , F ) — becomes

E
τ∼pϵ

 1

#τ

∑
(s,s′)∈τ

(
log

F (s)pF (s, s
′)

F (s′)pB(s′, s)

)2
 , (3)

with F (sf )pB(sf , x) := R(x) ∀x ∈ X . Here, pϵ is an
exploratory policy that controls the trade-off between

exploration and exploitation in GFlowNet training, and is
conventionally set as pϵ = ϵpF + (1− ϵ)pU for a uniform
policy pU . Importantly, albeit LDB frequently leads to
slower convergence rates relatively to LTB (Malkin et al.,
2022), Zhang et al. (2023b) suggested the use of LDB

when modeling state spaces with very long trajectories that
cannot be sampled in batches large enough for accurate
estimation of LTB’s gradients. In this context, our analysis
in Section 3 shows the DB objective can be significantly
improved by appropriately choosing the distribution over
transitions in Equation (3).

Evaluation protocols for GFlowNets. Due to the in-
tractability of enumerating the support of R to compare
the learned and target distributions, one must rely on ap-
proximate and easy-to-evaluate approaches for assessing
the accuracy of a GFlowNet. Under these conditions, many
works (e.g., (Jang et al., 2024; Pan et al., 2023a;b; 2024;
Zhang et al., 2023b)) define a threshold Ro and report the
average of R(x) for those x with R(x) ≥ Ro found during
training as a convergence diagnostics, the intuition being
that a properly fitted model will swiftly find high-probability
regions of the target distribution. Often, Ro is based on
an empirical quantile of the observed R(x). Alternatively,
the correlation between log pT (x) and logR(x) is a pop-
ular metric for goodness-of-fit in the GFlowNet literature
(Madan et al., 2022; Malkin et al., 2023; Nica et al., 2022).
However, as pointed out by Shen et al. (2023), this cor-
relation is perfect when pT (x) ∝ R(x)α for any α > 0
and does not necessarily reflect the adequacy of the trained
model. In this setting, Shen et al. (2023) also suggested the
computation of the relative averages of R under the learned
and target distributions,

Acc(pT |R) = min

{
Ex∼pT

[R(x)]

Ex∼π∝R[R(x)]
, 1

}
, (4)

as a measure of goodness-of-fit; A was referred to as the
GFlowNet’s accuracy, adopted in subsequent works (Jang
et al., 2024; Kim et al., 2024). Remarkably, we show in
Section 5.1 that these metrics based on empirical averages
of R routinely fail to detect the distributional correctness of
GFlowNets when the learned distribution is excessively con-
centrated in high-probability regions of the target.

3. Bounds on the TV of GFlowNets
In this section, we assess the impact of local violations of
the balance conditions on the overall distributional approxi-
mation of GFlowNets. We start our analysis by considering
uniform distributions and tree-structured SGs, which is a
common setting in sequence generation tasks and strategic
design in adversarial games (Jain et al., 2022; Jiralerspong
et al., 2023). More specifically, Theorem 1 analyzes how a
node’s violation of the DB condition affects the total varia-
tion (TV) between the GFlowNet’s sampling and target dis-
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Figure 1: Tree-structured SG w/ excess flow δ from s0 to
left child. We omit node labels to show F (·).

tributions, providing tight lower- and upper-bounds. Hence-
forth, ∥p − q∥TV = 1/2maxS⊆X

∣∣∑
x∈S p(x)− q(x)

∣∣
= 1/2

∑
x∈X |p(x)−q(x)| denotes the TV distance between

the probability measures p and q.

Theorem 1 (TV for tree-structured SGs). Let
(G, pF , pB , F ) be a GFlowNet balanced wrt to a re-
ward R, where G is a directed regular tree with branching
factor g and depth h, and R is unnormalized uniform.
Also, consider the GFlowNet (G, p̃F , pB , F̃ ) such that i)
F̃ (so) = F (so) + δ and F̃ (s⋆) = F (s⋆) + δ for some
s⋆ ∈ child(so) and δ ≥ 0; ii) F̃ (s) = F (s) for all s not
reachable from s⋆; iii) F̃ (s) =

∑
s′∈child(s) F̃ (s

′); and

iv) p̃F (s, s′) ∝ F̃ (s′) ∀(s, s′) ∈ E(G) (see Figure 1). Let
p̃T be the marginal distribution induced by p̃F . The TV
between p̃T and π ∝ R abides by:

ϵ (δ, g, F (s0)) ≤ ∥p̃T − π∥TV ≤ ϵ
(
δ, gh, F (s0)

)
, (5)

with ϵ(δ, x, t) := (1− 1/x) δ
t+δ .

Naturally, both the upper and lower bounds are increasing
functions of δ. Importantly, these bounds are tight, i.e., for
any δ, there is an appropriate flow function for which the TV
equals the stated bounds. Also, we note that the upper bound
ϵ(δ, gh, F (so)) increases monotonically with the number of
leaves gh, i.e., the further the imbalanced edge (so, s

⋆) is
from the leaves, the higher the potential damage to accuracy.
Notably, this suggests that the effect of balance violations on
the distributional approximation is heterogeneously spread
among the SG’s edges.

We now extend the results of Theorem 1 to arbitrary SGs and
target distributions. Theorem 2 suggests that the potential
effect of an imbalance in (s, s⋆) on the overall distributional
approximation is proportional to the probability mass asso-
ciated with s⋆’s terminal descendants. Intuitively, the more
terminal descendants s⋆ has, the more likely it is for one
of them to have low reward/target mass. In turn, the upper
bound on the TV increases. For the tree-structured SGs
analyzed in Theorem 1, having more terminal descendants
is equivalent to having greater height. Overall, Theorem 2

reinforces the initial insight from Theorem 1 that the impact
of local violations on the GFlowNet’s accuracy is not ho-
mogeneous across the SG’s edges. In the case of DB, they
also serve as a theoretical justification for the importance of
choosing appropriate measures to integrate the loss against,
which has been shown to significantly influence the sample-
efficiency of GFlowNets (Atanackovic & Bengio, 2024;
Malkin et al., 2023; Rector-Brooks et al., 2023).

Theorem 2 (TV bounds for arbitrary distributions). Let
(G, pF , pB , F ) be a GFlowNet with arbitrary state graph
G satisfying the DB condition wrt an arbitrary reward R.
Similarly to Theorem 1, define (G, p̃F , pB , F̃ ) by increasing
the flow F (s) in some node s by δ and redirecting the ex-
tra flow to a direct child s⋆ by properly adjusting pF (s, ·).
Likewise, F̃ is defined by propagating the extra flows to all
states reachable from s⋆. Also, let Ds⋆ ⊆ X be the set of
terminal states reachable from s⋆. Then, the TV between the
distribution p̃T over X induced by p̃F and the normalized
target π ∝ R satisfies

δ

F (s0) + δ

1−
∑

x∈Ds⋆

π(x)

 ≤
∥p̃T − π∥TV ≤

δ

F (s0) + δ

(
1− min

x∈Ds⋆

π(x)

)
.

(6)

Application to the training of GFlowNets. To underline
the consequences of our theoretical analysis, we consider
training a GFlowNet by optimizing a transition-weighted
DB loss, denoted LWDB(τ) and defined as

1∑
(s,s′)∈τ γ(s, s

′)

∑
(s,s′)∈τ

γ(s, s′)

(
log

F (s)pF (s, s
′)

F (s′)pB(s′, s)

)2

,

(7)
with F (sf )pB(sf , x) := R(x) for all x ∈ X . To define an
appropriate weighting function γ, we note from Theorem 1
and Theorem 2 that the maximum disruption on TV enacted
by a lack of balance at an edge (s, s′) generally increases as
a function of the number d(s′) of the terminal descendants
of s′. Thus, when optimizing the standard DB loss, one
may hope that a variant of the SGD algorithm would be pre-
dominantly guided by the dominating effect of early-state
imbalances, which have the most pronounced impact on
the flow network’s balance in terms of magnitude, and be
lesser affected by late-state transitions, where the supervised
signal provided by the reward function is bestowed. Indeed,
this intuition is confirmed by our experiments in Figure 8
(details in the supplement). To mitigate this issue, we con-
sider setting γ(s, s′) as 1/d(s′), thereby assigning a relatively
smaller weight to early transitions. Remarkably, the concept
of homogenizing transition-decomposable loss functions in
iterative generative models was previously explored in the
implementation of adaptive noise schedules for diffusion
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probabilistic models (Kingma & Gao, 2023; Kingma et al.,
2021), which are closely connected to GFlowNets (Lahlou,
2023; Zhang et al., 2023a), and on the design of the SubTB
objective (Madan et al., 2022), which assigns exponentially
smaller weights to longer trajectories — which are generally
connected to a larger number of terminal states.

Empirical illustration. To illustrate the difference between
optimization of Equation 7 and of the standard DB objec-
tive, and confirm our theoretically-backed intuitions, we
consider three distinct generative tasks: (i) set generation
(Bengio et al., 2023; Pan et al., 2023a), (ii) phylogenetic
inference (Zhou et al., 2024), and (iii) design of sequences
(Jain et al., 2022). For (i), X is a set of fixed-size subsets
of {1, . . . , S} for a given S ∈ N. For (ii), X contains all
phylogenetic trees describing the evolutionary history of
a collection of biological species. For (iii), X consists of
discrete sequences of size up to a given constant S. We
provide further details in the supplement. Notably, Figure 7
in the supplement shows that optimizing LWDB often leads
to faster training convergence than optimizing LDB , em-
pirically supporting the heuristic derived from Theorem 1
and Theorem 2. As a concluding remark, we note that
Equation 7 may be seen as a self-normalized importance es-
timator of Es,s′∼p(·|γ)[LDB(s, s

′)] for a distribution p(·|γ)
depending on γ. Interestingly, then, the problem of finding
an optimal weighting scheme for LWDB is equivalent to the
design of optimal sampling policies for off-policy training
of GFlowNets.

4. Distributional limits of GNN-based policy
networks

We now analyze GFlowNets for graphs. In principle, one
could use MLP policy networks. However, if the target is
supported over graphs without unique node IDs, this choice
incurs a factorial increase in SG size. Thus, GFlowNets
often use GNNs to parameterize policies (Bengio et al.,
2021; Zhang et al., 2023b; Zhu et al., 2023).

Our analysis starts with a positive result (Theorem 3) —
for any reward supported over trees, there is a GNN-based
GFlowNet using a suitable SG capable of sampling propor-
tional to that reward.

Theorem 3 (Universality of GNN-based GFlowNets for
trees.). If S is a collection of trees such that (s, s′) ∈ E im-
plies that s ⊂ s′ (s is a proper subtree of s′) with #E(s′) =
#E(s) + 1, then there is a GFlowNet equipped with 1-WL
GNNs can approximate any distribution π over X ⊆ S.

Despite Theorem 3, the expressiveness of a variety of popu-
lar GNNs is bounded by the 1-WL isomorphism test. A nat-
ural question ensues: how is this limitation reflected in GNN-
based GFlowNets? To that extent, Theorem 4 shows that
there is a broad family of cases (i.e., combinations of SGs

Figure 3: Simple state graph + reward that causes GNN-
based GFlowNet to fail.

and reward functions) for which GNN-based GFlowNets are
bound to fail. Intuitively, this result rests on the fact that a
state must distribute its flow evenly to children if the actions
leading to them are not 1-WL distinguishable. To illustrate
this, Figure 3 provides a construction in which GNN-based
GFlowNets fail. As 1-WL cannot distinguish between the
initial state’s children, GFlowNets inevitably learn the same
forward conditional distribution at the highlighted states.
Thus, GFlowNets cannot learn distributions over the leaves
if they are endowed with different rewards.

Theorem 4 (Limitations of GNN-based GFlowNets). Let
G = (S, A) be a state graph and R : X ⊆ S → R+

be a reward function. Suppose G is a directed tree. Let
T (s) ⊆ X for s ∈ S denote the set of terminal states reach-
able by a directed path starting at s. If there is a state s =
(V,E) ∈ S and two pairs of nodes (a, b) ̸= (b, c) ∈ V 2 \E
that are not 1-WL distinguishable and

∑
x∈T (s′)R(x) ̸=∑

x∈T (s′′)R(x) with s′ = (V,E ∪ {(a, b)}) and s′′ =

(V,E ∪ {(c, d)}), then there is no 1-WL GFlowNet capable
of approximating π ∝ R with TV zero.

We now leverage these insights to propose a more power-
ful GNN-based GFlowNets: Look-ahead GFlowNets (LA-
GFlowNets). The rationale of LA-GFlowNets is to incor-
porate children’s graph embeddings as inputs to the for-
ward policy. This allows LA-GFlowNets to disambiguate
between children states obtained from 1-WL equivalent
actions, enabling assignment of uneven probabilities to non-
distinguishable actions as long as the embeddings of corre-
sponding children states differ.

More formally, let s′ and s be two neighboring nodes in
the SG, differing only by an edge (u, v) not in s — note
that s and s′ are graphs themselves. Let also ϕv|G be the
1-WL embedding of a node v within a graph G. Then, LA-
GFlowNets’ forward policy pF (s, s′) can be described as
proportional to

exp
{
MLP

(
ψ1

(
{ϕu|s, ϕv|s}

)
∥ ψ2

(
{ϕw|s′}w∈V (s′)

))}
,

where ϕ1 and ϕ2 are order-invariant functions implemented
as deep sets (Zaheer et al., 2017). Since child embed-
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Figure 4: Illustration of cases in which LA-GFlowNets
succeed but standard GNN-based GFlowNet fail.

dings are added (concatenated) to the original action em-
bedding, there is naturally no loss of expressiveness wrt
1-WL GFlowNets. On the other hand, LA-GFlowNets can
perfectly approximate cases like the one depicted in Fig-
ure 3. Theorem 5 states the superior expressiveness of
LA-GFlowNets.

Theorem 5 (LA-GFlowNet is more powerful than 1-WL
GFlowNet). If there is a 1-WL forward policy inducing a
sampling distribution proportional to a reward R, there is
an LA-GFlowNet over the same SG with a sampling distri-
bution proportional to R. The converse does not hold.

Empirical illustration. To demonstrate the limitations of
GNN-parameterized GFlowNets, we define next a group
G of SGs for which there are actions that, despite lead-
ing to non-isomorphic states, cannot be distinguished by a
GNN-based policy. In this scenario, let Rn,k be the set of
regular graphs with n nodes of degree k. Then, let G be
the set of SGs C1 ← P → C2 such that P ∈ Rn,k and
C1 ̸≡ C2 differ from P by a single additional edge; see the
Appendix for an illustration. Note that, due to the regular-
ity of P , pF (P,C1) = pF (P,C2) for any GNN pF . Thus,
the corresponding GFlowNet is inherently unable to learn a
non-uniform distribution on {C1, C2}. LA-GFlowNets, in
contrast, are not constrained by such limited expressivity. As
an example, we create four triples (C1, P, C2) with n = 8,
k = 3, R(C1) = 0.1 and R(C2) = 0.9. Under these condi-
tions, Figure 4 shows LA-GFlowNet can accurately sample
from the target distribution. However, a standard GNN-
based GFlowNet can only sample from a uniform, attaining
a (constant) L1 error of 0.4 throughout training.

5. Convergence diagnostics for GFNs
In this section, we propose a provably correct and compu-
tationally tractable metric for verifying the distributional
incorrectness of GFlowNets, along with probably approxi-

mately correct (PAC) statistical guarantees for the accompa-
nying estimators (Section 5.1). Then, we apply this metric
to two recently published methods for training GFlowNets,
namely, LED- and FL-GFlowNets, and note that they are
generally incapable of learning to sample from the target
distribution (Section 5.2).

5.1. Assessing GFlowNets

Flow Consistency in Sub-graphs (FCS). Let
(G, pF , pB , F ) be a GFlowNet trained to sample from a
distribution π ∝ R over X . For each x ∈ X , we can obtain
an unbiased estimate of pT at x induced by pF using an
importance sampling estimator for

∑
τ⇝x pF (τ):

pT (x) =
∑
τ⇝x

pF (τ) = Eτ∼pB(·|x)

[
pF (τ)

pB(τ)

]
. (8)

For widespread benchmark tasks — such as grid world
(Bengio et al., 2021; Malkin et al., 2023; Pan et al., 2023a),
sequence design (Jain et al., 2022; Jiralerspong et al., 2023;
Zhang et al., 2022), and set generation (Bengio et al., 2023;
Pan et al., 2023a; Shen et al., 2023) —, the expectation in
Equation 8 may be directly computed by enumerating the rel-
atively few trajectories leading to x. Indeed, for some appli-
cations, there is a single τ terminating in each x (Jain et al.,
2022; Jiralerspong et al., 2023; Zhou et al., 2024). However,
this is intractable beyond toy environments. To circum-
vent this limitation, we propose the flow consistency in sub-
graphs (FCS) metric, formally introduced in Definition 1.
In summary, the FCS is the average TV between many
“cuts” of the marginal pT and the target π ∝ R, defined by
restraining their supports to fixed-size subsets.

Importantly, Theorem 6 shows FCS is closely related to the
TV distance between the learned and target distributions.
However, FCS is computationally tractable since it does not
require instantiating the entire state graph — which is the
major caveat of computing the TV.

Definition 1 (Flow Consistency in Sub-graphs). Given a
GFlowNet’s marginal distribution over terminal states pT , a
reward function R, and a fully-supported probability distri-
bution PS over all subsets of X with fixed size β > 0, we
define the FCS metric as:

ES∼PS
[e(S, θ)] := ES∼PS

[
1

2

∑
x∈S

|p(S)
T (x; θ)− π(S)(x)|

]
,

with p(S)
T (·; θ) defined by conditioning pT on x being in S,

and π(S) defined similarly by conditioning π(x) ∝ R(x).
Theorem 6 (Equivalence between TV & FCS). Let PS be
any full-support distribution over {S ⊆ X : #S = β} for
some β ≥ 2. Also, let dTV = e(X , θ) be the TV distance
between pT and π for a GFlowNet parameterized by θ.
Then, dTV = 0 if and only if ES∼PS

[e(S, θ)] = 0.

6
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To highlight the role of β in Theorem 6, Corollary 1 bounds
the dTV as a function of both the FCS and β. Note, in par-
ticular, that the statement also opens the possibility of using
PS support over differently-sized subsets without giving
away the correctness of FCS.

Corollary 1 (Connection between TV & FCS). Let #X = n

and PS(S;β) =
(
n−1
β−1

)−1∑
x∈S pT (x) be a distribution on

{S ⊆ X : #S = β} for β ≥ 2. Then,

∣∣dTV − ES∼PS(·;β) [e(S, θ)]
∣∣ ≤ 1

2
· n
β
·∆(β) (9)

in which ∆(β) = maxS⊆X ,#S=β |pT (S)−π(S)|, π(S) =∑
x∈S π(x), and pT (S) =

∑
x∈S pT (x). Moreover, let

Q be a probability mass function on {2, . . . , n} and con-
sider the distribution P (S) = PS(S; #S)Q(#S) over
arbitrarily sized subsets of X . Also, denote ∆(β) =
maxS⊂X ,#S=β |pT (S)− π(S)|. Then,

|dTV − ES∼P [e(S; θ)]| ≤
n

2
Eβ∼Q

[
∆(β)

β

]
. (10)

PAC statistical guarantees for e(S; θ). In practice, we
use a Monte Carlo approximation of the intractable quan-
tity ES∼PS

[e(S, θ)] to assess the accuracy of the learned
GFlowNet due to the large size of X . In this sense, the
corollary below of Corollary 1 underlines that our estimator
of the FCS is a good approximation to the TV.

Corollary 2 (PAC bound for FCS). Let PS as in Theorem 6
and #X = n. Then, for any δ ∈ (0, 1), with probability at
least 1−δ over choosingm i.i.d. samples S1, . . . , Sm ∼ PS ,
the following holds:

dTV ≤
1

m

∑
1≤i≤m

e(Si, θ) +
n

2β
·∆(β) +

√
2 log 1

δ

m
.

0.00 0.02 0.04
FCS

0.00

0.02

0.04

T
V

Figure 5: FCS vs. TV

Empirical illustration. To
illustrate the adequacy of
FCS as a relatively easy-to-
compute proxy for the TV dis-
tance, we consider the task
of set generation described in
Section 3 for varying set and
source sizes. For each experiment, we compute both the
FCS and TV. For the latter, we use Equation 8 to evaluate
the learned marginal distributions for every element in X ,
which is very costly. Importantly, the result in Figure 5
shows that our FCS is strongly correlated to the TV distance.
This observation empirically corroborates Corollary 2 and
suggests that FCS is an appropriate tractable surrogate for
the TV distance.

5.2. Revisiting LED- and FL-GFlowNets

LED- and FL-GFlowNets. The accuracy of a GFlowNet
heavily depends on the trajectories seen during training
(Atanackovic & Bengio, 2024; Rector-Brooks et al., 2023),
and the challenge of scoring each transition (s, s′) according
to its relevance to learning the target is known as the credit
assignment problem. Notably, Learning Energy Decom-
positions (LED) (Jang et al., 2024) and Forward-Looking
(FL) (Pan et al., 2023a) GFlowNets tackle this issue by
reparametrizing the log-flow logF (s, s′) as the residual of
a (possibly learnable) potential function ϕθ(s, s′). More
specifically, both models minimize

LLED(s, s′) =

(
log

pF (s, s
′)F (s)

pB(s′, s)F (s′)
+ ϕθ(s, s

′)

)2

(11)

for every transition (s, s′). For FL-GFlowNet, ϕθ(s, s′) =
ξ(s′)− ξ(s) is fixed as the difference between hand-crafted
state-level functions satisfying ξ(x) = − logR(x) for x ∈
X (Pan et al., 2023a). For LED-GFlowNet, ϕθ(s, s′) is
parameterized as a neural network taking a concatenation
of s and s′’s as input and trained through the minimization
of the least-squares loss, denoted LLS(τ),

E
(ms,s′ )(s,s′∈τ


 1

#τ
ξ(x)− 1

C

∑
(s,s′)∈τ

ms,s′ϕθ(s, s
′)

2


over all τ , where ms,s′ is a dropout mask, ms,s′ are
independently sampled from a Bernoulli distribution with
parameter γ, and C =

∑
(s,s′)∈τ ms,s′ . Remarkably,

Theorem 7 shows that the learning problem defined by
both FL- and LED-GFlowNets do not generally lead to
a generative model that samples from R, despite their
apparent empirical success in finding high-probability
regions of the target.

Theorem 7 (Unpredictability of FL- and LED-GFlowNets).
Consider a FL- or LED-GFlowNet achieving
LLED(s, s′) = 0 and LLS(τ) = 0 for all transi-
tions (s, s′) and trajectories τ . Then, the learned marginal
distribution over X satisfies pT (x) ∝ R(x)F (x).
Theorem 7 means that, unless the flow functionF is constant
as a function on X , minimizing both LLED and LLS is not
enough to ensure the GFlowNet samples proportionally toR.
In the following, we provide empirical evidence highlight-
ing the effectiveness of FCS in detecting the distributional
incorrectness of both FL- and LED-GFlowNets.

Experimental setup. We consider the tasks of set gener-
ation, described in Section 3, and generation of bags (Shen
et al., 2023), both of which were considered by Jang et al.
(2024). In this setting, recall that a bag corresponds to a
multiset of elements sampled from a fixed sourceD and that
the log-reward of a bag B corresponds to the sum of utilities

7
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Figure 6: FCS correctly detects that neither FL- nor LED-GFlowNets learn to sample from the target (left and mid-left plots), contrasting
with the performance of a standard GFlowNet. On the contrary, the average reward of the sampled objects during training incorrectly
suggests that FL- and LED-GFlowNets achieve a faster convergence than a standardly trained model (mid-right and right).

Table 2: Shen et al. (2023)’s accuracy metric is perfect for FL and
LED GFlowNet’s formulations, failing to detect their unsoundness.

LED FL TB

Sets 100.00±0.00 100.00±0.00 93.74±0.98

Bags 100.00±0.00 100.00±0.00 81.38±6.86

of elements in B. We provide further details regarding
these experiments. As a baseline, we train a GFlowNet by
minimizing the TB loss (Malkin et al., 2022).

Results. Figure 6 (left) shows that the training of both FL-
and LED-GFlowNets converge to a distribution that is sig-
nificantly more distant from the target than the one learned
by a standard GFlowNet is. This result, consistent with
Theorem 7, highlights the unpredictability of FL- and LED-
GFlowNets, and the potential of FCS to identify such patho-
logical behaviors. Notably, alternative diagnostic methods,
such as computing the accuracy metric of (Kim et al., 2024;
Shen et al., 2023) and tracking the number of high-reward
states found during training (Bengio et al., 2021; Pan et al.,
2023a; Zhang et al., 2023b), are unable to detect the un-
soundness of FL- and LED-GFlowNets, as we respectively
show in Table 2 and Figure 6 (right). The reason for this is
that both FL- and LED-GFlowNets learn, for these tasks, a
highly right-skewed distribution, thereby exhibiting a very
large score according to reward-based performance metrics.
In light of this, we advocate for FCS as a standard metric for
diagnosing the GFlowNets’ learned distributions.

6. Conclusions and limitations
Our contributions are three-fold. Firstly, our sensitivity
analyses in Section 3 quantified the effect of transition-level
violations to the balance on the TV of the GFlowNet’s
learned distribution, highlighting the heterogeneous
contribution of different node/edges of the SG to the
overall distributional approximation. Inspired by these
theoretical considerations, we derived a self-normalized
importance-sampling estimator for the DB loss that often
achieves faster convergence than the traditional approaches.
Secondly, we laid out in Section 4 the capabilities and limits
of GFlowNets parameterized by 1-WL GNNs in terms of

which distributions they can (or cannot) learn. To improve
the representational power of GFlowNets, we proposed
LA-GFlowNets as a parameterization that incorporates
the latent representations of a state s’s children when
computing the forward policy at s. Finally, we outlined in
Section 5.1 the flow-consistency in sub-networks (FCS) as a
provably correct and easy-to-compute metric for assessing
the fitness of a GFlowNet. Using the FCS, we demonstrated
that popular variants of GFlowNets based on intermediate
credit assignment techniques (Jang et al., 2024; Pan et al.,
2023a) may not necessarily learn to sample from the correct
target distribution, a pathology that previously proposed
assessment procedures such as Shen et al. (2023)’s accuracy
failed to detect. All in all, this is the first theoretical work to
provide a stability analysis, establish the distributional limi-
tations, and design assessment tools for GFlowNets.

Note that our bounds on the TV of GFlowNets do not
explicitly provide an optimal weighing scheme, which may
be data-dependent. To this effect, we believe an extensive
evaluation of different weighing functions γ could help de-
velop even better algorithms to train GFlowNets, and merits
a work of its own. Moreover, our analysis of GNN-based
GFlowNets focused on 1-WL GNNs due to their popularity
and widespread use. However, extending it more expres-
sive (e.g., higher-order) GNNs is a promising direction.
Additionally, LA-GFlowNets may fail when both a state’s
actions and children states are 1-WL indistinguishable.
We could also leverage discriminative features (e.g., from
substructures (Zeng et al., 2023) or pairwise node distances
(Li et al., 2020)) to further boost LA-GFlowNets.

We believe our work paves the road for many advancements
in the GFlowNet literature. Firstly, the development of more
effective weighting schemes for the detailed balance objec-
tive in Section 3 may enhance GFlowNets’ scalability. Simi-
larly, the limited expressivity of GNN-based GFlowNets laid
out in Section 4 is a cautionary tale for the use of equivariant
neural networks when parameterizing the model’s policies
and may be a useful tool for explaining the difficulty in
approximating certain distributions, as well as developing
more expressive models. Lastly, we expect FCS to have
a major impact on the assessment of GFlowNets and the
validation of novel learning objectives.
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A. Proofs
This section contains self-contained and rigorous proofs for our theoretical results.

A.1. Proof of Theorem 1
The terminal states of the modified flow network will have two types of nodes, with flow F

gh and F
gh + δi, with δi ≥ 0

and
∑gh−1

i=1 δi = δ. We normalize those probabilities to obtain the individual probabilities for each terminal state, which
determines the density of each sample. From that, we can proceed to compute the total variation distance between p̃T and
π.

∥p̃T − π∥TV =
1

2

∑
x∈X
|p̃T (x)− π(x)|

=
1

2

(gh − gh−1)

∣∣∣∣ Fgh 1

F + δ
− 1

gh

∣∣∣∣+ gh−1∑
i=1

∣∣∣∣F + ghδi
gh

1

F + δ
− 1

gh

∣∣∣∣


=
1

2

[
ghδ − gh−1δ +

∑gh−1

i=1 |ghδi − δ|
gh(F + δ)

]
.

We can lower bound
∑gh−1

i=1 |ghδi − δ|, by considering that
∑gh−1

i=1 (ghδi − δ) = ghδ − gh−1δ, taking the absolute value of

the result and each element of the sum to obtain ghδ − gh−1δ ≤∑gh−1

i=1 |ghδi − δ|. Thus we obtain the lower bound

1

2

[
ghδ − gh−1δ + ghδ − gh−1δ

gh(F + δ)

]
≤ 1

2

[
ghδ − gh−1δ +

∑gh−1

i=1 |ghδi − δ|
gh(F + δ)

]
(
1− 1

g

)
δ

F + δ
≤ ||p̃T − π||TV .

This lower bound is reached when all error terms in the terminal states have the same value δi = δ
gh .

To upper bound |ghδi − δ| we apply the triangle inequality, obtaining |ghδi − δ| ≤ ghδi + δ and
∑gh−1

i=1 |ghδi − δ| ≤
ghδ + gh−1δ, from which we obtain the upper bound

∥p̃T − π∥TV ≤
1

2

[
ghδ − gh−1δ + ghδ + gh−1δ

gh(F + δ)

]
≤ δ

F + δ
.

To obtain a tighter bound we break the sum
∑gh−1

i=1 |ghδi − δ| by partitioning the sum into the first I terms SA =

gh
∑I

i=1 |δi− δ
gh | with δi < δ

gh and subsequent gh−1−I terms SB = gh
∑gh−1

j=I+1 |δj− δ
gh | with δj ≥ δ

gh . By construction,

we know that SA + gh
∑I

i=1 δi + gh
∑gh−1

j=I+1 δj − SB = gh−1δ, simplifying to SB − SA = δ(gh − gh−1). We rewrite
SA + SB = SB − SA + 2SA = δ(gh − gh−1) + 2SA, and by triangle inequality on SA, we obtain the upper bound∑gh−1

i=1 |ghδi− δ| = SA +SB ≤ ghδ− gh−1δ+2Iδ. Setting I = gh−1− 1 (the biggest value it can have without breaking
the constraints on δi), it simplifies to SA + SB ≤ ghδ + gh−1δ − 2δ
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∥p̃T − π∥TV ≤
1

2

[
ghδ − gh−1δ +

∑gh−1

i=1 |ghδi − δ|
gh(F + δ)

]

≤ 1

2

[
ghδ − gh−1δ + ghδ + gh−1δ − 2δ

gh(F + δ)

]
≤
[
ghδ − δ
gh(F + δ)

]
≤
(
1− 1

gh

)
δ

F + δ
.

A.2. Proof of Theorem 2
To demonstrate this result, we will need the following facts regarding the function f(x) : x ∈ Rn 7→∑n

i=1 |xi − ai| for
positive constants ai.

Lemma 1 (Convexity). Let ∆n+1 = {x ∈ Rn : xi ≥ 0 ∧∑n
i=1 xi = 1} and a ∈ Rn. Then, f : ∆n+1 → R defined by

f(x) =
∑n

i=1 |xi − ai| is convex.

Proof. It follows from f(αx + (1 − α)y) =
∑n

i=1 |αxi − αai + (1 − α)yi − (1 − α)ai| ≤ α
∑n

i=1 |xi − ai| + (1 −
α)
∑n

i=1 |yi − ai| = αf(x) + (1− α)f(y) for any α ∈ [0, 1] and x, y ∈ ∆n+1.

Lemma 2 (Maximality at edges). Let ei ∈ Rn satisfy eij = 0 for j ̸= i and eii = 1. Then, the function f from Lemma 1
achieves its maximum at argmax1≤i≤n f(ei).

Proof. We will show that, for each x ∈ ∆n+1, there is a i for which f(ei) ≥ f(x). In particular, f is maximized at one of
the ei’s. For this, note that

f(x) = f

(
n∑

i=1

xiei

)
≤

n∑
i=1

xif(ei) ≤ max
1≤i≤n

f(ei) (12)

due to the convexity of f . Thus, f is upper bounded by max1≤i≤n f(ei). Conversely, there is a ei for which this upper
bound is attained. Hence, argmaxx f(x) ⊇ argmax1≤i≤n f(ei).

Lemma 3 (Minimality). Let f be the function of Lemma 1 and assume that a ≥ 0 and
∑n

i=1 ai ≤ 1. Then, f is minimized
by 1−∑n

i=1 ai.

Proof. Choose a j ∈ {1, . . . , n} arbitrarily. Since xj = 1−∑n
i=1,i̸=j xi,

n∑
i=1

|xi − ai| =
n∑

i=1,i̸=j

|ai − xi|+

∣∣∣∣∣∣aj − 1 +

n∑
i=1,i̸=j

xi

∣∣∣∣∣∣ ≥
∣∣∣∣∣

n∑
i=1

ai − 1

∣∣∣∣∣ . (13)

Correspondingly, the lower bound in Equation 13 is achieved when xi = ai for i ̸= j and xj = 1−∑n
i=1,i̸=j ai ≥ 0. This

ensures that f is minimized by 1−∑n
i=1 ai.

In words, Lemma 1 and Lemma 2 ensure that the TV distance between finitely supported distributions is convex and attains
its maximum at a Dirac delta.

Proof of Theorem 2. Initially, let δx be the amount of extra flow reaching x ∈ X and define βx = δx/δ. Then,

∥pT − π̃∥TV =
1

2

∑
x∈X
|pT (x)− π(x)| =

1

2

∑
x∈Ds⋆

|pT (x)− π(x)|+
1

2

∑
x∈Dc

s⋆

|pT (x)− π(x)|. (14)

12
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Since pT (x) = π̃(x)+δx/F+δ for x ∈ Ds⋆ and pT (x) = π̃(x)/F+δ for x ∈ Dc
s⋆ ,∑

x∈Dc
s⋆

|pT (x)− π(x)| =
δ

F + δ

∑
x∈Dc

s⋆

π(x). (15)

On the other hand, ∑
x∈Ds⋆

|pT (x)− π(x)| =
∑

x∈Ds⋆

∣∣∣∣ π̃(x) + δx
F + δ

− π̃(x)

F

∣∣∣∣ = δ

F + δ

∑
x∈Ds⋆

∣∣∣∣βx − π̃(x)

F

∣∣∣∣ . (16)

By Lemma 2, the function f : β 7→∑
x∈Ds⋆

|βx − π(x)| is maximized at

max
y∈Ds⋆

f(ey) = max
y∈Ds⋆

∑
x∈Ds⋆

|exy − π(x)|

= max
y∈Ds⋆

 ∑
x∈Ds⋆ ,x ̸=y

π(x)

+ (1− π(y))

= 1 +
∑

x∈Ds⋆

π(x)− 2 min
y∈Ds⋆

π(y).

(17)

Similarly, Lemma 3 ensures that
min

β∈∆|Ds⋆ |+1

f(β) = 1−
∑

x∈Ds⋆

π(x). (18)

Thus, since
∑

x∈Ds⋆
π(x) = 1−∑x∈Dc

s⋆
π(x),

δ

F + δ

1−
∑

x∈Ds⋆

π(x)

 ≤ ∥pT − π∥TV ≤
δ

F + δ

(
1− min

y∈Ds⋆

π(y)

)
. (19)

A.3. Proof of Theorem 3
As stepping stones towards proving Theorem 3, we first lay down Lemma 4 and Lemma 5.

Lemma 4. Let G = (V,E) and G′ = (V ′, E′) be two non-isomorphic trees of size at most n. Let ϕ be the node embedding
map of a 1-WL GNN with at least 2n− 1 layers. Then, ϕv ̸= ϕv′ for all v ∈ V and v′ ∈ V ′.

Proof. Recall 1-WL GNNs can distinguish any pair of non-isomorphic trees. Let Tn and T ′
n denote the sets of computation

trees (CTs) for each node in G and G′ after n layers, respectively. Likewise, let T2n−1 and T ′
2n−1 denote the sets of CTs

after 2n + 1 layers. Since both graphs are non-isomorphic, 1-WL has already converged with n steps — the maximum
diameter of a tree is n− 1. Without loss of generality, Tn−T ′

n ̸= ∅, i.e., there is at least one CT in Tn that is not isomorphic
to any tree in T ′

n. The same holds for 2n − 1 layers, i.e., T2n−1 − T ′
2n−1 ̸= ∅. Note that a CT Tn ∈ Tn − T ′

n is also a
subtree of any T2n−1 ∈ T2n−1. Since Tn /∈ T ′

n, Tn is not a subtree of any CT in T ′
2n−1 — otherwise it would be in T ′

n too.
In other words, T2n−1 ∩ T ′

2n−1 = ∅, implying directly our claim.

Lemma 5. Let G = (V,E) and G′ = (V ′, E′) be any two trees of size at most n, i.e., |V | and |V ′| ≤ n. Also, let
I = (U, ∅) and I ′ = (U ′, ∅) be graphs comprising isolated nodes, and ϕ be the node embedding map of a 1-WL GNN
with at least 2n − 1 layers. If {ϕv, ϕu} = {ϕv′ , ϕu′} for any (v, u) ∈ V × U and (v′, u′) ∈ V ′ × U ′, then the trees
(V ∪ {u}, E ∪ {(v, u)}) and (V ′ ∪ {u′}, E′ ∪ {(v′, u′)}) are isomorphic.

Proof. If {ϕv, ϕu} = {ϕv′ , ϕu′}, then we either have that i) ϕv = ϕv′ and ϕu = ϕu′ or ii) ϕv = ϕu′ and ϕv′ = ϕu. In the
first case, we can apply Lemma 4 to conclude that G ∼= G′ (with associated bijection g1). Since ϕu = ϕu′ , we know that
xu = xu′ and the corresponding singleton graphs are trivially isomorphic as well (with bijection g2). Finally, we can build a
bijection g between the vertices of the merged graphs by making g(v) = g1(v) if v ∈ V and g(u) = g2(u) = u′. For the
second case, Lemma 4 implies G and G′ are singletons with xu = xv′ and xv = xu′ . The result is a totally disconnected
graph, except for an edge linking nodes with identical features in both graphs.
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Armed with the previous lemmata, Theorem 3 is straightforward assuming GNN depth 2n−1. From Lemma 5, we know that
the action embeddings for any two nodes have an empty intersection. Likewise, two actions have the same embedding only
if they leave from the same state and arrive at the same state. Therefore, all edges in the SG receive different embeddings.
Recall that GNN embeddings are fed to MLP layers, which are universal approximators given enough width. Therefore, a
1-WL GNN followed by MLP can approximate any policy forward pF . The same applies to the backward policy pB . We
can use the same combination to get state embeddings, which allow approximating any node flow function F . Therefore, we
can choose the triplet (pF , pB , F ) respecting the DB conditions, for instance.

A.4. Proof of Theorem 4
Assume there is a 1-WL GFlowNet sampling from π. Since G is tree-structured, the mass arriving at T (s1) ∪ T (s2) must
arrive through s — i.e., all paths from s0 to some x ∈ T (s1) ∪ T (s2) traverse s. Furthermore, there is no directed path
from s′ to any terminal in T (s′′) or vice-versa, otherwise the skeleton (i.e., undirected structure) of G would contain a cycle.
Then, F (s, s′) =

∑
x∈T (s′)R(x) and F (s, s′) =

∑
x∈T (s′)R(x), implying F (s, s′) ̸= F (s, s′′).

A.5. Proof of Theorem 5
Since child embeddings are included as additional inputs to LA-GFlowNets, it follows directly that LA-GFlowNets are at
least as expressive as 1-WL GFlowNets. We are left with showing the converse does not hold. In Figure 3, we provide a
construction for which 1-WL GFlowNets fail but LA-GFlowNets do not.

A.6. Proof of Theorem 6
Henceforth, let e(p) = ES∼p[e(S, θ)]. Also, we abuse notation by defining q(S) =

∑
x∈S q(x) for a probability mass

function q. Then, we first show that e(p) = 0 when dTV = 0. For this, note that dTV = 0 implies pT (x) = π(x) for every
x and, in particular, pT (S) = π(S) for every S ⊆ X . Thus,

e(p) := ES∼p

[
1

2

∑
x∈S

|p(S)
T (x; θ)− π(S)(x)|

]
= 0. (20)

On the other hand, assume that e(p) = 0. Recall that p is a distribution of full support over {S ⊆ X : |S| = B} and that
B ≥ 2. In particular, e(p) ensures that

e(S, θ) :=
1

2

∑
x∈S

∣∣∣∣ pT (x; θ)pT (S; θ)
− π(x)

π(S)

∣∣∣∣ = 0. (21)

Hence, pT (S)π(x) = π(S)pT (x) for each S and x ∈ S. Write then S = S′ ∪ {x} and conclude that pT (S′)π(x) =
π(S′)pT (x) for every S′ and x /∈ S′. Thus, by summing both members of this equality across x′ /∈ S′, we notice that

pT (S
′)(1− π(S′)) = π(S′)(1− pT (S′)), (22)

i.e., pT (S′) = π(S′). Thus, pT (x) = π(x) for all S′ and x /∈ S′. Since S′ and x were chosen arbitrarily, pT (x) = π(x) for
every x ∈ X . Thus, dTV = 0. This ensures the equivalence between e(p) and dTV .

A.7. Proof of Corollary 1
Let ê = ES∼p[e(S, θ)], Pβ = {S ⊆ X : |S| = β}, and ∆ = n

2β maxS∈Pβ
|pT (S)− π(S)|. We will first show that

dTV − ê ≤ ∆. (23)

Then, we will verify that dTV − ê ≥ −∆. These inequalities will jointly imply Corollary 1. In this scenario, note that there
are
(
n−1
β−1

)
subsets of X with B elements containing a fixed x ∈ X . Thus,

dTV =
1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)|. (24)
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As a consequence,

dTV − ê =
1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)| − PS(S)

∣∣∣∣ pT (x)pT (S)
− π(x)

π(S)

∣∣∣∣
≤ 1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1(∣∣∣∣π(x)− π(S)

pT (S)
pT (x)

∣∣∣∣+ pT (x)

∣∣∣∣1− π(S)

pT (S)

∣∣∣∣)

− PS(S)

pT (S)

∣∣∣∣pT (x)− π(S)

pT (S)
π(x)

∣∣∣∣
=

1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

pT (x)

∣∣∣∣1− π(S)

pT (S)

∣∣∣∣
=

1

2

(
n− 1

β − 1

)−1 ∑
S∈Pβ

|pT (S)− π(S)|

≤ 1

2

(
n− 1

β − 1

)−1(
n

β

)
max
S∈Pβ

|pT (S)− π(S)| =
n

2β
∆

(25)

since PS(S)/pT (S) =
(
n−1
β−1

)−1
and there are

(
n
β

)
β-sized subsets of X . For the reverse inequality, notice that

dTV − ê =
1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)| − PS(S)

∣∣∣∣ pT (x)pT (S)
− π(x)

π(S)

∣∣∣∣
≥ 1

2

∑
S∈Pβ

∑
x∈S

(
n− 1

β − 1

)−1

|pT (x)− π(x)|

− PS(S)

(∣∣∣∣ pT (x)pT (S)
− π(x)

pT (S)

∣∣∣∣+ ∣∣∣∣ π(x)pT (S)
− π(x)

π(S)

∣∣∣∣)
= −1

2

∑
S∈Pβ

(
n− 1

β − 1

)−1

pT (S)
∑
x∈S

π(x)

∣∣∣∣ 1

pT (S)
− 1

π(S)

∣∣∣∣
= −1

2

(
n− 1

β − 1

)−1 ∑
S∈Pβ

|pT (S)− π(S)| ≥ −
n

2β
max
S∈Pβ

|pT (S)− π(S)| .

(26)

A.8. Proof of Corollary 2
We provide a self-contained proof of Corollary 2, which follows from Corollary 1 and Hoeffding’s inequality (Alquier,
2021). Firstly, let ê = ES∼p[e(S, θ)] and ei = e(Si, θ). Since ê− ei ∈ [−1, 1], Hoeffding’s inequality yields

E

exp
λ

ê− 1

m

∑
1≤i≤m

ei


 ≤ exp

{
λ2

2m

}
. (27)

Then, Chernoff’s bound implies

Pr
S1,...,Sm

ê ≥ 1

m

∑
1≤i≤m

ei + s

 ≤ E

exp
λ

ê− 1

m

∑
1≤i≤m

ei


 e−λs ≤ exp

{
λ2

2m
− λs

}

due to Equation 27. This upper bound is minimized when λ = sm. In this case, λ2
/2m − λs = −s2m/2. By letting

s = −2 log δ/m, we verify that

Pr
S1,...,Sm

ê ≥ 1

m

∑
1≤i≤m

ei +

√
2 log 1

δ

m

 ≤ δ. (28)
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Then, Corollary 1 and the complementary of the preceding inequality imply

Pr
S1,...,Sm

dTV ≤
1

m

∑
1≤i≤m

ei + max
S⊆X ,|S|=B

|pT (S)− π(S)|+

√
2 log 1

δ

m

 ≥ 1− δ. (29)

A.9. Proof of Theorem 7
To prove Theorem 7, first note that Lls = 0 for the FL formulation of GFlowNets. Then, assume that LLED(s, s′) = 0 and
Lls(τ) = 0 for every transition s→ s′ and every trajectory τ . Thus,

F (s) exp{ϕθ(s, s′)}pF (s, s′) = pB(s
′, s)F (s′) and

∑
s→s′∈τ

ϕθ(s, s
′) = − logR(x)

for every trajectory finishing at x. Therefore, for every trajectory τ ⇝ x,

pF (τ) = pB(τ |x)
F (x)

F (so)

∏
s,s′

exp{−ϕθ(s, s′)}

= pB(τ |x)
F (x)

F (so)
exp

{
−

∑
s→s′∈τ

ϕθ(s, s
′)

}

= pB(τ |x)
F (x)

F (so)
R(x).

Hence,

pT (x) =
∑
τ⇝x

pF (τ) =
∑
τ⇝x

F (x)R(x)

F (so)
pB(τ |x) ∝ F (x)R(x)

∑
τ⇝x

pB(τ |x) = F (x)R(x), (30)

ensuring that the marginal distribution learned by FL- and LED-GFlowNets do not necessarily match the target.
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Figure 7: LWDB vs. LDB . By weighting each transition (s, s′) in inverse proportion to the number of terminal descendants d(s′)
of s′ (i.e., γ(s, s′) = 1/d(s′)), we often achieve a faster convergence in terms of L1 wrt a standard detailed balance penalization (with
γ(s, s′) = 1) when training GFlowNets.
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Figure 8: Average LDB(s, s
′) = (log(F (s)pF (s, s

′)− log(F (s′)pB(s, s
′)))

2 along randomly sampled trajectories. As suggested by
our analysis, the DB loss is dominated by the log-squared violation of early transitions near the initial state so, obfuscating the terminating
reward’s signal.

B. Additional experiments
Evaluation of LWDB . Figure 7 shows that the minimization of LWDB often leads to faster training convergence when
compared to LDB , underlining the effectiveness of our weighting scheme. Please refer to the main text in Section 3 for a
thorough discussion regarding this experiment and to Appendix C for further technical details.

Dominance of early-state transitions in LDB . Our theoretical analysis suggested that the detailed balance loss may be
dominated by early-state transitions, obfuscating the reward signal at the trajectory’s end. Figure 8, which shows the average
log-squared violation to the DB condition at each transition within randomly sampled trajectories, empirically corroborates
this hypothesis. We provide a more extensive discussion of this result in Section 3. Appendix C describes the technical
details for these experiments.
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C. Experimental details
We provide further details regarding the experimental setup for each section below, along with computer code for reproducing
them (attached to the manuscript). Experiments were run in a cluster equipped with A100 and V100 GPUs, using a single
GPU per run.

C.1. Experiments for Section 3
Set generation. The support X is defined as the collection of sets with 16 elements sampled from a deposit D =
{1, . . . , 32}. To define the reward function, we let f : D → R with f(d) ∼ U [0, 1] and let logR(x) =

∑
d∈x f(d). We

implemented an MLP with 2 256-dimensional hidden layers to parameterize both the forward policy and the flow function.
For the weighting function γ, we note that d(s′) =

(
32−|s′|
16−|s′|

)
, in which |s′| is the current state’s size.

Sequence design. The support X is defined as the collection of sequences of size up to 12 with elements extracted from a
deposit D = {1, . . . , 4}. We implemented an MLP with 2 256-dimensional hidden layers for both the forward policy and
flow functions, both of which received as input a sequence of length 12 padded with 0s. Then, the reward function of a
x ∈ R8 is defined by f : D → R and g : [[1, 12]] → R„ with f(d), g(i) ∼ U [−1, 1] for d ∈ D and i ∈ [[1, 12]], through
logR(x) =

∑
i f(xi)g(xi). For the weighting function γ, we note that d(s′) = 1 + 4+ · · ·+ 412−|s′| is the number of s′’s

terminal descendants.

Phylogenetic inference. A phylogenetic tree is defined by a complete binary tree G with labeled leaves corresponding to
observed biological species and anonymous internal nodes corresponding to their evolutionary ancestors. Also, we consider
a set Y ∈ R32×7 of DNA sequences of size 32 associated to the 7 observed species; the likelihood of Y is defined by the
J&C69 (Jukes & Cantor, 1969)’s mutation model and computed by Felsenstein’s algorithm (Felsenstein, 1981), and the
reward function is the unnormalized posterior induced by an uniform prior distribution over trees. We adopt the iterative
process proposed by Zhou et al. (2024) to sample phylogenetic trees with GFlowNets, and use a Graph Isomorphism
Network (Xu et al., 2019b) to parameterize pF . For the weighting function γ, d(s′) = (2 · (7− |s′)| − 1)!! is the number of
terminal descendants of s′, with |s′| as the amount of connected components in s′.

Details on the experiments for Figure 8. To further understand the consequences of Theorem 2 to the training of
GFlowNets, we show in Figure 8 the average log-squared balance violation along trajectories for the generative tasks
considered in Section 3. As expected, the DB loss’ magnitude is mostly dominated by early-transitions of the IGP. Also,
this dominance is more notorious for the problems of set generation and phylogenetic inference and less noticeable for the
problem of sequence design, consistently with the results observed in Figure 7 concerning the improved performance of
minimizing our weighted loss in Equation 7 wrt the traditional approach. In this regard, we note that the design of sequences
is the only task in Figures 7 and 8 with variable-length trajectories. Hence, in this case, our assumption of uniformly
distributed extra flows is potentially inaccurate, rendering the noted inefficacy (yet harmlessness) of the corresponding
weighted estimator relatively to the unweighted one. Under these circumstances, even though one may often achieve faster
convergence when implementing the scheme we propose in Equation 7 and in Figure 7, our experiments suggest the design
of an optimal γ for the DB loss should be chosen in a problem-by-problem basis.

C.2. Experiments for Section 4
L P R

L P R

Figure 9: Examples of tuples (Li, Pi, Ri). Added edges and
their nodes are highlighted.

Setup for Figure 4. This experiment is built upon simple 3-
state SGs with the form L← P → R, in which P is a 3-regular
graph of 8 nodes and L and R are P ’s non-isomorphic children
obtained by the addition of a single edge. In particular, we
choose four different tuples (Li, Pi, Ri) for the four plots of
Figure 4. See Figure 9 for an illustration of 2 of the implemented
SGs. To parameterize the policies of both LA- and the standard
GFlowNets, we use a 3-layer GIN (Xu et al., 2019b) having
32-dimensional layer, followed by an MLP of 2 32-dimensional
layers. For LA-GFlowNet, the MLP’s input size is twice as large as the one for the standard model.

C.3. Experiments for Section 5
FL- and LED-GFlowNets. We rigorously followed the experimental setup of Pan et al. (2023a) and Jang et al. (2024)
when implementing both FL- and LED-GFlowNets. To avoid implementation bias, we reproduced our experiments using
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Pan et al. (2023a)’s publicly released code1 and obtained similar results. In particular, both pF and ϕ were parameterized
with MLPs. For LED-GFlowNet, we carried out 8 stochastic gradient steps for learning ϕ for each epoch during training.
For the standard GFlowNet trained by minimizing the TB loss, we followed Malkin et al. (2022)’s instructions.

Set generation. The experimental setup is identical to the one described at Section 3. To compute Shen et al. (2023)’s
accuracy, we pre-computed the average of R(x) under the target distribution by extensively enumerating the SG’s terminal
states. For FCS, we randomly sampled 16 batches of terminal states of size up to 32 for the Monte Carlo estimator.

Bag generation. The experimental setup is mostly the same we used for set generation. However, due to the space of bags
being significantly larger than the space of sets, we fix D = {1, . . . , 16} and consider sets of size up to 8.

1Available online at github.com/ling-pan/FL-GFN.
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