
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GETTING free BITS BACK FROM
ROTATIONAL SYMMETRIES IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current methods for compressing neural network weights, such as decomposition,
pruning, quantization, and channel simulation, often overlook the inherent sym-
metries within these networks and thus waste bits on encoding redundant infor-
mation. In this paper, we propose a format based on bits-back coding for storing
rotationally symmetric Transformer weights more efficiently than the usual array
layout at the same floating-point precision. We evaluate our method on Large Lan-
guage Models (LLMs) pruned by SliceGPT (Ashkboos et al., 2024) and achieve a
3-5% reduction in total bit usage for free across different model sizes and architec-
tures without impacting model performance within a certain numerical precision.

1 INTRODUCTION

Modern neural networks, particularly Large Language Models (LLMs), typically contain billions
of parameters. Therefore, encoding and transmitting these models efficiently is gaining widespread
interest. Currently, compression techniques of model weights mainly fall into four categories, in-
cluding decomposition (e.g., Hu et al., 2022; Saha et al., 2023), pruning (e.g., Hoefler et al., 2021;
Frantar & Alistarh, 2023; Ashkboos et al., 2024), quantization (e.g., Wang et al., 2023; Xu et al.,
2024), and channel simulation (e.g., Havasi et al., 2019; Isik et al., 2023; He et al., 2024).

However, these techniques ignore the fact that neural networks typically exhibit symmetries in their
weight space. For example, in feedforward networks, applying a random permutation to the neurons
in one layer and its inverse to the weights in the subsequent layer leaves the output unchanged.
Encoding weights without accounting for these symmetries will lead to suboptimal codelength.

In this work, we address this redundancy by developing a practical storage format for model weights
that takes symmetries into account to reduce the compressed model size. We demonstrate the prac-
ticality of our method by compressing popular model architectures. Specifically, our contributions
are as follows:

• We propose a practical bits-back coding scheme for rotational symmetries. We apply our approach
to Large Language Models (LLMs) pruned by SliceGPT (Ashkboos et al., 2024) and demonstrate
that our proposed approach can save additional free bits while preserving prediction accuracy
within a certain numerical precision.

• We further showcase that by transmitting a small number of bits as a correction code, we can
rescue the performance drops due to numerical inaccuracies.

• We perform experiments on the OPT (Zhang et al., 2022) and Llama-2 (Touvron et al., 2023)
across different sizes, where we can save 3-5% additional bits for free. Notably, our method is
completely training-free and can be executed on a consumer-grade GPU or even CPU. Further-
more, our proposed method only adds minimal overhead to the time it takes to load the model
parameters into memory and does not affect inference latency.

2 BACKGROUND

Before discussing our methods, we provide a brief introduction to bits-back coding (Frey & Hinton,
1996), Transformer (Vaswani et al., 2017), and SliceGPT (Ashkboos et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Activation

Function

+

𝐖𝑘 𝐖𝑞 𝐖𝑣 𝐖𝑜
Multi-head

attention

Inputs

+

𝐖2

𝐌 diag(𝜶)
𝐱

||𝐱||

𝐖1

(a) A standard transformer block.

Activation

Function

+

𝐖𝑘 𝐖𝑞 𝐖𝑣 𝐖𝑜
Multi-head

attention

Inputs

+

𝐖2

𝐱

||𝐱||

𝐖1

𝐐 skip_att

𝐐 skip_mlp

(b) A transformer block with SliceGPT.

Figure 1: Visualization of a Standard Transformer Block and a SliceGPT-Pruned Transformer Block.
(a) The standard Transformer block first maps the input through an attention layer; then it applies
LayerNorm (Ba et al., 2016) and a 1-layer Feedforward Network (FFN). Two residual connections
are added after the attention layer and the FFN. Here, we adopt the notation by Ashkboos et al.
(2024), where M “ I ´ 1

D11J represents the operation that subtracts the mean in each row. (b)
SliceGPT (Ashkboos et al., 2024) first absorbs M and diagpαq into the weights before and after the
normalization layer. It then rotates these weights by applying PCA to the hidden states, aligning
them with their principal components (PCs). Subsequently, SliceGPT prunes rows and columns
corresponding to the least significant PCs, indicated by gray shadows. It is important to note that
the weights in (b) differ from those in (a) due to the absorption of M and diagpαq and the rotation.
Additionally, as SliceGPT introduces two weight matrices Qskip mlp and Qskip att to the skip connec-
tions, it carries more rotational symmetries compared to the standard Transformer in (a). For a more
detailed explanation of SliceGPT, please refer to Figure 4 in Ashkboos et al. (2024).

Bits-back Coding. The motivating idea behind bits-back coding (Hinton & Van Camp, 1993;
Townsend et al., 2019) can be summarised as follows: “If we can make multiple equivalent choices
to encode something, we should make our choice at random.” Note that transmitting this random
choice requires some bits, and the bits-back coding algorithm provides a concrete procedure to re-
cover the bits we used to randomize our choice. The procedure is based on the following insight
from compression: assuming we have the right coding distribution P , the encoding function of a
compressor will output a sequence of uniformly random bits. Therefore, if we run this process in re-
verse and run the decoder on a sequence of uniformly random bits, it will output a sample following
P ! Therefore, lossless de-compression can be viewed as a computational way of performing inverse
transform sampling, which provides an invertible way to make the aforementioned random choice.

To make the bits-back mechanism more precise, assume we have some data x that belongs to some
equivalence class rxs. In many cases, encoding only the equivalence class rxs instead of a specific
instance x would be enough for the task at hand. Given a new item x and a stream of already
compressed bits M, bits-back coding uses the decoder of lossless compressor on M to decode a
random element of the equivalence class x1 „ Px|rxs and leaves a shorter message M1. After this,
bits-back coding uses the encoder of the compressor to encode x1 using Px as the coding distribution
and append it to M1. This procedure is reversible and hence decodable, so long as the receiver of
the message can recover x upon seeing x1. This ensures that x1 can be coded back into the stream to
recover the original message M. As one of our contributions, in section 3.2, we explain how such a
recovery step can be carried out when x is a weight matrix and rxs is an equivalence class under a
certain rotational symmetry.

A concern with bits-back coding is its initialization: we need an initial stream of bits M0 to encode
the first item. While M0 represents a significant overhead if we only encode a few items, it only
causes a constant overhead and quickly becomes negligible as the number of encoded items grows.

Transformer Architecture and SliceGPT. Transformer (Vaswani et al., 2017) is the cornerstone of
most Large Language Models. Its basic component is the transformer block, as shown in Figure 1a.
Each block consists of a multi-head attention layer, a LayerNorm (Ba et al., 2016), and a feedforward
network (FFN). Two residual connections are added around the attention layer and FFN.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

SliceGPT (Ashkboos et al., 2024) is a recently proposed method for pruning weights in Transformer
models. The approach leverages the insight that the outcome of LayerNorm (more precisely, RM-
SNorm, i.e., x Ð x{||x||) is invariant if we apply a rotation to the input and its inverse to the output.
This rotation matrix and its inverse can be absorbed into the weights before and after the normaliza-
tion layer. Therefore, by performing PCA on the hidden states, we can choose rotation matrices that
align with the principal components. This allows us to prune the rows and columns corresponding
to the less significant eigenvalues in the hidden states, effectively reducing the model’s complexity
without drastically hurting the performance. We visualize each transformer block after rotation and
pruning in Figure 1b. The shadow indices the pruned columns and rows.

3 GETTING BITS BACK FROM ROTATION SYMMETRIES

In this section, we describe our method, which is based on the observation of rotational symmetries
in the Transformer block pruned by SliceGPT. Comparing Figure 1b and Figure 1a, we can see
SliceGPT not only reduces the number of parameters (by pruning out columns and rows), but also
introduces rotational symmetries. We should note that these rotational symmetries do not exist in the
standard transformer due to the skip connections. Concretely, in a SliceGPT-pruned Transformer,
denoting the weights in the ℓ-th transformer block with superscripts, we have:

Remark 3.1. Outputs remain unchanged if rotating W
pℓ´1q

2 , bpℓ´1q

2 (if any) and Q
pℓ´1q

skip mlp by an

arbitrary orthogonal matrix Q 1, and rotating Q
pℓq

skip att,W
pℓq

qkv “

”

W
pℓq

k ,W
pℓq
q ,W

pℓq
v

ı

by QJ as
follows:

W
pℓ´1q

2 Ð W
pℓ´1q

2 Q, bpℓ´1q Ð bpℓ´1qQ, Q
pℓ´1q

skip mlp Ð Q
pℓ´1q

skip mlpQ (1)

Q
pℓq

skip att Ð QJQ
pℓq

skip att, W
pℓq

qkv Ð QJW
pℓq

qkv (2)

Similarly, outputs remain unchanged if rotating W
pℓq
o , bpℓq

o (if any) and Q
pℓq

skip att by Q, and rotating

Q
pℓq

skip mlp and W
pℓq

1 by QJ as follows:

Wpℓq
o Ð Wpℓq

o Q, bpℓq
o Ð bpℓq

o Q, Q
pℓq

skip att Ð Q
pℓq

skip attQ (3)

Q
pℓq

skip mlp Ð QJQ
pℓq

skip mlp, W
pℓq

1 Ð QJW
pℓq

1 (4)

This observation points to an important challenge when encoding the model for storage: we only
really wish to encode the function represented by the weights, but we see that infinitely many differ-
ent weights can represent the same function. In particular, the transformer weights exhibit multiple
equivalent representations due to rotational symmetry. Thus, we adapt bits-back coding (Hinton &
Van Camp, 1993; Townsend et al., 2019) to this setting, eliminating precisely this redundancy.

We first offer an informal explanation to clarify this redundancy. For simplicity, let’s denote the
weights in a transformer as Θ. Assuming the coding distribution is P 2, we need to spend about
´ log2 P pΘq bits to encode the weights directly. On the other hand, as discussed above, applying
rotations (and its inversion) to some weights leaves the output invariant. Therefore, if we define
equivalence in terms of outputs (and we do!), the weights with different rotations form an equiva-
lence class, denoted by rΘs. Encoding this equivalence class will require ´ log2

´

ř

ΘPrΘs P pΘq

¯

bits. In a finite-precision system, where the number of possible rotation matrices is limited, the
equivalence class is finite. Assuming that each entry in the equivalence class has the same probabil-
ity, and denoting the cardinality of the equivalence class by C, we have ´ log2

´

ř

ΘPrΘs P pΘq

¯

“

´ log2 pCP pΘqq “ ´ log2 P pΘq ´ log2 C. This implies that directly encoding the weights wastes
´ log2 C bits more than necessary.

We apply bits-back coding to eliminate this redundancy. In short, each time we encode the weights
in one transformer block (more precisely, Wpℓq

2 and W
pℓq
o), we start by decoding a random rotation

1Throughout this paper, we will use orange-colored Q to denote orthogonal matrices.
2If we encode the weights using float16, we are essentially assuming that all possible floating-point

values (216 in total) have the same probability mass.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Rotate Transformer to its Canonical Direction.

Input: Transformer weights with SliceGPT: Wemb, Qpℓq

skip att, W
pℓq

qkv , Wpℓq
o , bpℓq

qkv , bpℓq
o , Qpℓq

skip mlp,

W
pℓq

1 , Wpℓq

2 , bpℓq

1 , bpℓq

2 , Whead, bhead, ℓ “ 1, 2, ¨ ¨ ¨ , L;
Output: Rotated weights.

rotate input embeddings:
Q Ð Eigenvalue DecompsitionpWJ

embWembq;
Wemb Ð WembQ;
for ℓ P r1, ¨ ¨ ¨ , Ls do

rotate skip connection and attention:
Q

pℓq

skip att Ð QJQ
pℓq

skip att; W
pℓq

qkv Ð QJW
pℓq

qkv;

rotate attention output weight:

Q Ð Eigenvalue DecompsitionpW
pℓq
o

J

W
pℓq
o q;

W
pℓq
o Ð W

pℓq
o Q; bpℓq

o Ð QJb
pℓq
o ;

rotate skip connection and MLP input weight:
Q

pℓq

skip att Ð Q
pℓq

skip attQ; Qpℓq

skip mlp Ð QJQ
pℓq

skip mlp; Wpℓq

1 Ð QJW
pℓq

1 ;

rotate skip connection and MLP output weight:

Q Ð Eigenvalue DecompsitionpW
pℓq

2

J

W
pℓq

2 q;
Q

pℓq

skip mlp Ð Q
pℓq

skip mlpQ; Wpℓq

2 Ð W
pℓq

2 Q; bpℓq

2 Ð QJb
pℓq

2 ;
end for
rotate heads:
Whead Ð QJWhead;

Algorithm 2 Recover rotation matrix from rotated weight.

Input: Rotated matrix W, reference signs s (vector of ˘1-s).
Output: Rotation matrix Q:

QJ Ð Eigenvalue DecompsitionpWJWq. Ź rotate W
pℓq

2 to canonical direction
for r P |rowpQq| do

Qr Ð

"

Qr, if signpQr.sum()q “ sr;

´Qr, otherwise.
. Ź change sign of Q

end for

Algorithm 3 Decode a rotation matrix from the
current bitstream. We use red to represent adding
bits to the bitstream; green for removing bits
from the bitstream.
Input: Bitstream M;
Output: Rotation matrix Q P RDˆD.

X Ð 0 P RDˆD;
Decode DpD´1q{2 floats from bitstream M;
Fill above the diagonal of X with these floats;
X Ð X ` XJ;
Decode D floats from bitstream M;
Fill the diagonal of X with these floats;
Q,λ Ð Eigenvalue Decomposition(X);
λ Ñ Encode to(M).

Algorithm 4 Encode a rotation matrix to the cur-
rent bitstream. We use red to represent adding
bits to the bitstream; green for removing bits
from the bitstream.
Input: Rotation matrix Q, Bitstream M;
Output: Updated bitstream M.

λ Ð Decode from(M).
X Ð Q diagpλq QJ.
Retrieve floats in the diagonal of X;
Encode these D floats into M.
Retrieve floats in the upper triangular of X;
Encode these DpD ´ 1q{2 floats into M.

from the current bitstream and applying it to the weights. We then encode the rotated weights into the
bitstream. When decoding, we first decode the rotated weights and recover the rotation we applied
to the original weights. Then, we encode the rotation matrix back to the bitstream. This process is
repeated for every transformer block. One concern the reader might have regarding our proposed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

method is that bits-back coding is known to have poor one-shot compression performance and is only
effective when encoding large datasets. This poor performance is mainly due to the fact that we need
some initial bits to perform bits-back, causing overhead that will only be eliminated asymptotically.
However, this is not an issue in our approach due to two reasons: (1) in the Transformer, besides
the transformer blocks, we also need to store a relatively large head and embedding layer. We can
simply use this as the initial bits for bits-back; and (2) note that we apply our coding technique
to each transformer block in the Transformer. We can view this single Transformer as a dataset
consisting of transformer blocks as the elements. For large enough architectures (such as the ones
we used in our experiments), the bits-back coding is already efficient.

However, there are two questions that remain unsolved: (a) How can we recover the rotation given
a rotated weight matrix? (b) How can we decode/encode a rotation (Orthogonal) matrix from/to the
current bitstream? We will answer these questions in Section 3.1 and Section 3.2, respectively. We
then put things all together in Section 3.3 and describe the full encoding and decoding algorithms
in Algorithms 5 and 6. Finally, as we only apply rotations to weight matrices with finite precision
(e.g., float16), we may suffer from numerical inaccuracy, impacting the transformer’s outputs. To
handle this, we propose to send a simple correction code, which we discuss at the end of Section 3.3.

3.1 ROTATING TRANSFORMER WEIGHTS TO THEIR CANONICAL DIRECTION

We now discuss how to recover the rotation from a rotated weight matrix. This is, in general, not fea-
sible without additional information about the original weights. Fortunately, as noted in Remark 3.1,
we can apply any rotation to the weights. This allows us to first rotate the weights to a canonical
direction as a reference. We can define this canonical direction in multiple ways as long as we can
recover it easily after applying a random rotation. In this work, we adopt eigenvalue decomposition
to define the canonical direction, while future works could explore more sophisticated methods.

We detail the algorithm for the canonical direction in Algorithm 1. In short, for each transformer
block, we can apply two free rotations according to Remark 3.1: the first rotation is applied to
W

pℓ´1q

2 , bpℓ´1q

2 , Qpℓ´1q

skip mlp, Qpℓq

skip att, and W
pℓq

qkv . We hence define the canonical direction such that

W
pℓ´1q

2

J

W
pℓ´1q

2 is diagnoal; the second rotation is applied to W
pℓq
o , bpℓq

o , Qpℓq

skip att, Q
pℓq

skip mlp and

W
pℓq

1 . We hence define the canonical direction such that Wpℓq
o

J

W
pℓq
o is diagnoal.

After rotating the transformer to its canonical direction, we can recover any rotation that is ap-
plied to the canonical W

pℓ´1q

2 or W
pℓq
o by eigenvalue decomposition. Specifically, let’s con-

sider a random rotation Q applied to W
pℓ´1q

2 in its canonical direction as an example. Denot-
ing the matrix after rotation is W̃

pℓ´1q

2 Ð W
pℓ´1q

2 Q, we can perform eigenvalue decomposition
on W̃

pℓ´1q

2
JW̃

pℓ´1q

2 , and the rotation matrix Q can then be recovered by stacking the eigen-
vectors together in columns. The weight matrix in the canonical direction can be obtained by
W

pℓ´1q

2 Ð W̃
pℓ´1q

2 QJ “ W
pℓ´1q

2 QQJ.

A caveat exists in the above procedure: eigenvalue decomposition can result in eigenvectors with
opposite signs. This will lead to undesired results when recovering the canonical weight matrix. We
include a detailed explanation in Appendix A. To address this, we encode the sign of the summation
of each row of the rotation matrix as side information. This only requires D bits for a D-dimensional
rotation matrix. After recovering eigenvectors through eigenvalue decomposition, we can use this
side information to correct the sign for each eigenvector (i.e., rows in the rotation matrix). Algo-
rithm 2 describes this process.

Another concern arises when W
pℓ´1q

2

J

W
pℓ´1q

2 (or Wpℓq
o

JW
pℓq
o) is not full-rank. In such cases,

eigenvalue decomposition will not recover the rotation applied to these canonical weights. To ad-
dress this, we can define the canonical direction by applying eigenvalue decomposition to BJB,

where BJ “

„

W
pℓ´1q

2

J

,b
pℓ´1q

2

J

,W
pℓq

k ,W
pℓq
q ,W

pℓq
v

ȷ

(or BJ “

„

W
pℓq
o

J

,b
pℓq
o

J

,W
pℓq

1

ȷ

). How-

ever, we actually found W
pℓ´1q

2

J

W
pℓ´1q

2 and W
pℓq
o

JW
pℓq
o were already full-rank across all ar-

chitectures in our experiments. This may be because SliceGPT has already pruned insignificant
principal components in the hidden states, leading to more compact weight matrices.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 DECODING AND ENCODING ROTATION MATRICES

Now, we discuss how to decode/encode a rotation matrix from/to a given bitstream. A naive ap-
proach is to directly decode and encode these D2 entries in a rotation matrix Q P RDˆD, e.g., by
float16. However, it is difficult to guarantee that D2 elements decoded from a given bitstream
can form a rotation matrix. In fact, a D-dimensional rotation matrix Q has only DpD´1q{2 degrees
of freedom (DOF), which means that we only need to decode and encode DpD ´ 1q{2 floats for the
entire matrix. Therefore, the question becomes: (a) how can we construct a random rotation matrix
from DpD ´ 1q{2 random floats; (b) how can we recover these floats given a rotation matrix?

Ideally, we aim to generate a uniformly distributed random rotation matrix, i.e., a random rotation
matrix from the Haar distribution. Following the method by Stewart (1980), we can construct the
matrix by iteratively applying Householder transformations (Householder, 1958).

However, this algorithm is difficult to reverse: we need to reverse the householder transformations
one by one, and hence, we will suffer from large numerical instability. Therefore, we propose a
simple method to generate a rotation matrix. This approach does not result in a uniformly distributed
rotation matrix. However, we found our approach works well in practice. Since our goal is not to
design a theoretically optimal algorithm but rather a more practical approach to perform bits-back,
we leave a better design for the rotation matrix to future works.

We describe the process of decoding and encoding a rotation matrix in Algorithms 3 and 4. Again,
we employ a bits-back approach for efficiency. In brief, to decode a rotation matrix, we first decode
a symmetric matrix from the bitstream by decoding its diagonal and upper triangular parts and
performing an eigenvalue decomposition. The eigenvalues are then encoded back into the bitstream.
To encode this rotation matrix, we first decode its eigenvalues from the bitstream, reconstruct the
symmetric matrix via matrix multiplication, and then encode its diagonal and upper triangular parts
back into the bitstream. Notably, our approach requires only the number of bits corresponding to
DpD ´ 1q{2 floats, which aligns with the degrees of freedom of a random rotation matrix.

3.3 PUTTING THINGS TOGETHER AND HANDLING NUMERICAL INACCURACY

Having discussed the canonical direction for the transformer and the algorithm for decoding and
encoding a rotation matrix, we detail the complete algorithm for encoding and decoding the en-
tire transformer using bits-back in Algorithms 5 and 6, respectively. In these algorithms, we
use Encode to and Decode from to represent the process of appending or popping arrays of
float16 values into or from the current bitstream.

However, since we only save rotated weights in finite precision (e.g., float16), we may suffer
from numerical inaccuracy, and hence the rotation matrix recovered by Algorithm 2 in decoding
will have deviations from the original rotation matrix applied to the canonical weights in encoding.
This will lead to two undesirable outcomes: (1) the bitstream after re-encoding the rotation matrices
(as shown in lines 7 and 13 in Algorithm 6) will contain errors, which will affect the weights decoded
subsequently from this bitstream; (2) the weight matrices rotated back to the canonical direction (as
shown in lines 6 and 12 in Algorithm 6) will contain errors.

The first error can be fatal in standard bits-back coding, as they are usually implemented using a
variable-length code, such as asymmetric numeral systems (Duda, 2009; Townsend et al., 2019).
Such a system is very sensitive to decoding errors: as the code assigns different codelengths to sym-
bols by design, if the decoder can only recover the compressed data approximately due to numerical
errors, not only are they not getting the correct bits back, they might not even get the correct number
of bits back. If the decoder makes such an error even once, it misaligns the rest of the bitstream (i.e.,
it will be longer or shorter than it should be), causing catastrophic decoding errors.

On the other hand, our proposed method is robust to such errors because we implement bits-back
coding with a fixed-length code: we set a floating-point precision (e.g., 16 bits) ahead of time. Then,
each encoding and decoding operation will change the message length by the same amount: for a
fixed precision, we can compute the total codelength of the model ahead of time. Importantly, this
means that any decoding error remains local: if we do not recover a given weight w exactly, this will
only affect the value of w but will not affect the rest of the bitstream.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 5 Bits-back Encoding for transformers (processed by SliceGPT). We use red to represent
adding bits to the bitstream; green to represent removing bits from the bitstream.

Input: Transformer weights: Wemb, Qpℓq

skip att, W
pℓq

qkv , Wpℓq
o , bpℓq

qkv , bpℓq
o , Qpℓq

skip mlp, Wpℓq

1 , Wpℓq

2 , bpℓq

1 ,

b
pℓq

2 , Whead, bhead, ℓ “ 1, 2, ¨ ¨ ¨ , L;
Output: Binary message M.

1: M ÐK. Ź initialization empty bitstream.
2: Rotate the transformer to its canonical direction using Algorithm 1.
3: # encode weights with bits-back:
4: Wemb,bemb Ñ Encode to(M). Ź encode input embeddings
5: for ℓ P r1, ¨ ¨ ¨ , Ls do
6: Q

pℓq

skip att,W
pℓq

qkv,b
pℓq

qkv Ñ Encode to(M).
7: Q Ð Decode rotation matrix from M using Algorithm 3. Ź decode a random rotation
8: W

pℓq
o Ð W

pℓq
o Q.

9: sign(Q.sum(-1)) Ñ Encode to(M). Ź encode sign of Q (overhead)
10: W

pℓq
o ,b

pℓq
o ,Q

pℓq

skip mlp,W
pℓq

1 ,b
pℓq

1 Ñ Encode to(M).

11: Ź encode rotated W
pℓq
o and other weights

12: Q Ð Decode rotation matrix from M using Algorithm 3. Ź decode a random rotation
13: W

pℓq

2 Ð W
pℓq

2 Q.
14: sign(Q.sum(-1)) Ñ Encode to(M). Ź encode sign of Q (overhead)
15: W

pℓq

2 ,b
pℓq

2 Ñ Encode to(M). Ź encode rotated W
pℓq

2 and other weights
16: end for
17: Whead,bhead Ñ Encode to(M). Ź encode heads

Algorithm 6 Bits-back Decoding for transformers (processed by SliceGPT). We use red to represent
adding bits to the bitstream; green to represent removing bits from the bitstream.

Input: Binary message M.
Output: Transformer weights: Wemb, Qpℓq

skip att, W
pℓq

qkv , Wpℓq
o , bpℓq

qkv , bpℓq
o , Qpℓq

skip mlp, Wpℓq

1 , Wpℓq

2 ,

b
pℓq

1 , bpℓq

2 , Whead, bhead, ℓ “ 1, 2, ¨ ¨ ¨ , L.
1: Whead,bhead Ð Decode from(M). Ź decode heads
2: for ℓ P rL, ¨ ¨ ¨ , 1s do
3: W

pℓq

2 ,b
pℓq

2 Ð Decode from(M). Ź decode rotated W
pℓq

2 and other weights
4: s Ð Decode from(M). Ź decode sign of Q
5: Q Ð Recover rotation matrix using Algorithm 2 from (Wpℓq

2 , s).
6: W

pℓq

2 Ð W
pℓq

2 QJ Ź recover canonical direction
7: Q Ñ Encode rotation matrix to M using Algorithm 4. Ź encode the random rotation
8: W

pℓq
o ,b

pℓq
o ,Q

pℓq

skip mlp,W
pℓq

1 ,b
pℓq

1 Ð Decode from(M).

9: Ź decode rotated W
pℓq
o and other weights

10: s Ð Decode from(M). Ź decode sign of Q
11: Q Ð Recover rotation matrix using Algorithm 2 from (Wpℓq

o , s).
12: W

pℓq
o Ð W

pℓq
o QJ Ź recover canonical direction

13: Q Ñ Encode rotation matrix to M using Algorithm 4. Ź encode the random rotation
14: Q

pℓq

skip att,W
pℓq

qkv,b
pℓq

qkv Ð Decode from(M).
15: end for
16: Wemb,bemb Ð Decode from(M). Ź decode input embeddings

However, although our bits-back process will not propagate local decoding errors, individual errors
itself can still impact the model performance. Therefore, we propose transmitting an additional
correction code to correct errors exceeding a certain threshold. Specifically, errors in (a) occur in the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

DpD` 1q{2 floats obtained by Algorithm 3 when encoding the rotation matrix to the bitstream, and
errors in (b) occur when rotating the weight matrices back to the canonical direction. Note that the
encoder can simulate both procedures during encoding to determine the exact value that the decoder
will obtain. If the error between the value obtained by the decoder and the one held by the encoder
exceeds a certain threshold, the encoder can send a correction code containing the positions and
the true values in float16. Correcting each value will require approximately 16 ` rlog2 Ls bits,
where L is the total number of values the decoder will reconstruct that can have errors. For example,
L “ DpD ` 1q{2 for the error caused by (a), and L represents the total number of parameters in the
weight matrix for the error caused by (b).

A natural concern is that the correction code could become large if there are too many errors. Fortu-
nately, as we show in Figure 2, only a tiny portion of values have relatively large errors. Therefore,
the correction code requires only a small number of bits to transmit and does not significantly im-
pact the overall coding efficiency. It is worth noting that this correcting strategy can be considered
a simple error-correction code. Therefore, we may be able to adopt more complex error-correction
codes, but we leave this design for future exploration.

3.4 ANALYSIS OF THE CODELENGTH

Here, we analyze the codelength reduction achieved by our proposed approach from a practical
standpoint. A more rigorous theoretical analysis is provided in Appendix B. For simplicity’s sake,
we assume there is no bias vector in our transformer architecture. This is a reasonable assumption,
as some modern architectures like Llama (Touvron et al., 2023) omit the bias too. Additionally, we
assume the transformer has no output head or embedding layer. This assumption can be interpreted
as modeling an extremely deep transformer, where the effects of the head and embedding layers
become negligible. However, it is important to note that this is not a realistic assumption in practical
scenarios. This is the main reason for the discrepancy between our analysis in this section and the
results we present in Section 4.

In one transformer block, as shown in Figure 1b, there exist eight matrices after SliceGPT, including
six sliced weight matrices and two skip connection matrices. If the slicing rate is s and the weights
are stored at δ bits precision (for example, δ “ 16 in float16), the total codelength (in bits) can
be expressed as:

p 6 ¨ rD2
loomoon

6 weight matrices

` 2 ¨ prDq2
looomooon

2 skip connection

q ¨ δ (5)

where we denote r “ 1 ´ s as the remaining rate after slicing. Using bits-back, we decode two
rotation matrices from the bitstream during encoding, leading to a reduction in codelength by:

ˆ

2 ¨
prDqprD ´ 1q

2

˙

¨ δ “ prDq ¨ prD ´ 1q ¨ δ (6)

We disregard the overhead from storing the signs of the eigenvectors (line 9 in Algorithm 5) and the
correction codes (discussed in Section 3.3), as these contributions are negligible.

Thus, the overall reduction in codelength is:

prDq ¨ prD ´ 1q{p6 ¨ rD2 ` 2 ¨ prDq2q « r{p6 ` 2rq (7)

For a slice rate of s “ 20 ´ 30%, this results in approximately a 10% reduction in codelength.

4 EXPERIMENTS AND RESULTS

We evaluate our proposed approach in this section. We first test our method on the Open Pre-
trained Transformer Language Models (OPT, Zhang et al., 2022) and Llama-2 (Touvron et al., 2023)
pruned by SliceGPT (Ashkboos et al., 2024) with different slicing rates. Then, we investigate the
effectiveness of the correction codes proposed in Section 3.3. We conduct our bits-back algorithms
on AMD Ryzen 9 7950X CPU and evaluate the performance on one NVIDIA RTX 4090 GPU.

Compression rate and performances. We evaluate our method on OPT-1.3B/2.7B/6.7B/13B and
Llama-2-7B, pruned by SliceGPT with different slicing rates in Table 1. We report perplexity (PPL)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Compression rates and prediction performances before and after our proposed method. The
Compress Rate after SliceGPT takes the correction code’s codelength into account. We can see our
method reduces further 3-5% bits and has very minor influence on the performance.

Performance (before/after bits-back)Model SliceGPT
Slicing

Compress Rate
after SliceGPT

Compress Rate
after bits-back PPL (Ó) PIQA (%, Ò) WinoGrande (%, Ò) HellaSwag (%, Ò)

20% -9.53% -13.77% 16.59/16.60 64.91/64.80 54.78/54.38 45.26/45.32
25% -14.84% -18.61% 17.78/17.86 63.55/63.33 52.80/53.28 43.20/43.11OPT-1.3B
30% -20.53% -23.81% 19.60/19.66 60.88/60.50 52.88/53.28 40.25/40.06
20% -9.19% -13.84% 13.89/13.95 68.44/68.12 58.88/58.72 51.35/51.17
25% -15.07% -19.09% 14.85/14.87 66.70/66.76 57.30/57.70 48.41/48.38OPT-2.7B
30% -20.88% -24.43% 16.31/16.33 64.64/64.69 55.80/56.04 44.52/44.57
20% -9.29% -14.07% 11.63/11.71 72.91/73.01 61.33/61.17 60.53/60.55
25% -15.16% -19.29% 12.12/12.15 71.00/71.22 60.30/60.77 57.76/57.55OPT-6.7B
30% -21.18% -24.84% 12.81/12.91 69.31/69.42 59.75/59.59 53.64/52.94
20% -9.18% -14.01% 10.75/10.77 74.27/74.27 64.96/64.88 65.74/65.79
25% -15.27% -19.51% 11.08/11.07 74.27/73.72 63.46/63.93 63.48/63.09OPT-13B
30% -21.29% -24.97% 11.55/11.59 72.69/73.01 61.96/62.43 60.12/60.05
20% -9.38% -14.13% 6.86/6.98 69.53/69.42 64.17/64.72 58.96/58.89
25% -15.34% -19.53% 7.56/7.59 67.03/67.57 62.98/63.38 54.29/53.93Llama-2-7B
30% -21.45% -25.09% 8.63/8.69 64.69/64.09 62.75/62.12 49.13/49.07

0.0 0.1 0.2

10 2

101

de
ns

ity

Reconstructure Error

99.9% 99.99%

0.0 0.1 0.2

0.998

1.000

CD
F

Figure 2: Histogram and empirical CDF of the error be-
tween the reconstructed weights and the original weights
before encoding, using Wo in the final layer of OPT-6.7B
as an example. The pattern in this plot generalizes well to
other weights and models. As shown, only a small fraction
of the weights exhibit relatively large deviations. Therefore,
we can allocate a negligible number of bits to transmit the
positions and true values of these weights, effectively cor-
recting the error caused by numerical inaccuracies.

76 77 78 79
compression rate (%)

16.4

16.6

pe
rp

le
xi

ty

threshold 0.04

threshold 0.02
threshold 0.01
threshold 0.005

w/o bits-back

Figure 3: The effectiveness of
the correction codes with differ-
ent thresholds. Setting a thresh-
old around 0.005-0.01 can ef-
fectively rescue all performance
drops due to numerical inaccura-
cies while still significantly reduc-
ing bits compared to the compres-
sion rate without bits-back.

and accuracy on three downstream tasks (PIQA, Bisk et al. (2020); WinoGrande, Sakaguchi et al.
(2021); and HellaSwag, Zellers et al. (2019)) to assess our method’s impact on performance. Our
approach saves an additional 3-5% in bits with negligible impact on performance. Notably, the
performance changes are inconsistent, with occasional improvements after bits-back, suggesting
that the changes in the performance are more likely due to randomness than a clear degradation.
We also note that this codelength reduction is smaller than the theoretical estimates provided in
Section 3.4. The primary reason for this discrepancy is that our analysis does not account for the
substantial size of the head and embedding layers.

Numerical inaccuracy and the effectiveness of the correction codes. We now examine the
impact of numerical inaccuracies and the effectiveness of correction codes proposed in Section 3.3.
To provide an intuitive understanding of the numerical issue, we use the weights matrix Wo from
the last layer of OPT-6.7B as an example and visualize the error between the reconstructed weights
and the original weights in Figure 2. As we can see, only a tiny fraction of the weights exhibit
relatively large errors. Therefore, we can transmit the positions and true values of weights whose
deviations exceed a certain threshold, using negligible bits to correct the numerical error.

The threshold is a hyperparameter that balances the codelength and accuracy. In Figure 3, we exam-
ine the impact of threshold selection using the OPT-2.7B model. Setting a relatively small threshold
(0.005-0.01) effectively mitigates nearly all performance drops due to numerical inaccuracies, while
still providing a significant reduction compared to the compression rate without bits-back coding.
In our experiments, we use a threshold of 0.01 for OPT models and 0.005 for Llama models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Encoding and decoding time on GPU for different models with varying slicing rates. This
includes the time for weight transfers between CPU and GPU. Therefore, we can view this time as
the total increase in model saving and loading time introduced by our proposed method.

Model Name OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B

Slicing 20% 30% 20% 30% 20% 30% 20% 30%
Encoding time 15 s 13 s 30 s 24 s 2.5 min 1.7 min 6.5 min 4.1 min
Decoding time 6 s 5 s 14 s 11 s 1.2 min 45 s 2.5 min 2 min

Runtime Analysis. We measure the encoding and decoding time on one NVIDIA RTX 4090
GPU in Table 2, and we include the results measured on the CPU in Appendix D.1. Our approach
aims to reduce storage space and transmission costs. Therefore, we employ our encoding/decoding
algorithm only during model saving/loading. Once the model is decoded and loaded into memory,
the inference time is identical to that of SliceGPT.

It is also possible to parallelize the encoding and decoding of individual layers for further accelera-
tion. While we do not present experimental results for this optimization in this paper, we outline its
implementation below. We note that standard bits-back coding typically cannot support paralleliza-
tion because it relies on decoding variable-length bits from a bitstream from previous samples. In
our approach, however, two key features enable parallelization: (1) LLMs often have a large embed-
ding layer that provides a sufficiently long bitstream to decode several random rotation matrices. (2)
The rotation matrix size is fixed, ensuring that the length of decoded bits for each layer is predeter-
mined. If the embedding layer cannot provide enough bitstream to decode random rotation matrices
for all layers, we can divide the layers into multiple groups and encode the layers within each group
in parallel. We then encode and decode each group in parallel, using bits from the previous group of
layers or the embedding layer for the first group.

5 CONCLUSION, LIMITATIONS AND FUTURE DIRECTIONS

In this work, we introduce bits-back coding to encode Large Language Models pruned with
SliceGPT. Our approach can save 3-5% additional bits almost for free across several different archi-
tectures and sizes. While bits-back coding has long been applied in data compression, its application
to neural networks, where redundancy and symmetry are prevalent, has been underexplored. Our
work attempts to bridge this gap, opening a new direction for model compression. A key takeaway
is that by re-parameterizing and pre-processing network weights to explicitly capture symmetries,
as demonstrated in SliceGPT, we can leverage bits-back coding to eliminate redundant bits.

Future research can focus on designing improved algorithms for encoding and decoding the random
rotation matrix, developing better error-correction codes to manage large deviations due to numer-
ical instability, and integrating our method with other model compression techniques, such as the
extremely quantized networks (Ma et al., 2024). Our method’s major concern is the numerical in-
stability. While we discuss reducing large deviations by a small number of bits as a correction code,
the challenge of making this approach efficient for extremely quantized networks remains open.

Finally, we note that our proposed approach is not specifically limited to Transformer with SliceGPT.
The concept of bits-back coding applied to neural networks is general, and we can extend it to
many architecture that exhibits symmetries. For instance, in Low-rank Adaptation (LoRA; Hu
et al., 2022), the modulation is decomposed as W “ AB. In this setup, applying a rotation Q
to A as AQ and to B as QJB preserves W. This allows our approach to be seamlessly in-
tegrated into such settings. Another special case of our method is dealing with the permutation
invariance. Any MLP with a single, d-dimensional hidden layer and activations ϕ, defined as
fpx | A,Bq “ BϕpAxq exhibits the following permutation invariance. For a d ˆ d permutation
matrix P, we have fpx | A,Bq “ fpx | PA,BP´1q. However, it is a standard fact that permu-
tation matrices are orthogonal. Hence, our proposed method could be applied to a wide range of
network architectures to eliminate the redundancy introduced by the permutation symmetry of the
hidden units. Thus, an interesting future direction is to investigate if our method could improve the
transmission and storage costs of smaller models, such as ones deployed on edge devices.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jarek Duda. Asymmetric numeral systems. arXiv preprint arXiv:0902.0271, 2009.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

B.J. Frey and G.E. Hinton. Free energy coding. In Proceedings of Data Compression Conference -
DCC ’96, pp. 73–81, 1996. doi: 10.1109/DCC.1996.488312.

Marton Havasi, Robert Peharz, and José Miguel Hernández-Lobato. Minimal random code learn-
ing: Getting bits back from compressed model parameters. In 7th International Conference on
Learning Representations, ICLR 2019, 2019.

Jiajun He, Gergely Flamich, Zongyu Guo, and José Miguel Hernández-Lobato. Recombiner: Ro-
bust and enhanced compression with bayesian implicit neural representations. In The Twelfth
International Conference on Learning Representations, 2024.

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 5–13, 1993.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Alston S Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM
(JACM), 5(4):339–342, 1958.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Zorzi Michele. Sparse random
networks for communication-efficient federated learning. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Julius Kunze, Daniel Severo, Giulio Zani, Jan-Willem van de Meent, and James Townsend. En-
tropy coding of unordered data structures. In The Twelfth International Conference on Learning
Representations, 2024.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Rajarshi Saha, Varun Srivastava, and Mert Pilanci. Matrix compression via random-
ized low rank and low precision factorization. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 18828–18872. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
3bf4b55960aaa23553cd2a6bdc6e1b57-Paper-Conference.pdf.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/3bf4b55960aaa23553cd2a6bdc6e1b57-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3bf4b55960aaa23553cd2a6bdc6e1b57-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

G. W. Stewart. The efficient generation of random orthogonal matrices with an application to con-
dition estimators. SIAM Journal on Numerical Analysis, 17(3):403–409, 1980. ISSN 00361429.
URL http://www.jstor.org/stable/2156882.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent vari-
ables using bits back coding. In International Conference on Learning Representations, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. arXiv preprint
arXiv:2402.11295, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

12

http://www.jstor.org/stable/2156882

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A WHY WE NEED TO ENCODE THE SIGN OF EACH EIGENVECTOR?

First, assume we apply a random rotation matrix Q to some canonical weight matrix W, and obtain
W̃ Ð WQ. We can write this rotation matrix as a stack of orthonormal vectors:

Q “

»

–

— qJ
1 —

¨ ¨ ¨

— qJ
D —

fi

fl (8)

When we recover the canonical weight matrix, we apply eigenvalue decomposition to W̃JW̃. This
is possible as WJW is defined to be diagonal. Therefore, Q is one solution of eigenvalue decom-
position:

W̃JW̃ “ QJWJWQ “ QJΛQ (9)

However, the solution is not unique. We can write

QJΛQ “

«

| ¨ |

q1 ¨ qD

| ¨ |

ff

Λ

»

–

— qJ
1 —

¨ ¨ ¨

— qJ
D —

fi

fl “
ÿ

d

λdqdq
J
d (10)

Changing the sign of any qd will not influence the results of its outer product. Therefore, we can
change the sign of each qd, and this will still be a valid solution to the eigenvalue decomposition.
As an example, WLG, assume by eigenvalue decomposition, we obtain

Q1 “

»

—

–

— ´qJ
1 —

— qJ
2 —

¨ ¨ ¨

— qJ
D —

fi

ffi

fl

(11)

We recover canonical weight matrix by

W̃Q1J “ WQQ1J “ W

»

–

— qJ
1 —

¨ ¨ ¨

— qJ
D —

fi

fl

«

| ¨ |

´q1 ¨ qD

| ¨ |

ff

“ W

»

—

—

–

´1
1

. . .
1

fi

ffi

ffi

fl

‰ W

(12)

Therefore, if we do not control the sign of each eigenvector. We cannot recover the original canonical
weight matrix.

B BITS-BACK JUSTIFICATION

In this section, we justify our scheme by showing that it can be viewed as a particular instantiation
of a bits-back scheme (Townsend et al., 2019; Kunze et al., 2024) with a particular discretization
of the probability densities involved. We will first explain why bits-back coding is applicable to
networks with rotational invariants in a formal manner. Following that, we will calculate the bits
saved through bits-back coding in a more rigorous way. For the sake of generality, we will perform
singular value decomposition (SVD) on the weight matrix in this section, which, is equivalent to the
eigenvalue decomposition we described in the main text.

Let W be a Rnˆm real-valued matrix, without loss of generality assume that n ď m. Then, we can
always write W via its singular value decomposition (SVD):

W “ UΣVJ, (13)

where U is a Rnˆn orthogonal matrix, Σ is a Rnˆn diagonal matrix and V is a Rmˆn orthogonal
matrix. For brevity, we can write B “ ΣVJ, and thus we have that any n ˆ m matrix W can be
written as

W “ UB. (14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Now, we will say that two matrices A,B over the same space are rotationally equivalent A „ B if
there exists an orthogonal matrix Q such that A “ QB; denote the equivalence class of A as rBs.

Now, assume that B „ PB and let PW|BpWq 91tW P rBsu be the uniform distribution on rBs,
i.e. for an orthogonal matrix Q we have PW|BpQWq “ PW|BpWq. Letting fBpQq “ QB, this
actually shows that PW|BpWq “ fB #UnifpOpnqq, where Opnq denotes the n-dimensional real
orthogonal group, # denotes a pushforward measure, and UnifpOpnqq is the Haar measure on Opnq.
Note, that this immediately implies that the marginal is also rotationally invariant:

PWpQWq “

ż

PW|BpQW | Bq dPBpBq “

ż

PW|BpW | Bq dPBpBq “ PWpWq. (15)

Now, if the neural network we wish to encode is rotationally invariant, then we can always “stan-
dardize” W first by computing its SVD W “ UB and setting W Ð B. Then, to encode B, we
sample a random rotation Q, and encode Importantly, we can always recover B (up to the signs of
the rows of V) by performing an SVD. Therefore, we have the following procedure:

Before encoding:

1. Run training algorithm to get W for a rotationally invariant NN.
2. Compute the SVD W “ UB, where B “ ΣVJ.
3. Set W Ð B; this doesn’t change the NN output.

During encoding:

1. Decode an orthogonal matrix Q „ UnifpOpnqq from the message.
2. Encode W1 “ QB using PW into the message.
3. Compute the SVD of W1 “ QB “ Q1B1 and record the n signs of Q1 relative to Q.

Concretely, compute the diagonal sign matrix σ such that σQ1 “ Q. Then, σ can be
encoded using n bits, one for each sign on the diagonal.

During decoding

1. Decode σ and W1 using PW.
2. Compute the SVD of W1 “ Q1B1, use W1 (or B1) in the NN.
3. Compute Q “ σQ1.
4. Code Q back into the stream using UnifpOpnqq.

Computing the coding cost. Since W is continuous, let pW|B and and pW denote the densities
of PW|B and PW, respectively. Since we cannot encode continuous variables, we now make two
approximations. First, we discretize the densities: we fix a precision δ bits, so given that W is
n ˆ m-dimensional, this gives us a set W of 2nmδ values we can represent. For a representable
matrix w P W , we set P̂Wpwq « pWpwq ¨ 2´nmδ and P̂W|Bpw | Bq « pW|Bpw | Bq ¨ 2´nmδ .
These approximations are accurate when the densities are piecewise constant, which is true in this
case as pW|B is constant by definition, and we shall assume in a moment that pW is constant as
well.

Concretely by our earlier definition, pW|Bpw | Bq91rw P rBss. However, note that since rBs

is a proper subspace of Rnˆm (it is a copy of Opnq), it has zero volume. Thus, as our second
approximation, we discretize the conditional distribution by extending its support to the ambient
space. Namely, we set P̂W|Bpw | Bq91rw P W X rBsδ{2s ¨ 2´nmδ , where rBsδ{2 is the uniform
δ{2-expansion of rBs:

rBsδ{2 “ tW P Rnˆm | DQ P Opnq : ∥W ´ QB∥8 ď δ{2u. (16)

What is the size of W X rBsδ{2? Since rBs is a npn ´ 1q{2 dimensional subspace of Rnˆm, for a
large-enough precision δ we will have |W X rBsδ{2| « 2´δ¨npn´1q{2. Though this approximation
should be quite accurate, we do not expect equality in any practical situation; and the lack of this
equality contributes to the numerical issues we describe in section 3.3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Now, for large enough δ, we have

P̂W|Bpw | Bq « 1rw P rBsδ{2s ¨ 2´pnm´npn´1q{2qδ.

Finally, assuming that PB is uniform results in PW being uniform as well, hence we have

P̂Wpwq “ 2´nmδ.

Therefore, decoding W | B saves approximately ´ log2 P̂W|BpW | Bq bits and encoding it costs
´ log2 P̂WpWq ` n bits (where the `n term comes from encoding the sign matrix σ), the total
coding cost is

« log2
P̂W|BpW | Bq

P̂WpWq
` n « log2

2´pnm´npn´1q{2qδ

2´nmδ
` n “

npn ´ 1q

2
δ ` n bits,

which matches the coding cost of our proposed scheme.

C COMPARED WITH UNIVERSAL SOURCE CODING

As our proposed algorithm aims to reduce the storage and transmission cost, it is sensible to use a
universal source coding algorithm to reduce the storage cost. However, we note that our proposed
method is not directly comparable to these source coding algorithms. In fact, we can view our
proposed algorithm as a pre-processing step before universal source coding. Concretely, we suggest
to combine our proposed method with a source coding algorithm to form the following ”bits-back”
pipeline:

1. We obtain some network weights with rotational symmetries.

2. We use our method to eliminate the redundancies induced by the rotational symmetries in
the weights.

3. We apply a universal source coding algorithm to the output of our algorithm.

In the main text, we only looked at the gains we get if we apply our method without any universal
source coding. Hence, a concern arises: do we retain significant gains if we run the pipeline we
suggest above, compared to just running universal source coding without our method?

Fortunately, the answer is positive. In particular, we compared the pipeline suggested above to
universal source coding (we used ZIP in our experiment) on the OPT-2.7B model (slicing 30%).
Using ZIP only, the compressed size comes to 3.97 GB while using our suggested bits-back pipeline,
it reduces to 3.79 GB, and approximately 5% gain in storage size as before. While the exact gain
my vary depending on the universal source coding algorithm, these models are large enough that the
gains we report here should be fairly robust across different source coding algorithms.

There is an intuitive reason for retaining the gain even after source coding: the general-purpose
universal source coding algorithm is unaware of the redundancies introduced by the rotational sym-
metry in the weights and, therefore, cannot utilize it to reduce storage size. From this perspective,
the storage savings resulting from our bits-back method are ”orthogonal” to the savings that result
from source coding.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 RUNTIME ON CPU

Table 3: Encoding and decoding time on CPU for different models with varying slicing rates.

Model Name OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B
Slicing 20% 30% 20% 30% 20% 30% 20% 30%
Encoding time 3.9 min 3.5 min 8 min 6.5 min 30 min 25 min 84 min 68 min
Decoding time 1.5 min 1.5 min 3.5 min 2.5 min 12 min 10 min 30 min 24 min

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D.2 INFLUENCE OF QUANTIZATION

In this paper, we apply our approach to weights saved in float16. Here, we provide a simple
illustration of the influence of different precisions on the performance in Table 4. We apply simple
linear quantization to reduce the precision to 11-15 bits and measure the compression rate with bits-
back coding. We can see that as the precision decreases, the bits saved by our approach become
smaller. This is because the size of the correction code increases to compensate for the error caused
by lower precision. The influence of precision slightly varies for different model sizes and SliceGPT
rates, but they share the same trend, and our proposed approach consistently delivers gains when the
precision is larger than 12-13 bits. Also, note that we apply the simplest linear quantization to the
model weights in this simple demonstration. A better quantization strategy and correction code can
further improve the performance of our approach. We leave this investigation to further work.

Table 4: Influence of different precisions on the performance.

Model / SliceGPT rate 16 bits 15 bits 14 bits 13 bits 12 bits 11 bits
w/o bits-back -9.19%OPT-2.7B / 20% w. bits-back -13.84% -13.29% -13.04% -12.10% -9.83% -3.92%

w/o bits-back -20.88%OPT-2.7B / 30% w. bits-back -24.43% -24.09% -23.86% -23.12% -21.60% -17.20%

w/o bits-back -9.29%OPT-6.7B / 20% w. bits-back -14.07% -13.29% -12.88% -11.58% -8.01% 0.00%

w/o bits-back -20.88%OPT-6.7B / 30% w. bits-back -24.84% -24.27% -23.91% -22.96% -20.38% -14.14%

16

