o o b~ 0w N =

16
17
18
19

20
21
22
23

24
25
26
27
28
29
30
31

32

33
34

CHOPCHOP: Semantically Constraining the Code
Output of Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

Language models (LMs) can generate code, but cannot guarantee its correct-
ness—producing outputs that often violate type safety, program invariants, or se-
mantic equivalence. Constrained decoding offers a solution by restricting genera-
tion to programs that satisfy desired properties. Yet, existing methods are limited
to shallow syntactic constraints or rely on brittle, ad hoc encodings of semantics
over token sequences.

We present CHOPCHOP, the first programmable framework for semantic con-
strained decoding, enabling LMs to generate code that provably satisfies rich se-
mantic properties. CHOPCHOP enables construction of constrained decoders that
incorporate advanced formal methods by connecting token-level generation with
reasoning over abstract program structures. It is the first system capable of con-
straining an LM to only generate programs that are provably equivalent to a sup-
plied reference program. We also show that it can naturally implement existing
applications, such as type-constrained decoding for TypeScript.

1 Introduction

Language models (LMs) have fundamentally transformed how we interact with code—generating
functions, completing boilerplate, and even suggesting entire programs. Yet, despite their success,
LMs offer no guarantees of correctness: they produce code that looks plausible but often violates
critical syntactic or semantic properties.

Constrained decoding has emerged as a promising solution to this problem [31} 32} [10l [T} 23]]. In
constrained decoding, a language model generates a sequence one token at a time, but the next token
is chosen not only for its likelihood, but also based on whether extending the current output with
that token could ultimately produce a program that satisfies a user-defined constraint.

However, existing constrained decoding techniques are limited in scope. Early methods focused
solely on syntactic correctness—e.g., enforcing that outputs conform to a context-free grammar
(CFG). More recent techniques attempt to enforce richer constraints like type safety [23] or runtime
properties [1]], but do so via ad hoc treatments in which constraints are expressed on the level of raw
text. These approaches are inherently brittle because they do not operate over the formal structure of
programs—as abstract syntax trees. Moreover, they preclude integration with more advanced formal
methods for reasoning about deep semantic properties—such as program equivalence or adherence
to complex invariants—as such methods are fundamentally defined over abstract syntax.

In this paper, we ask:

Can we design a principled, programmable framework for constrained decoding that enforces deep
semantic properties—over programs instead of token sequences?

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

41
42
43
44

45
46
47
48

49
50
51
52
53
54
55

56

57
58
59
60

61
62
63

64

65

66

67
68
69

70
71

Achieving this goal introduces two major challenges.

1. Bridging the syntax-semantics gap. Formal methods reason about semantic properties
over abstract syntax trees (ASTs), while language models generate concrete syntax one
token at a time. Enforcing semantic constraints during decoding thus requires translating
between the evolving token prefix and the corresponding space of possible ASTs the prefix
might generate.

2. Dealing with partial programs. Traditional program analyses operate on complete pro-
grams. But in constrained decoding, we must decide—incrementally, as each token is
produced—whether a partial prefix could still yield a program that satisfies the desired
constraint.

Our approach. We present CHOPCHOP, the first unified, programmable framework for semantic
constrained decoding over the abstract syntax of programs. The key idea is to reduce constrained
decoding to a problem in the program synthesis literature: realizability, the task of determining
whether a (possibly infinite) space of programs contains one that satisfies a specified property.

As the LM emits tokens, CHOPCHOP constructs a symbolic representation (as a regular tree gram-
mar) of the set of all ASTs that are syntactically valid completions of the current prefix. CHOPCHOP
then analyzes this representation using a user-provided analysis—which is defined at the level of ab-
stract syntax—and checks realizability with respect to the propety the analysis enforces. If there
does not exist a valid program in this space, the proposed token is rejected and an alternative is
tried. This pipeline ensures that every accepted token keeps the generation process on track toward
satisfying the semantic constraints.

Applications. We demonstrate the generality of CHOPCHOP through two diverse applications:

* Program Equivalence-Guided Decoding: We constrain a language model to generate
programs equivalent, modulo term rewriting, to a reference program. The analysis works
by using a data structure known as an e-graph to efficiently reason about equivalence classes
of ASTs.

» Type-Safe Decoding: We constrain a language model to emit only well-typed programs
in a subset of TypeScript. The analysis is natural to define, as like a normal typechecker it
operates over the level of abstract syntax.

2 Overview of ChopChop

We illustrate our approach with the following example task:
Generate a sum of odd integers whose total is even.

For instance, the expression 5 + 7 is a valid solution: all summands are odd and the total is even.
If we prompt a language model (LM) with this task, there is no guarantee it will succeed. It might
produce a sum with even numbers (2 + 2), anodd total (1 + 1 + 1), or nonsensical output (banana).

CHOPCHOP enables users to enforce such constraints (i.e., that the summands are odd and the sum
is even) on the LM by providing two inputs:

1. A parser definition for translating strings generated by the language model to ASTs.

2. A set of semantic pruners, each representing a constraint over sets of possible ASTs, used
to prune invalid programs. (see odds and even_sum in Figures [3aand 3b). A pruner is a
function that takes a representation of a set of possible abstract syntax trees (ASTs) and
returns the subset where ASTs that do not satisfy the constraint have been removed.

Given these inputs, CHOPCHOP interacts with the LM to guarantee that any generated program is
syntactically valid and satisfies the provided semantic constraints.

79

80
81
82
83
84
85

86
87
88
89
90
91
92
93

94
95
96
97
98

99
100
101
102
103
104

106

107
108
109
110

111

112

113
114

115
116

117

118

119
120

n

int := [1-9][0-9]* E ::=int {Fj.ast = Lit int.value}
| E + int {Fj.ast = Sum F5.ast int.ast}

Figure 1: A parser definition for the language of integer sums. The AST of an integer literal “int”
is its value; that of “int + E” is a sum node Sum int.ast FEs.ast. Left-recursive grammars are
handled by CHOPCHOP.

2.1 Semantic Constrained Decoding as Realizability

A trivial way to ensure constraint satisfaction is to let the LM generate a full program, check whether
it satisfies the constraints, and retry if it does not; this approach is called “rejection sampling”
and is, in general, very inefficient (Section [3| presents settings in which some LMs never produce
valid programs using this approach!) Ideally, instead, we would like to rule out “doomed” program
prefixes as soon as the LM generates them: for example, if the LM generates the prefix 2 +, there is
no point continuing, since any completion will include the even number 2, violating our constraint.

Therefore, instead of producing full programs and verifying them afterwards, CHOPCHOP follows
the approach called constrained decoding [31} 132} [10, [1} 23], which restricts the LM’s choices of
next tokens during generation. For example, say the already generated prefix is 2, and the LM’s
top two choices for the next token are + and 2. CHOPCHOP would disallow +, since it leads to the
“doomed” prefix 2 +, and instead 2 will be chosen, since it can still lead to a valid completion (e.g.,
221 + 9). We refer to this process as semantic constrained decoding (SemCD), because it prunes
the LM’s choices based on semantic constraints over ASTs as opposed to syntactic constrained
decoding (SynCD), which enforces shallow syntactic properties of the token stream.

To constrain what tokens to allow, CHOPCHOP incrementally constructs a program space—a sym-
bolic representation of all possible ASTs that can be generated from the current token prefix using
the user-provided parser; it then invokes the user-defined semantic pruners (in our example, odds
and even_sum) to prune this space and remove semantically incorrect programs, and checks whether
at least one valid completion remains in the resulting program space.

By drawing a connection to concepts used in program synthesis [12]], this process can be formalized
as an (approximate) realizability checker, realizable(w,), which determines whether the current
token prefix w can still be extended to a program whose AST satisfies the constraint. If the answer
is negative, the LM proposes an alternative token and the process repeats until a realizable prefix is
found. This symbolic, programmable, semantics-aware pruning enables LMs to generate only pro-
grams that satisfy rich semantic properties—without modifying the model, manually rewriting AST
constraints to operate on the string-representation of programs, or relying on token-level heuristics.

2.2 Analyzing Prefixes of Programs

Although realizable(w, o) takes a concrete token prefix as input, it fundamentally asks a semantic
question: Does there exist a program, consistent with the prefix w, that satisfies the constraint p?
Answering this question requires reasoning not about a single program, but about the (potentially
infinite) space of ASTs that can be built by completing w.

We tackle this problem by breaking it into four conceptual and algorithmic subgoals:

1. Representation: How can we finitely describe an infinite program space?

2. Completion: Given a prefix w, how can we algorithmically construct the program space of
all ASTs consistent with w?

3. Pruning: Given a program space X, how can we compute or approximate the subset pro-
gram space X' C X of ASTs that satisfy a semantic constraint ¢?

4. Non-Emptiness: Given a pruned space X', how can we check whether X’ is non-empty?
Goals 3 and 4 may seem redundant: why not check directly whether any AST in X satisfies ¢?

Unfortunately, this problem is undecidable in general, even when checking ¢ is decidable for indi-
vidual ASTs [[16,[17]. Our decomposition reflects a trade-off: rather than requiring satisfiability of ¢

121
122
123
124

125

126
127

128
129

131
132
133

134
135

136
137

139
140
141

142
143
144

N

Program Space

Prefix Lexer Lexical Prefixes Parser Prog-space = '
110 [ran, e, m2n] ——> Union [Sum (Lit "1") (Lit "2"),
["1", "+, "2[0-9]%"] Sum (Sum (Lit "1") (Lit "2")) ...,
Sum (Sum (Lit "1") (Lit "2[0-91%")) ...]
. . Apply Pruners:
Continue Decoding even_sum(odds (prog_space))
Nerue Pruned Space

pruned_prog_space =
nonempty (pruned_prog_space) <— Union [Empty,
Empty,
Halse Sum (Sum (Lit "1") (Lit "2[0-91%")) ...]

Discard Prefix

Figure 2: Flow of CHOPCHOP on prefix 1+2. The prefix is lexed into possible lexical sequences,
parsed into a symbolic program space, semantically pruned, and checked for nonemptiness to deter-
mine realizability. If realizble, the prefix may be extended. If unrealizable, the prefix is discarded.

to be decidable over program spaces, we instead rely on user-supplied approximate pruners (Goal 3)
and implement a fixed, automated check for non-emptiness (Goal 4). This gives users control over
the level of approximation, allowing them to express rich constraints while maintaining tractable
reasoning over infinite program spaces.

In the rest of the section, we describe our approach following the overview given in Figure 2]

Goal 1: Representing Infinite Program Spaces The following datatype describes the abstract
syntax used in our running example:

data Expr = Lit String -- a numeric literal, e.g., Lit "5"
| Sum Expr Expr -- sum of two expressions

An element of the above datatype represents the abstract syntax tree for a single program. To repre-
sent program spaces (i.e., potentially infinite sets of programs), we lift the definition of Expr:

data ExprSpace = Empty -- empty program space
| Union [ExprSpacel] -- unton of multiple spaces
| Lit Regex -- set of literals described by a regezx
| Sum ExprSpace ExprSpace -- Sum operator applied to two subspaces

For example, the space Sum left right is formed via a cartesian product of all the ASTs in the
spaces left and right, i.e. the set {Sum e; e3 | e; € left,es € right}. Readers familiar with
version space algebra [19, 28] will recognize this as a version space, where Union is the union node
and Sum is a join node.

One subtlety is that program spaces can contain cycles. For example, the infinite space consisting of
all sums of integers can be represented using the following recursive definition:

all = Union [Lit "[1-9][0-9]#", Sum all all]

Note that even though al1l is infinitely recursive, it has a finite representation in memory as a cyclic
term—i.e., there is no reason to infinitely unroll the recursion. In the current implementation of
CHOPCHOP, all program spaces are regular and represented using this finite, cyclic form. To manip-
ulate such cyclic terms, we implement a solver inspired by CoCaml [14]], which supports equational
reasoning for terms with cycles. This allows us to perform computations over program spaces—e.g.,
applying transformations such as odds and even_sum (Figure [B)—without materializing infinite sets.

Goal 2: Computing the Program Space Consistent with a Prefix Given a concrete string prefix
w, our goal is to compute the program space that contains all ASTs that can be parsed from any
completion of w using the user-defined parser (Figure).

(O N N

[Y R N e N

o =

145
146

147
148

149

150
151
152
153
154
155

156
157
158
159
160
161
162

163
164

165
166
167
168
169

170
171

172

odds :: ExprSpace -> ExprSpace

odds Empty = Empty
odds (Union children) = Union (map odds children)
odds (Lit regex) = Lit (regex “intersect™ "[0-9]1%[13579]") -- only odd

odds (Sum left right)

Sum (odds left) (odds right)

(a) odds pruner: retains only programs using odd literals.
even_sum :: ExprSpace -> ExprSpace
even_sum Empty = Empty
even_sum (Union children) = Union (map even_sum children)
even_sum (Lit regex) Lit (intersect regex "[0-9]%[02468]") -- only even
even_sum (Sum left right) = Union (Sum (even_sum left) (even_sum right))
(Sum (odd_sum left) (odd_sum right))

odd_sum :: ExprSpace -> ExprSpace
-— Analogous to even_sum

(b) even_sum pruner: retains programs whose total evaluates to an even number.

Figure 3: Example semantic pruners.

We begin by lexing w into a finite set of lexical prefixes. For example, take w = 1+2. This has two
valid lexical prefixes:

e [mim,m+m m2"]: where the next character is non-numeric (e.g., the full string might be
1+2+3);

e ["1m, "+, "2[0-9]1+"]: where the next character continues the numeric literal (e.g., 1+21).

Given a lexical prefix, we use the user-supplied parser to compute the corresponding program space.
To this end, we use a derivative-based parser, following the approach of [21]. In our framework,
a parser can be modeled as a cyclic object that encodes the future parses of a stream of lexemeﬂ
Critically, parsers support a derivative operation, derivative parser w that advances the parser
state by consuming a sequence of lexemes w, analogous to Brzozowski derivatives for regular ex-
pressions [6].

For each lexical prefix—e.g., ["1","+","2"]—we start from the user-provided parser and apply
successive derivatives for each lexeme in the prefix; this results in a parser that accepts exactly those
programs that begin with the given lexical prefix. Finally, we convert each derived parser into a
corresponding program space (essentially by discarding the information about concrete syntax), and
combine the program spaces from different lexical prefixes using the Union constructor. For our ex-
ample, the prefixes ["1","+","2"] and ["1","+","2[0-9]*"] together would induce the following
program space prog_space:

Union [Sum (Lit "1") (Lit "2"), —= ["1m, "+, "20"] followed by END
Sum (Sum (Lit "1") (Lit "2")) e, ~—— ["1","+","2"] followed by + E
Sum (Sum (th ||1||> (th "2[0_9]*”)) e] —_— [lll H’ u+u’ 112[0_9]*71]

where e = Union [Lit "[1-9][0-9]#", Sum (Lit "[1-9][0-9]1%") e] represents the space of
programs derivable from the nonterminal E in Figure[l}

Goal 3: Pruning the Program Space to Satisfy Semantic Constraints To prune away seman-
tically incorrect programs, a user supplies semantic pruners. A semantic pruner is a co-recursive
function that takes a program space X and returns the sub-space X’ C X of ASTs that satisfy a
semantic constraintPruners can be composed to enforce conjunctions of constraints, allowing users
to modularly define and reuse semantic constraints across tasks.

For our running example, we supply two pruners, odds and even_sum, shown in Figure[3] To obtain
the pruned space pruned_prog_space, we apply the two pruners in sequence:

pruned_prog_space = even_sum(odds(prog_space))

To get a sense of how a pruner is applied to program space, consider the inner application:

"We use the term lexeme for programming-language tokens to avoid confusion with LM tokens.

173
174
175
176

177
178
179
180
181
182

183
184

186
187
188
189

191
192
193
194
195
196

197

198
199

200

201
202
203
204
205

207
208
209

210
211

L= Y N e N

odds (Union [Sum (Lit "1") (Lit "2"), ...]) => -- distribute over union
Union [odds (Sum (Lit "1") (Lit "2")), ...]1 => -- distribute over sum
Union [Sum (Lit (intersect "1" "[0-9]*[13579]"))

(Lit (intersect "2" "[0-9]*[13579]1")), ...] =>
Union [Sum (Lit "1") Empty, ...] =>
Union [Empty, ...]

In other words, odds will prune away the first two sub-spaces of the union in prog_space, since they
contain even numbers. Note, however, that because the other two sub-spaces of the union (omitted
under the ellipsis) are cyclic terms, applying the pruner to them does not necessarily reduce to a
normal form; hence the task of checking emptiness for pruned sub-spaces is non-trivial.

Goal 4: Deciding Nonemptiness of the Pruned Space The final step in computing
realizable(w,) is to check whether the pruned program space X’ is non-empty. To this end, CHOP-
CHOP implements the function nonempty :: ExprSpace -> Bool, which performs a fixpoint com-
putation over a cyclic object representing X’. In our example, nonempty determines that the third
sub-space of the union in pruned_prog_space is non-empty, and hence the whole union is non-
empty.

Together, the four components—Ilexing, parser derivatives, user-defined pruners, and the nonempti-
ness check—enable us to compute realizable(w,) for our running example as:

nonempty (even_sum (odds (derivative parser w)))

CHOPCHOP unifies syntactic parsing and semantic constraint enforcement within a single sym-
bolic framework. This pipeline is efficient, modular, and requires minimal effort from the user:
they define a parser and supply composable pruners for each constraint. CHOPCHOP handles the
rest—automatically enforcing semantic constraints during generation without modifying the under-
lying LM.

3 Evaluation

We demonstrate the generality of our framework by instantiating it for two domains, described
in more detail below: enforcing semantic equivalence for a basic functional language and enforcing
type safety for TypeScript. Enforcing semantic equivalence via constrained decoding is a completely
novel application made possible only by our technique. It is an example of a constraint that is
fundamentally beyond the capability of existing approaches. To evaluate, we compare our semantic
constrained decoders written in CHOPCHOP to the following baselines:

* Unconstrained Decoding: The LM generates code without any constraints.

* Grammar-Constrained Decoding (GCD): The LM must produce syntactically valid programs
(enforced via a grammar), but no semantic restrictions are applied.

Procedure

We evaluate using a variety of models at different temperatures: a detailed description of our exper-
imental setup is in Appendix For each benchmark, model, decoder, and temperature, we run
constrained decoding until either: (i) the END token is generated, or (ii) a fixed token budget (set
to 400) is exhausted. or (iii) a 150 second timeout is reached. We only implement a naive sampling
strategy where if a token is rejected, we backtrack by one token and re-sample with that token re-
moved. Constrained decoders may fail if they use up their token or time budget without completing
a valid program—especially if the LM repeatedly proposes unrealizable tokens that must be pruned.
Unconstrained decoders may also fail to terminate if the model does not emit an END token withing
the budget.

A run is considered successful if: (i) A complete program is emitted, and (i) It satisfies the semantic
constraints of the task (i.e., equivalence or type safety).

212

213
214
215
216

217

218
219
220
221
222
223
224
225
226
227

228
229
230
231

232
233
234
235
236
237
238
239
240

241

242
243
244
245
246
247
248

249

251

252
253

W =

O

3.1 Equivalence-Guided Decoding

In this case study, the LM is given expressions in a basic functional language and is asked to refactor
them into equivalent programs. The language consists of basic arithmetic operators, identifiers, inte-
ger constants, function applications, and let bindings. For example, consider the following program
that computes the distance between two points.

sqrt (pow (x2 - x1) 2 + pow (y2 - y1) 2)

A valid output for the LM might be:

let dx = x2 - x1 in
let dy = y2 - y1 in
sqrt (pow dy 2 + pow dx 2)

To represent the program space of equivalent programs, CHOPCHOP uses an e-graph [33], a
data structure for compactly representing spaces of equivalent programs. Equivalences are de-
fined in terms of a list of rewrite rules. For example, the rule * + y — y + x encodes
the commutativity of addition. Then, given an initial program, these rules are iteratively ap-
plied (up to a fixed budget) to matching subterms to generate a space of programs that can be
proven equivalent to the original using the given rewrite rules. In the above example for instance,
pow (y2 - y1) 2) + sqrt (pow (x2 - x1) 2 would be an equivalent program stored in the e-
graph. To build the e-graphs, CHOPCHOP uses the egglog library [34]. For our case study, we
define a set of basic rewrite rules for arithmetic expressions (ones with addition, subtraction, multi-
plication, and division).

The set of terms an e-graph represents forms a regular tree language and can be represented as a
finite tree automata [29]]. This is useful because regular tree languages are closed under intersection:
our decoder works by intersecting the prefix space at each step with the tree automata corresponding
to the e-graph, then checking that the intersection is nonempty.

We created 10 benchmark tasks in the basic functional language, where the goal is to refactor a
program into an equivalent one—e.g., factoring out subexpressions into let bindings. We use a
fixed system prompt that specifies the grammar of the language and instructs the model to return
only a refactored program with no explanation. We count a response as correct if the LM produces
a complete program that is equivalent to the input program, with no post-processing. Unconstrained
decoding often fails to produce just the output code, despite being explicitly instructed to do so.
Therefore, we also evaluate a variant where the prompt wraps outputs in triple backticks (*~~) to
encourage the model to delimit its code clearly. This avoids penalizing runs that fail only due to
formatting. We refer to the two variants as No Delimit and Delimit, respectively.

3.2 Type-Safe Decoding

For our second instantiation of CHOPCHOP, we implemented a type-constrained decoder for a subset
of typescript. To simplify the implementation, we restrict our attention to a syntactic subset of
TypeScript that omits certain features such as strings, arrays, lambda abstractions, and property
accesses. We source benchmarks from the TypeScript translations of the MBPP [4]] tasks from the
MultiPL-E dataset [[7] and extracted the 74/809 tasks that can be solved in our language fragment.
We provide context to the LM which instructs it to avoid language constructs outside our language
fragment.

An example task is given below:
// Write a typescript function to find the next perfect square
// greater than a given number.

function next_Perfect_Square(N: number) : number

We count a response as correct if the generated TypeScript program compiles.

3.3 Results

Effectiveness Table [I| reports the number of successful runs for CHOPCHOP and the two
baselines—unconstrained decoding and grammar-constrained decoding—on all benchmarks.

254
255

256
257
258
259
260
261
262

264

266
267
268
269

270
271
272
273
274

275

276
277
278
279
280
281
282
283

Table 1: Successful generations for different decoding strategies across models and temperatures
(higher is better). For equivalence-guided decoding we report the number of benchmarks for which
an equivalent program was produced. For TypeScript we report the number of benchmarks on which
compilable code was produced. Best results per column are bolded.

DeepSeek-Coder-6.7b CodeLlama-7B CodeLlama-13B
Temperature Temperature Temperature

001 03 05 07 1.0 ™ Joo1 03 0s 07 10:™ o001 03 05 07 10 T

Equivalence Unconstrained | 0 0 0 0 0 : 0 0 o 0 0 0 : 0 0 0 0 0 0 : 0

No Delimit Grammar 0 0 0 0 0o, 0 0 0 0 0 0, 0 0 0 0 0 0o, 0

(10 programs) Semantic 7 7 8 8 3133 8 9 9 9 8 1 43 10 8 8§ 10 6 ' 42
“Equivalence ~ Unconstrained | "0~ ~ 0~ 0 0 0 T 0 [332 371 7:7 214 2 2 3 2 4‘ 130
Delimit Grammar 0 0 0 0 101 3 4 6 4 1+ 18 4 5 2 2 01 13
(10 programs) Semantic 10 10 8 9 8 : 45 9 10 10 6 6 : 41 9 8 7 8 6 : 38
TypeScript Unconstrained 0 0 0 0 0 : 0 72 71 70 60 29 : 302 71 68 65 52 12 : 268
(74 programs) Grammar 0 0 0 0 2, 2 69 65 57 57 30,278 | 66 63 59 47 19 | 254
prog Semantic 52 49 54 46 31 1232 | 71 73 71 67 49 1331 | 69 69 66 59 42 305

Table 2: Overhead of checking realizability in semantic constrained decoding (milliseconds/pro-
duced token).

DeepSeek-Coder-6.7b CodeLlama-7B CodeLlama-13B
Overhead in ms/token Temperature Temperature Temperature
001 03 05 07 110|001 03 05 07 10]001 03 05 07 1.0
Equiv No Delimit 225 221 199 233 216 | 159 77 74 77 161 58 68 67 61 142
Equiv Delimit 82 73 564 198 162 50 55 65 121 156 63 74 79 49 128
TypeScript 364 347 343 290 236 | 240 207 253 223 356 | 301 228 236 274 323

Across nearly all configurations, semantic constrained decoding delivers consistent and often dra-
matic improvements.

Unconstrained, most models perform very poorly on our equivalence benchmarks, with most fail-
ing to generate even a single semantically equivalent program. Several factors contribute to this:
(i) We intentionally use small- and medium-sized models, which highlight the gains possible even
for less capable models. (if) The toy language used in the benchmarks is likely out-of-distribution
for most pretrained LMs, which are tuned on real-world languages like Python and JavaScript. In
particular, DeepSeek-Coder-6.7B frequently attempts to write Python, Lisp, or TypesScript code,
and fails all benchmarks without semantic constraints as a result. (iii) Despite clear instructions,
models frequently emit natural language explanations, markdown, or commentary—none of which
are semantically valid outputs under our equivalence checker.

Overhead Table|2[shows the average overhead of semantic constrained decoding (in ms) per gen-
erated token. Overhead on decoding time range from tens to a few hundred milliseconds per token,
which is a very small price to pay for assurance provided by semantic constrained decoding. As
a reference, on our hardware, CodeLlama-13B takes on average 81 ms to produce a token when
unconstrained.

To better illustrate the source of the overhead, Figure [plots the distribution of the number of
tokens that are tried before finding a realizable one, for CodeLLLama-7B. In general, even with
semantic constrained decoding the first token tried is accepted most of the times, which is expected
as typically LM only have high entropy for specific tokens that are particularly relevant to the final
output.

4 Related Work

Constrained decoding. Constrained decoding techniques ensure the output of language models
meets a given specification by throwing away invalid next tokens at each step. Grammar-constrained
decoding, in which the constraint is given as a context-free grammar, has been well studied [30, [L1}
32,131, 25, [10]. A significant portion of CHOPCHOP’s runtime is spent pruning tokens that fail
simple syntactic validity. Integrating fast syntactic filtering tools such as LLGuidance [22] as a pre-
processing step could greatly reduce this cost by eliminating invalid tokens early. Beyond syntax,
more recent work has explored enforcing specific semantic constraints such as type safety [23].
Frameworks such as monitors [1] and completion engines [27]] provide abstractions for providing

284
285
286
287
288
289

291
292
293
294

295
296
297
298
299
300
301
302
303

305
306
307
308
309
310

311

312
313
314
315
316
317

Number of Tokens Tried Per Success

. Number of Tokens Tried Per Success
10 Semantics
mmm Grammar 104 Semantics
z B Grammar
g10” >10°
3 [}
o c
[[
= 101 ;7102
w
10t
10040l , ,
0 25 50 75 100 125 100 Ll .. .
Number of Tokens Tried 0 25 50 75 100 125
. Number of Tokens Tried
(a) Equivalence, CodeLlama-7b, all tempera-
tures (b) Typescript, CodeLlama-7b, all temperatures

Figure 4: Distribution of how many tokens were proven unrealizably by semantic constrained de-
coding to produce each individual token. The kth bar gives the number of successful tokens that
were produced after trying between 5k and 5k + 4 unsuccesful tokens by CodeLlama-7b.

more complex constraints by allowing a user to provide a monitor (written in a general purpose
language) that performs the decoding. The main difference between our work and those techniques
is that they require the user to write checkers over strings. By contrast, our approach operates at the
level of abstract syntax, abstracting away the syntactic component and allowing the user to define
pruners at the level of program spaces, thus enabling new applications such as equivalence-guided
decoding.

Algebraic approaches to parsing. We build on a long line of work viewing parsers and grammars
as algebraic, recursive structures [[18 20]. Might et al. [21]] presents a functional approach to parsing
based on applying Brzozowski derivatives to parser combinators. Zipper-based variants such as
[8L 9] reduce redundant traversals in the basic version of PwD to improve efficiency. Integrating
these techniques into our implementation could be another avenue to improve performance.

Regular coinduction. Our implementation relies on regular coinduction to represent and manipu-
late cyclic program spaces. CoCaml [14}15] is a framework to unambiguously define and compute
recursive functions over regular codata. Because some recursive functions admit more than one in-
terpretation on codata, the CoCaml language allows users to define custom solvers implement their
desired semantics. We do not use the CoCaml language directly. However, our Python backend han-
dles the computation of corecursive functions which produce codata (e.g., our pruners) with a solver
analogous to the corec solver presented in [14]. Our backend’s solver for efixpoint-annotated
functions which compute concrete values over regular codata is analogous to the fixpoint solver
presented in [14].

Unrealizability and pruning in synthesis. Our approach draws inspiration from the concept of
unrealizability—the problem of determining whether no solution exists that satisfies a given spec-
ification [12]. Existing approaches to proving unrealizability [12| [13] typically focus on specific
synthesis domains, leveraging domain insights to solve particular tasks. Pruning, for example based
on types [24] or examples [3], to remove infeasible portions of the search space is a well-established
technique in program synthesis. Our work provides a framework to adapt these general methods
from traditional synthesis towards constraining the output of LLMs.

5 Conclusion

We introduced CHOPCHOP, a new framework for semantic constrained decoding that allows one to
impose semantic constraints directly on the abstract syntax trees representing programs (instead of
their string syntax). CHOPCHOP allows one to program constraints by providing semantic pruners—
recursive program operating over finite representations of the infinitely many programs the LM can
produce on a given prefix. This flexibility enables new applications—e.g., constraining the an LM
to only output programs that are equivalent (up to rewrite rules) to a given input program.

3

8

320
321
322
323
324
325
326

327
328

329
330
331
332

333
334
335
336

337
338
339
340

341
342

343
344
345
346
347

348
349

350
351
352
353

355
356
357
358

359
360
361
362

363
364
365
366
367

References

(1]

[2

—_—

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K. Lahiri, and Sriram K.
Rajamani. 2023. Monitor-Guided Decoding of Code LMs with Static Analysis of Repos-
itory Context. In Advances in Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (Eds.). Association for Computing Machinery,
New York, NY, USA, 1-11. http://papers.nips.cc/paper_files/paper/2023/hash/
662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Princi-
ples, Techniques, and Tools (2nd ed.). Pearson Education.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
2013. Syntax-Guided Synthesis. In Proceedings of the IEEE International Conference on
Formal Methods in Computer-Aided Design (FMCAD). 1-17.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. 2021. Program
Synthesis with Large Language Models. arXiv:2108.07732 [cs.PL] https://arxiv.org/
abs/2108.07732

Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In
Proceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented Pro-
gramming - Volume 8586. Springer-Verlag, Berlin, Heidelberg, 257-281. doi:10.1007/
978-3-662-44202-9_11

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964),
481-494. |do1:10.1145/321239.321249

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Don-
ald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Ar-
jun Guha, Michael Greenberg, and Abhinav Jangda. 2022. MultiPL-E: A Scalable and Ex-
tensible Approach to Benchmarking Neural Code Generation. arXiv:2208.08227 [cs.LG]
https://arxiv.org/abs/2208.08227

Pierce Darragh and Michael D. Adams. 2020. Parsing with zippers (functional pearl). Proc.
ACM Program. Lang. 4, ICFP, Article 108 (Aug. 2020), 28 pages. do1:10.1145/3408990

Romain Edelmann, Jad Hamza, and Viktor Kuncak. 2020. Zippy LL(1) parsing with deriva-
tives. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 1036-1051. |doi:10.1145/3385412.3385992

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023. Grammar-Constrained
Decoding for Structured NLP Tasks without Finetuning. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, Houda Bouamor, Juan Pino,
and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore. https:
//aclanthology.org/2023.emnlp-main.674

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. 2023. Grammar-Constrained
Decoding for Structured NLP Tasks without Finetuning. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing. https://openreview.net/forum?id=
KkHY1WGDIT

Qinheping Hu, Jason Breck, John Cyphert, Loris D’ Antoni, and Thomas Reps. 2019. Prov-
ing Unrealizability for Syntax-Guided Synthesis. In Computer Aided Verification: 31st Inter-
national Conference, CAV 2019, New York, NY, USA, July 13-17, 2019, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 11561). Springer, Springer, 335-352. |do0i:10.1007/
978-3-030-25540-4_18

10

http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/662b1774ba8845fc1fa3d1fc0177ceeb-Abstract-Conference.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/321239.321249
https://arxiv.org/abs/2208.08227
https://doi.org/10.1145/3408990
https://doi.org/10.1145/3385412.3385992
https://aclanthology.org/2023.emnlp-main.674
https://aclanthology.org/2023.emnlp-main.674
https://aclanthology.org/2023.emnlp-main.674
https://openreview.net/forum?id=KkHY1WGDII
https://openreview.net/forum?id=KkHY1WGDII
https://openreview.net/forum?id=KkHY1WGDII
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18
https://doi.org/10.1007/978-3-030-25540-4_18

368
369
370
371
372

373
374
375

376
377
378

379
380

381
382
383

384

393
394
395
396

406
407

408
409
410

411
412
413
414
415

[13] Qinheping Hu, John Cyphert, Loris D’ Antoni, and Thomas Reps. 2020. Exact and approximate
methods for proving unrealizability of syntax-guided synthesis problems. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA,
1128-1142. doi:10.1145/3385412.3385979

[14] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2017. CoCaml: Functional Pro-
gramming with Regular Coinductive Types. Fundam. Informaticae 150, 3-4 (2017), 347-377.
do1:10.3233/FI-2017-1473

[15] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. 2013. Language Constructs for
Non-Well-Founded Computation. In Programming Languages and Systems, Matthias Felleisen
and Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 61-80.

[16] Jinwoo Kim, Loris D’Antoni, and Thomas Reps. 2023. Unrealizability Logic. Proc. ACM
Program. Lang. 7, POPL, Article 23 (Jan. 2023), 30 pages. doi1:10.1145/3571216

[17] Jinwoo Kim, Shaan Nagy, Thomas Reps, and Loris D’ Antoni. 2025. Semantics of Sets of
Programs. Proc. ACM Program. Lang. 9, OOPSLAI, Article 110 (April 2025), 27 pages.
do1:10.1145/3720515

[18] Neelakantan R. Krishnaswami and Jeremy Yallop. 2019. A typed, algebraic approach to pars-
ing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery,
New York, NY, USA, 379-393. https://doi.org/10.1145/3314221.3314625

[19] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld. 2003. Programming
by Demonstration Using Version Space Algebra. Machine Learning 53, 1 (2003), 111-156.
do1:10.1023/A:1025671410623

[20] Hans Leif3. 1991. Towards Kleene Algebra with Recursion. In Proceedings of the 5th Workshop
on Computer Science Logic (CSL "91). Springer-Verlag, Berlin, Heidelberg, 242-256.

[21] Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing with derivatives: a func-
tional pearl. In Proceedings of the 16th ACM SIGPLAN International Conference on Func-
tional Programming (Tokyo, Japan) (ICFP ’11). Association for Computing Machinery, New
York, NY, USA, 189-195. doi1:10.1145/2034773.2034801

[22] Michatl Moskal, Hudson Cooper, Aaron Pham, Devise Lucato, Steph Wolski, and Ying Xiong.
2025. guidance-ai/llguidance. https://github.com/guidance-ai/llguidance

[23] Niels Miindler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. 2025.
Type-Constrained Code Generation with Language Models. Proc. ACM Program. Lang. 9,
PLDI, Article 171 (June 2025), 26 pages. doi:10.1145/3729274

[24] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program syn-
thesis. SIGPLAN Not. 50, 6 (June 2015), 619-630. doi:10.1145/2813885.2738007

[25] Kanghee Park, Timothy Zhou, and Loris D’ Antoni. 2025. Flexible and Efficient Grammar-
Constrained Decoding. arXiv:2502.05111 [cs.CL] https://arxiv.org/abs/2502.05111

[26] Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Transactions on
Programming Languages and Systems (TOPLAS) 22, 1 (2000), 1-44.

[27] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek,
and Sumit Gulwani. 2022. Synchromesh: Reliable code generation from pre-trained language
models. arXiv:2201.11227 [cs.LG] https://arxiv.org/abs/2201.11227

[28] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework for inductive pro-
gram synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Pittsburgh, PA, USA)
(OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107-126.
doi:10.1145/2814270.2814310

11

https://doi.org/10.1145/3385412.3385979
https://doi.org/10.3233/FI-2017-1473
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3720515
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1023/A:1025671410623
https://doi.org/10.1145/2034773.2034801
https://github.com/guidance-ai/llguidance
https://doi.org/10.1145/3729274
https://doi.org/10.1145/2813885.2738007
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2201.11227
https://doi.org/10.1145/2814270.2814310

416
417

418
419
420

421
422
423

424
425

426
427
428

429
430
431
432

[29] Dan Suciu, Yisu Remy Wang, and Yihong Zhang. 2025. Semantic foundations of equality
saturation. International Conference on Database Theory (2025).

[30] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. 2025.
SynCode: LLM Generation with Grammar Augmentation. Transactions on Machine Learning
Research (2025). https://openreview.net/forum?id=HiUZtgAPoH

[31] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A. Saurous, and Yoon Kim. 2023.
Grammar Prompting for Domain-Specific Language Generation with Large Language Mod-
els. arXiv:2305.19234 [cs.CL]

[32] Brandon T Willard and Rémi Louf. 2023. Efficient Guided Generation for Large Language
Models. arXiv e-prints (2023), arXiv—2307.

[33] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel
Panchekha. 2021. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang. 5,
POPL, Article 23 (Jan. 2021), 29 pages. |do1:10.1145/3434304

[34] Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal,
Zachary Tatlock, and Max Willsey. 2023. Better Together: Unifying Datalog and Equal-
ity Saturation. Proc. ACM Program. Lang. 7, PLDI, Article 125 (June 2023), 25 pages.
do1:10.1145/3591239

12

https://openreview.net/forum?id=HiUZtgAPoH
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3591239

433

434

435
436
437
438
439
440
441

442

443

444
445
446
447
448

449
450
451
452

453
454
455
456
457
458

459

6 Appendix

6.1 Models, Parameters and Hardware

We run all experiments using the instruction-tuned versions (i.e. models that are trained to fol-
low instructions in the prompt) of the following models: DeepSeek-Coder-6.7b, CodeLlama-
7B, and Codellama-13B. Each model is evaluated at five different sampling temperatures:
0.01,0.3,0.5,0.7,1.0. These ranges of small-to-medium models and low-to-high temperatures lets
us explore a range of model capability. We run all experiments on a Supermicro SYS-4029GP-TRT
with two Intel(R) Xeon(R) Gold 6230 CPUs, 384 GB RAM, a 4 TB SSD, and eight Nvidia Geforce
RTX 2080Ti GPUs.

6.2 Lexing

We open with a brief background on maximal munch lexing, the most widely used lexing formalism.

Maximal Munch Lexing A maximal munch lexer [2] is instantiated by a collection of disjoint
regular expressions, each of which corresponds to a different kind of lexeme. For example, we might
give the regex [1-9] [0-9] * to describe the set of strings representing integers, and the regexes true
and false to describe the strings encoding keywords true and false, respectively. We call these
regexes lexeme classes.

Given such a collection of disjoint regexes, a lex of a string w is a partition (wq,...,w,) of w so
that each w; matches one of the given regexes. These strings w; are called lexemes. The maximal
munch lex of w is the unique lex so that, for any other lex (w1, ...,w;,wj,y,...wp,), we have

Wil = @]l

Lexing a Partial Program Given a string w that represents a partial program, our goal is to con-
struct a representation of set of maximal munch lexes of all the strings that extend w. This will be
the output we pass to the parser. For example, the string 1 + 3 can be extended to 1 + 34, whose
maximal munch lex is [1, +, 34],or 1 + 3 + 4, whose maximal munch lex is [1, +, 3, +, 4].
To represent the set of maximal munch lexes of completions of w, we will build a partial lex L like
the following:

L={1t, +, 31,1, +, 3[0-91+1}

Each element of L is a lexical prefix — a sequence of lexemes that ends in a regex. A lexical pre-
fix describes the set of prefixes that match it. So [1, +, 3] describes the lexes [1, +, 3, +I,
[1, +, 3, 5, 6],etc. And [1, +, 3[0-9]1+] describes the lexes [1, +, 31, +]1, [1, +, 354, 6],
etc. The partial lex L describes the set of lexes that extend any one of its lexical prefixes. Our goal
will be to produce L from w so that the lexes described by L are exactly the longset match lexes of
completions of w.

To build L incrementally, we introduce a richer representation of L that tells us how much of a regex
has already been matched by w. For example, if I had a “print” lexeme, then

L = {[print] }

could be the partial lex of both w = “print” and w = “pri”. To resolve this, we add a @ annotation
that tells us how much of a regex has been matched. Then, I can distinguish

[print @]

from
[pri @ nt]

Left of the @ is a string that has been explicitly matched by the end of w, and right of the @ is a
regex that has not been matched yet.

To advance an annotated regex by a character a, we define D, (x @ y) = xa @ D, (y), where D, (y)
is the usual Brzozowski derivative of y with respect to a [6]. For example,

Dj(pr @ int) =pri @ nt

13

461

462
463

464
465

466

Algorithm 1 Partial Lexing (partial_lex)

1: procedure partial_lex(w € X*)
2: L = compute_lexer_state(w)

3: L' = remove_annotations(L)
4: L = remove_ignorable_tokens(L’)
5: return L
6:
7: @memoize
8: procedure compute_lexer_state(a; ...a, € X*)
9: if n = 0 then
10: return {()}
11: else
12: L + compute_lexer_state(a; ... a,—_1)
13: L + extend_lexer_state(L, a,,)
14: L+ remove,nonmaximal,munch,lexes(i)
15: return L
16: -
17: procedure extend_lexer_state(L : LEXERSTATE, a € X)
18: result <— () N
19: foreachl =[ly,--- ,l,,] € Ldo
20: if m = 0 then
21: result <— result U {(D,(QT,)) | Do(T+) # L.}
22: if € € y,,, then
23: result <— result U {[l1,- -+, lm—1,2m@¢€, Do (QT)] | Do(T,) # L}
24: if Dy (L) # L, then
25: result < result U {[l1, -+, lm—1, Da(lm)]}
26: return result
27: _
28: procedure remove_nonmaximal_munch_lexes(L : LEX ERSTATE)
20: foreach! =[l1, -+ ,l,x] € Ldo
30: i3 =[lh,..., k1,0, ., 1] € L. (Jog| < |2}| Ae €y,) then
31 L.pop(l)
32: return L

Figure 5: The function compute_lexer_state produces a lexer state L for w by iteratively ex-
tending partial lexes by the next character (extend_lexer_state) and discarding partial lexes
which fail maximal munch by not having the largest possible tokens from left to right
(remove_nonmaximal_munch_lexes). The outermost function partial_lex turns L into L. Above,
Y represents an alphabet of characters. We memoize compute_lexer_state so that, when a pre-
fix w grows to wa, computing compute_lexer_state(wa) will reuse the earlier computation of
compute_lexer_state(w).

Given w, we will incrementally build a lexer state, a set of sequences of such annotated regexes
x @ ylike

L= {(pri e nt)}
that projects to the desired L when annotation symbols @ are removed.

The full algorithm to build L is given in Algorithm[I} It very closely mirrors the naive approach
to maximal munch lexing [2l]. We iterate through w character by character, constructing the lexer

state L incrementally. As we go, we discard the partial lexes from L that fail maximal munch by
not having the largest possible tokens from left to right. At the end of the algorithm, we remove the
pointers and throw away “ignorable” tokens (e.g., whitespace and comments) to convert L into L.

14

467
468
469
470

471

474

484

If there is a reserved whitespace character (e.g., * ’) and a class of lexemes that matches a single
occurrence of that character (e.g., \s+), then the lexer state L that our algorithm produces describes
exactly the set of maximal munch lexes of completions of w, up to the presence/absence of ignorable
tokens like whitespace.

6.3 TypeScript Typechecking

We present our typescript grammar in Figure [6] Typing rules for individual TypeScript programs
are presented in Figures[7]and[8] We use a terse, inference-only typesystem for individual programs
that we reuse when pruning sets of programs. When we write, e.g., I' - e = bool, we mean that
e infers to a type that matches bool. Similarly, when we say I' - s = 7 — (), we mean that s
infers to a subtype of 7 that does not contain the unit type. Note that our typing contexts I assign
types and a designation of mutable/immutable to variables. A much cleaner type system is given in
Bierman et al. [5]], but this one suffices for our purposes.

A bidirectional typesystem is a typesystem that is written to allow for types to be computed deter-
ministically and syntactically [26]]. A bidirectional typesystem contains two kinds of judgments.
The first kind of judgment, called checking, is written I' - © <= 7. When a check judgment
appears in a hypothesis, it means that we assert that x must type to 7 under I'. The second kind of
judgment is inference, written I' - x == 7. In hypotheses, such judgments mean that we compute
the type of z as 7. This allows us to use 7 elsewhere in our hypotheses.

Typepruning of sets of programs is a bidirectional process. Let X be a ProgramSpace coterm. Our
typepruning system includes two kinds of judgments: pruning judgments and inference judgements.
Pruning judgments, written I = X — X', mean that X’ C X contains all 7-typed terms in X under
I". This is our analogue of “checking”. The second kind of judgments we allow are standard type
inference judgments, written I' - t <= 7. Our rules for inference judgments follow Figures
and[8] The bulk of the rules for type pruning are given in Figures[9]and[I0} we omit a few redundant
language features for brevity (loops, which are handled similar to conditionals, etc.).

15

Statement Grammar

Statements

Statement

Assignment

Reassignment

Typed._id

Type

Block

%

_>

Statement
| Statement ; Statements
Exp —

Assignment ;

| Exp;

| RETURN Exp ; Form —

| Block

| FUNCTION VAR (Typed_id*)
: Type Block

| FOR(Assignment; Exp; Comp —
Reassignment) Block

| WHILE(Exp) Block

| IF(Exp) THEN Statement
ELSE Statement

| IF(Exp) THEN Statement Bin —

LET Typed-id = Exp

| CONST Typed-id = Exp

| Reassignment.

Typed_id = Exp App —
| Typed.id + +
| Typed.id + =1

VAR : Type Baseexp —

INTTYPE
| BOOLTYPE

| (Typed-id*) = Type Exps —
{}

| { Statements }

Expression Grammar

Form
| Form ? Exp : Exp.

Comp

| Comp && Comp
| Comp || Comp.
Bin

| Bin < Bin

| Bin == Bin
App

| App + Bin

| App — Bin
Base_exp

| Base_exp ()

| Base_exp (A).
INT

| VAR

| (Exp).

Exp

| Exp, Exps.

Figure 6: Our Subset of TypeScript. The start nonterminal is Statements, in the upper left.

16

Inference Typing Rules for Expressions and Statements Expression Rules

INT
I'F0 = int

TRUE

I' F True — bool

VAR
(x,7,) €T

I'Fe = 7

Sum
I'Fel = int I'Fe2 = int

I'Fel+e2 — int

TERNARY EXPRESSION
I'Fey = bool T'key — 7 T'kes = 71

'+ (61?62 : 63) - T

FUNCTION APPLICATION
'tf = mn,....7n =7 Vi<nlTlkz = 75

Pk f(zy,...,2n) = 7

Figure 7: Selected Inference Rules for Typing Individual Expressions.

17

Inference Typing Rules for Individual Statements
Statement Rules

EXPRESSION STATEMENT
're =17 T'+s = 71

'Fe;s = 7

LET VARIABLE DECLARATION
'te = T T+ (x,7,mutable) -5 = 71’

Fhletz:7=¢5 = 7’

CONST VARIABLE DECLARATION
'te = 7 T + (x,7,immutable) - 5: 7’

I'Fconstx:7=¢5:7

IF-THEN-ELSE — MAY NOT RETURN
I'ke = bool T'ksy = 7 T'ksy —= 7 I'Hs = 7

I'+if ethen sq else s9;5 = 7T

IF-THEN-ELSE — DEFINITELY RETURNS
'Fe = bool Thks; = 7—() Thksy = 7—-() TFks =T

I'+if ethen sq else s9;5 = 7T

WHILE
I'Fe = bool I'ts = 7 T'k5s = 7

I' - while(e) s;5 = 7

No-op
' = ()

Figure 8: Selected Typing Rules for Individual Statements. We give the typing rules of individual
programs in our subset of TypeScript, eliding some trivial cases. Note that 5 refers to a (possibly
empty) sequence of statements. We use - to denote the empty sequence of statements.

18

Set Builders

UNION
I'Hxt—,xt* -+ I'Fxn—, xn'

I'FUnion (x1 ... xn) —, Union (x1' ... xn')

EMPTY

I' - Empty —, Empty
(a) Set Builders
Expressions

CONST
reg € id_regex

I'F ConstS (reg) —, ConstS (intersection reg \tau.regex)

WELL-TYPED COMPLETE VARIABLE
reg C id_regex reg.has_only_one_member Tlreg] <

I' - ConstS (reg) —», ConstS (reg))

ILL-TYPED COMPLETE VARIABLE
reg Cid_regex reg.has_only-one_member Treg] £ T

I' - ConstS (reg) —, Empty)

INCOMPLETE VARIABLE
reg C id_regex —reg.has_only_one_member

Tt ConstS (reg) —, ConstS ({x €T | x Ereg AT[x] < 7}))

(b) Selected Base Expressions. id_regex is the constant regex for identifiers. 7_regex is the regex describing
constants of type 7 — this regex may be empty.

Sum
I'Fa—,a'" I'Fb—,b'

I'SumS (ab)—,SumsS (a'b')

FUNCTION APPLICATION WITH COMPLETE FUNCTION

(collapse f) == Some s I'Fs <= 7y X -+ X7 =7 I'kxs =, x..xr, xs'

't Apply (£ xs) —, Apply (£ xs')

FUNCTION APPLICATION WITH COMPLETE FUNCTION
(collapse f) == Nothing I'Ff —1_,, f'

I'FApply (£ xs) —; Apply (£' xs)

(c) Compound Expressions

TERNARY
I' F guard —p001 guard' I'F then — . then' I'I else —;, else'

I' - TernaryOp (guard then else) —, TernaryOp (guard' then' else')

EXPRESSION SEQUENCE
'bx—- x' I'kxs—rx..xr, xs'

I' - ExpSeq (x s) =, x...xr, ExpSeq (x' xs')

(d) Miscellaneous Expressions

Figure 9: Typepruning rules for expressions and set builders.

19

STATEMENT SEQUENCE
F'ks—,_s' T'kss—7ss' T'ks—=gs' 'kss—;ss"

I' - StatementSeq (s ss) —, Union (StatementSeq (s' ss') StatementSeq (s'' ss''))

EXPRESSION STATEMENT — VOID TYPE CONSTRAINT
F'Fe—ote (<7

I' - ExpStatement (e) —, ExpStatement (e')

EXPRESSION STATEMENT — NONVOID TYPE CONSTRAINT
)£ T
I' - ExpStatement (e) —, Empty
RETURN

I'Fe—,e'
I'FReturn (e) —, Return (e')

WHILE
I'Fb—poor ' I'Fss— ss’

I'Fwhile (b ss) —, While (b' ss')

(a) Statements

IF-THEN-ELSE
I' - guard —poo1 guard' I'F then — then' T'I else —;, else’

I' - Ite (guard then else) —, Ite (guard' then' else')

FUNCTION DECLARATION
I' - guard —poo1 guard' I'F then —, then' TI'I else —;, else’

I' - FunctionDecl (guard then else) —, TernaryOp (guard' then' else')

LET BINDING COMPLETE LHS
(collapse type) == Some t (collapse var) == Some (ConstS v) v &T
7 = (parse_type t) I+ ((get_name var), T, immutable) b rhs —, rhs'

I'FLet (var type rhs) —, Let (var type rhs')

LET BINDING INCOMPLETE LHS
(collapse type) == Nothing V (collapse var) == Nothing

I'FLet (var type rhs) —, Let (var type rhs)

(b) If-then-else, Function Declaration, Let Bindings

Figure 10: Type Pruning Rules for Statements

20

492 6.3.1 Benchmarks and Additional Data

493 Context All TypeScript experiments used the following (somewhat dramatic) context in instruct
494 mode:

495 You are a very skilled coding assistant for the TypeScript programming language.
496 An very important automated service will ask you to write a typescript function.
497 The query begins with a comment describing the desired function behavior.

498 Then, the query gives a signature for the function you are supposed to write.

499 For example, a query might look like:

s02 // Write a typescript function to add two numbers.
503 function sum(left_addend: number, right_addend: number): number
504 7

506 Your response should be a correct implementation of the function.
507 Start and end your solution with a codeblock using ~°°
508 For example:

511 function sum(left_addend: number, right_addend: number): number {
512 return left_addend + right_addend;

514

s5t6 NEVER write the name of the language in your program.

517 Do NOT use arrays, strings, lambdas, or comments.

518 Do NOT write anything before or after your codeblock.

st9 ONLY output code.

520 You MUST include type annotations.

521 Your program MUST COMPILE AS WRITTEN OR LIVES WILL BE LOST.

s22 Benchmarks We ran our experiments on the following 74 benchmarks from the MBPP [4] bench-
523 marks available in the MultiPL-E dataset [7]]:

524 mbpp_80_tetrahedral_number
525 mbpp_392_get_max_sum

526 mbpp_171_perimeter_pentagon
527 mbpp_127_multiply_int

s28 mbpp_435_last_Digit

529 mbpp_287_square_Sum

530 mbpp_606_radian_degree

531 mbpp_803_is_perfect_square
532 mbpp_731_lateralsurface_cone
533 mbpp_581_surface_Area

53¢ mbpp_135_hexagonal_num

535 mbpp_739_find_Index

53 mbpp_17_square_perimeter

537 mbpp_77_is_Diff

538 mbpp_126_sum

539 mbpp_266_lateralsurface_cube
540 mbpp_797_sum_in_range

541 mbpp_3_is_not_prime

542 mbpp_458_rectangle_area

543 mbpp_441_surfacearea_cube

544 mbpp_162_sum_series

545 mbpp_448_cal_sum

546 mbpp_738_geometric_sum

547 mbpp_239_get_total_number_of_sequences

21

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

mbpp_59_is_octagonal
mbpp_638_wind_chill
mbpp_577_last_Digit_Factorial
mbpp_84_sequence
mbpp_724_power_base_sum
mbpp_641_is_nonagonal
mbpp_279_is_num_decagonal
mbpp_72_dif_Square
mbpp_781_count_divisors
mbpp_309_maximum
mbpp_295_sum_div
mbpp_14_find_Volume
mbpp_167_next_power_of_2
mbpp_600_is_Even
mbpp_742_area_tetrahedron
mbpp_432_median_trapezium
mbpp_234_volume_cube
mbpp_422_find_Average_0f_Cube
mbpp_292_find
mbpp_389_find_lucas
mbpp_227_min_of_three
mbpp_388_highest_Power_of_2
mbpp_271_even_Power_Sum
mbpp_67_bell_number
mbpp_274_even_binomial_Coeff_Sum
mbpp_86_centered_hexagonal _number
mbpp_574_surfacearea_cylinder
mbpp_430_parabola_directrix
mbpp_406_find_Parity
mbpp_605_prime_num
mbpp_264_dog_age
mbpp_770_odd_num_sum
mbpp_453_sumofFactors
mbpp_244_next_Perfect_Square
mbpp_93_power
mbpp_291_count_no_of_ways
mbpp_637_noprofit_noloss
mbpp_293_otherside_rightangle
mbpp_592_sum_0f_product
mbpp_256_count_Primes_nums
mbpp_479_first_Digit
mbpp_267_square_Sum
mbpp_58_opposite_Signs
mbpp_103_eulerian_num
mbpp_20_is_woodall
mbpp_96_divisor
mbpp_404_minimum
mbpp_752_jacobsthal_num
mbpp_765_1is_polite
mbpp_801_test_three_equal

22

598
599

600

601

602
603

604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621

622
623

Number of Tokens Tried Per Success

5)
10 Semantics Number of Tokens Tried Per Success
1044 B Grammar 104 Semantics

9 m Grammar
2103
9] 3103
3 g
g10° g
&« g10?
10t | &
10!
10° VIIIIIvlJJ o ool us
0 25 50 75 100 125 100 I . I o m 3 . n
Number of Tokens Tried 0 25 50 75 100 125
. Number of Tokens Tried
(a) TypeScript, DeepSeek-Coder-6.7b, all tem-
peratures (b) TypeScript, CodeLlama7B, all temperatures
Number of Tokens Tried Per Success
4 Semantics
10
s Grammar
103
c
$
510?
fine
10! |
10° I I I I almd | x |
0 25 50 75 100 125

Number of Tokens Tried
(c) TypeScript, CodeLlamal3B, all temperatures

Figure 11: Distribution of how many tokens were proven unrealizably by semantic constrained
decoding to produce each individual token. The kth bar gives the number of successful tokens that
were produced after trying between 5k and 5k + 4 unsuccesful tokens by CodeL.lama-7b.

Additional Results We include the total number of guesses required per token for each of our
three generation modes in Figure [T}

6.4 Equivalence-Guided Decoding
6.4.1 Benchmarks and Additional Data.

Context. The equivalence benchmarks use the following context. The last line is removed for the
NO-DELIMIT experiments.

You are a code refactoring assistant for a simple functional language.

The language consists of expressions which are either identifiers, integers,
basic arithmetic operations, function application, and let expressions.

The only binary operators are +, -, *, and /.

A1l other functions (for example, sqrt or pow) are named---

ONLY use names appearing in the original program.

As examples, syntactically valid programs would include:

let x = sqrt 42 in
let y = pow (f x) 2 in
y -3
and

tgy

23

624
625
626
627
628
629
630
631
632
633

634

635
636
637
638
639
640
641
642

644
645
646
647
648
649
650
651
652
653
654
655
656

657
658

659
660
661
662

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

Your job is to refactor programs into *equivalent* ones which also
have clear, readable style using let bindings when helpful.

Never introduce new features not in the language.

Never include comments or explanations.

ONLY output code, then IMMEDIATELY stop.

Never redefine variables in the original program

or that have already been defined.

Start and end your solution with a codeblock using ~°°

Benchmarks. We show the 10 benchmark programs we used below.

1. fetch_document (authorize_user_for_document (
authenticate_user current_user web_request) document_id)

2. sqrt (pow (x1 - x2) 2 + pow (yl - y2) 2)
3. pow 10 (-15) * (66743 * ml * m2) / (pow r 2)

4. add_watermark (apply_filter (
crop_image original_image selection) filter_type) watermark_image

5. start + (end - start) * scale

6. (sum (filter positive xs)) / (length (filter positive xs))
7. power / 1000 * hours * price_per_kwh

8. (-b + sqrt ((pow b 2) - 4 *x a *xc)) / (2 % a)

9. map toUpper (filter isAlpha s)

10. sqrt ((pow (a - ((atb+c)/3)) 2) +
(pow (b - ((atb+c)/3)) 2) + (pow (c - ((atb+c)/3)) 2)) / 3

Egglog file. We show the Egglog file defining the rewrites for the initial e-graph below. It encodes
basic arithmetic rules.

(datatype Math
(Num i64)
(Str String)
(Var String)
(Add Math Math)
(Sub Math Math)
(Neg Math)
(Pow Math Math)
(Sqrt Math)
(Mul Math Math)
(Div Math Math)
(App Math Math))

(rewrite (Add a b)
(Add b a))

(rewrite (Add (Num a) (Num b))
(Num (+ a b)))

(rewrite (Add (Add a b) c)

24

679 (Add a (Add b c)))

680

681 (rewrite (Neg a)

682 (Sub (Num 0) a))

683

684 (rewrite (Sub (Num 0) a)

685 (Neg a))

686

687 (rewrite (Sub a b)

688 (Add a (Mul (Num -1) Db)))
689

690 (rewrite (Sub (Num a) (Num b))
691 (Num (- a b)))

692

693 (rewrite (Mul a b)

694 (Mul b a))

695

696 (rewrite (Mul (Num a) (Num b))
697 (Num (* a b)))

698

699 (rewrite (Mul (Mul a b) c)

700 (Mul a (Mul b ¢)))

701

702 (rewrite (Mul a (Add b c))

703 (Add (Mul a b) (Mul a c)))

704

705 (rewrite (Div a b)

706 (Mul a (Div (Num 1) b)))

707

708 (rewrite (Mul a (Div (Num 1) b))

709 (Div a b))

710

711 (rewrite (Div (Num 1) (Mul b c))

712 (Mul (Div (Num 1) b) (Div (Num 1) ¢)))
713

714 (rewrite (Mul (Div (Num 1) b) (Div (Num 1) c))
715 (Div (Num 1) (Mul b c)))

25

	Introduction
	Overview of ChopChop
	Semantic Constrained Decoding as Realizability
	Analyzing Prefixes of Programs

	Evaluation
	Equivalence-Guided Decoding
	Type-Safe Decoding
	Results

	Related Work
	Conclusion
	Appendix
	Models, Parameters and Hardware
	Lexing
	TypeScript Typechecking
	Benchmarks and Additional Data

	Equivalence-Guided Decoding
	Benchmarks and Additional Data.

