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ABSTRACT

We give a complete characterization of the implicit bias of infinitesimal weight
decay (i.e. an {5 penalty on network weights) in the modest setting of univariate
one layer ReLLU networks. Our main result is a surprisingly simple geometric de-
scription of all one layer ReLU networks that exactly fit a dataset D = {(z;,y;)}
with the minimum value of the ¢5-norm of the neuron weights. Specifically, we
prove that such functions must be either concave or convex between any two con-
secutive data sites x; and ;1. Our description implies that interpolating ReLU
networks with weak /s-regularization achieve the best possible /., generalization
error for learning 1d Lipschitz functions, up to universal constants.

1 INTRODUCTION

The ability of overparameterized neural networks to simultaneously fit training data (i.e. interpolate)
and generalize to unseen test data (i.e. extrapolate) is a robust empirical finding that underpins the
success of deep learning in computer vision He et al. (2016); Krizhevsky et al. (2012), natural
language processing Brown et al. (2020), and reinforcement learning Jumper et al. (2021); Silver
et al. (2016); Vinyals et al. (2019). This observation is surprising when viewed from the lens of
traditional learning theory Bartlett & Mendelson (2002); Vapnik & Chervonenkis (1971), chiefly
because such complexity-based methods are agnostic to the choice of optimizer and seek to predict
generalization based solely on the complexity of the overall hypothesis class and how well a learned
model fits the training data.

In an overparameterized neural network, however, the quality of predictions at test time often varies
dramatically across settings of trainable parameters (e.g. weights and biases) that exactly fit all
training data Zhang et al. (2017). Which setting of parameters is learned depends crucially on
the optimization procedure, and an insightful analysis of generalization in the presence of overpa-
rameterization must therefore combine properties of the model class with the often subtle criteria
according to which different minimizers of an empirical risk are selected by different optimizers.

This has led to a vibrant sub-field of deep learning theory that analyzes the implicit bias or implicit
regularization of optimizers used in practice Arora et al. (2019); Blanc et al. (2020); Gunasekar et al.
(2018); Hanin & Sun (2021); Jacot et al. (2020); Ma et al. (2018); Razin & Cohen (2020); Smith
et al. (2021). The high level goal of this line of work is to explain how optimization hyperparameters
such as initialization scheme, learning rate, batch size, data augmentation scheme, and choice of
explicit regularizer influence which of the many global minima of the empirical risk are selected in
the course of optimization.

A key difficulty in studying implicit bias is that it is unclear how to understand, concretely in terms
of the network function, the effect of particular optimization hyperparameters. For example, a well-
chosen initialization for gradient-based optimizers is key to ensuring good generalization properties
of the resulting learned network He et al. (2015); Mishkin & Matas (2015); Xiao et al. (2018).
However, the corresponding geometric or analytic properties of the learned network are often hard
to pin down, obscuring our understanding of what it is about the learned functions that encourages
generalization.

In a similar vein, it is standard practice to experiment with explicit regularizers such as an ¢, penalty
on network weights. While the effect of this choice is easy to describe in terms of model parameters
(e.g. it tends to make them smaller), it is typically challenging to translate such a description into
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Figure 1: A dataset D with m = 8 points. Shown are the “connect the dots” interpolant fp (dashed
line), its slopes s; and the “discrete curvature” ¢; at each x;.

properties of a learned non-linear model. In the simple setting of one layer ReLU networks there has
been some relatively recent progress in this direction. Specifically, starting with an observation in
Neyshabur et al. (2014) the articles Ongie et al. (2019); Parhi & Nowak (2020a;b; 2021); Savarese
et al. (2019) explore and develop the fact that /5 regularization on parameters in this setting is
provably equivalent to penalizing the total variation of the derivative of the network function (cf eg
Theorem 1.3 from prior work below). These articles apply to networks with any input dimension.
In this article, however, we consider the simplest case of input dimension 1 and significantly refine
these prior results to give a complete geometric answer to how interpolating ReLLU networks with a
weak /5 penalty use training data to make predictions on unseen data. Our main results are:

1. We consider a dataset D = {(x;,y;)} with 2;,y; € R and give a complete description
of the space of one layer ReLU networks with a single linear unit which fit the data
and, among all such interpolating networks, do so with the minimal /5 norm of the
neuron weights. There are infinitely many such networks, and they are described by the
constraint that they fit the data with as few inflection points as possible (see Thms. 1.1, 1.2).

2. The above description of the space of interpolants of D gives uniform control of the
Lipschitz constant of any such interpolant and immediately yields sharp generalization
bounds for learning 1d Lipschitz functions. This is stated in Corollary 1.1. Specifically, if
the dataset D is generated by setting y; = f.(z;) for fi : [0,1] — R a Lipschitz function,
then any one layer ReLLU network with a single linear unit which interpolates D but does
so with minimal ¢5-norm of the network parameters will generalize as well as possible to
unseen data, up to a small universal multiplicative constant. To the author’s knowledge
this is the first time such generalization guarantees have been obtained.

1.1 SETUP AND INFORMAL STATEMENT OF RESULTS

Let us denote
[t]+ := ReLU(t) = max {0, ¢}
and consider a one layer ReL.U network

2(z) = 2(2;0) = 2(2;0,n) == ax + b+ Y Wj(2) [Wj(l)x + oV N ¢))

j=1
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with input and output dimensions equal to 1 and a single linear unit' and . For a given dataset
D = {(zs,y:),1=1,...,m}, —00 < T < < Ty <00, Yi €R,

if the number of datapoints m is smaller than the network width n, there are infinitely many choices
of the parameter vector § for which z(z; #) interpolates (i.e. fits) the data:

2(x4;0) = yi, Vi=1,...,m. )

Without further information about how 6 was selected, little can be said about the function z —
z(x;0) on intervals (x;, z;+1) between two consecutive datapoints when n is much larger than m.
This precludes useful generalization guarantees that hold uniformly over all 6 subject only to the
interpolation condition equation 2.

In practice interpolants are not chosen arbitrary. Instead, they are typically learned by some variant
of gradient descent starting from a random initialization. For a given network architecture, initial-
ization scheme, optimizer, data augmentation scheme, regularizer, and so on, understanding how the
learned network uses the known labels {y;, ¢ = 1,...,m} to extrapolate values of z(z;6) for x in
intervals (x;,x;y1) away from the datapoints in D is an important open problem. To obtain non-
trivial generalization estimates and make progress on this problem, a fruitful line of inquiry in prior
work has been to search for additional complexity measures based on margins Wei et al. (2018),
PAC-Bayes estimates Dziugaite & Roy (2017; 2018); Nagarajan & Kolter (2019), weight matrix
norms Bartlett et al. (2017); Neyshabur et al. (2015), information theoretic compression estimates
Arora et al. (2018), Rachemacher complexity Golowich et al. (2018), etc that, while perhaps not ex-
plicitly regularized, are hopefully small in trained networks. The idea is then that these complexity
measures being small gives additional constrains on the capacity of the space of learned networks.
We refer the interested reader to Jiang et al. (2019) for a review and empirically comparison of many
such approaches.

In this article, we take a different approach to studying generalization. We do not seek general results
that are valid for any network architecture. Instead, our goal is to describe completely, in concrete
geometrical terms, the properties of one layer ReLU networks z(z; ) that interpolate a dataset D
in the sense of equation 2 with the minimal possible {5 penalty

Cle)=0Clm) = ;i (‘Wj(“r + \W}”’Q)

on the neuron weights. More precisely, we study the space of ridgeless ReLU interpolants
RidgelessReLU(D) of a dataset D, defined by
{f{R—=R | F,nst f(z)=2(x;0) Vx € R, z(x;;0) =y;Vi=1,...,m, C(0) = C.},
3)
where
C, = ianf {C(0,n) | z(z;n,0) = y; V(zi,y;) € D}.

While we do not prove this directly here, a simple intuition for the elements of RidgelessReLU(D)
is that they are all univariate one layer ReLU networks that minimize a weakly penalized loss

L(0; D) + \C(0), A<, “)

where L is an empirical loss, such as the mean squared error over D, and the strength A\ of the
weight decay penalty C(6) is infinitesimal. There is an important subtlety in the definition of
RidgelessReLU (D). Namely, given 6, there exist infinitely many 6 such that z(z;6) = z(x;0)
for every x. Thus, a function f belongs to RidgelessReLU(D) if f interpolates the dataset D
and z(x;0) = f(x) for some setting of ¢ that achieves the minimal value of C'(#) among all such
interpolants.

It it plausible but by no means obvious that, with high probability, gradient descent from a random
initialization and a weight decay penalty whose strength decreases to zero over training converges to
an element in RidgelessReLU(D). This article does not study optimization, and we therefore leave
this as an interesting open problem. Our main result is simple description of RidgelessReL.U(D)
and can informally be stated as follows:

!The presence of the linear term a4 b is not really standard in practice but is adopted in keeping with prior
work Ongie et al. (2019); Parhi & Nowak (2020a); Savarese et al. (2019) since it leads a cleaner mathematical
formulation of results.
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Theorem 1.1 (Informal Statement of Theorem 1.2). Fix a dataset D = {(x;,y;), i =1,...,m}
and define
€ =sgn(s; — Si—1), 5; = LT YL
Ti41 — X4

Note that s; is the slope of the line connecting (x;,y;) to (i1, yi+1) and that €; is an estimate for
the sign of the local curvature of the function that generated the data (Figure 1). Among all contin-
uous and piecewise linear functions f that interpolate D exactly, the ones in RidgelessReL.U(D)
are precisely those that:

* Are linear (or more precisely affine) on intervals (x;, x;+1) when neighboring datapoints
disagree on the local curvature in the sense that €; - €;4+1 # 1.

» Are convex (resp. concave) on sequences of intervals (i, Zit1), ..., (Zitq—1;Titq)
on which datapoints x;,...,x;1q agree on the local curvature in the sense that
€ =+ =€yq = 1 (resp. €, = €;41 = —1). On such intervals f lies below (resp. above)

the straight line interpolant of the data. See Figures 5 and 7.

Before giving a precise statement our results, we mention that, as described in detail below, the
space RidgelessReLU(D) has been considered in a number of prior articles Ongie et al. (2019);
Parhi & Nowak (2020a); Savarese et al. (2019). Our starting point will be the useful but abstract
characterization of RidgelessReLU(D) they obtained in terms of the total variation of the derivative
of z(z; ) (see equation 5).

Let us also note that the conclusions of Theorem 1.1 (and Theorem 1.2) also hold under seemingly
very different hypotheses from ours. Namely, instead of /5-regularization on the parameters, Blanc
et al. (2020) considers SGD training for mean squared error with iid noise added to labels. Their
Theorem 2 shows (modulo some assumptions about interpreting the derivative of the ReLU) that,
among all ReLU networks a linear unit that interpolate a dataset D, the only ones that minimize the
implicit regularization induced by adding iid noise to SGD are precisely those that satisfy the con-
clusions of Theorem 1.1 and hence are exactly the networks in RidgelessReLU(D). This suggests
that our results hold under much more general conditions. It would be interesting to characterize
them.

Further, our characterization of RidgelessReLU(D) in Theorem 1.2 immediately implies strong
generalization guarantees uniformly over RidgelessReLU (D). We give a representative example in
Corollary 1.1, which shows that such ReLLU networks achieve the best possible generalization error
of Lipschitz functions, up to constants.

Finally, note that we allow networks z(z; 8) of any width but that if the width n is too small relative
to the dataset size m, then the interpolation condition equation 2 cannot be satisfied. Also, we point
out that in our formulation of the cost C'(6) we have left both the linear term ax + b and the neuron
biases unregularized. This is not standard practice but seems to yield the cleanest results.

1.2 STATEMENT OF RESULTS AND RELATION TO PRIOR WORK

Every ReLU network z(z; 6) is a continuous and piecewise linear function from R to R with a finite
number of affine pieces. Let us denote by PL the space of all such functions and define

PL(D):={f€PL| f(z;) =y Vi=1,...,m}

to be the space of piecewise linear interpolants of D. Perhaps the most natural element in PL(D)
is the “connect-the-dots interpolant” fp : R — R given by

01 (), T < T9
fo(x) =< 4i(z), T <T<Tiv1, 1=2,....m—2,
b1 (), T > Tt
where fort =1,...,m — 1, we’ve set
li(z) = (@ — x;)s; + v, S = Y1 7 Vi
Tit1 — T
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See Figure 1. In addition to fp, there are many other elements in RidgelessReLU(D). Theorem
1.2 gives a complete description of all of them phrased in terms of how they may behave on intervals
(x4, i+1) between consecutive datapoints. Our description is based on the signs

€ =sgn(s; — Si—1), 2<i<m

of the (discrete) second derivatives of fp at the inputs x; from our dataset.
Theorem 1.2. The space RidgelessReLU(D) consists of those f € PL(D) satisfying:

1.

f coincides with fp on the following intervals:

(1a) Near infinity, i.e. on the intervals (—oo, z2), (Ty—1,00)

(1b) Near datapoints that have zero discrete curvature, i.e. on intervals (x;_1,;+1) with
1=2,...,m — 1 such that ¢;, = Q.

(Ic) Between datapoints with opposite discrete curvature, i.e. on intervals (x;, x;y1) with
1=2,...,m— 1suchthate; - €41 = —1.

. [ is convex (resp. concave) and bounded above (resp. below) by fp between any consec-

utive datapoints at which the discrete curvature is positive (resp. negative). Specifically,
suppose for some 3 < i < i+ q < m — 2 that x; and x;1, are consecutive discrete
inflection points in the sense that

€i—1 7 €, € =" = €itq, €itq # €itq+1-
If e, = 1 (resp. €; = —1), then restricted to the interval (x;,Tiyq), f is convex (resp.
concave) and lies above (resp. below) the incoming and outgoing support lines and below
(resp. above) fp:
e =1 = max {€;_1(x), litq(x)}
x)

< f(@) < fp(x)
€ =—1 — min {&;1(1}), £i+q( >

} = f@) = fpo(x)

forallx € (z;, Tiyq).

We prove Theorem 1.2 in §A. Before doing so, let us illustrate Theorem 1.2 as an algorithm that,
given the dataset D, describes all elements in RidgelessReLU (D) (see Figures 5 and 7):

Step 1

Step 2

Step 3

Step 4

Step 5

Linearly interpolate the endpoints: by property (1), f € RidgelessReLU(D) must
agree with fp on (—oo, z2) and (2,1, 00).

Compute discrete curvature: for : = 2,...,m — 1 calculate the discrete curvature ¢; at
the data point ;.

Linearly interpolate on intervals with zero curvature: for all : = 2, ..., m — 1 at which
€; = 0 property (1) guarantees that f coincides with the fp on (z;_1, z;+1).

Linearly interpolate on intervals with ambiguous curvature: forall: =2,... . m —1
at which ¢; - ;4.1 = —1 property (1) guarantees that f coincides with fp on (z;, z;41).
Determine convexity/concavity on remaining points: all intervals (x;, x;1) on which f

has not yet been determined occur in sequences (x;, Zi41),- - - , (Titq—1, Titq) ON Which
€i4j =1orey; =1forallj =0,...,q. If ¢ = 1 (resp. ¢, = —1), then f is any convex
(resp. concave) function bounded below (resp. above) by fp and above (resp. below) the
support lines ¢;(x), €;yq(z).
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Figure 4: Step 3

Figure 5: Steps 1 - 3 for generating RidgelessReL U (D) from the dataset D.
6
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Figure 7: Step 5. One possible choice of a convex interpolant on (x4, 5) and of a concave inter-
polant on (xg,x7) is shown. Thin dashed lines are the supporting lines that bound all interpolants
below on (x4, x5) and above on (x4, 7).
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The starting point for the proof of Theorem 1.2 comes from the prior articles Neyshabur et al.
(2014); Ongie et al. (2019); Savarese et al. (2019), which obtained an insightful “function space”
interpretation of RidgelessReLU(D) as a subset of PL(D). Specifically, a simple computation (cf
e.g. Theorem 3.3 in Savarese et al. (2019) and also Lemma A.4 below) shows that fp achieves the
smallest value of the total variation || D f||,, for the derivative D f among all f € PL(D). (The
function D f is piecewise constant and || D f|| ., is the sum of absolute values of its jumps.) Part of
the content of the prior work Neyshabur et al. (2014); Ongie et al. (2019); Savarese et al. (2019) is
the following result

Theorem 1.3 (cf Lemma 1 in Ongie et al. (2019) and near eq. (17) Savarese et al. (2019) ). For any
dataset D we have

RidgelessReLU(D) = {f € PL(D) | [|Dfllpy = IDfDllzv} - )

Theorem 1.3 says that RidgelessReLU(D) is precisely the space of functions in PL(D) that
achieve the minimal possible total variation norm for the derivative. Intuitively, functions in
RidgelessReLU(D) are therefore averse to oscillation in their slopes. The proof of this fact uses a
simple idea introduced in Theorem 1 of Neyshabur et al. (2014) which leverages the homogeneity
of the ReLU to translate between the regularizer C'(6), which is positively homogeneous of degree
2 in the network weights, and the penalty ||D f||,, which is positively homogeneous of degree 1
in the network function.

Theorem 1.2 yields strong generalization guarantees uniformly over RidgelessReLU(D). To state
a representative example, suppose D is generated by a function f, : [0,1] — R:

yj = flzj).
We then find the following

Corollary 1.1 (Sharp generalization on Lipschitz functions over a compact set). Fix a dataset D =
{(zi,y:), i=1,...,m} withz; € [0,1]. We have

sup HfHLip S ||f*HLip' (6)
f€RidgelessReLU (D)

Hence, if f. is L—Lipschitz and we denote by A := maxg':gl min;»; {x; — x;} the maximal dis-

tance between consecutive training points (with xg = 0, x,,41 = 1), then

sup sup |f(x) — fu(x)] < AL, 7
fEeRidgelessReLU (D) z€[0,1]

which is the best generalization error possible, up to multiplicative constants.

Proof. Observe that forany ¢ =2,...,m — 1 and € (z;,x;41) at which D f(x) exists we have
€i(sic1 —si) < e(Df(x) — si) < €ilsipr — si)- (®)

Indeed, when €; = 0 the estimate equation 8 follows from property (1b) in Theorem 1.2. Otherwise,
equation 8 follows immediately from the local convexity/concavity of f in property (2). Hence,
combining equation 8 with property (1a) shows that foreach: =1,...,m —1

IDfl poo (o 00,0y < max{[si—1], [sq]}.
Again using property (la) and taking the maximum over ¢ = 2, ..., m we find

||DfHL°°(]R) < 1;%%35_1 |sil = ||fDHLip'

To complete the proof of equation 6 observe that forevery i =1,...,m —1

fe(@iv1) = fulms)

Tiv1 — Ty

Yit1 — Yi
Ti41 — X4

|5i|: S||f*||Lip = ||fDHLip§||f*||Lip-

Given any z € [0, 1], let us write 2’ for its nearest neighbor in {z;, i = 0,...,m + 1}. We find

1@) ~ L@ < 17@) ~ 1)+ 1)~ £@) < (11l + 1 Fellsp) lo — ') < LA,
Taking the supremum over f € RidgelessReLU(D) and = € [0, 1] proves equation 7. O
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Corollary 1.1 gives the best possible generalization error of Lipschitz functions, up to a universal
multiplicative constant, in the sense that if all we knew about f, : [0,1] — R was that it was L-
Lipschitz and were given its values on {x;, i = 1,...,m}, then we cannot recover f, in L* to
accuracy that is better than a constant times LA. For m uniformly spaced points we have A =
1/m + 1, while classical results (e.g. Theorem 2.2. in Holst (1980)) show that if z; ~ Unif([0, 1])
are iid, then A is bounded above by a constant time log(m)/m with high probability.

1.3 OUTLINE OF PROOF OF THEOREM 1.2
In this section, we briefly outline the main steps in proving Theorem 1.2:

* A “local straightening” result given in Proposition A.1. This shows that any element f
in RidgelessReLU(D) be either convex or concave on any interval of the form (z;, z;41)
between two consecutive inputs in the training data. The main idea is that non-monotonicity
of D f on such intervals can only increase || D f|| .

* A “linearity at endpoints” result given in Proposition A.3. This shows that any element f €
RidgelessReLU(D) agrees with fp to the left of x5 and to the right of z,,—1. The main
idea is that, given f restricted to (22, Zs,—1), a linear extension of f to the complement of
this interval can already interpolate the values at x1, x,, at zero additional cost to || D f|| .

* A “left-right compatibility” result given in Propositions A.4, A.5, A.6. This gives con-
straints, by dividing into cases, on the monotonicity of “incoming slopes” s, (x;) and “out-
going slopes” sout () of any f € RidgelessReLU(D). The main idea is that the slope of f
on each interval (x;, z;41) must attain values that are both less than or equal and great than
or equal to the slope s; of the fp. This give constraints between s;_1, S;, Sin (Z;), Sout (Z:)-

* Combining the preceding results allows us to conclude that RidgelessReLU(D) is a subset
of the set of functions satisfying the conclusions of Theorem 1.2.

* Finally, Proposition A.7 shows that the set of functions satisfying the conclusions of Theo-
rem 1.2 are a subset of RidgelessReLU(D).

1.4 DISCUSSION OF LIMITATIONS AND FUTURE WORK

In this article, we completely characterized all possible ReLLU networks that interpolate a given
dataset D in the simple setting of weakly /s-regularized one layer ReLU networks with a single
linear unit and input/output dimension 1. Moreover, our characterization shows that, to assign labels
to unseen data such networks simply “look at the curvature of the nearest neighboring datapoints on
each side,” in a way made precise in Theorem 1.2. This simple geometric description led to sharp
generalization results for learning 1d Lipschitz functions in Corollary 1.1.

This opens many direction for future investigation. Theorem 1.2 shows, for instance, that there
are infinitely many ridgeless ReLU interpolants of a given dataset D. It would be interesting to
understand which ones are actually learned by gradient descent from a random initialization and
a weak (or even decaying) /o-penalty in time. Further, as already pointed out after the Theorem
1.1, the conclusions of Theorem 1.2 appear to hold under very different kinds of regularization
(e.g. Theorem 2 in Blanc et al. (2020)). This raises the question: what is the most general kind of
regularizer that is equivalent to weight decay, at least in our simple setup?

Finally, it would also be quite natural to extend the results in this article to ReLU networks with
higher input dimension, for which weight decay is known to correspond to regularization of a certain
weighted Radon transform of the network function Ongie et al. (2019); Parhi & Nowak (2020a;b;
2021). Finally, extending the results in this article to deeper networks and beyond fully connected
architectures are directions left to future work.
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