
CHOPCHOP: Semantically Constraining the Code
Output of Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Language models (LMs) can generate code, but cannot guarantee its correct-1

ness—producing outputs that often violate type safety, program invariants, or se-2

mantic equivalence. Constrained decoding offers a solution by restricting genera-3

tion to programs that satisfy desired properties. Yet, existing methods are limited4

to shallow syntactic constraints or rely on brittle, ad hoc encodings of semantics5

over token sequences.6

We present CHOPCHOP, the first programmable framework for semantic con-7

strained decoding, enabling LMs to generate code that provably satisfies rich se-8

mantic properties. CHOPCHOP enables construction of constrained decoders that9

incorporate advanced formal methods by connecting token-level generation with10

reasoning over abstract program structures. It is the first system capable of con-11

straining an LM to only generate programs that are provably equivalent to a sup-12

plied reference program. We also show that it can naturally implement existing13

applications, such as type-constrained decoding for TypeScript.14

1 Introduction15

Language models (LMs) have fundamentally transformed how we interact with code—generating16

functions, completing boilerplate, and even suggesting entire programs. Yet, despite their success,17

LMs offer no guarantees of correctness: they produce code that looks plausible but often violates18

critical syntactic or semantic properties.19

Constrained decoding has emerged as a promising solution to this problem [31, 32, 10, 1, 23]. In20

constrained decoding, a language model generates a sequence one token at a time, but the next token21

is chosen not only for its likelihood, but also based on whether extending the current output with22

that token could ultimately produce a program that satisfies a user-defined constraint.23

However, existing constrained decoding techniques are limited in scope. Early methods focused24

solely on syntactic correctness—e.g., enforcing that outputs conform to a context-free grammar25

(CFG). More recent techniques attempt to enforce richer constraints like type safety [23] or runtime26

properties [1], but do so via ad hoc treatments in which constraints are expressed on the level of raw27

text. These approaches are inherently brittle because they do not operate over the formal structure of28

programs—as abstract syntax trees. Moreover, they preclude integration with more advanced formal29

methods for reasoning about deep semantic properties—such as program equivalence or adherence30

to complex invariants—as such methods are fundamentally defined over abstract syntax.31

In this paper, we ask:32

Can we design a principled, programmable framework for constrained decoding that enforces deep33

semantic properties—over programs instead of token sequences?34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Achieving this goal introduces two major challenges.35

1. Bridging the syntax-semantics gap. Formal methods reason about semantic properties36

over abstract syntax trees (ASTs), while language models generate concrete syntax one37

token at a time. Enforcing semantic constraints during decoding thus requires translating38

between the evolving token prefix and the corresponding space of possible ASTs the prefix39

might generate.40

2. Dealing with partial programs. Traditional program analyses operate on complete pro-41

grams. But in constrained decoding, we must decide—incrementally, as each token is42

produced—whether a partial prefix could still yield a program that satisfies the desired43

constraint.44

Our approach. We present CHOPCHOP, the first unified, programmable framework for semantic45

constrained decoding over the abstract syntax of programs. The key idea is to reduce constrained46

decoding to a problem in the program synthesis literature: realizability, the task of determining47

whether a (possibly infinite) space of programs contains one that satisfies a specified property.48

As the LM emits tokens, CHOPCHOP constructs a symbolic representation (as a regular tree gram-49

mar) of the set of all ASTs that are syntactically valid completions of the current prefix. CHOPCHOP50

then analyzes this representation using a user-provided analysis—which is defined at the level of ab-51

stract syntax—and checks realizability with respect to the propety the analysis enforces. If there52

does not exist a valid program in this space, the proposed token is rejected and an alternative is53

tried. This pipeline ensures that every accepted token keeps the generation process on track toward54

satisfying the semantic constraints.55

Applications. We demonstrate the generality of CHOPCHOP through two diverse applications:56

• Program Equivalence-Guided Decoding: We constrain a language model to generate57

programs equivalent, modulo term rewriting, to a reference program. The analysis works58

by using a data structure known as an e-graph to efficiently reason about equivalence classes59

of ASTs.60

• Type-Safe Decoding: We constrain a language model to emit only well-typed programs61

in a subset of TypeScript. The analysis is natural to define, as like a normal typechecker it62

operates over the level of abstract syntax.63

2 Overview of ChopChop64

We illustrate our approach with the following example task:65

Generate a sum of odd integers whose total is even.66

For instance, the expression 5 + 7 is a valid solution: all summands are odd and the total is even.67

If we prompt a language model (LM) with this task, there is no guarantee it will succeed. It might68

produce a sum with even numbers (2 + 2), an odd total (1 + 1 + 1), or nonsensical output (banana).69

CHOPCHOP enables users to enforce such constraints (i.e., that the summands are odd and the sum70

is even) on the LM by providing two inputs:71

1. A parser definition for translating strings generated by the language model to ASTs.72

2. A set of semantic pruners, each representing a constraint over sets of possible ASTs, used73

to prune invalid programs. (see odds and even_sum in Figures 3a and 3b). A pruner is a74

function that takes a representation of a set of possible abstract syntax trees (ASTs) and75

returns the subset where ASTs that do not satisfy the constraint have been removed.76

Given these inputs, CHOPCHOP interacts with the LM to guarantee that any generated program is77

syntactically valid and satisfies the provided semantic constraints.78

2

int := [1-9][0-9]* E ::= int {E1.ast = Lit int.value}
| E + int {E1.ast = Sum E2.ast int.ast}

Figure 1: A parser definition for the language of integer sums. The AST of an integer literal “int”
is its value; that of “int + E” is a sum node Sum int.ast E2.ast. Left-recursive grammars are
handled by CHOPCHOP.

2.1 Semantic Constrained Decoding as Realizability79

A trivial way to ensure constraint satisfaction is to let the LM generate a full program, check whether80

it satisfies the constraints, and retry if it does not; this approach is called “rejection sampling”81

and is, in general, very inefficient (Section 3 presents settings in which some LMs never produce82

valid programs using this approach!) Ideally, instead, we would like to rule out “doomed” program83

prefixes as soon as the LM generates them: for example, if the LM generates the prefix 2 +, there is84

no point continuing, since any completion will include the even number 2, violating our constraint.85

Therefore, instead of producing full programs and verifying them afterwards, CHOPCHOP follows86

the approach called constrained decoding [31, 32, 10, 1, 23], which restricts the LM’s choices of87

next tokens during generation. For example, say the already generated prefix is 2, and the LM’s88

top two choices for the next token are + and 2. CHOPCHOP would disallow +, since it leads to the89

“doomed” prefix 2 +, and instead 2 will be chosen, since it can still lead to a valid completion (e.g.,90

221 + 9). We refer to this process as semantic constrained decoding (SemCD), because it prunes91

the LM’s choices based on semantic constraints over ASTs as opposed to syntactic constrained92

decoding (SynCD), which enforces shallow syntactic properties of the token stream.93

To constrain what tokens to allow, CHOPCHOP incrementally constructs a program space—a sym-94

bolic representation of all possible ASTs that can be generated from the current token prefix using95

the user-provided parser; it then invokes the user-defined semantic pruners (in our example, odds96

and even_sum) to prune this space and remove semantically incorrect programs, and checks whether97

at least one valid completion remains in the resulting program space.98

By drawing a connection to concepts used in program synthesis [12], this process can be formalized99

as an (approximate) realizability checker, realizable(ω, φ), which determines whether the current100

token prefix ω can still be extended to a program whose AST satisfies the constraint. If the answer101

is negative, the LM proposes an alternative token and the process repeats until a realizable prefix is102

found. This symbolic, programmable, semantics-aware pruning enables LMs to generate only pro-103

grams that satisfy rich semantic properties—without modifying the model, manually rewriting AST104

constraints to operate on the string-representation of programs, or relying on token-level heuristics.105

2.2 Analyzing Prefixes of Programs106

Although realizable(ω, φ) takes a concrete token prefix as input, it fundamentally asks a semantic107

question: Does there exist a program, consistent with the prefix ω, that satisfies the constraint φ?108

Answering this question requires reasoning not about a single program, but about the (potentially109

infinite) space of ASTs that can be built by completing ω.110

We tackle this problem by breaking it into four conceptual and algorithmic subgoals:111

1. Representation: How can we finitely describe an infinite program space?112

2. Completion: Given a prefix ω, how can we algorithmically construct the program space of113

all ASTs consistent with ω?114

3. Pruning: Given a program space X, how can we compute or approximate the subset pro-115

gram space X′ ⊆ X of ASTs that satisfy a semantic constraint φ?116

4. Non-Emptiness: Given a pruned space X′, how can we check whether X′ is non-empty?117

Goals 3 and 4 may seem redundant: why not check directly whether any AST in X satisfies φ?118

Unfortunately, this problem is undecidable in general, even when checking φ is decidable for indi-119

vidual ASTs [16, 17]. Our decomposition reflects a trade-off: rather than requiring satisfiability of φ120

3

Prefix
1+2

Lexical Prefixes
["1","+","2"]
["1","+","2[0-9]*"]

Program Space
prog_space =
Union [Sum (Lit "1") (Lit "2"),

Sum (Sum (Lit "1") (Lit "2")) ...,
Sum (Sum (Lit "1") (Lit "2[0-9]*")) ...]

Pruned Space
pruned_prog_space =
Union [Empty,

Empty,
Sum (Sum (Lit "1") (Lit "2[0-9]*")) ...]

nonempty(pruned_prog_space)

Continue Decoding

Discard Prefix

Lexer Parser

Apply Pruners:
even_sum(odds(prog_space))

true

false

Figure 2: Flow of CHOPCHOP on prefix 1+2. The prefix is lexed into possible lexical sequences,
parsed into a symbolic program space, semantically pruned, and checked for nonemptiness to deter-
mine realizability. If realizble, the prefix may be extended. If unrealizable, the prefix is discarded.

to be decidable over program spaces, we instead rely on user-supplied approximate pruners (Goal 3)121

and implement a fixed, automated check for non-emptiness (Goal 4). This gives users control over122

the level of approximation, allowing them to express rich constraints while maintaining tractable123

reasoning over infinite program spaces.124

In the rest of the section, we describe our approach following the overview given in Figure 2.125

Goal 1: Representing Infinite Program Spaces The following datatype describes the abstract126

syntax used in our running example:127

1 data Expr = Lit String -- a numeric literal, e.g., Lit "5"
2 | Sum Expr Expr -- sum of two expressions

An element of the above datatype represents the abstract syntax tree for a single program. To repre-128

sent program spaces (i.e., potentially infinite sets of programs), we lift the definition of Expr:129

1 data ExprSpace = Empty -- empty program space
2 | Union [ExprSpace] -- union of multiple spaces
3 | Lit Regex -- set of literals described by a regex
4 | Sum ExprSpace ExprSpace -- Sum operator applied to two subspaces

For example, the space Sum left right is formed via a cartesian product of all the ASTs in the130

spaces left and right, i.e. the set {Sum e1 e2 | e1 ∈ left, e2 ∈ right}. Readers familiar with131

version space algebra [19, 28] will recognize this as a version space, where Union is the union node132

and Sum is a join node.133

One subtlety is that program spaces can contain cycles. For example, the infinite space consisting of134

all sums of integers can be represented using the following recursive definition:135

1 all = Union [Lit "[1-9][0-9]*", Sum all all]

Note that even though all is infinitely recursive, it has a finite representation in memory as a cyclic136

term—i.e., there is no reason to infinitely unroll the recursion. In the current implementation of137

CHOPCHOP, all program spaces are regular and represented using this finite, cyclic form. To manip-138

ulate such cyclic terms, we implement a solver inspired by CoCaml [14], which supports equational139

reasoning for terms with cycles. This allows us to perform computations over program spaces—e.g.,140

applying transformations such as odds and even_sum (Figure 3)—without materializing infinite sets.141

Goal 2: Computing the Program Space Consistent with a Prefix Given a concrete string prefix142

ω, our goal is to compute the program space that contains all ASTs that can be parsed from any143

completion of ω using the user-defined parser (Figure 1).144

4

1 odds :: ExprSpace -> ExprSpace
2 odds Empty = Empty
3 odds (Union children) = Union (map odds children)
4 odds (Lit regex) = Lit (regex `intersect` "[0-9]*[13579]") -- only odd
5 odds (Sum left right) = Sum (odds left) (odds right)

(a) odds pruner: retains only programs using odd literals.
1 even_sum :: ExprSpace -> ExprSpace
2 even_sum Empty = Empty
3 even_sum (Union children) = Union (map even_sum children)
4 even_sum (Lit regex) = Lit (intersect regex "[0-9]*[02468]") -- only even
5 even_sum (Sum left right) = Union (Sum (even_sum left) (even_sum right))
6 (Sum (odd_sum left) (odd_sum right))

1 odd_sum :: ExprSpace -> ExprSpace
2 ... -- Analogous to even_sum

(b) even_sum pruner: retains programs whose total evaluates to an even number.

Figure 3: Example semantic pruners.

We begin by lexing ω into a finite set of lexical prefixes. For example, take ω = 1+2. This has two145

valid lexical prefixes:146

• ["1","+","2"]: where the next character is non-numeric (e.g., the full string might be147

1+2+3);148

• ["1","+","2[0-9]*"]: where the next character continues the numeric literal (e.g., 1+21).149

Given a lexical prefix, we use the user-supplied parser to compute the corresponding program space.150

To this end, we use a derivative-based parser, following the approach of [21]. In our framework,151

a parser can be modeled as a cyclic object that encodes the future parses of a stream of lexemes1.152

Critically, parsers support a derivative operation, derivative parser ω that advances the parser153

state by consuming a sequence of lexemes ω, analogous to Brzozowski derivatives for regular ex-154

pressions [6].155

For each lexical prefix—e.g., ["1","+","2"]—we start from the user-provided parser and apply156

successive derivatives for each lexeme in the prefix; this results in a parser that accepts exactly those157

programs that begin with the given lexical prefix. Finally, we convert each derived parser into a158

corresponding program space (essentially by discarding the information about concrete syntax), and159

combine the program spaces from different lexical prefixes using the Union constructor. For our ex-160

ample, the prefixes ["1","+","2"] and ["1","+","2[0-9]*"] together would induce the following161

program space prog_space:162

1 Union [Sum (Lit "1") (Lit "2"), -- ["1","+","2"] followed by END
2 Sum (Sum (Lit "1") (Lit "2")) e, -- ["1","+","2"] followed by + E
3 Sum (Sum (Lit "1") (Lit "2[0-9]*")) e] -- ["1","+","2[0-9]*"]

where e = Union [Lit "[1-9][0-9]*", Sum (Lit "[1-9][0-9]*") e] represents the space of163

programs derivable from the nonterminal E in Figure 1.164

Goal 3: Pruning the Program Space to Satisfy Semantic Constraints To prune away seman-165

tically incorrect programs, a user supplies semantic pruners. A semantic pruner is a co-recursive166

function that takes a program space X and returns the sub-space X′ ⊆ X of ASTs that satisfy a167

semantic constraintPruners can be composed to enforce conjunctions of constraints, allowing users168

to modularly define and reuse semantic constraints across tasks.169

For our running example, we supply two pruners, odds and even_sum, shown in Figure 3. To obtain170

the pruned space pruned_prog_space, we apply the two pruners in sequence:171

pruned_prog_space = even_sum(odds(prog_space))

To get a sense of how a pruner is applied to program space, consider the inner application:172

1We use the term lexeme for programming-language tokens to avoid confusion with LM tokens.

5

1 odds (Union [Sum (Lit "1") (Lit "2"), ...]) => -- distribute over union
2 Union [odds (Sum (Lit "1") (Lit "2")), ...] => -- distribute over sum
3 Union [Sum (Lit (intersect "1" "[0-9]*[13579]"))
4 (Lit (intersect "2" "[0-9]*[13579]")), ...] =>
5 Union [Sum (Lit "1") Empty, ...] =>
6 Union [Empty, ...]

In other words, odds will prune away the first two sub-spaces of the union in prog_space, since they173

contain even numbers. Note, however, that because the other two sub-spaces of the union (omitted174

under the ellipsis) are cyclic terms, applying the pruner to them does not necessarily reduce to a175

normal form; hence the task of checking emptiness for pruned sub-spaces is non-trivial.176

Goal 4: Deciding Nonemptiness of the Pruned Space The final step in computing177

realizable(ω, φ) is to check whether the pruned program space X′ is non-empty. To this end, CHOP-178

CHOP implements the function nonempty :: ExprSpace -> Bool, which performs a fixpoint com-179

putation over a cyclic object representing X′. In our example, nonempty determines that the third180

sub-space of the union in pruned_prog_space is non-empty, and hence the whole union is non-181

empty.182

Together, the four components—lexing, parser derivatives, user-defined pruners, and the nonempti-183

ness check—enable us to compute realizable(ω, φ) for our running example as:184

nonempty (even_sum (odds (derivative parser ω)))

CHOPCHOP unifies syntactic parsing and semantic constraint enforcement within a single sym-185

bolic framework. This pipeline is efficient, modular, and requires minimal effort from the user:186

they define a parser and supply composable pruners for each constraint. CHOPCHOP handles the187

rest—automatically enforcing semantic constraints during generation without modifying the under-188

lying LM.189

3 Evaluation190

We demonstrate the generality of our framework by instantiating it for two domains, described191

in more detail below: enforcing semantic equivalence for a basic functional language and enforcing192

type safety for TypeScript. Enforcing semantic equivalence via constrained decoding is a completely193

novel application made possible only by our technique. It is an example of a constraint that is194

fundamentally beyond the capability of existing approaches. To evaluate, we compare our semantic195

constrained decoders written in CHOPCHOP to the following baselines:196

• Unconstrained Decoding: The LM generates code without any constraints.197

• Grammar-Constrained Decoding (GCD): The LM must produce syntactically valid programs198

(enforced via a grammar), but no semantic restrictions are applied.199

Procedure200

We evaluate using a variety of models at different temperatures: a detailed description of our exper-201

imental setup is in Appendix 6.1. For each benchmark, model, decoder, and temperature, we run202

constrained decoding until either: (i) the END token is generated, or (ii) a fixed token budget (set203

to 400) is exhausted. or (iii) a 150 second timeout is reached. We only implement a naive sampling204

strategy where if a token is rejected, we backtrack by one token and re-sample with that token re-205

moved. Constrained decoders may fail if they use up their token or time budget without completing206

a valid program—especially if the LM repeatedly proposes unrealizable tokens that must be pruned.207

Unconstrained decoders may also fail to terminate if the model does not emit an END token withing208

the budget.209

A run is considered successful if: (i) A complete program is emitted, and (ii) It satisfies the semantic210

constraints of the task (i.e., equivalence or type safety).211

6

3.1 Equivalence-Guided Decoding212

In this case study, the LM is given expressions in a basic functional language and is asked to refactor213

them into equivalent programs. The language consists of basic arithmetic operators, identifiers, inte-214

ger constants, function applications, and let bindings. For example, consider the following program215

that computes the distance between two points.216

1 sqrt (pow (x2 - x1) 2 + pow (y2 - y1) 2)

A valid output for the LM might be:217

1 let dx = x2 - x1 in
2 let dy = y2 - y1 in
3 sqrt (pow dy 2 + pow dx 2)

To represent the program space of equivalent programs, CHOPCHOP uses an e-graph [33], a218

data structure for compactly representing spaces of equivalent programs. Equivalences are de-219

fined in terms of a list of rewrite rules. For example, the rule x + y → y + x encodes220

the commutativity of addition. Then, given an initial program, these rules are iteratively ap-221

plied (up to a fixed budget) to matching subterms to generate a space of programs that can be222

proven equivalent to the original using the given rewrite rules. In the above example for instance,223

pow (y2 - y1) 2) + sqrt (pow (x2 - x1) 2 would be an equivalent program stored in the e-224

graph. To build the e-graphs, CHOPCHOP uses the egglog library [34]. For our case study, we225

define a set of basic rewrite rules for arithmetic expressions (ones with addition, subtraction, multi-226

plication, and division).227

The set of terms an e-graph represents forms a regular tree language and can be represented as a228

finite tree automata [29]. This is useful because regular tree languages are closed under intersection:229

our decoder works by intersecting the prefix space at each step with the tree automata corresponding230

to the e-graph, then checking that the intersection is nonempty.231

We created 10 benchmark tasks in the basic functional language, where the goal is to refactor a232

program into an equivalent one—e.g., factoring out subexpressions into let bindings. We use a233

fixed system prompt that specifies the grammar of the language and instructs the model to return234

only a refactored program with no explanation. We count a response as correct if the LM produces235

a complete program that is equivalent to the input program, with no post-processing. Unconstrained236

decoding often fails to produce just the output code, despite being explicitly instructed to do so.237

Therefore, we also evaluate a variant where the prompt wraps outputs in triple backticks (```) to238

encourage the model to delimit its code clearly. This avoids penalizing runs that fail only due to239

formatting. We refer to the two variants as No Delimit and Delimit, respectively.240

3.2 Type-Safe Decoding241

For our second instantiation of CHOPCHOP, we implemented a type-constrained decoder for a subset242

of typescript. To simplify the implementation, we restrict our attention to a syntactic subset of243

TypeScript that omits certain features such as strings, arrays, lambda abstractions, and property244

accesses. We source benchmarks from the TypeScript translations of the MBPP [4] tasks from the245

MultiPL-E dataset [7] and extracted the 74/809 tasks that can be solved in our language fragment.246

We provide context to the LM which instructs it to avoid language constructs outside our language247

fragment.248

An example task is given below:249

1 // Write a typescript function to find the next perfect square
2 // greater than a given number.
3 function next_Perfect_Square(N: number): number

We count a response as correct if the generated TypeScript program compiles.250

3.3 Results251

Effectiveness Table 1 reports the number of successful runs for CHOPCHOP and the two252

baselines—unconstrained decoding and grammar-constrained decoding—on all benchmarks.253

7

Table 1: Successful generations for different decoding strategies across models and temperatures
(higher is better). For equivalence-guided decoding we report the number of benchmarks for which
an equivalent program was produced. For TypeScript we report the number of benchmarks on which
compilable code was produced. Best results per column are bolded.

DeepSeek-Coder-6.7b CodeLlama-7B CodeLlama-13B
Temperature Tot. Temperature Tot. Temperature Tot.0.01 0.3 0.5 0.7 1.0 0.01 0.3 0.5 0.7 1.0 0.01 0.3 0.5 0.7 1.0

Equivalence
No Delimit

(10 programs)

Unconstrained 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Grammar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Semantic 7 7 8 8 3 33 8 9 9 9 8 43 10 8 8 10 6 42

Equivalence
Delimit

(10 programs)

Unconstrained 0 0 0 0 0 0 3 3 2 3 1 12 4 2 2 3 2 13
Grammar 0 0 0 0 1 1 3 4 6 4 1 18 4 5 2 2 0 13
Semantic 10 10 8 9 8 45 9 10 10 6 6 41 9 8 7 8 6 38

TypeScript
(74 programs)

Unconstrained 0 0 0 0 0 0 72 71 70 60 29 302 71 68 65 52 12 268
Grammar 0 0 0 0 2 2 69 65 57 57 30 278 66 63 59 47 19 254
Semantic 52 49 54 46 31 232 71 73 71 67 49 331 69 69 66 59 42 305

Table 2: Overhead of checking realizability in semantic constrained decoding (milliseconds/pro-
duced token).

Overhead in ms/token
DeepSeek-Coder-6.7b CodeLlama-7B CodeLlama-13B

Temperature Temperature Temperature
0.01 0.3 0.5 0.7 1.0 0.01 0.3 0.5 0.7 1.0 0.01 0.3 0.5 0.7 1.0

Equiv No Delimit 225 221 199 233 216 159 77 74 77 161 58 68 67 61 142
Equiv Delimit 82 73 564 198 162 50 55 65 121 156 63 74 79 49 128
TypeScript 364 347 343 290 236 240 207 253 223 356 301 228 236 274 323

Across nearly all configurations, semantic constrained decoding delivers consistent and often dra-254

matic improvements.255

Unconstrained, most models perform very poorly on our equivalence benchmarks, with most fail-256

ing to generate even a single semantically equivalent program. Several factors contribute to this:257

(i) We intentionally use small- and medium-sized models, which highlight the gains possible even258

for less capable models. (ii) The toy language used in the benchmarks is likely out-of-distribution259

for most pretrained LMs, which are tuned on real-world languages like Python and JavaScript. In260

particular, DeepSeek-Coder-6.7B frequently attempts to write Python, Lisp, or TypesScript code,261

and fails all benchmarks without semantic constraints as a result. (iii) Despite clear instructions,262

models frequently emit natural language explanations, markdown, or commentary—none of which263

are semantically valid outputs under our equivalence checker.264

Overhead Table 2 shows the average overhead of semantic constrained decoding (in ms) per gen-265

erated token. Overhead on decoding time range from tens to a few hundred milliseconds per token,266

which is a very small price to pay for assurance provided by semantic constrained decoding. As267

a reference, on our hardware, CodeLlama-13B takes on average 81 ms to produce a token when268

unconstrained.269

To better illustrate the source of the overhead, Figure 4 plots the distribution of the number of270

tokens that are tried before finding a realizable one, for CodeLLama-7B. In general, even with271

semantic constrained decoding the first token tried is accepted most of the times, which is expected272

as typically LM only have high entropy for specific tokens that are particularly relevant to the final273

output.274

4 Related Work275

Constrained decoding. Constrained decoding techniques ensure the output of language models276

meets a given specification by throwing away invalid next tokens at each step. Grammar-constrained277

decoding, in which the constraint is given as a context-free grammar, has been well studied [30, 11,278

32, 31, 25, 10]. A significant portion of CHOPCHOP’s runtime is spent pruning tokens that fail279

simple syntactic validity. Integrating fast syntactic filtering tools such as LLGuidance [22] as a pre-280

processing step could greatly reduce this cost by eliminating invalid tokens early. Beyond syntax,281

more recent work has explored enforcing specific semantic constraints such as type safety [23].282

Frameworks such as monitors [1] and completion engines [27] provide abstractions for providing283

8

(a) Equivalence, CodeLlama-7b, all tempera-
tures (b) Typescript, CodeLlama-7b, all temperatures

Figure 4: Distribution of how many tokens were proven unrealizably by semantic constrained de-
coding to produce each individual token. The kth bar gives the number of successful tokens that
were produced after trying between 5k and 5k + 4 unsuccesful tokens by CodeLlama-7b.

more complex constraints by allowing a user to provide a monitor (written in a general purpose284

language) that performs the decoding. The main difference between our work and those techniques285

is that they require the user to write checkers over strings. By contrast, our approach operates at the286

level of abstract syntax, abstracting away the syntactic component and allowing the user to define287

pruners at the level of program spaces, thus enabling new applications such as equivalence-guided288

decoding.289

Algebraic approaches to parsing. We build on a long line of work viewing parsers and grammars290

as algebraic, recursive structures [18, 20]. Might et al. [21] presents a functional approach to parsing291

based on applying Brzozowski derivatives to parser combinators. Zipper-based variants such as292

[8, 9] reduce redundant traversals in the basic version of PwD to improve efficiency. Integrating293

these techniques into our implementation could be another avenue to improve performance.294

Regular coinduction. Our implementation relies on regular coinduction to represent and manipu-295

late cyclic program spaces. CoCaml [14, 15] is a framework to unambiguously define and compute296

recursive functions over regular codata. Because some recursive functions admit more than one in-297

terpretation on codata, the CoCaml language allows users to define custom solvers implement their298

desired semantics. We do not use the CoCaml language directly. However, our Python backend han-299

dles the computation of corecursive functions which produce codata (e.g., our pruners) with a solver300

analogous to the corec solver presented in [14]. Our backend’s solver for @fixpoint-annotated301

functions which compute concrete values over regular codata is analogous to the fixpoint solver302

presented in [14].303

Unrealizability and pruning in synthesis. Our approach draws inspiration from the concept of304

unrealizability–the problem of determining whether no solution exists that satisfies a given spec-305

ification [12]. Existing approaches to proving unrealizability [12, 13] typically focus on specific306

synthesis domains, leveraging domain insights to solve particular tasks. Pruning, for example based307

on types [24] or examples [3], to remove infeasible portions of the search space is a well-established308

technique in program synthesis. Our work provides a framework to adapt these general methods309

from traditional synthesis towards constraining the output of LLMs.310

5 Conclusion311

We introduced CHOPCHOP, a new framework for semantic constrained decoding that allows one to312

impose semantic constraints directly on the abstract syntax trees representing programs (instead of313

their string syntax). CHOPCHOP allows one to program constraints by providing semantic pruners—314

recursive program operating over finite representations of the infinitely many programs the LM can315

produce on a given prefix. This flexibility enables new applications—e.g., constraining the an LM316

to only output programs that are equivalent (up to rewrite rules) to a given input program.317

9

References318

[1] Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K. Lahiri, and Sriram K.319

Rajamani. 2023. Monitor-Guided Decoding of Code LMs with Static Analysis of Repos-320

itory Context. In Advances in Neural Information Processing Systems 36: Annual Con-321

ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,322

LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate323

Saenko, Moritz Hardt, and Sergey Levine (Eds.). Association for Computing Machinery,324

New York, NY, USA, 1–11. http://papers.nips.cc/paper_files/paper/2023/hash/325

662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html326

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Princi-327

ples, Techniques, and Tools (2nd ed.). Pearson Education.328

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,329

Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.330

2013. Syntax-Guided Synthesis. In Proceedings of the IEEE International Conference on331

Formal Methods in Computer-Aided Design (FMCAD). 1–17.332

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David333

Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. 2021. Program334

Synthesis with Large Language Models. arXiv:2108.07732 [cs.PL] https://arxiv.org/335

abs/2108.07732336

[5] Gavin Bierman, Martı́n Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In337

Proceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented Pro-338

gramming - Volume 8586. Springer-Verlag, Berlin, Heidelberg, 257–281. doi:10.1007/339

978-3-662-44202-9_11340

[6] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964),341

481–494. doi:10.1145/321239.321249342

[7] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Don-343

ald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Ar-344

jun Guha, Michael Greenberg, and Abhinav Jangda. 2022. MultiPL-E: A Scalable and Ex-345

tensible Approach to Benchmarking Neural Code Generation. arXiv:2208.08227 [cs.LG]346

https://arxiv.org/abs/2208.08227347

[8] Pierce Darragh and Michael D. Adams. 2020. Parsing with zippers (functional pearl). Proc.348

ACM Program. Lang. 4, ICFP, Article 108 (Aug. 2020), 28 pages. doi:10.1145/3408990349

[9] Romain Edelmann, Jad Hamza, and Viktor Kunčak. 2020. Zippy LL(1) parsing with deriva-350

tives. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language De-351

sign and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery,352

New York, NY, USA, 1036–1051. doi:10.1145/3385412.3385992353

[10] Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023. Grammar-Constrained354

Decoding for Structured NLP Tasks without Finetuning. In Proceedings of the 2023 Confer-355

ence on Empirical Methods in Natural Language Processing, Houda Bouamor, Juan Pino,356

and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore. https:357

//aclanthology.org/2023.emnlp-main.674358

[11] Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023. Grammar-Constrained359

Decoding for Structured NLP Tasks without Finetuning. In The 2023 Conference on Empir-360

ical Methods in Natural Language Processing. https://openreview.net/forum?id=361

KkHY1WGDII362

[12] Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas Reps. 2019. Prov-363

ing Unrealizability for Syntax-Guided Synthesis. In Computer Aided Verification: 31st Inter-364

national Conference, CAV 2019, New York, NY, USA, July 13-17, 2019, Proceedings, Part I365

(Lecture Notes in Computer Science, Vol. 11561). Springer, Springer, 335–352. doi:10.1007/366

978-3-030-25540-4_18367

10

http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/321239.321249
https://arxiv.org/abs/2208.08227
https://doi.org/10.1145/3408990
https://doi.org/10.1145/3385412.3385992
https://aclanthology.org/2023.emnlp-main.674
https://aclanthology.org/2023.emnlp-main.674
https://aclanthology.org/2023.emnlp-main.674
https://openreview.net/forum?id=KkHY1WGDII
https://openreview.net/forum?id=KkHY1WGDII
https://openreview.net/forum?id=KkHY1WGDII
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18

[13] Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020. Exact and approximate368

methods for proving unrealizability of syntax-guided synthesis problems. In Proceedings of369

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation370

(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,371

1128–1142. doi:10.1145/3385412.3385979372

[14] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2017. CoCaml: Functional Pro-373

gramming with Regular Coinductive Types. Fundam. Informaticae 150, 3-4 (2017), 347–377.374

doi:10.3233/FI-2017-1473375

[15] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2013. Language Constructs for376

Non-Well-Founded Computation. In Programming Languages and Systems, Matthias Felleisen377

and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 61–80.378

[16] Jinwoo Kim, Loris D’Antoni, and Thomas Reps. 2023. Unrealizability Logic. Proc. ACM379

Program. Lang. 7, POPL, Article 23 (Jan. 2023), 30 pages. doi:10.1145/3571216380

[17] Jinwoo Kim, Shaan Nagy, Thomas Reps, and Loris D’Antoni. 2025. Semantics of Sets of381

Programs. Proc. ACM Program. Lang. 9, OOPSLA1, Article 110 (April 2025), 27 pages.382

doi:10.1145/3720515383

[18] Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A typed, algebraic approach to pars-384

ing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design385

and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery,386

New York, NY, USA, 379–393. https://doi.org/10.1145/3314221.3314625387

[19] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2003. Programming388

by Demonstration Using Version Space Algebra. Machine Learning 53, 1 (2003), 111–156.389

doi:10.1023/A:1025671410623390

[20] Hans Leiß. 1991. Towards Kleene Algebra with Recursion. In Proceedings of the 5th Workshop391

on Computer Science Logic (CSL ’91). Springer-Verlag, Berlin, Heidelberg, 242–256.392

[21] Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: a func-393

tional pearl. In Proceedings of the 16th ACM SIGPLAN International Conference on Func-394

tional Programming (Tokyo, Japan) (ICFP ’11). Association for Computing Machinery, New395

York, NY, USA, 189–195. doi:10.1145/2034773.2034801396

[22] Michał Moskal, Hudson Cooper, Aaron Pham, Devise Lucato, Steph Wolski, and Ying Xiong.397

2025. guidance-ai/llguidance. https://github.com/guidance-ai/llguidance398

[23] Niels Mündler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. 2025.399

Type-Constrained Code Generation with Language Models. Proc. ACM Program. Lang. 9,400

PLDI, Article 171 (June 2025), 26 pages. doi:10.1145/3729274401

[24] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program syn-402

thesis. SIGPLAN Not. 50, 6 (June 2015), 619–630. doi:10.1145/2813885.2738007403

[25] Kanghee Park, Timothy Zhou, and Loris D’Antoni. 2025. Flexible and Efficient Grammar-404

Constrained Decoding. arXiv:2502.05111 [cs.CL] https://arxiv.org/abs/2502.05111405

[26] Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Transactions on406

Programming Languages and Systems (TOPLAS) 22, 1 (2000), 1–44.407

[27] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek,408

and Sumit Gulwani. 2022. Synchromesh: Reliable code generation from pre-trained language409

models. arXiv:2201.11227 [cs.LG] https://arxiv.org/abs/2201.11227410

[28] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for inductive pro-411

gram synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on412

Object-Oriented Programming, Systems, Languages, and Applications (Pittsburgh, PA, USA)413

(OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107–126.414

doi:10.1145/2814270.2814310415

11

https://doi.org/10.1145/3385412.3385979
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3720515
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1145/2034773.2034801
https://github.com/guidance-ai/llguidance
https://doi.org/10.1145/3729274
https://doi.org/10.1145/2813885.2738007
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2201.11227
https://doi.org/10.1145/2814270.2814310

[29] Dan Suciu, Yisu Remy Wang, and Yihong Zhang. 2025. Semantic foundations of equality416

saturation. International Conference on Database Theory (2025).417

[30] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. 2025.418

SynCode: LLM Generation with Grammar Augmentation. Transactions on Machine Learning419

Research (2025). https://openreview.net/forum?id=HiUZtgAPoH420

[31] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, and Yoon Kim. 2023.421

Grammar Prompting for Domain-Specific Language Generation with Large Language Mod-422

els. arXiv:2305.19234 [cs.CL]423

[32] Brandon T Willard and Rémi Louf. 2023. Efficient Guided Generation for Large Language424

Models. arXiv e-prints (2023), arXiv–2307.425

[33] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel426

Panchekha. 2021. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang. 5,427

POPL, Article 23 (Jan. 2021), 29 pages. doi:10.1145/3434304428

[34] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal,429

Zachary Tatlock, and Max Willsey. 2023. Better Together: Unifying Datalog and Equal-430

ity Saturation. Proc. ACM Program. Lang. 7, PLDI, Article 125 (June 2023), 25 pages.431

doi:10.1145/3591239432

12

https://openreview.net/forum?id=HiUZtgAPoH
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3591239

6 Appendix433

6.1 Models, Parameters and Hardware434

We run all experiments using the instruction-tuned versions (i.e. models that are trained to fol-435

low instructions in the prompt) of the following models: DeepSeek-Coder-6.7b, CodeLlama-436

7B, and CodeLlama-13B. Each model is evaluated at five different sampling temperatures:437

0.01, 0.3, 0.5, 0.7, 1.0. These ranges of small-to-medium models and low-to-high temperatures lets438

us explore a range of model capability. We run all experiments on a Supermicro SYS-4029GP-TRT439

with two Intel(R) Xeon(R) Gold 6230 CPUs, 384 GB RAM, a 4 TB SSD, and eight Nvidia Geforce440

RTX 2080Ti GPUs.441

6.2 Lexing442

We open with a brief background on maximal munch lexing, the most widely used lexing formalism.443

Maximal Munch Lexing A maximal munch lexer [2] is instantiated by a collection of disjoint444

regular expressions, each of which corresponds to a different kind of lexeme. For example, we might445

give the regex [1-9][0-9]* to describe the set of strings representing integers, and the regexes true446

and false to describe the strings encoding keywords true and false, respectively. We call these447

regexes lexeme classes.448

Given such a collection of disjoint regexes, a lex of a string ω is a partition (ω1, . . . , ωn) of ω so449

that each ωj matches one of the given regexes. These strings ωj are called lexemes. The maximal450

munch lex of ω is the unique lex so that, for any other lex (ω1, . . . , ωj , ω
′
j+1, . . . ω

′
m), we have451

|ωj | ≥ |ω′
j+1|.452

Lexing a Partial Program Given a string ω that represents a partial program, our goal is to con-
struct a representation of set of maximal munch lexes of all the strings that extend ω. This will be
the output we pass to the parser. For example, the string 1 + 3 can be extended to 1 + 34, whose
maximal munch lex is [1, +, 34], or 1 + 3 + 4, whose maximal munch lex is [1, +, 3, +, 4].
To represent the set of maximal munch lexes of completions of ω, we will build a partial lex L like
the following:

L = {[1, +, 3], [1, +, 3[0-9]+]}
Each element of L is a lexical prefix – a sequence of lexemes that ends in a regex. A lexical pre-453

fix describes the set of prefixes that match it. So [1, +, 3] describes the lexes [1, +, 3, +],454

[1, +, 3, 5, 6], etc. And [1, +, 3[0-9]+] describes the lexes [1, +, 31, +], [1, +, 354, 6],455

etc. The partial lex L describes the set of lexes that extend any one of its lexical prefixes. Our goal456

will be to produce L from ω so that the lexes described by L are exactly the longset match lexes of457

completions of ω.458

To build L incrementally, we introduce a richer representation of L that tells us how much of a regex
has already been matched by ω. For example, if I had a “print” lexeme, then

L = {[print]}

could be the partial lex of both ω = “print” and ω = “pri”. To resolve this, we add a @ annotation
that tells us how much of a regex has been matched. Then, I can distinguish

[print @]

from
[pri @ nt]

Left of the @ is a string that has been explicitly matched by the end of ω, and right of the @ is a459

regex that has not been matched yet.460

To advance an annotated regex by a character a, we define Da(x @ y) = xa @ Da(y), where Da(y)
is the usual Brzozowski derivative of y with respect to a [6]. For example,

Di(pr @ int) = pri @ nt

13

Algorithm 1 Partial Lexing (partial lex)

1: procedure partial lex(ω ∈ Σ∗)
2: L̃ = compute lexer state(ω)

3: L′ = remove annotations(L̃)
4: L = remove ignorable tokens(L′)
5: return L
6:
7: @memoize
8: procedure compute lexer state(a1 . . . an ∈ Σ∗)
9: if n = 0 then

10: return {()}
11: else
12: L̃← compute lexer state(a1 . . . an−1)

13: L̃← extend lexer state(L̃, an)

14: L̃← remove nonmaximal munch lexes(L̃)

15: return L̃
16:
17: procedure extend lexer state(L̃ : LEXERSTATE, a ∈ Σ)
18: result← ∅
19: for each l = [l1, · · · , lm] ∈ L̃ do
20: if m = 0 then
21: result← result ∪ {(Da(@⊤τ)) | Da(⊤τ) ̸= ⊥τ}
22: if ϵ ∈ ym then
23: result← result ∪ {[l1, · · · , lm−1, xm@ϵ,Da(@⊤τ)] | Da(⊤τ) ̸= ⊥τ}
24: if Da(lm) ̸= ⊥τ then
25: result← result ∪ {[l1, · · · , lm−1, Da(lm)]}
26: return result
27:
28: procedure remove nonmaximal munch lexes(L̃ : LEXERSTATE)
29: for each l = [l1, · · · , lm] ∈ L̃ do
30: if ∃l′ = [l1, . . . , lk−1, l

′
k, . . . , l

′
m′] ∈ L̃. (|xk| < |x′

k| ∧ ϵ ∈ y′k) then
31: L̃.pop(l)

32: return L̃

Figure 5: The function compute lexer state produces a lexer state L̃ for ω by iteratively ex-
tending partial lexes by the next character (extend lexer state) and discarding partial lexes
which fail maximal munch by not having the largest possible tokens from left to right
(remove nonmaximal munch lexes). The outermost function partial lex turns L̃ into L. Above,
Σ represents an alphabet of characters. We memoize compute lexer state so that, when a pre-
fix ω grows to ωα, computing compute lexer state(ωα) will reuse the earlier computation of
compute lexer state(ω).

Given ω, we will incrementally build a lexer state, a set of sequences of such annotated regexes
x @ y like

L̃ = {(pri @ nt)}

that projects to the desired L when annotation symbols @ are removed.461

The full algorithm to build L is given in Algorithm 1. It very closely mirrors the naı̈ve approach462

to maximal munch lexing [2]. We iterate through ω character by character, constructing the lexer463

state L̃ incrementally. As we go, we discard the partial lexes from L̃ that fail maximal munch by464

not having the largest possible tokens from left to right. At the end of the algorithm, we remove the465

pointers and throw away “ignorable” tokens (e.g., whitespace and comments) to convert L̃ into L.466

14

If there is a reserved whitespace character (e.g., ’ ’) and a class of lexemes that matches a single467

occurrence of that character (e.g., \s+), then the lexer state L that our algorithm produces describes468

exactly the set of maximal munch lexes of completions of ω, up to the presence/absence of ignorable469

tokens like whitespace.470

6.3 TypeScript Typechecking471

We present our typescript grammar in Figure 6. Typing rules for individual TypeScript programs472

are presented in Figures 7 and 8. We use a terse, inference-only typesystem for individual programs473

that we reuse when pruning sets of programs. When we write, e.g., Γ ⊢ e =⇒ bool, we mean that474

e infers to a type that matches bool. Similarly, when we say Γ ⊢ s =⇒ τ − (), we mean that s475

infers to a subtype of τ that does not contain the unit type. Note that our typing contexts Γ assign476

types and a designation of mutable/immutable to variables. A much cleaner type system is given in477

Bierman et al. [5], but this one suffices for our purposes.478

A bidirectional typesystem is a typesystem that is written to allow for types to be computed deter-479

ministically and syntactically [26]. A bidirectional typesystem contains two kinds of judgments.480

The first kind of judgment, called checking, is written Γ ⊢ x ⇐= τ . When a check judgment481

appears in a hypothesis, it means that we assert that x must type to τ under Γ. The second kind of482

judgment is inference, written Γ ⊢ x =⇒ τ . In hypotheses, such judgments mean that we compute483

the type of x as τ . This allows us to use τ elsewhere in our hypotheses.484

Typepruning of sets of programs is a bidirectional process. Let X be a ProgramSpace coterm. Our485

typepruning system includes two kinds of judgments: pruning judgments and inference judgements.486

Pruning judgments, written Γ ⊢ X →τ X′, mean that X′ ⊆ X contains all τ -typed terms in X under487

Γ. This is our analogue of “checking”. The second kind of judgments we allow are standard type488

inference judgments, written Γ ⊢ t ⇐= τ . Our rules for inference judgments follow Figures 7489

and 8. The bulk of the rules for type pruning are given in Figures 9 and 10; we omit a few redundant490

language features for brevity (loops, which are handled similar to conditionals, etc.).491

15

Statement Grammar

Statements → Statement
| Statement ; Statements

Statement → Assignment ;
| Exp ;
| RETURN Exp ;
| Block
| FUNCTION VAR (Typed id∗)
: Type Block

| FOR(Assignment; Exp;
Reassignment) Block

| WHILE(Exp) Block
| IF(Exp) THEN Statement

ELSE Statement
| IF(Exp) THEN Statement

Assignment → LET Typed id = Exp
| CONST Typed id = Exp
| Reassignment.

Reassignment → Typed id = Exp
| Typed id ++
| Typed id + = 1

Typed id → VAR : Type

Type → INTTYPE
| BOOLTYPE
| (Typed id∗)⇒ Type

Block → {}
| { Statements }

Expression Grammar

Exp → Form
| Form ? Exp : Exp.

Form → Comp
| Comp && Comp
| Comp || Comp.

Comp → Bin
| Bin < Bin
| Bin == Bin
...

Bin → App
| App + Bin
| App − Bin
...

App → Base exp
| Base exp ()
| Base exp (A).

Base exp → INT
| VAR
| (Exp).

Exps → Exp
| Exp , Exps.

Figure 6: Our Subset of TypeScript. The start nonterminal is Statements, in the upper left.

16

Inference Typing Rules for Expressions and Statements Expression Rules
INT

Γ ⊢ 0 =⇒ int

TRUE

Γ ⊢ True =⇒ bool

VAR
(x, τ,) ∈ Γ

Γ ⊢ x =⇒ τ

SUM
Γ ⊢ e1 =⇒ int Γ ⊢ e2 =⇒ int

Γ ⊢ e1 + e2 =⇒ int

TERNARY EXPRESSION
Γ ⊢ e1 =⇒ bool Γ ⊢ e2 =⇒ τ Γ ⊢ e3 =⇒ τ

Γ ⊢ (e1?e2 : e3) =⇒ τ

FUNCTION APPLICATION
Γ ⊢ f =⇒ τ1, . . . , τn → τ ∀j < n. Γ ⊢ xj =⇒ τj

Γ ⊢ f(x1, . . . , xn) =⇒ τ

Figure 7: Selected Inference Rules for Typing Individual Expressions.

17

Inference Typing Rules for Individual Statements
Statement Rules

EXPRESSION STATEMENT
Γ ⊢ e =⇒ τ ′ Γ ⊢ s̄ =⇒ τ

Γ ⊢ e; s̄ =⇒ τ

LET VARIABLE DECLARATION
Γ ⊢ e =⇒ ⊤ Γ + (x, τ,mutable) ⊢ s̄ =⇒ τ ′

Γ ⊢ let x : τ = e; s̄ =⇒ τ ′

CONST VARIABLE DECLARATION
Γ ⊢ e =⇒ τ Γ + (x, τ, immutable) ⊢ s̄ : τ ′

Γ ⊢ const x : τ = e; s̄ : τ ′

IF-THEN-ELSE – MAY NOT RETURN
Γ ⊢ e =⇒ bool Γ ⊢ s1 =⇒ τ Γ ⊢ s2 =⇒ τ Γ ⊢ s̄ =⇒ τ

Γ ⊢ if e then s1 else s2; s̄ =⇒ τ

IF-THEN-ELSE – DEFINITELY RETURNS
Γ ⊢ e =⇒ bool Γ ⊢ s1 =⇒ τ − () Γ ⊢ s2 =⇒ τ − () Γ ⊢ s̄ =⇒ ⊤

Γ ⊢ if e then s1 else s2; s̄ =⇒ τ

WHILE
Γ ⊢ e =⇒ bool Γ ⊢ s =⇒ τ Γ ⊢ s̄ =⇒ τ

Γ ⊢ while(e) s; s̄ =⇒ τ

NO-OP

Γ ⊢ · =⇒ ()

Figure 8: Selected Typing Rules for Individual Statements. We give the typing rules of individual
programs in our subset of TypeScript, eliding some trivial cases. Note that s̄ refers to a (possibly
empty) sequence of statements. We use · to denote the empty sequence of statements.

18

Set Builders
UNION

Γ ⊢ x1→τ x1' · · · Γ ⊢ xn→τ xn'

Γ ⊢ Union (x1 ... xn)→τ Union (x1' ... xn')

EMPTY

Γ ⊢ Empty→τ Empty

(a) Set Builders
Expressions

CONST
reg ̸⊆ id regex

Γ ⊢ ConstS (reg)→τ ConstS (intersection reg \tau.regex)

WELL-TYPED COMPLETE VARIABLE
reg ⊆ id regex reg.has only one member Γ[reg] ≤ τ

Γ ⊢ ConstS (reg)→τ ConstS (reg))

ILL-TYPED COMPLETE VARIABLE
reg ⊆ id regex reg.has only one member Γ[reg] ̸≤ τ

Γ ⊢ ConstS (reg)→τ Empty)

INCOMPLETE VARIABLE
reg ⊆ id regex ¬reg.has only one member

Γ ⊢ ConstS (reg)→τ ConstS ({x ∈ Γ | x ∈ reg ∧ Γ[x] ≤ τ}))

(b) Selected Base Expressions. id regex is the constant regex for identifiers. τ regex is the regex describing
constants of type τ – this regex may be empty.

SUM
Γ ⊢ a→τ a' Γ ⊢ b→τ b'

Γ ⊢ SumS (a b)→τ SumS (a' b')

FUNCTION APPLICATION WITH COMPLETE FUNCTION
(collapse f) == Some s Γ ⊢ s ⇐= τ1 × · · · × τn → τ Γ ⊢ xs→τ1×···×τn xs'

Γ ⊢ Apply (f xs)→τ Apply (f xs')

FUNCTION APPLICATION WITH COMPLETE FUNCTION
(collapse f) == Nothing Γ ⊢ f→⊤→τ f'

Γ ⊢ Apply (f xs)→τ Apply (f' xs)

(c) Compound Expressions

TERNARY
Γ ⊢ guard→bool guard' Γ ⊢ then→τ then' Γ ⊢ else→τ else'

Γ ⊢ TernaryOp (guard then else)→τ TernaryOp (guard' then' else')

EXPRESSION SEQUENCE

Γ ⊢ x→τ1 x' Γ ⊢ xs→τ2×···×τn xs'

Γ ⊢ ExpSeq (x xs)→τ1×···×τn ExpSeq (x' xs')

(d) Miscellaneous Expressions

Figure 9: Typepruning rules for expressions and set builders.

19

STATEMENT SEQUENCE

Γ ⊢ s→τ−() s' Γ ⊢ ss→⊤ ss' Γ ⊢ s→() s'' Γ ⊢ ss→τ ss''

Γ ⊢ StatementSeq (s ss)→τ Union (StatementSeq (s' ss') StatementSeq (s'' ss''))

EXPRESSION STATEMENT – VOID TYPE CONSTRAINT
Γ ⊢ e→⊤ e' () ≤ τ

Γ ⊢ ExpStatement (e)→τ ExpStatement (e')

EXPRESSION STATEMENT – NONVOID TYPE CONSTRAINT
() ̸≤ τ

Γ ⊢ ExpStatement (e)→τ Empty

RETURN
Γ ⊢ e→τ e'

Γ ⊢ Return (e)→τ Return (e')

WHILE
Γ ⊢ b→bool b' Γ ⊢ ss→τ ss′

Γ ⊢ While (b ss)→τ While (b' ss')

(a) Statements

IF-THEN-ELSE
Γ ⊢ guard→bool guard' Γ ⊢ then→τ then' Γ ⊢ else→τ else'

Γ ⊢ Ite (guard then else)→τ Ite (guard' then' else')

FUNCTION DECLARATION
Γ ⊢ guard→bool guard' Γ ⊢ then→τ then' Γ ⊢ else→τ else'

Γ ⊢ FunctionDecl (guard then else)→τ TernaryOp (guard' then' else')

LET BINDING COMPLETE LHS
(collapse type) == Some t (collapse var) == Some (ConstS v) v /∈ Γ
τ = (parse_type t) Γ + ((get_name var), τ, immutable) ⊢ rhs→τ rhs'

Γ ⊢ Let (var type rhs)→τ Let (var type rhs')

LET BINDING INCOMPLETE LHS
(collapse type) == Nothing ∨ (collapse var) == Nothing

Γ ⊢ Let (var type rhs)→τ Let (var type rhs)

(b) If-then-else, Function Declaration, Let Bindings

Figure 10: Type Pruning Rules for Statements

20

6.3.1 Benchmarks and Additional Data492

Context All TypeScript experiments used the following (somewhat dramatic) context in instruct493

mode:494

You are a very skilled coding assistant for the TypeScript programming language.495

An very important automated service will ask you to write a typescript function.496

The query begins with a comment describing the desired function behavior.497

Then, the query gives a signature for the function you are supposed to write.498

For example, a query might look like:499

500

```501

// Write a typescript function to add two numbers.502

function sum(left_addend: number, right_addend: number): number503

```504

505

Your response should be a correct implementation of the function.506

Start and end your solution with a codeblock using ```.507

For example:508

509

```510

function sum(left_addend: number, right_addend: number): number {511

return left_addend + right_addend;512

}513

```514

515

NEVER write the name of the language in your program.516

Do NOT use arrays, strings, lambdas, or comments.517

Do NOT write anything before or after your codeblock.518

ONLY output code.519

You MUST include type annotations.520

Your program MUST COMPILE AS WRITTEN OR LIVES WILL BE LOST.521

Benchmarks We ran our experiments on the following 74 benchmarks from the MBPP [4] bench-522

marks available in the MultiPL-E dataset [7]:523

mbpp_80_tetrahedral_number524

mbpp_392_get_max_sum525

mbpp_171_perimeter_pentagon526

mbpp_127_multiply_int527

mbpp_435_last_Digit528

mbpp_287_square_Sum529

mbpp_606_radian_degree530

mbpp_803_is_perfect_square531

mbpp_731_lateralsurface_cone532

mbpp_581_surface_Area533

mbpp_135_hexagonal_num534

mbpp_739_find_Index535

mbpp_17_square_perimeter536

mbpp_77_is_Diff537

mbpp_126_sum538

mbpp_266_lateralsurface_cube539

mbpp_797_sum_in_range540

mbpp_3_is_not_prime541

mbpp_458_rectangle_area542

mbpp_441_surfacearea_cube543

mbpp_162_sum_series544

mbpp_448_cal_sum545

mbpp_738_geometric_sum546

mbpp_239_get_total_number_of_sequences547

21

mbpp_59_is_octagonal548

mbpp_638_wind_chill549

mbpp_577_last_Digit_Factorial550

mbpp_84_sequence551

mbpp_724_power_base_sum552

mbpp_641_is_nonagonal553

mbpp_279_is_num_decagonal554

mbpp_72_dif_Square555

mbpp_781_count_divisors556

mbpp_309_maximum557

mbpp_295_sum_div558

mbpp_14_find_Volume559

mbpp_167_next_power_of_2560

mbpp_600_is_Even561

mbpp_742_area_tetrahedron562

mbpp_432_median_trapezium563

mbpp_234_volume_cube564

mbpp_422_find_Average_Of_Cube565

mbpp_292_find566

mbpp_389_find_lucas567

mbpp_227_min_of_three568

mbpp_388_highest_Power_of_2569

mbpp_271_even_Power_Sum570

mbpp_67_bell_number571

mbpp_274_even_binomial_Coeff_Sum572

mbpp_86_centered_hexagonal_number573

mbpp_574_surfacearea_cylinder574

mbpp_430_parabola_directrix575

mbpp_406_find_Parity576

mbpp_605_prime_num577

mbpp_264_dog_age578

mbpp_770_odd_num_sum579

mbpp_453_sumofFactors580

mbpp_244_next_Perfect_Square581

mbpp_93_power582

mbpp_291_count_no_of_ways583

mbpp_637_noprofit_noloss584

mbpp_293_otherside_rightangle585

mbpp_592_sum_Of_product586

mbpp_256_count_Primes_nums587

mbpp_479_first_Digit588

mbpp_267_square_Sum589

mbpp_58_opposite_Signs590

mbpp_103_eulerian_num591

mbpp_20_is_woodall592

mbpp_96_divisor593

mbpp_404_minimum594

mbpp_752_jacobsthal_num595

mbpp_765_is_polite596

mbpp_801_test_three_equal597

22

(a) TypeScript, DeepSeek-Coder-6.7b, all tem-
peratures (b) TypeScript, CodeLlama7B, all temperatures

(c) TypeScript, CodeLlama13B, all temperatures

Figure 11: Distribution of how many tokens were proven unrealizably by semantic constrained
decoding to produce each individual token. The kth bar gives the number of successful tokens that
were produced after trying between 5k and 5k + 4 unsuccesful tokens by CodeLlama-7b.

Additional Results We include the total number of guesses required per token for each of our598

three generation modes in Figure 11.599

6.4 Equivalence-Guided Decoding600

6.4.1 Benchmarks and Additional Data.601

Context. The equivalence benchmarks use the following context. The last line is removed for the602

NO-DELIMIT experiments.603

You are a code refactoring assistant for a simple functional language.604

The language consists of expressions which are either identifiers, integers,605

basic arithmetic operations, function application, and let expressions.606

The only binary operators are +, -, *, and /.607

All other functions (for example, sqrt or pow) are named---608

ONLY use names appearing in the original program.609

610

As examples, syntactically valid programs would include:611

612

```613

let x = sqrt 42 in614

let y = pow (f x) 2 in615

y - 3616

```617

618

and619

620

```621

f x + g y622

```623

23

624

Your job is to refactor programs into *equivalent* ones which also625

have clear, readable style using let bindings when helpful.626

Never introduce new features not in the language.627

Never include comments or explanations.628

ONLY output code, then IMMEDIATELY stop.629

Never redefine variables in the original program630

or that have already been defined.631

632

Start and end your solution with a codeblock using ```.633

Benchmarks. We show the 10 benchmark programs we used below.634

1. fetch_document (authorize_user_for_document (635

authenticate_user current_user web_request) document_id)636

637

2. sqrt (pow (x1 - x2) 2 + pow (y1 - y2) 2)638

639

3. pow 10 (-15) * (66743 * m1 * m2) / (pow r 2)640

641

4. add_watermark (apply_filter (642

crop_image original_image selection) filter_type) watermark_image643

644

5. start + (end - start) * scale645

646

6. (sum (filter positive xs)) / (length (filter positive xs))647

648

7. power / 1000 * hours * price_per_kwh649

650

8. (-b + sqrt ((pow b 2) - 4 * a * c)) / (2 * a)651

652

9. map toUpper (filter isAlpha s)653

654

10. sqrt ((pow (a - ((a+b+c)/3)) 2) +655

(pow (b - ((a+b+c)/3)) 2) + (pow (c - ((a+b+c)/3)) 2)) / 3656

Egglog file. We show the Egglog file defining the rewrites for the initial e-graph below. It encodes657

basic arithmetic rules.658

(datatype Math659

(Num i64)660

(Str String)661

(Var String)662

(Add Math Math)663

(Sub Math Math)664

(Neg Math)665

(Pow Math Math)666

(Sqrt Math)667

(Mul Math Math)668

(Div Math Math)669

(App Math Math))670

671

(rewrite (Add a b)672

(Add b a))673

674

(rewrite (Add (Num a) (Num b))675

(Num (+ a b)))676

677

(rewrite (Add (Add a b) c)678

24

(Add a (Add b c)))679

680

(rewrite (Neg a)681

(Sub (Num 0) a))682

683

(rewrite (Sub (Num 0) a)684

(Neg a))685

686

(rewrite (Sub a b)687

(Add a (Mul (Num -1) b)))688

689

(rewrite (Sub (Num a) (Num b))690

(Num (- a b)))691

692

(rewrite (Mul a b)693

(Mul b a))694

695

(rewrite (Mul (Num a) (Num b))696

(Num (* a b)))697

698

(rewrite (Mul (Mul a b) c)699

(Mul a (Mul b c)))700

701

(rewrite (Mul a (Add b c))702

(Add (Mul a b) (Mul a c)))703

704

(rewrite (Div a b)705

(Mul a (Div (Num 1) b)))706

707

(rewrite (Mul a (Div (Num 1) b))708

(Div a b))709

710

(rewrite (Div (Num 1) (Mul b c))711

(Mul (Div (Num 1) b) (Div (Num 1) c)))712

713

(rewrite (Mul (Div (Num 1) b) (Div (Num 1) c))714

(Div (Num 1) (Mul b c)))715

25

	Introduction
	Overview of ChopChop
	Semantic Constrained Decoding as Realizability
	Analyzing Prefixes of Programs

	Evaluation
	Equivalence-Guided Decoding
	Type-Safe Decoding
	Results

	Related Work
	Conclusion
	Appendix
	Models, Parameters and Hardware
	Lexing
	TypeScript Typechecking
	Benchmarks and Additional Data

	Equivalence-Guided Decoding
	Benchmarks and Additional Data.

