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Abstract

Recursive processing is considered a hall-001
mark of human linguistic abilities. A re-002
cent study evaluated recursive processing in003
recurrent neural language models (RNN-LMs)004
and showed that such models perform be-005
low chance level on embedded dependencies006
within nested constructions – a prototypical ex-007
ample of recursion in natural language. Here,008
we study if state-of-the-art Transformer LMs009
do any better. We test four different Trans-010
former LMs on two different types of nested011
constructions, which differ in whether the em-012
bedded (inner) dependency is short or long013
range. We find that Transformers achieve014
near-perfect performance on short-range em-015
bedded dependencies, significantly better than016
previous results reported for RNN-LMs and017
humans. However, on long-range embed-018
ded dependencies, Transformers’ performance019
sharply drops below chance level. Remark-020
ably, the addition of only three words to the021
embedded dependency caused Transformers022
to fall from near-perfect to below-chance per-023
formance. Taken together, our results reveal024
Transformers’ shortcoming when it comes to025
recursive, structure-based, processing.026

1 introduction027

One of the fundamental principles of contemporary028

linguistics states that language processing requires029

the ability to deal with nested structures. Recur-030

sion, a specific type of computation that involves031

repeatedly applying a function to its own output, is032

suggested to be at the core of this ability (Hauser033

et al., 2002). The strongest evidence for recur-034

sion in human language processing arises from the035

tree-like nested structure of sentences in natural036

language, in which phrases of a particular type (i.e.037

NPs) can be embedded in other phrases of that038

same type (Figure 1). Humans, it is argued, are039

endowed with a unique competence for recursive040

processing, which allows them to represent and pro-041
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Figure 1: A tree-structure representation of a recursive
structure with two long-range dependencies, one nested
within the other one.

cess such nested tree structures (Chomsky, 2000; 042

Hauser et al., 2002; Dehaene et al., 2015). 043

In recent years, neural language models (NLMs) 044

have shown tremendous advances on a variety of 045

linguistic tasks, such as next-word prediction, trans- 046

lation or semantic inference. Furthermore, evalua- 047

tions of their syntactic abilities have shown promis- 048

ing results, with similar or even above-human per- 049

formance on a variety of different tasks (Marvin 050

and Linzen, 2018; Goldberg, 2019; Jumelet et al., 051

2021; Giulianelli et al., 2018)). However, nega- 052

tive results were recently also presented (Warstadt 053

et al., 2020; Hu et al., 2020). In particular, when 054

it comes to recursive processing, Lakretz et al. 055

(2021b) showed that while recurrent neural network 056

language models (RNN-LMs) perform well on 057

long-range dependencies, such as the relationship 058

between keys and are in sentences like “The keys 059

that the man near the cabinet holds, are red” (Fig- 060

ure 2), they perform below chance on the shorter, 061

embedded dependency (man-holds). Humans, in- 062
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stead, perform significantly better on such depen-063

dencies, although interestingly, for them too, the064

shorter inner dependency is more difficult than the065

long outer one.066

The study by Lakretz et al. illustrates how in-067

vestigations of neural networks can inspire exper-068

iments about human language processing. How-069

ever, their study focuses on only a single architec-070

ture, an RNN-LM with LSTM units (Hochreiter071

and Schmidhuber, 1997), which is currently outper-072

formed on many fronts by the newer Transformer073

models (Vaswani et al., 2017). In this short paper,074

our main question is therefore whether Transformer075

models do any better when it comes to processing076

recursive constructions. We then further explore077

similarities and differences in performance patterns078

of RNN and Trasformer language models.079

Our main results show that when tested on nested080

constructions with a short-range embedded depen-081

dency, Transformers outperform RNN-LM across082

all conditions, with error rates close to zero. How-083

ever, when the embedded dependency is long-084

range, their performance dramatically drops to be-085

low chance, similarly to the case of RNNs. The086

mere addition of a short prepositional phrase (‘near087

the cabinet’ in the example shown in Figure 1) to088

the embedded dependency causes model perfor-089

mance to drop from near perfect to below chance090

level. Thus, contrary to what might be expected091

based on their much improved performance and092

the fact that they are trained on substantially more093

data, Transformer models share RNNs’ shortcom-094

ing when it comes to recursive, structure-sensitive,095

processing.096

Last, all models made more errors when trying097

to carry a noun in the singular across dependencies098

which involved a plural noun, than in the converse099

situation. Interestingly, this bias towards greater100

interference by plural than by singular is opposite101

to that reported in Italian RNN-LMs (Lakretz et al.,102

2021b), and is akin to the Markedness Effect re-103

ported for humans.104

2 Related Work105

In psycholinguistics, grammatical agreement be-106

came a standard method to probe online syntac-107

tic processing in humans (Bock and Miller, 1991;108

Franck et al., 2002), since it is ruled by hierarchical109

structures rather than by the linear order of words110

in a sentence. More recently, it has also become a111

standard way to probe grammatical generalization112

The keys that the man holds are ...

(a) Short-Nested

The keys that the man near the cabinet holds are ...

(b) Long-Nested

Figure 2: Experimental Design: the two number-
agreement tasks – Short-Nested and Long-Nested. In
Short-Nested, the embedded dependency is short-range
(in bold); in Long-Nested, it is long-range, through the
insertion of a three-word prepositional phrase.

in NLMs (Linzen et al., 2016; Bernardy and Lap- 113

pin, 2017; Giulianelli et al., 2018; Gulordava et al., 114

2018; Jumelet et al., 2019; Kersten et al., 2021; 115

Lakretz et al., 2019; Sinha et al., 2021), pointing 116

to both similarities and differences between human 117

and model error patterns. 118

Lakretz et al. (2019) showed that RNN-LMs 119

trained on a large corpus with English sentences 120

develop a number-propagation mechanism for long- 121

range dependencies. The core circuit of this mecha- 122

nism was found to be extremely sparse, comprising 123

of only a very small number of units. This sparsity 124

of the mechanism suggests that models are not able 125

to process two long-distance dependencies simul- 126

taneously, and indeed, this was later confirmed in 127

simulations (Lakretz et al., 2021b). Inspired by this 128

finding, Lakretz et al. (2021b) conducted a follow- 129

ing experiment with humans, which showed that 130

they, too, make more errors on nested long-range 131

dependencies. However, contrary to LMs, their 132

performance was above chance on these construc- 133

tions. This finding suggests that human recursive 134

processing remains significantly better than that of 135

RNN-LMs. 136

Recursive processing of nested constructions in 137

RNN-LMs was also studied using artificial gram- 138

mars (Cleeremans et al., 1989; Servan-Schreiber 139

et al., 1991; Gers and Schmidhuber, 2001; Chris- 140

tiansen and Chater, 1999; Hewitt et al., 2020). Re- 141

cently, Suzgun et al. (2019) showed that memory- 142

augmented RNNs can capture recursive regulari- 143

ties of Dyck languages (also known as "bracket 144

languages"). However, when tested on a simple 145

extension of these languages, RNN-LMs failed 146

to generalize to unseen data with a greater nest- 147
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(a) Short-Nested.

(b) Long-Nested.

Figure 3: Error rates on nested constructions for all models, for both the main and embedded agreements. Condi-
tions are marked by the value of the grammatical number of all nouns in the sentence. For example, condition SP
means that the first noun is singular and the second is plural. While error-rates are near zero for Short-Nested, they
are worse than chance-level for one of the incongruent conditions of Long-Nested, consistently across all models.
In this condition (PSP), grammatical agreement is with respect to the second noun, which is singular.

ing depth (Lakretz et al., 2021a). Specifically, the148

models failed also in cases in which the training149

data contained deep structures, up to five levels of150

nesting. This suggests that the poor recursive pro-151

cessing of RNN-LMs is not merely due to shallow152

nesting depth in natural data, which is typically not153

more than two (Karlsson, 2007).154

Taken together, previous work suggests that155

RNN-LMs struggle to capture recursive regularities156

in either natural or artificial data. Inspired by this157

line of work, we focus here on Transformer LMs:158

do they show different patterns when it comes to159

processing recursive structures? Do they better160

approximate human ability for recursion?161

3 Experimental Setup162

We largely follow the experimental setup of Lakretz163

et al. (2021b), but consider a different language164

(English instead of Italian) and a different set of165

models.166

Data We consider two number-agreement tasks167

(NA-tasks): Short-Nested and Long-Nested. Both168

tasks contain two subject-verb dependencies; they169

differ in terms of whether the embedded depen-170

dency is short- or long-range. In short-nested, the 171

subject and verb in the nested dependency are adja- 172

cent (Figure 2a). They are embedded in a sentence 173

by inserting an object-relative clause to modify the 174

subject of a different sentence. The Long-Nested 175

task (Figure 2b) uses the same constructions, ex- 176

cept that an additional three-word prepositional 177

phrase (“near the cabinet”) is added in the embed- 178

ded dependency.1 179

Models We run experiments with all causal 180

transformer-based NLMs that are currently com- 181

patible with the BigBench framework, available 182

from HuggingFace.2 Specifically, we include four 183

GPT-2 models that differed in size: GPT2, GPT2- 184

Medium, GPT2-Large and GPT-XL (Radford et al., 185

2019). In addition, as a baseline, we conduct an 186

experiment with an English LSTM-LM, which was 187

studied in numerous work in the past (Gulordava 188

et al., 2018). 189

1All data sets are available in the BigBench collabo-
rative benchmark https://github.com/google/
BIG-bench/tree/main/bigbench/benchmark_
tasks/subject_verb_agreement

2https://huggingface.co/transformers/
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Model evaluation Following previous work, we190

evaluated model performance on agreement by191

comparing the output probabilities for the correct192

(e.g., ‘are’) vs. wrong (‘is’) verb form. For both193

tasks, we evaluated model performance on agree-194

ment for both the embedded and the inner verb, and195

separately for each task condition (see SM).196

4 Results197

4.1 Short-Nested task198

In Figure 3a, we show model performance on the199

Short-Nested task for all models. Overall, the En-200

glish LSTM made more errors on the main (outer)201

dependency compared to the embedded (inner) one,202

with more than 20% errors, across all four condi-203

tions. In contrast, Transformers, and in particular204

GPT2-XL, achieved close to perfect performance205

across all conditions, on both the embedded and206

main dependency. For GPT2, GPT2-Medium and207

Large, the longer main dependency was, however,208

overall more difficult than the embedded one, but209

with no more than 20% errors in the incongruent210

conditions (SP and PS; Table S2).211

Interestingly, consistently across all models,212

both Transformers and the LSTM model made213

more errors on conditions in which the agreement214

was with respect to singular, compared to plural.215

4.2 Long-Nested task216

In Figure 3b, we further show the performance217

of all models for the Long-Nested task. Overall,218

all models made more errors across all conditions219

compared to Short-Nested, but with the same ten-220

dency of making more errors on dependencies with221

respect to singular compared to plural. The most222

striking difference between the two tasks was the223

performance of the models on the embedded de-224

pendency. In particular, for Transformers, their225

error rate was close to zero in Short-Nested, but226

dropped to below-chance on one of the incongurent227

conditions (PSP) in Long-Nested. Similarly, For228

the LSTM, this was the case for both incongruent229

cases (PSP and SPS).230

In contrast to the embedded dependency, all mod-231

els performed above chance on the main, longer,232

dependency. This shows that for Long-Nested, the233

length of the dependency affected model perfor-234

mance less than the presence of recursive embed-235

ding.236

5 Discussion 237

In this study, we evaluated the recursive abilities of 238

Transformer LMs on two number-agreement tasks 239

that were previously shown to be exceptionally 240

challenging for LSTM language models. Our ex- 241

periments showed that, overall, Transformers out- 242

performed LSTM-LMs, and in particular, achieved 243

close to perfect performance on short embedded de- 244

pendencies. However, similarly to LSTM-LMs, the 245

addition of only a short prepositional phrase to the 246

embedded dependency caused model performance 247

to sharply drop to below chance level. 248

Furthermore, we found that all models showed a 249

bias towards plural and therefore err more when the 250

subject of a verb is in the singular. A similar bias 251

was previously observed in Italian LSTM models 252

(Lakretz et al., 2021b), however, in the opposite 253

direction, with more errors on plural dependen- 254

cies. We hypothesize that this difference might 255

be due to marking of the verb form, given that in 256

English, the marked form of the verb is singular, 257

whereas in Italian, it is plural. Related biases were 258

previous reported for humans in both languages, 259

a phenomenon known as the Markedness Effect 260

(Bock and Miller, 1991; Vigliocco et al., 1995). 261

The relation between emerging biases in NLMs 262

and humans is an interesting topic for future work. 263

In LSTM-LMs, the poor performance was pre- 264

dicted by the underlying neural mechanism for 265

grammatical agreement identified in the models 266

(Lakretz et al., 2019, 2021b). The fact that Trans- 267

former models perform similarly poorly on these 268

constructions, and on the same dependency (in- 269

ner), raises interesting questions. Do transformers 270

use syntactic-processing strategies akin to those 271

emerged in RNN-LMs? And what does that tell 272

us about the data that those models are trained on 273

and about the potential processes that humans may 274

use to process such constructions (Lakretz et al., 275

2020)? 276

However, currently, the neural mechanisms un- 277

derlying syntactic processing in transformers are 278

poorly understood (Belinkov and Glass, 2019). Our 279

findings of below-chance performance by trans- 280

former models calls for a further investigation in 281

how these models achieve their earlier found suc- 282

cesses on syntactic related tasks, and why they 283

generalise so poorly on constructions which only 284

minimally differ (a single three-word prepositional 285

phrase) from the constructions they process well. 286
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Supplementary Materials

1 Number-Agreement Tasks

Number-Agreement tasks
Short-Nested NPa that NPb Vb Va

SS The key that the man holds is
SP The key that the men hold is
PS The keys that the men holds are
PP The keys that the man holds are

Long-Nested NPa that NPb P NPc Vb Va
SSS The key that the man near the cabinet holds is
SSP The key that the man near the cabinets holds is
SPS The key that the men near the cabinet hold is
SPP The key that the men near the cabinets hold is
PSS The keys that the man near the cabinet holds are
PSP The keys that the man near the cabinets holds are
PPS The keys that the men near the cabinet hold are
PPP The keys that the men near the cabinet hold are

S 1: The Short- and Long-Nested Number-Agreement tasks. The first
column denotes the name of the task, the second shows the conditions for each
task, the third shows the sentence template, where NP is used as an abbreviation
of Det N. The indices a, b mark the subject-verb dependencies in the templates.
For example, in Long-Nested, there are three nouns and two verbs, the indices a
and b indicate that the last verb Va is syntactically dependent on the first noun
phrase NPa, whereas the penultimate verb Vb instead should match the features
of the second noun phrase NPb. Below each template, and example for each
condition is given. Bold and italic face highlight the dependencies marked by
the indices in the templates. For each agreement task, we systematically vary
the number of all nouns in the template, resulting in four different conditions
(SS, SP, PS and PP) for the Short-Nested and eight different conditions (SSS,
SSP, SPS, SPP, PSS, PSP, PPS and PPP) for Long-Nested.
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2 Detailed Results for all Models

Model NA-Task Dependency Condition Error Rate

LSTM Short-Nested Main SS 0.34
LSTM Short-Nested Main SP 0.43
LSTM Short-Nested Main PS 0.26
LSTM Short-Nested Main PP 0.24
LSTM Short-Nested Embedded SS 0.02
LSTM Short-Nested Embedded SP 0.01
LSTM Short-Nested Embedded PS 0.21
LSTM Short-Nested Embedded PP 0.00
LSTM Long-Nested Main SSS 0.32
LSTM Long-Nested Main SSP 0.39
LSTM Long-Nested Main SPS 0.46
LSTM Long-Nested Main SPP 0.55
LSTM Long-Nested Main PSS 0.25
LSTM Long-Nested Main PSP 0.22
LSTM Long-Nested Main PPS 0.22
LSTM Long-Nested Main PPP 0.17
LSTM Long-Nested Embedded SSS 0.06
LSTM Long-Nested Embedded SSP 0.29
LSTM Long-Nested Embedded SPS 0.71
LSTM Long-Nested Embedded SPP 0.28
LSTM Long-Nested Embedded PSS 0.34
LSTM Long-Nested Embedded PSP 0.81
LSTM Long-Nested Embedded PPS 0.27
LSTM Long-Nested Embedded PPP 0.10
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Model NA-Task Dependency Condition Error Rate

GPT2 Short-Nested Main SS 0.04
GPT2 Short-Nested Main SP 0.16
GPT2 Short-Nested Main PS 0.02
GPT2 Short-Nested Main PP 0.00
GPT2 Short-Nested Embedded SS 0.00
GPT2 Short-Nested Embedded SP 0.00
GPT2 Short-Nested Embedded PS 0.00
GPT2 Short-Nested Embedded PP 0.00
GPT2 Long-Nested Main SSS 0.06
GPT2 Long-Nested Main SSP 0.05
GPT2 Long-Nested Main SPS 0.34
GPT2 Long-Nested Main SPP 0.32
GPT2 Long-Nested Main PSS 0.02
GPT2 Long-Nested Main PSP 0.02
GPT2 Long-Nested Main PPS 0.01
GPT2 Long-Nested Main PPP 0.01
GPT2 Long-Nested Embedded SSS 0.08
GPT2 Long-Nested Embedded SSP 0.44
GPT2 Long-Nested Embedded SPS 0.16
GPT2 Long-Nested Embedded SPP 0.03
GPT2 Long-Nested Embedded PSS 0.17
GPT2 Long-Nested Embedded PSP 0.69
GPT2 Long-Nested Embedded PPS 0.09
GPT2 Long-Nested Embedded PPP 0.00
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Model NA-Task Dependency Condition Error Rate

GPT2-MEDIUM Short-Nested Main SS 0.06
GPT2-MEDIUM Short-Nested Main SP 0.14
GPT2-MEDIUM Short-Nested Main PS 0.01
GPT2-MEDIUM Short-Nested Main PP 0.01
GPT2-MEDIUM Short-Nested Embedded SS 0.01
GPT2-MEDIUM Short-Nested Embedded SP 0.00
GPT2-MEDIUM Short-Nested Embedded PS 0.01
GPT2-MEDIUM Short-Nested Embedded PP 0.00
GPT2-MEDIUM Long-Nested Main SSS 0.11
GPT2-MEDIUM Long-Nested Main SSP 0.10
GPT2-MEDIUM Long-Nested Main SPS 0.22
GPT2-MEDIUM Long-Nested Main SPP 0.23
GPT2-MEDIUM Long-Nested Main PSS 0.02
GPT2-MEDIUM Long-Nested Main PSP 0.03
GPT2-MEDIUM Long-Nested Main PPS 0.02
GPT2-MEDIUM Long-Nested Main PPP 0.02
GPT2-MEDIUM Long-Nested Embedded SSS 0.10
GPT2-MEDIUM Long-Nested Embedded SSP 0.32
GPT2-MEDIUM Long-Nested Embedded SPS 0.08
GPT2-MEDIUM Long-Nested Embedded SPP 0.01
GPT2-MEDIUM Long-Nested Embedded PSS 0.30
GPT2-MEDIUM Long-Nested Embedded PSP 0.71
GPT2-MEDIUM Long-Nested Embedded PPS 0.06
GPT2-MEDIUM Long-Nested Embedded PPP 0.01

4



Model NA-Task Dependency Condition Error Rate

GPT2-LARGE Short-Nested Main SS 0.04
GPT2-LARGE Short-Nested Main SP 0.11
GPT2-LARGE Short-Nested Main PS 0.01
GPT2-LARGE Short-Nested Main PP 0.01
GPT2-LARGE Short-Nested Embedded SS 0.00
GPT2-LARGE Short-Nested Embedded SP 0.01
GPT2-LARGE Short-Nested Embedded PS 0.00
GPT2-LARGE Short-Nested Embedded PP 0.00
GPT2-LARGE Long-Nested Main SSS 0.09
GPT2-LARGE Long-Nested Main SSP 0.09
GPT2-LARGE Long-Nested Main SPS 0.32
GPT2-LARGE Long-Nested Main SPP 0.32
GPT2-LARGE Long-Nested Main PSS 0.04
GPT2-LARGE Long-Nested Main PSP 0.03
GPT2-LARGE Long-Nested Main PPS 0.02
GPT2-LARGE Long-Nested Main PPP 0.01
GPT2-LARGE Long-Nested Embedded SSS 0.07
GPT2-LARGE Long-Nested Embedded SSP 0.34
GPT2-LARGE Long-Nested Embedded SPS 0.20
GPT2-LARGE Long-Nested Embedded SPP 0.06
GPT2-LARGE Long-Nested Embedded PSS 0.15
GPT2-LARGE Long-Nested Embedded PSP 0.71
GPT2-LARGE Long-Nested Embedded PPS 0.08
GPT2-LARGE Long-Nested Embedded PPP 0.02
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Model NA-Task Dependency Condition Error Rate

GPT2-XL Short-Nested Main SS 0.00
GPT2-XL Short-Nested Main SP 0.01
GPT2-XL Short-Nested Main PS 0.01
GPT2-XL Short-Nested Main PP 0.01
GPT2-XL Short-Nested Embedded SS 0.00
GPT2-XL Short-Nested Embedded SP 0.01
GPT2-XL Short-Nested Embedded PS 0.00
GPT2-XL Short-Nested Embedded PP 0.00
GPT2-XL Long-Nested Main SSS 0.02
GPT2-XL Long-Nested Main SSP 0.01
GPT2-XL Long-Nested Main SPS 0.19
GPT2-XL Long-Nested Main SPP 0.14
GPT2-XL Long-Nested Main PSS 0.03
GPT2-XL Long-Nested Main PSP 0.05
GPT2-XL Long-Nested Main PPS 0.01
GPT2-XL Long-Nested Main PPP 0.02
GPT2-XL Long-Nested Embedded SSS 0.05
GPT2-XL Long-Nested Embedded SSP 0.23
GPT2-XL Long-Nested Embedded SPS 0.17
GPT2-XL Long-Nested Embedded SPP 0.07
GPT2-XL Long-Nested Embedded PSS 0.26
GPT2-XL Long-Nested Embedded PSP 0.61
GPT2-XL Long-Nested Embedded PPS 0.09
GPT2-XL Long-Nested Embedded PPP 0.03
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