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ABSTRACT

Personalized federated learning (PFL) achieves high performance by assuming
clients only meet test data locally, which does not meet many generic federated
learning (GFL) scenarios. In this work, we theoretically show that PMs can be used
to enhance GFL with a new learning problem named Selective FL (SFL), which
involves optimizing PFL and model selection. However, storing and selecting
whole models requires impractical computation and communication costs. To
practically solve SFL, inspired by model components that attempt to edit a sub-
model for specific purposes, we design an efficient and effective framework named
Hot-Pluggable Federated Learning (HPFL). Specifically, clients individually train
personalized plug-in modules based on a shared backbone, and upload them with
a plug-in marker on the server modular store. In inference stage, an accurate
selection algorithm allows clients to identify and retrieve suitable plug-in modules
from the modular store to enhance their generalization performance on the target
data distribution. Furthermore, we provide differential privacy protection during
the selection with theoretical guarantee. Our comprehensive experiments and
ablation studies demonstrate that HPFL significantly outperforms state-of-the-art
GFL and PFL algorithms. Additionally, we empirically show HPFL’s remarkable
potential to resolve other practical FL problems such as continual federated learning
and discuss its possible applications in one-shot FL, anarchic FL, and FL plug-in
market. Our work is the first attempt towards improving GFL performance through
a selecting mechanism with personalized plug-ins.

1 INTRODUCTION

The performance of generic federated learning (GFL) (Brendan McMahan et al., 2016) suffers from
data heterogeneity (Brendan McMahan et al., 2016; Kairouz et al., 2019; Li et al., 2020b; Karimireddy
et al., 2019; Tang et al., 2022b; Chen & Chao, 2021), where clients have different data distributions.
Personalized federated learning (Smith et al., 2017; Collins et al., 2021; Chen & Chao, 2021) (PFL)
assumes that clients only need to inference on local test data, which has similar distributions to local
training datasets. To this end, PFL prioritize fitting on local datasets while absorbing knowledge
from the global training data. Due to this property, PFL gets rid of data heterogeneity, as the training
convergence is not severely disturbed by the client drift (Li et al., 2020b; Karimireddy et al., 2019;
Kairouz et al., 2021; Chen & Chao, 2021).

Table 1: Test accuracy on GFL and PFL of personalized
models, with ResNet-18 and CIFAR-10.

Algorithm FedAvg FedPer FedRep FedRoD

Problem GFL PFL GFL PFL GFL PFL GFL PFL

Accuracy 81.5 92.5 74.1 95.8 85.1 95.6 85.3 94.3

However, in real-world scenarios, FL users may
encounter test data different from local training
data (Liu et al., 2020; Luo et al., 2019; Hsu et al.,
2020; Tang et al., 2022b), but which may appear
in other training data. For example, when one
traveling abroad, the personal map app might
recommend entirely different restaurants from their residence. In such situation, models trained on
local restaurant and personal data can make better recommendations 1. In GFL, clients encounter
test data of others, instead of only their own test data as in PFL (Smith et al., 2017; Collins et al.,

1More real-world examples of GFL-PM problems are provided in Appendix F.1.
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Figure 1: The framework of HPFL.

2021; Chen & Chao, 2021). In such realistic cases, PFL algorithms lose their general performance,
as they prioritize fitting local datasets with the personalized models. As Table 1 shows, advanced
PFL algorithms FedPer (Arivazhagan et al., 2019b), FedRep (Collins et al., 2021) and FedRoD (Chen
& Chao, 2021) perform well in PFL, but performance collapses in GFL, where personalized clients
encounter all test data. This performance gap motivates us following fundamental questions:

Whether a global model (GM) is compulsorily needed in GFL? Is it possible to
enhance GFL with personalized models (PMs) trained in PFL?

Considering that PMs are already solutions of PFL, intuitively, we formulate a new learning problem
called Selective FL (SFL) bridging GFL and PFL (Equation 5), and prove the solution of SFL can
achieve better performance than solution of GFL. Both GFL and PFL can be seen as special cases of
SFL, whose core idea is to select suitable PMs for inference on clients according to incoming test
data. However, the naive solution to SFL leads to privacy concerns, large system overheads and poor
scalability. To this end, inspired by model components (Shah et al., 2024; Olsson et al., 2022), we
propose a general and effective framework named Hot-Pluggable Federated Learning (HPFL) to
practically solve SFL.

As shown in Figure 1, HPFL splits the model into two parts: a backbone (also called feature extractor)
and a plug-in module. The backbone can be trained using any FL algorithm or initialized as a
pre-trained backbone. Clients train plug-ins based on local datasets and upload them with the
according plug-in markers to the server store. During inference, test data passes the backbone, and a
suitable plug-in is selected to complete the inference. There are two ways to implement retrieving
plug-ins in HPFL, α: Clients upload task markers to the server and select the appropriate module; β:
Clients download all plug-in markers to select. α is suitable for situations where clients have limited
computation ability, as it selects and completes final inference on the server; While β reduces the
computation burden on the server. To protect the privacy, we provide differential privacy protection
on communicated features during the selection with theoretical guarantee.

Our contributions are summarized as follows:

• We identify a substantial gap between GFL and PFL, and formulate a new problem SFL to
bridge them together to address this performance gap (Section 2). As far as we know, this is
the first work that enhances GFL through learning, sharing and selecting plug-ins, instead of
classic paradigm with one single model.

• We propose a general, efficient and effective framework HPFL, which practically solves SFL
(Section 3). And we add noise on communicated markers to provide differential privacy
protection with theoretical guarantee (Section 3.4).

• We conduct comprehensive experiments and ablation studies on four datasets and three
neural networks to demonstrate the effectiveness of HPFL (Section 5).
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• We show the remarkable potential of HPFL in federated continual learning (Section 5.4) and
discuss HPFL’s possible applications in one-shot FL, anarchic FL and FL plug-in market
(Section 6).

2 SELECTIVE FL: IMPLEMENTING GENERIC FL FROM PERSONALIZED FL

2.1 GENERIC FL

The GFL aims to make M clients collaboratively learn a global model parameterized as θ. Each
client has its local data distribution Dm. Thus, the local objective function Lm(θ) on client m is also
different. The global optimization object of GFL is defined as (Karimireddy et al., 2019; Woodworth
et al., 2020; Tang et al., 2022b):

min
θ∈Rd

LG(θ) =

M∑
m=1

pmLm(θ) =

M∑
m=1

pmEξm∼Dmℓ(f(θ, ξm), ξm), (1)

where ξm ∼ Dm is the data sampled from Dm, f(θ, ξm) is the prediction, d is the number of model
parameters, pm > 0 and

∑M
m=1 pm = 1. Usually, pm = nm

N , where nm denotes the number of client
m’s samples and N =

∑M
m=1 nm. GM refers to the model obtained from optimizing GFL.

2.2 PERSONALIZED FL

Different from the object function of GFL, the PFL aims to learn multiple personalized models which
fit well on different datasets individually: (Li & Wang, 2019; Chen & Chao, 2021; Li et al., 2021c):

min
Ω,θ1,...,θM

LP (Ω, θ1, ..., θM ) =

M∑
m=1

pmEξm∼Dmℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM ), (2)

where R is a regularizer (Chen & Chao, 2021) that varies with different algorithms, Ω is used to
collaborate clients. We call each obtained locally personalized model θm as PM.

2.3 WHEN PM MEETS GFL

In practice, PMs of clients may meet test data from other clients. Therefore, the learned PMs
θ1, ..., θM need to perform well on all local data D1, ...,DM . We formulate the corresponding
optimization goal with PMs in GFL scenario (GFL-PM) is:

min
Ω,θ1,...,θM

LP−G(Ω, θ1, ..., θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dmℓ(f(θi, ξm), ξm) +R(Ω, θ1, ..., θM ), (3)

which can be seen as a combination of GFL (Eq. 1) and PFL (Eq. 2): each PM is optimized to
minimize the ℓ on all Dm, m ∈ 1, ...,M . When not personalize θi on Di, Eq. 3 is reduced to GFL .
And if each client’s PM only needs to perform well on its local data, Eq. 3 turns into PFL.

One may think that there is no need to endow PMs with global generalization performance because one
can optimize GFL to obtain a GM that generalizes well on all local datasets {Dm,m ∈ {1, ...,M}}.
However, theoretically and empirically, optimization of GM is difficult (Karimireddy et al., 2019;
Woodworth et al., 2020) under communication cost and data heterogeneity constraints. Additionally,
PMs’ performance on local test data (PM on PFL) is usually significantly better than that of GM on
global test data (GM on GFL) (Chen & Chao, 2021; Collins et al., 2021).

However, PMs after PFL usually cannot achieve better performance on unseen data distributions
than GM in GFL (Chen & Chao, 2021). FedRoD (Chen & Chao, 2021) simultaneously optimizes
LG and LP , aiming to learn models that perform well both in GFL and PFL. This shares a similar
spirit of optimizing GFL-PM problem (Eq. 3). However, PMs obtained from FedRoD remain a
trade-off between minimizers of PFL and GFL. It is challenging to obtain model parameters that
are both minimizers of GFL and PFL simultaneously. Next, we show that GFL-PM can be naturally
transformed into a Selective FL (SFL) problem (Eq. 5), which involves optimizing PFL and a model
selection problem (Eq. 6 in section 2.4). And the solution of SFL could serve as the minimizer of
both GFL and PFL.
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2.4 SELECTIVE FL

Successful personalization on client m means the following equation (Chen & Chao, 2021; Kairouz
et al., 2019; Tan et al., 2022a).

Eξm∼Dmℓ(f(θi, ξm), ξm) ≥ Eξm∼Dmℓ(f(θm, ξm), ξm), i ̸= m, (4)

which means that for any client m, its PM outperforms than all PMs of other clients (Chen & Chao,
2021). Now, we are ready to state the following theorem (proof in Appendix B.1).
Theorem 2.1. With Equation 4 and the PMs obtained from optimizing Equation 2 as:
Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Ω
pfl, θpfl1 , ..., θpflM ).

Remark 2.2. Theorem 2.1 implies that LP−G is lower bounded by the minimum of LP .

Theorem 2.1 shows that the minimum of PFL is the lower bound of the GFL problem. Intuitively, this
inspires us to think about exploit PMs trained in PFL to enhance GFL. Note that Equation 4 comes
from the selective property of PFL, i.e. optimized PMs have the best performance on its local trained
datasets. In light of this, the direct solution is to select trained PMs according to the test data. Thus,
we propose the Selective FL (SFL) problem as the following:

min
H
LS(Θ,H) =

M∑
m=1

pmEξm∼Dmℓ(f̂(Θ, ξm,H), ξm) (5)

s.t. f̂(Θ, ξm,H) = f(θpfls , ξm), s = S(Θ, ξm,H) (6)

where Θ = {Ωpfl, θpfl1 , ..., θpflM } = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), S is called selection
function that outputs the model index to select a model from the PMs based on the input ξm and
the auxiliary information H, which is exploited to select plug-in module, e.g. noisy feature for
calculating distance metrics like Maximum Mean Discrepancy (MMD) will be illustrated in Section 3.
Now, we can state the following theorem to illustrate that we can solve problem 3 by SFL (proof in
Appendix B.2):

Theorem 2.3. With Equation 4, Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ) and the
H∗ that guarantees θpflm = θs(Θ,ξm,H), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Θ) = LS(Θ,H∗). (7)

Remark 2.4. Theorem 2.3 shows that if we can accurately select θpflm out of all PMs when meeting
data samples ξm ∼ Dm, the solution of SFL is also the lower bound of GFL-PM (Eq. 3). Therefore,
solving SFL means that clients achieve performance in GFL as high as in PFL.

3 HPFL: HOT-PLUGGABLE FEDERATED LEARNING

In this section, we will first illustrate that directly selecting PM faces some fatal obstacles, including
the large system overheads and privacy concerns in Section 3.1. Then, we introduce the design of
HPFL in Section 3.2 with the Algorithm 1. Lastly, the selection method is introduced in Section 3.3.

3.1 PROBLEMS OF DIRECTLY SELECTING PM

With PMs Θ = {Ωpfl, θpfl1 , ..., θpflM } = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), an intuitive idea is to
choose PM i based on the similarity between its local data Di and the input data ξm ∼ Dm, thus the
selection function 6 is implemented as: s = Sξ(Θ, ξm,H) = argmini∈M d(Di, ξm), where d(·, ·)
is any distance measure, then infer as f(θpfls , ξm). However, accessing data of other clients will
cause privacy concerns. Moreover, communicating the whole model parameter θm is impractical
due to large system overhead, especially for large language models and many clients.

3.2 DESIGN OF HPFL

Training the complete model θ. First, HPFL obtains a model θ that performs well (not as good as
PMs in PFL) on all client datasets with any GFL algorithm . Thus, the model θ owns a backbone
g that can extract general features from all client datasets. Due to the limited space, we chose the
classic GFL algorithm FedAvg (McMahan et al., 2017) in our experiments. Future works can explore
other advanced GFL algorithms to learn a better θ.

4
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Algorithm 1 HPFL.
Initialization: server distributes the initial model θ0

to all clients.
1. Training the complete model θ:
for each round r = 0, 1, · · · , R do

server samples a set of clients Sr ⊆ {1, ...,M}.
server communicates θr to clients m ∈ Sr .
for each client m ∈ Sr in parallel do
Cr+1
m ← LocalTraining(Dm, θr) (GFL) .

end for
θr+1 ← ServerUpdate(Cr+1

m |m ∈ Sr) (GFL).
end for

2. Training personalized plug-in module θρm:
for each client m ∈M in parallel do do

Clients share and freeze the θg ,
Clients design personalized θρm.

Training θρm with object function 8 (PFL).
Obtaining plug-in markerHm (e.g. noised

features explained in Section 3.3 in detail.)

for plug-in selection.
Upload θρm andHm to server.

end for
Server stores θρm andHm.

HPFL Inference(θg,Dtest):
i← SelectPlugIn(Dtest, θ

g,H).
Get output← ρi ◦ g(ξ|ξ ∼ Dtest).

Training personalized plug-in module θρm.
Usually, after training, early layers of a model
learn more general features than late lay-
ers (Yosinski et al., 2014; Asano et al., 2020),
while late layers are more specific to some par-
ticular datasets. Inspired by this, HPFL decom-
poses the model as fm = ρ ◦ g for each client
m. As shown in Figure 1, g is a feature extrac-
tor, and ρ is a model head that outputs the final
model prediction.

Clients can design a new personal plug-in mod-
ule ρm (or say model head) different from the
original head ρ, based on different computa-
tion characteristics. Then, with the frozen gen-
eral feature extractor g, each client individually
trains personalized ρm on local data Dm by

optimizing:
min
θρ
m

LP (θm) = Eξm∼Dmℓ(ρm ◦ g(ξm), ξm).

(8)
Now, each client obtains a PM fm = ρm ◦ g,
which enhances the generalization performance
of ρm ◦ g on Dm, which is usually better than
original GM f = ρ ◦ g due to the personaliza-
tion. Thus, the θpflm in SFL problem 5 can be
constructed by θg and θρm, inference becomes as
f(θpflm , ξm) = ρm ◦ g(ξm).

Inference and selecting plug-in module. In
HPFL, we define some plug-in marker Hm as auxiliary information in Equation 5 that will be

exploited to select plug-in module . When training θρm, Hm are collected by clients and uploaded to
the server. Note that as a general framework, HPFL does not limit the specific form of Hm, which
depends on the selection method. As the first attempt in this paradigm, We introduce a distance-based
selection method in Section 3.3.

3.3 SELECTION METHODS

Decomposing the model also avoids accessing the raw data ξm ∼ Dm. With the shared feature
extractor g, we can select the ρm based on the intermediate features hm = g(ξm) rather than ξm
itself to avoid leading raw data. Several studies have exploited the sharing of intermediate features to
improve FL (He et al., 2020a; Lin et al., 2020a; Luo et al., 2021; Liang et al., 2020).

Distance based methods. Intuitively, now that each ρm is trained based on local features hm, we
only need to compare the similarity between hm and htest = g(ξtest), where ξtest is the data that
needs testing. Now, the select problem turns from Equation 6 into:

Sdist(d, htest, ĥ1, ..., ĥM ) = argmin
m∈M

d(ĥm, ĥtest), (9)

in which ĥm and ĥtest are noised hm and htest, which are illustrated in the next section. In this
selection method, the plug-in marker Hm = ĥm. In HPFL, we utilize Maximum Mean Discrepancy
(MMD) distance (Long et al., 2017) to measure the distance between plug-in markers and noised
features of test data (task marker). We also exploit other distance measures like SVCCA (Raghu
et al., 2017), CKA (Kornblith et al., 2019) and out-of-distribution confidence based selection methods
and provide results in Appendix D.

3.4 PRIVACY PROTECTION

Differential Privacy. In HPFL, plug-in markers (noised features of training data) and task markers
(noised features of test data) are shared for selecting. To protect the privacy, following differential

5
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privacy (DP) (Abadi et al., 2016; Balle & Wang, 2018; Wu et al., 2022; Yang et al., 2024), we add
Gaussian noises as ĥ = (h+κ ∗ υ)/(1+κ) for both hm and htest where υ ∼ N (µm, σm), in which
ĥm = (hm + κ ∗ υ)/(1 + κ), where υ ∼ N (µm, σm) is the noise to enhance privacy protection.
The µm and σm are mean and variance of features hm, κ is a coefficient controlling the relative
magnitude between Gaussian noise and the features. The following theorem shows that the raw data
is protected by our noise mechanism with (ϵ, δ)-DP. The detailed proof of Theorem 3.1 is shown in
Appendix B.3.

Theorem 3.1. For the procedure of obtaining and sharing markers H(xm) = (g(xm) + κ ∗
υ)/(1 + κ), (ϵ, δ)-DP holds if the ϵ, δ conforms to any of the two conditions: (1) ∀ϵ, δ ∈ (0, 1), ϵ ≥

O

(√
2ln(1.25/(κ∗σm))

δ

)
; (2) ∀0 < δ < 1/2− e−3ϵ/

√
2πϵ, ϵ ≥ O( 1

2(κ∗σm)2 ).

Model Inversion Attack. Besides theoretical analysis of DP protection HPFL, we also empirically
verify the safety of sharing noised plug-in markers against the model inversion attack (Zhao et al.,
2020). The failed reconstruction (in Appendix E.2) of raw data demonstrate that HPFL can defend
model inversion attacks successfully.

4 RELATED WORKS

Generic Federated Learning. To address the data heterogeneity problem, FedProx (Li et al., 2020b)
and MOON (Li et al., 2021b) propose to add regularization terms to mitigate the negative effect
caused by data heterogeneity. Some methods explicitly or implicitly modify uploaded gradients to
alleviate the gradient dissimilarity (Wang et al., 2020; Karimireddy et al., 2019; Tang et al., 2024).
Some works share intermediate features (Jeong et al., 2018; Hao et al., 2021; Tang et al., 2024)
or extra data (Tang et al., 2022b) to reduce client drift. There are also a bunch of work utilizing
Knowledge Distillation (KD) (Hinton, 2015) such as FedDF (Lin et al., 2020b) and Fed-ET (Cho et al.,
2022). Different from these works, we attempt to enhance the GFL performance with personalized
models.

Personalized Federated Learning. PFL exploits personalizing client models to better suit local
heterogeneous training data. Meta-learning (Fallah et al., 2020), knowledge distillation (Yu et al.,
2020b; Li & Wang, 2019), adaptive regularization and model mixtures (Hanzely & Richtárik, 2020;
Dinh et al., 2020; Deng et al., 2020) are used to enhance personal knowledge learning of models.
Some works (Liang et al., 2020; Li et al., 2021a) allow clients to learn different PM structures.
KNN-per (Marfoq et al., 2022) constructs PMs by replacing classifiers with non-parametric methods
based on local datasets. FedRep (Collins et al., 2021) and FedRoD (Chen & Chao, 2021) propose to
learn a global feature extractor and personalized classifiers. While FedRoD conducts inference with
different classifiers, they are manually switched according to the prior knowledge about the source
of test data, which is also impractical in real-world FL. All of these works only consider PMs in
PFL settings, which is impractical in real-world FL, because clients might meet various test data. To
address this problem, HPFL select suitable PMs according to the test data during the test time,

Test-time adaptation & domain adaptation methods in FL. Some works (Peng et al., 2019; Liu
et al., 2021) focus on generalizing a federated model trained on multiple source domains to unseen
target domains. FedTHE (Jiang & Lin, 2023) discussed test-time distribution shift of PMs, which
is similar to but different from generalizing on global test data. These methods enhance federated
models by better training schemes, which is orthogonal to our method. FedTHE & FedTHE+ (Jiang
& Lin, 2023) discuss test-time distribution shift, which is similar to our problem setting. However, we
narrow down the category of distribution shift to apply to the GFL setting and perform much better in
our proposed circumstance, while their method mainly aims at dealing with unknown distribution
shift. This is also the differences between our work and all methods applying TTA directly on
local client training, therefore we only experimentally compare FedTHE and our work, as FedTHE
significantly outperforms this type of works. Different from them, HPFL is the first FL framework
that flexibly selects PMs for inference. Due to the limited space, we leave a more detailed discussion
of the literature in Appendix A.
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Table 2: Experiment results. Noisy coefficient κ=1. §: we focus more on GFL setting. Numbers in ForestGreen
highlight highest values in GFL setting. *: FedAvg fine-tunes the whole model instead of partial model as in
HPFL; FedSAM fine-tunes partial model as in HPFL; For these two methods, we only list the best performance
in Ep = 1 & 10 and denote which epochs get the values in subscript. Plug-in selection is implemented with
MMD. Ep denotes the epoch of fine-tuning. We provide error bars of our experiments in Table 11.

Clients 10 (sample 50% each round) 100 (5% each round)

Non-IID Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05)

Test Set GFL§ PFL GFL§ PFL GFL§ PFL GFL§ PFL

Method/Model GM PM PM GM PM PM GM PM PM GM PM PM

CIFAR-10

FedAvg Ep = 1 & 10∗ 81.5 - 92.8(10) 62.4 - 96.1(1) 73.6 - 91.6(10) 47.9 - 93.4(10)

FedPer 74.1 40.9 95.8 58.7 27.3 96.4 44.5 20.6 89.7 24.0 14.3 89.9
FedRoD 85.3 41.6 94.3 67.6 26.8 96.9 74.0 20.1 87.4 66.7 15.6 91.2
FedRep 85.1 51.3 95.6 73.2 30.2 85.3 66.5 27.4 89.3 59.2 20.4 89.1

PerFedMask Ep = 5 57.8 23.4 83.1 31.8 15.1 83.1 53.8 15.6 82.1 35.0 12.5 87.6
FedTHE 86.2 64.4 93.4 68.7 31.1 85.7 75.0 23.8 90.8 66.9 44.5 90.1

FedSAM Ep = 1 & 10∗ 84.5 47.8(1) 96.0 65.4 33.2(1) 96.7(10) 50.4 36.6(1) 90.3(10) 36.6 23.3(1) 91.3(10)

HPFL Ep = 1 81.5 95.4 95.4 62.4 96.0 96.0 73.6 88.6 94.9 47.9 82.2 93.9
HPFL Ep = 10 81.5 95.7 95.7 62.4 96.3 96.3 73.6 85.7 95.7 47.9 81.8 95.3

FMNIST

FedAvg Ep = 1 & 10∗ 86.0 - 98.2(10) 76.1 - 99.1 90.2 - 97.8(10) 86.1 - 98.4(10)

FedPer 73.5 39.0 87.5 64.1 27.5 99.1 69.0 29.1 95.9 44.8 22.6 96.8
FedRoD 87.4 44.1 98.1 72.5 29.3 98.9 88.9 47.0 98.5 84.8 35.3 98.2
FedRep 87.0 43.0 97.5 74.7 39.5 98.0 88.2 72.4 97.9 84.4 59.6 98.3

PerFedMask Ep = 5 80.1 30.8 95.8 47.6 27.1 96.9 89.3 23.0 93.5 91.9 21.3 96.5
FedTHE 87.9 69.4 96.8 70.7 55.4 98.5 88.5 83.1 97.5 84.7 74.6 97.6

FedSAM Ep = 1 & 10∗ 89.3 53.8(1) 98.5 77.2 36.6(1) 99.4 86.3 76.9(1) 98.5(10) 85.2 70.8(1) 98.6(10)

HPFL(MMD) Ep = 1 86.0 98.3 98.3 76.1 99.0 99.1 90.2 97.6 97.9 86.1 81.4 98.1
HPFL(MMD) Ep = 10 86.0 98.4 98.4 76.1 99.1 99.2 90.2 97.9 98.8 86.1 74.1 98.7

CIFAR-100

FedAvg Ep = 1 & 10∗ 69.1 - 79.5(1) 65.3 - 80.9(10) 59.7 - 66.7(10) 47.9 - 75.1(10)

FedRoD 69.4 32.5 77.2 67.0 23.6 78.5 52.8 11.2 55.4 48.4 7.3 66.3
FedRep 68.4 42.6 72.4 65.0 37.3 81.2 47.9 18.6 56.5 43.3 14.1 65.3

PerFedMask Ep = 5 47.3 7.0 40.0 49.4 7.0 39.7 41.7 3.8 35.8 42.1 3.6 35.2
FedTHE 69.9 24.8 74.9 67.0 18.3 79.6 53.3 14.8 61.2 48.4 13.2 70.3

FedSAM Ep = 1 & 10∗ 68.4 57.4(1) 85.6(10) 64.1 43.0(1) 88.8(10) 41.3 27.3(1) 71.1(10) 34.8 18.4(1) 77.3(10)

HPFL(MMD) Ep = 1 68.6 74.8 83.3 65.3 75.8 87.4 59.7 63.8 81.2 47.9 72.3 84.1
HPFL(MMD) Ep = 10 68.6 72.2 85.7 65.3 73.9 88.8 59.7 55.7 84.1 47.9 70.9 86.4

Tiny-ImageNet-200

FedAvg Ep = 1 & 10∗ 56.5 - 69.5(1) 54.9 - 75.3(1) 47.2 - 67.5(10) 42.1 - 68.9(10)

FedPer 16.3 0.5 0.5 13.4 0.5 0.5 2.4 1.8 23.5 1.3 25.1 1.0
FedRoD 57.5 26.1 68.5 55.3 12.9 52.9 48.6 49.3 9.6 43.7 5.9 53.7
FedRep 56.1 28.7 55.4 54.5 31.8 69.6 46.4 18.6 52.5 40.3 12.8 58.6

PerFedMask Ep = 5 26.9 6.6 35.9 23.2 4.2 31.3 29.9 1.9 23.5 18.7 1.6 32.6
FedTHE 57.4 19.0 64.3 55.5 17.4 75.7 49.1 15.9 63.0 44.5 9.2 64.0

FedSAM Ep = 1 & 10∗ 57.0 48.6(1) 75.1(10) 55.0 42.1(1) 78.2(10) 43.8 30.4(1) 69.3(10) 38.0 21.1(10) 72.0
HPFL(MMD) Ep = 1 56.5 51.9 70.8 54.9 58.5 74.7 47.2 50.7 71.3 42.1 47.1 74.7
HPFL(MMD) Ep = 10 56.5 50.9 73.7 54.9 58.8 77.0 47.2 48.0 73.2 42.1 43.9 76.5

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Federated Datasets and Models. We conduct experiments on four commonly used image clas-
sification datasets in FL, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky
et al., 2009), Fashion-MNIST (Xiao et al., 2017), and Tiny-ImageNet (Le & Yang, 2015), with Latent
Dirichlet Sampling (Dir) partition method (α = 0.1, 0.05) to simulate data heterogeneity following (He
et al., 2020b; Li et al., 2021b; Luo et al., 2021; Tang et al., 2022b). We also evaluate the scalability of
our proposed methods with different numbers of clients (M = 10, 100). We implement our algorithm
and experiments based on the popular FL framework FedML (He et al., 2020b; Tang et al., 2023a).
We train ResNet-18 (He et al., 2016), MobileNet (Howard et al., 2017) and a simple-CNN on all
datasets. We run all algorithms for 1000 communication rounds, with 1 local epoch per round.
Hyper-parameters and more details are explained in Appendix C.

Baselines and Metrics. We compare HPFL with GFL algorithms FedAvg (McMahan et al., 2017),
FedSAM (Qu et al., 2022); advanced PFL algorithms including FedPer (Arivazhagan et al., 2019a),
FedRep (Collins et al., 2021), PerFedMask (Setayesh et al., 2023); FedRoD (Chen & Chao, 2021) both
for GFL and PFL; and a test-time adaption method FedTHE (Jiang & Lin, 2023). For all algorithms,
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we validate the learned global model (GM) on the global test dataset (GFL), the personalized models
(PM) on the personalized dataset (PFL), and PMs on GFL. More specifically, our new GFL-PM test
setting is: for all clients, we randomly assign the local test data encountered by the clients with equal
probability, i.e. ∀i, j ∈ {1, ...,M}, P r(Dtest

i = Dtest,PFL
j ) = 1/M , where Dtest,PFL

j is test data
IID with local training data on client j as local test data in PFL. More details about metrics are stated
in Appendix C.

5.2 EXPERIMENT RESULTS

HPFL consistently outperforms baselines in PM on GFL while comparable with classic PFL
methods in classic personalized setting. As shown in Table 2, in GFL-PM setting, HPFL excels
above all methods and most by a large margin, even surpasses accuracies in GFL-GM in most cases,
while baselines perform poorly due to a lack of adaption to test data. We attribute the significant
performance gain to adaptation to test data implemented with precise plug-in selection, which we
discuss in Section 5.3. It is worth noting that FedTHE also attempts to adapt its model using test data,
but only with the ensemble of its locally personalized and global classifier, thus ignores knowledge
from other clients and underperforms HPFL. In terms of GFL-GM accuracy, HPFL actually shares
the same GM with GFL backbone training method (in our case, i.e. FedAvg), so its GFL-GM accuracy
is exactly the same as that of FedAvg and outperforms the classic PFL algorithms focusing on PFL
performance like FedPer (Arivazhagan et al., 2019a). As for PFL-PM accuracy, our proposed
method HPFL reports comparable results to the PFL baselines.

HPFL maintains fairly excellent robustness against non-IID degree. As shown in Table 2, the
accuracy of HPFL is not only highest in GFL-PM, but also increases when the heterogeneity increases
from Dir(0.1) to Dir(0.05) in a similar way as in PFL-PM in some cases. From this phenomenon,
we infer that HPFL exploits local information from clients to ensemble a model in the form of
plug-ins. The server holds these local information in the form of plug-ins instead of fusing these
local knowledge in a single model, thus prevents the original local information from being corrupted
in model aggregation as it occurs in highly heterogeneous data, and maintains a robustness against
non-IID, which is a common issue in Federated Learning.

Table 3: Results with different architectures.

Architecture Mobilenet Simple-CNN

Method/Model GM PM PM GM PM PM

FedAvg 55.7 - 92.3 64.6 - 85.4
FedPer 53.7 10.0 10.0 44.1 27.6 85.5

FedRoD 76.3 36.1 92.3 67.1 28.8 83.5
FedRep 74.1 35.8 85.0 54.6 10.0 10.0

PerFedMask 13.0 19.0 76.4 31.5 10.0 50.5
FedTHE 76.3 45.4 82.7 67.1 45.1 70.9
HPFL 55.7 92.8 92.8 64.6 87.8 87.8

HPFL has excellent scalability in terms of per-
formance in accuracy. HPFL adopts a one-
client-one-plug method to better modify final
inference models according to the data distribu-
tion of clients’ local data. In this way, HPFL
has inherent ability to allow more clients to
come and go freely in the FL system. From
Table 2, we observe that other PFL methods
met extreme problems when dealing with the
situation that the number of clients was larger
(M=100), with most of the accuracies lower
than 30% on CIFAR-10, 20% on CIFAR-100.
However, though with a little decay in accuracy,
HPFL is still applicable in the situation where the system included larger number of clients.

A generalized framework applicable to different model architecture. As a general FL framework,
HPFL can be seamlessly applied to model architectures where parameter decoupling is available. We
deploy it on three different model architectures (ResNet-18, MobileNet (Howard et al., 2017), and a
simple-CNN structure whose architecture is the same as simple-CNN in (Tang et al., 2022b)), and
HPFL outperforms baselines we use in the main experiment with all of the architectures, showing that
HPFL can be extensively employed in different FL systems and improve their performance of GFL
and adaptation ability to new clients. Results are in Table 3. Moreover, HPFL can exploit backbones
trained with all kinds of GFL algorithms. An ablation study on GFL methods used to learn feature
extractor of HPFL is demonstrated in Appendix D.6.

Table 4: Accuracy of different κ

κ 0 1 10 100 1000

Accuracy 95.4 95.4 95.4 95.4 95.4

A win-win deal: Efforts to protect privacy
is not contradictory to the performance of
HPFL. In HPFL, clients share plug-in markers
with the server, which may raise privacy concern.
To protect clients from the risk of data breaches
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during communication or improper storage on the server, we add noise to the plug-in markers.
However, we surprisingly found that noise will not damage the performance of HPFL as shown in
Table 4. We attribute the robustness toward noise to robust selection method of HPFL, which we
study later in Section 5.3. Discussions and experimental results about the privacy risk against HPFL
are shown in Appendix E.
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Figure 3: Selection score maps with different noise coefficients. Blocks with green anchor mean the
corresponding client selects the plug-in and download it. Blocks with green anchor lying in diagonal
indicate that clients choose plug-ins of themselves when met their own test data, which conforms to
the aim of selection methods. X-axis represents Plug-in ID.
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5.3 SELECTION ACCURACY
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Figure 2: Accuracy with different numbers of plug-
in layers. X-axis represents the number of layers in
ResNet-18 for plug-ins.

The more flexible the models are, the better?
As shown in Figure 2, the accuracy of HPFL
continuously decreases with the increasing num-
ber of plug-in layers, we propose two possible
reasons leading to the phenomenon: (1) local
clients’ samples are not sufficient for training
big-scale plugs, resulting severe overfitting is-
sue, and (2) The selection methods may not be
suitable for markers from middle layers. How-
ever, according to Table 2, we believe that fine-
tuning larger plug-ins does not lead to such a
performance degradation, because FedAvg fine-
tunes on the whole model without significant
performance loss. Therefore, it is natural to give
attention to the potential trouble large plug-ins
may cause in plug-in selection. In Section 5.3,
we conduct experiments to testify the specula-
tion that the performance loss when increasing
the plug-in layer is mainly due to the degradation of plug-in selection. Due to the page limit, we aim
to provide an intuitive explanation in Appendix D.1.

Plug-in selection plays an important role in HPFL, so here we study how it gets affected by the
magnitude of noise added on features and the number of plug-in layers. Experiments in this section
are carried out with α=0.1, M=10 on CIFAR-10 dataset, we include the results of additional
configurations in Appendix D.3.

We observed the expected phenomenon conforming to our conjecture in Section 5.2 that it is harder
for selection methods to correctly select plug-ins with more layers. With the increasing number of
plug-in layers, the score map gradually changes. However, until it actually influences the result of
selection, the performance of HPFL gets unaffected.

9
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Observed from Figure 3, despite the slight variation in the heatmaps of MMD score with the noise
coefficient, selecting plug-in with the lowest MMD score instead of combining plug-ins with MMD
score adds robustness towards noise to HPFL. We shows the accuracies under different κ in Table 4.

5.4 FEDERATED CONTINUAL LEARNING

Table 5: Results of FCL

Naive FCL
GM PM

FCL under HPFL
GM PM

69.5 58.4 62.2 80.9

Federated continual learning (FCL) (Yoon et al.,
2021) is a new problem where clients join FL
training after initial training. The trained model
must retain previous dataset knowledge and per-
form well on data from newly arrived clients.
HPFL can address the forgetting problem of FCL by preserving previous training knowledge in a
personalized plug-in and providing it for client inference as shown in Table 5. It is an application
of HPFL on the temporal scale, where clients collaboratively learn models that generalize well over
time. We present more details about the experiment and discussion in Appendix D.5.

6 APPLICATIONS

Federated Continual Learning. As discussed in Section 5.4, HPFL effectively addresses the
forgetting problem in FCL by preserving knowledge without loss and retrieving when needed.

One-shot FL. With an average backbone such as a pre-trained model, HPFL can train plug-ins in a
single communication round, immediately proceeding to inference. This approach also accommodates
new clients joining the FL system.

Anarchic FL. HPFL supports the dynamic in anarchic FL (Yang et al., 2022), where clients join and
leave unpredictably. It operates without the need for immediate aggregation, thus allows clients to
train and upload plug-ins asynchronously without disturbing server operations or model convergence
with stale updates.

FL plug-in market. HPFL provides the possibility of constructing a more free and transparent model
market, and customers can have better confidence knowing the plug-in they are purchasing is able
to meet their requirements with a fair plug-in selection mechanism. Plug-in providers can obtain
commercial benefits from this market.

7 LIMITATIONS

Scalability of Plug-In Selection. When the number of clients increase to thousands or more, selecting
plug-in module will consume a lot of time and computing resources. The proposed plug-in selection
methods in this paper need to communicate and select from M sets of plug-in ϕ. Future works
may consider to cluster and merge Mc plug-in modules together, reducing the number of plug-ins as
M
Mc

. If we set Mc = M , the HPFL becomes the FedAvg of GFL. The challenge here is to design an
appropriate aggregation method, which can make the merged plug-in performs well on according
test datasets. Moreover, we can also think about skipping some plug-ins to reduce the computing
overhead. This needs clients to provide more representative attributes of the plug-ins.

Accurate Plug-in Selection. In many experiments, our selection method choose optimal or nearly
However, as an initial trial, our proposed plug-in selection methods select sub-optimal plug-ins in
some circumstances as shown in Figure 4, 12 and 9 etc.. Future works may consider to design more
accurate and robust selection methods.

8 CONCLUSION

In this paper, we explore how to improve the generalization performance when PMs meet test data
from other clients. We formalize the SFL to bridge the GFL and PFL together. Then, We propose
HPFL to practically solve the SFL. We verify the effectiveness and robustness of HPFL through
comprehensive experiments. And we further experimentally verify the remarkable potential of HPFL
to resolve other practical FL problems like FCL. Future work can consider to explore new plug-in
selection methods, or applying HPFL into more FL related problems. Applying HPFL to foundation
model is also an interesting future direction, especially with the Parameter-Efficient Fine-Tuning
(PEFT) techniques, such as LoRA, adapter or prefix tuning.
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APPENDIX

A MORE RELATED WORK

A.1 GENERIC FEDERATED LEARNING

The convergence problem of FL with high non-IID data distribution has always been an important
problem in improving the performance of models trained with FL. To resolve this problem, Fed-
Prox (Li et al., 2020b) and MOON (Li et al., 2021b) propose to add new model regularization terms
to mitigate the client drift caused by data heterogeneity. There are also some methods modifying the
uploaded gradient to alleviate the dissimilarity of gradients (Wang et al., 2020; Karimireddy et al.,
2019; Tang et al., 2022a; 2023b). With a level of privacy protection, some works propose to share
intermediate features (Jeong et al., 2018; Hao et al., 2021) or extra data (Tang et al., 2022b; Shin
et al., 2020; Lin et al., 2020a) to reduce the gradient variance.

A.2 PERSONALIZED FEDERATED LEARNING

Different from the GFL methods that aim to directly reduce the gradient dissimilarity, PFL exploits
the heterogeneous data to personalize client models to better suit the local training data.

Recently, several works have proposed to apply Model-Agnostic Meta-Learning (Finn et al., 2017) to
Federated Learning for faster adaptation on local training data in clients. The Model-Agnostic Meta-
Learning (Finn et al., 2017) (MAML) aims to meta-learn a global model, which will be broadcasted
to different users to learn a local model adapted to different datasets. Per-FedAvg (Fallah et al., 2020)
makes use of MAML to learn personalized models more efficiently. It first finds an initial global
shared model with second-order gradient information, and then the global model is fine-tuned by
local models with only several iterations to suit the local datasets.

Knowledge distillation is also used to promote efficient local adaptation of personalized models (Yu
et al., 2020b). Specifically, a federated teacher model GT and an adapted student model GS are
defined with the same structure. GS is initialized with GT , which has been trained through a common
dataset shared across clients. And GS is trained by local private datasets. However, in this method, the
global model GT won’t get optimized as time goes on. It is more like a local fine-tuning technology
rather than federated learning. Some works (Hanzely & Richtárik, 2020; Dinh et al., 2020; Deng
et al., 2020) utilize some regularization and adaptive model mixture to learn personalized models.
FedMD (Li & Wang, 2019) proposes a federated learning framework based on knowledge distillation
using a shared dataset, on which clients transfer knowledge through mimicking the outputs of other
client models. With knowledge distillation, it allows clients to independently design their own model
architectures with their local private datasets.

In addition to the expected performance of personalized models, there are also works aiming at
addressing the problems personalized models may meet when applied in reality. Ditto (Li et al.,
2021c) adds the regularizer measuring the difference between personalized models and the global
model into the objective functions to guarantee both the fairness and robustness of personalized
models.
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Apart from the usability of personalized models, the accessibility of personalized models is also a key
consideration when it comes to real-world applications. Considering the situations where clients have
heterogeneous environments like datasets, hardware, software, and the Internet, there are too many
unpredictable situations in the real world blocking the access of personalized models. To solve these
problems, some works (Wu et al., 2020; Li et al., 2021a) propose to allow clients to learn different
personalized model structures. LotteryFL (Li et al., 2021a) proposes to let clients individually learn
a lottery model, which is a subset of the global model. During the communication, these lottery
models will be shared between servers and clients. Without the requirement of communicating a
global model, this method can significantly reduce the communication cost in its training process.
pFedHN (Shamsian et al., 2021) also makes clients learn a sub-model based on the global model.

Recently, there have also been many works exploring personalizing parts of models instead of the
whole model to improve the performance of personalized models. LG-FedAvg (Liang et al., 2020)
proposes to share the upper layers (model head) in the DNN and personalize the bottom layers (base
model), which will not be averaged during the training. It utilizes personalized base models to output
different local features in different clients, on which the global model head will be collaboratively
trained through the FedAvg. Conversely, FedRep (Collins et al., 2021) proposes to learn a global
feature extractor and personalized classifiers. FedRoD (Chen & Chao, 2021) proposes a two-predictor
framework in which clients train different model heads to switch between GFL and PFL.

Different from their work, Our framework considers a more challenging FL setting, i.e. every client
may meet OOD test data from other clients. Moreover, instead of improving the performance of the
model itself, we consider more about how clients collaborate to handle the unpredictable test data.

A.3 INCENTIVE MECHANISM

The purpose of FL collaboration among clients is the improvement of model performance on the
test data. Therefore, it is important to know how much performance gain can be obtained after
FL collaboration (Ghorbani & Zou, 2019; Liu et al., 2022; Sim et al., 2020). Furthermore, there
should be a well-designed incentive mechanism (Ng et al., 2020; Yu et al., 2020a; Zeng et al., 2022)
that motivates clients to join FL. Our modular store essentially provides a market economy to let
clients autonomously choose and download the needed plug module. The higher the generalization
performance of the plug-in module, the more favorable it is. Therefore, the incentive mechanism of
the modular store is naturally connected with the practical benefits of the plug-in module.

A.4 FEDERATED CONTINUAL LEARNING

Continual learning (CL) (Kirkpatrick et al., 2017) is to learn different tasks sequentially. Some former
tasks are inaccessible after training. Thus, when training subsequent tasks, the machine learning
model may forget previous tasks. EWC (Kirkpatrick et al., 2017) finds the model parameters that are
good for both previous and subsequent tasks using the Fisher Information Matrix. Progressive Neural
Network approach (Rusu et al., 2016) is to increasingly construct the model during the training.
Thus, the newly added parameters can learn the new tasks, while the old parameters can remember
the old tasks. DEN (Yoon et al., 2018) dynamically decides the model capacity to learn a compact
overlapping knowledge sharing among tasks.

Federated Continual Learning (FCL) (Yoon et al., 2021) is a new problem where, after FL training
on some clients, there are some other clients that come and join the FL training. The trained model
needs to avoid forgetting the previous dataset while performing well on the later dataset with data
from newly arrived clients. We use a simple example to show that HPFL is naturally suitable to
address the forgetting problem of FCL. Our plug-in can not only be seen as a personalized part of
the model helping clients do inference on test data but also considered as a container preserving
knowledge obtained from training. So it is natural to think we can store the knowledge in the previous
dataset and access it whenever we are in need. In fact, it can be seen as an application of HPFL on
the temporal scale. Most of the works in FL talk about many clients in a single period of time, i.e.
Federated Learning in the spatial scale. FCL itself can be seen as a problem that happens at Federated
Learning within the temporal scale: clients from different times collaboratively learn models that
can generalize well on circumstances varied with time. We experimentally verified the potential of
HPFL to address the forgetting problem of FCL in Section 5.4. Details about that experiment and
more discussion are presented in Appendix D.5.
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A.5 ASYNCHRONOUS FL

Asynchronous FL (Async-FL) (Xie et al., 2019) means to ease the constraint of the synchronous
communication mechanism of classic federated optimization schemes (McMahan et al., 2017). In
Async-FL, clients may download the global model from and return gradients to the server at different
times. Thus, the server may receive a stale model update, causing unstable convergence. Such a
staleness problem has long existed in the distributed machine learning area (Langford et al., 2009;
Zheng et al., 2017). Stale updates are usually controlled by some staleness coefficients (Xie et al.,
2019) or compensated by (Zheng et al., 2017) other newer gradients. Anarchic FL (Yang et al.,
2022) can be seen as a more extreme version of Async-FL. In Anarchic FL, clients can decide
to download and upload the models at any time, not controlled by the server at all. To this end,
HPFL naturally allows this kind of working paradigm since once an average backbone, which can
be obtained from pre-trained models or summoning several active clients to train, is accessible, any
aggregation operation is not in demand for HPFL, so the server doesn’t rely on timely respond of
client and won’t be disturbed by stale model update. Once a plug-in is updated by the client, the
plug-in can be utilized to do inference on appropriate test data without concern that the parameter of
the model will change over time.

A.6 TEST-ADAPTATION & DOMAIN ADAPTATION METHODS IN FL

There also emerge works that aim to adapt or generalize to new unseen clients with seen or unseen
data distribution. FADA (Peng et al., 2019) utilize domain adaptation to tackle with seen target
distribution. However, their method requires target domain data to train an adversarial model and
thus cannot handle the situation where the target domain is unknown. FedDG (Liu et al., 2021) first
proposed a novel setting where a federated model trained on multiple distributed source domains is
required to generalize on unseen target domains. However, these methods all aim to train a unified
global model for adaptation or generalization to new clients. As far as we know, HPFL is the first FL
framework to directly exploit PMs to achieve this goal. TTPFL (Bao et al., 2024) proposed using
unlabelled test data from new clients to personalize global model by adaptively learning each module
in the personalized models on unlabelled test data. However, we pay little attention to how to obtain
personalized model, which is done simply with fine-tuning in our experiments, instead we concentrate
on how to make use of all clients’ personalized models collaboratively. Therefore, personalized
models learned in (Bao et al., 2024) can also be utilized in HPFL to further boost its performance.

B PROOF

B.1 LOWER BOUND OF PM WITH GFL

Theorem B.1. With Equation 4 and the PMs obtained from optimizing Equation 2 as:
Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Ω
pfl, θpfl1 , ..., θpflM ).

Proof.

LP−G(Ω, θ1, ..., θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dmℓ(f(θi, ξm), ξm) +R(Ω, θ1, ..., θM )

≥ 1

M

M∑
i=1

M∑
m=1

pmEξm∼Dmℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM )

=

M∑
m=1

pmEξm∼Dmℓ(f(θm, ξm), ξm) +R(Ω, θ1, ..., θM )

≥
M∑

m=1

pmEξm∼Dm
ℓ(f(θpflm , ξm), ξm) +R(Ωpfl, θpfl1 , ..., θpflM )

= LP (Ω
pfl, θpfl1 , ..., θpflM ),

(10)
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which completes the proof.

B.2 THE EQUIVALENCE BETWEEN SFL AND PFL

Theorem B.2. With Equation 4, Ωpfl, θpfl1 , ..., θpflM = argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ) and the
H∗ that guarantees θpflm = s(Θ, ξm,H), we have

LP−G(Ω, θ1, ..., θM ) ≥ LP (Θ) ≥ LS(Θ,H∗). (11)

Proof.

LS(Θ,H∗) =

M∑
m=1

pmEξm∼Dmℓ(f̂(Θ, ξm,H∗), ξm)

=

M∑
m=1

pmEξm∼Dm
ℓ(f(θpflm , ξm), ξm)

= LP (Ω
pfl, θpfl1 , ..., θpflM )−R(Ωpfl, θpfl1 , ..., θpflM )

≤ LP (Ω
pfl, θpfl1 , ..., θpflM ),

(12)

combining with Theorem 2.1, which completes the proof.

B.3 DIFFERENTIAL PRIVACY

In this section, we prove that our protection scheme in Section 3.3 can provide (ϵ, δ)-DP Privacy
guarantee for the transmitted markers, and will not leak the information about the raw data. To prove
this conclusion, we first introduce the Gaussian mechanism of Differential Privacy (Dwork et al.,
2014):

Theorem B.3. ∀(ϵ, δ) ∈ (0, 1), the Gaussian mechanism M(x) = f(x) + N(0, σ2) provides
(ϵ, δ)-DP privacy protection with

δ = ∆2

√
2ln(1.25/σ).

According to [5], the traditional Gaussian mechanism can be extended to Theorem 4 to support ϵ > 1.

Theorem B.4. ∀ϵ > 0 and 0 < δ < 1/2 − e−3ϵ/
√
2πϵ, the Gaussian mechanism M(x) =

f(x) +N(0, σ2) provides (ϵ, δ)-DP privacy protection with

σ ≥ ∆2/
√
2ϵ.

With Theorem B.3, we can estimate the magnitude of Gaussian noise needed to be apply with certain
function as 0 < ϵ < 1. Then, we found that for our protection scheme g in section 3.3, we have:

Theorem B.5. ∀(ϵ, δ) ∈ (0, 1), if

ϵ = O

(√
2ln(1.25/κ ∗ σm)

δ

)
, the procedure g is (ϵ, δ)-DP.

Proof. First, we calculate L2 sensitivity ∆2 in our protection scheme g in Section 3.3.

Assumption B.6. Let f(·) be the backbone (also called as feature extractor) , x is local data extracted
from local training data D, i.e. x ∈ D, then f(x) is the raw features, we have

∀x ∈ D,−C < f(x) < C,where C is a constant.
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Assumption 1 is often assumed in protecting gradient with DP as in (Abadi et al., 2016; Shokri &
Shmatikov, 2015), then

∆2f = maxx,x′ ||f(x)− f(x′)| |2 < 4C2

Recalled from Section 3.3, with µm and σ2
m separately denote the mean and variance of the raw

features, and κ denotes the noisy coefficient, our protection scheme is formed as

M(x) =
(
f(x) + κ ∗ N (µm, σ2

m))
/
(1+κ) = 1/(1+κ)∗f(x)+κ/(1+κ)∗µm+N (0, κ2 ∗σ2

m)

The bound of µm can be obtained with the definition of mean:

−C < µm = E
x∈Dm

(f(x)) < C

Denote g(x) = 1/(1 + κ) ∗ f(x) + κ/(1 + κ) ∗ µm, we have

∀x ∈ D,−C < g(x) = 1/(1 + κ) ∗ f(x) + κ/(1 + κ) ∗ µm < C

Therefore,

∆2g = maxx,x′ ||f(x)− f(x′)| | < 4C2. (13)

Derived from Theorem B.3, Lemma B.7 is obtained:

Lemma B.7. ∀(ϵ, δ) ∈ (0, 1), the procedure g is (ϵ, δ)−DP if

σ > ∆2g

√
2ln(1.25/ϵ)

δ

By rearranging variables in Lemma B.7, we have Lemma B.8:

Lemma B.8. ∀(ϵ, δ) ∈ (0, 1), for

ϵ > ∆2g

√
2ln(1.25/σ)

δ

, the procedure g is (ϵ, δ)-DP with M(x) = f(x) +N(0, σ2)

Here our Gaussian mechanism’s σ = κ ∗ σm, therefore we have

Theorem B.9. ∀(ϵ, δ) ∈ (0, 1), for

ϵ > ∆2g

√
2ln(1.25/δ)

σ
= 4C2

√
2ln(1.25/δ)

κ ∗ σm
,

the procedure g is (ϵ, δ)-DP,

which completes the proof.

With Theorem B.4, we can estimate the magnitude of Gaussian noise needed to be apply with certain
function as ϵ > 1. Then, we found that for our protection scheme g in section 3.3, we have:
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Theorem B.10. ∀ϵ > 0 and 0 < δ < 1/2− e−3ϵ/
√
2πϵ, if

ϵ ≥ O(
1

2(κ ∗ σm)2
)

, the procedure g is (ϵ, δ)-DP.

Proof. According to Equation 13, it holds

∆2g < 4C2.

Then, According to Theorem B.4,

Lemma B.11. ∀ϵ > 0 and 0 < δ < 1/2− e−3ϵ/
√
2πϵ, the procedure g is (ϵ, δ)−DP if

σ ≥ ∆2/
√
2ϵ = 4C2/

√
2ϵ.

By rearranging variables in Lemma B.11, we have

Theorem B.12. ∀ϵ > 0 and 0 < δ < 1/2− e−3ϵ/
√
2πϵ, for

ϵ ≥ 16C4

2σ2
=

16C4

2(κ ∗ σm)2
(14)

the procedure g is (ϵ, δ)-DP,

which completes the proof.

Combining Theorem B.5 and Theorem B.10, we get
Theorem 3.1. For the procedure of obtaining and sharing markers H(xm) = (g(xm) + κ ∗
υ)/(1 + κ), (ϵ, δ)-DP holds if the ϵ, δ conforms to any of the two conditions: (1) ∀ϵ, δ ∈ (0, 1), ϵ ≥

O

(√
2ln(1.25/(κ∗σm))

δ

)
; (2) ∀0 < δ < 1/2− e−3ϵ/

√
2πϵ, ϵ ≥ O( 1

2(κ∗σm)2 ).

C EXPERIMENT CONFIGURATION

C.1 HARDWARE AND SOFTWARE CONFIGURATION

We conduct experiments using NVIDIA A100 40GB GPU, AMD EPYC 7742 64-Core Processor
Units. The operating system is Ubuntu 20.04.1 LTS. The pytorch version is 1.12.1. The numpy
version is 1.23.2. The cuda version is 12.0.

C.2 IMPLEMENT OF SIMPLIFIED METRICS AND PROOF

The original metric under the GFL-PM setting in classification tasks should be:

Accuracy (Ω, θ1, . . . , θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼DmT (f (θi, ξm) , ξm) (15)

where T (·, ·) is the function judging whether the prediction of the model is the same with the real
label, specifically

T (prediction, sample) = 1(predciton = ysample) (16)
where ysample is the label of sample. f (θi, ξm) is the prediction of the model used in final in-
ference on client i for the sample ξm, the model is parameterized with θi. And our way of de-
termining personalized model using when inferencing on client i is to select from all the plug-
ins, i.e. the PMs obtained from optimizing Equation 2 on local data: Ωpfl, θpfl1 , ..., θpflM =
argminΩ,θ1,...,θM LP (Ω, θ1, ..., θM ), so we have

θi = θpflCi(ξm,i),m ∈ 1, 2, ...,M (17)
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where Ci(ξm, i) is the selection made for client i based on test data ξm and client i. Ci is the selection
algorithm of the client i.

For traditional personalized methods, the clients will only use personalized models trained locally,
i.e.

Ci(ξm, i) = i (18)
substitute Equation 18 into Equation 17, we have

θi = θpflCi(ξm,i) = θpfli (19)

then substitute Equation 19 into Equation 15, we have

Accuracy (Ω, θ1, . . . , θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T (f (θi, ξm) , ξm)

=
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θpfli , ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
i=1

M∑
m=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

M

M∑
i=1

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

MN

M∑
i=1

M∑
m=1

nm∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

MN

M∑
i=1

N∑
j=1

T
(
f
(
θpfli , ξj

)
, ξj

)

=
1

M

M∑
i=1

EξD∼D[T
(
f
(
θpfli , ξD

)
, ξD

)
]︸ ︷︷ ︸

accuracy of PM in client i on global data

(20)

Equation 20 represents the averaged accuracy of all personalized models on the global dataset, so
we can calculate the averaged accuracy of all personalized models on the global dataset as the metrics
of simplified metrics instead of original complicated metrics 15; while for our proposed methods
HPFL, because all clients have same selection method C

Ci(ξm, i) = argmax
n

g (ξn, ξm) = C(ξm) (21)

the origin metric turns into

Accuracy (Ω, θ1, . . . , θM ) =
1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θargmaxn g(ξn,ξm), ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
m=1

pmEξm∼Dm
T
(
f
(
θpflC(ξm), ξm

)
, ξm

)
=

1

M

M∑
i=1

M∑
i=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

M

M∑
i=1

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=
1

MN

M∑
i=1

M∑
m=1

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)
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=
1

N

M∑
m=1

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

nm

N

1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

pm
1

nm

nm∑
j=1

T
(
f
(
θpflC(ξm), ξj

)
, ξj

)

=

M∑
m=1

pmEξm∼DmT
(
f
(
θpflC(ξm), ξj

)
, ξj

)
=

M∑
i=1

pi Eξi∼Di
T
(
f
(
θpflC(ξi)

, ξj

)
, ξj

)
︸ ︷︷ ︸

accuracy of PM selected by client i on its own data

, (22)

Equation 22 represents the averaged accuracy of clients testing on their own personalized dataset
with models equipped with their selected plug-ins based on their own data, weighted with number of
samples in data on clients. With these simplification of metrics, we can more efficiently test GFL-PM
performance of both the traditional personalized methods (FedPer, FedRoD, FedRep) and HPFL.

C.3 HYPER-PARAMETERS

We use SGD without momentum as the optimizer for all experiments, with a batch size of 128 and
weight decay of 0.0001. The learning rate is set as 0.1 for both the training of the global model
and the fine-tuning on local datasets. The main results shown in Tabel 2 are conducted with 1-layer
plug-ins (i.e. only classifier).

Special hyperparameters of some baseline methods are :

FedRep: Local personalize epoch is set as 1.

PerFedMask: The partition percent of validation is 0.1, personalized fine-tuning epoch Ep after
calculating mask is set as 5 as the official implementation did.

FedTHE: We follow the official implementation: the smoothing factor of test history descriptor main-
tained by the Exponential Moving Average (EMA) α equals 0.1; the smoothing factor interpolating
the test feature and the test history descriptor β equals 0.3.

FedSAM: We follow the official implementation: the parameters for SAM minimizers ρ = 0.1 ,
η = 0.

C.4 EXTRA EXPLANATION ON EXPERIMENTS

Due to the limited space of the main text, we show a more detailed explanation of the experiment in
this section.

For the construction of the personalized test dataset, to make the training data and test data of a
client have the same distribution following the settings of most PFL methods (Collins et al., 2021),
we count the number of samples Strain(c,m) in each class c of training data of client m and split
test data of that clients in that distribution (which means client m have Strain(c,m)∑N

m=1

∑C
c=1 Strain(c,m)

×∑M
m=1

∑C
c=1 Stest(c,m) test samples in class c, here C denotes the number of classes in overall

dataset, M denotes the number of clients in the FL system), Figure 5 and Figure 6 shows that the
data partition of training data and test data are almost identical as expected in PFL.

To report the best result of all baseline methods, we report the accuracy of their best inference
global model on global data during the whole training process. For our method, we also use the best
inference model as the backbone of HPFL for fair comparison.
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Figure 5: Data partitioning on CIFAR-10 (α=0.1)
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Figure 6: Data partitioning on CIFAR-10 (α=0.05)

D EXTRA EXPERIMENT RESULTS

Due to the limited space of the main text, we show more experiment results in this section.

D.1 MORE RESULTS ABOUT DIFFERENT NUMBERS OF LAYERS OF PLUG-IN

In this part, we are trying to explain why the selection method degrades when the number of plug-in
layers increases in an intuitive way. We propose two possible ways leading to the degradation: (1)
selection methods can’t handle the large dimension of markers that vastly increases when the number
of plug-in layers increases, as shown in Table 6. (2) A larger number of plug-in layers means we are
using markers extracted with more shallow layers, and these markers tend to be more local, which
may not be so helpful for the selection method to assess the similarity of the distributions they are
sampled from. For further study, we may conduct experiments to testify these two conjectures. Once
the conjectures are testified, we will try to find ways to solve these two problems. However, despite
the difficulty of choosing, large plug-ins also multiply the computation time and resources needed in
training them, the network bandwidth required to transmit them, and so on. As a result, large plug-ins
are generally not good options in HPFL from our perspective.

We also explore selection with plug-ins composed of different numbers of layers in different settings,
like α=0.05, M=10 on CIFAR-10. Figure 4 and Figure 7 show that with the number of plug-in layers
going up, the selection becomes more difficult and unstable as we claimed before.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 6: # marker dimensions versus # plug-ins layers on CIFAR-10.

# plug-ins layers 1 3 4 5 6

# marker dimensions 512 512×4×4
(8,192)

256×8×8
(16,384)

128×16×16
(32,768)

64×32×32
(131,072)

Plug-in ID

C
lie

nt
 ID

layer=1 layer=3 layer=4 layer=5 layer=6

0.25

0.50

0.75

0.50

1.00

0.20

0.30

0.40

0.20

0.30

0.40

0.20

0.40

0.60

Figure 7: Selection score maps with different numbers of plug-in layers on CIFAR-10 (α = 0.05)

D.2 MORE RESULTS ABOUT SELECTION METHODS (MMD, SVCCA, CKA, OOD)

MMD, SVCCA and CKA. MMD (Long et al., 2013) is a kernel-based statistical metric used to
determine whether given two distributions are the same. SVCCA (Raghu et al., 2017) exploits
singular value decomposition and canonical correlation analysis to compare the markers learned by
different DNNs. CKA (Kornblith et al., 2019) utilizes the normalized HSIC (Gretton et al., 2005) to
measure the similarity. CKA is invariant to the invertible linear transformation. Thus, it can measure
meaningful similarities between representations of high dimension (Kornblith et al., 2019).

Here we summary the formulas of MMD, SVCCA and CKA to better explain our method:

MMD

Given observations X := {x1, . . . , xm} and Y := {y1, . . . , yn},

MMD2
u[X,Y ] =

1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k (xi, xj)+
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k (yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k (xi, yj) .

, where k(·) is the kernel function.

CKA

Let K and K ′ be two kernel functions defined over X× X such that 0 < E
[
K2

c

]
< +∞ and

0 < E
[
K ′2

c

]
< +∞. Then, the alignment between K and K ′ is defined by

ρ (K,K ′) =
E [KcK

′
c]√

E [K2
c ] E [K ′2

c ]
.

SVCCA

1. Input: X,Y .

2. Perform: SVD(X), SVD(Y ). Output: X
′
= UX, Y

′
= V Y .

3. Perform CCA(X
′
, Y

′
). Output: X˜ = WXX

′
, Y ˜ = WY Y

′
and corrs = {ρ1, ..., ρmin(m1,m2)},

where m1 and m2 is the number of samples of X and Y.

OOD detection based methods. Out-of-distribution (OOD) detection aims to find out whether the
test data is OOD or not. Current OOD detection methods includes the norm of gradients (Huang
et al., 2021), distance-based methods (Sun et al., 2022), reconstruction based methods (Zhou, 2022),
classifier based methods (Katz-Samuels et al., 2022; Du et al., 2022). Intuitively, if the test data
is OOD to one plug-in, we can discard this plug-in. Thus, based on this insight, we train an OOD
classifier τm for each plug-in ρm. Each OOD classifier will output an OOD confidence τm(htest).
Lower τm(htest), less possible that htest is OOD to the plug-in ρm. Then, the select problem turns
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from Equation 6 into:
SOOD(htest, τ1, ..., τM ) = argmin

i∈M
τi(htest). (23)

The τm is trained during the process of optimizing ρm. On each client m, we generate random noise
ϵ ∼ N (0, µϵ) as the OOD data, the hm is seen as the in-distribution (ID) data. OOD data has label 1,
and ID data has label 0. We use a linear classifier as the OOD classifier τm whose input dimension
is same with hm and the output dimension is 1. For OOD data, we hope the τm outputs 1. We use
the cross-entropy loss to train the OOD classifier. Different from the distance based methods, the
OOD detection based method does not need to communication the markers ĥm, which significantly
increases the privacy security.

We show the results of our previous attempts using SVCCA, CKA, and OOD as the selection methods
in this section. The overall training and inference process is the same as mentioned in Section 3.
When implementing SVCCA in M=100, we encountered the problem that the number of samples in
a client was not enough for SVCCA, which required at least Ncomponent components. To deal with
it, we change the number of components used to calculate SVCCA similarity between the plug-in
markers and task markers to min(min(num_sample), Ncomponent). From Table 7 and Figure 8, it is
easy to conclude that SVCCA, CKA (with 4 kinds of kernel), OOD all failed to select correct plug-ins.
Take HPFL based on OOD detection as an example, OOD classifiers failed to give good predictions
on whether test data is OOD or not for plug-ins because in federated learning, it is difficult to get
OOD data as negative samples when training locally, which will cause OOD classifiers only see
in-distribution(ID) data. We tried to solve this problem by generating random images as OOD data to
train the OOD classifiers. It is easy to see this method did not work as shown in Figure 8. Therefore,
it is difficult to tell whether there is an appropriate way to train OOD classifiers to determine whether
OOD detection can be utilized in HPFL. There we propose a possible way to train OOD classifiers:
after clients upload the plug-in markers to the server, it is possible to utilize these markers to train a
good OOD classifier and select plug-ins using these classifiers. We take this as a future direction in
exploring more selection methods that can be used in HPFL.

D.3 MORE RESULTS ABOUT SELECTION ACCURACY

In this part, we take a closer look at the selection accuracy using MMD by visualizing all the selection
situation on CIFAR-10, FMNIST, CIFAR-100, with three settings {α=0.1, M=10}, {α=0.05, M=10},
{α=0.1, M=100} as arrange from left to right in Figure 9, 10, 11. The colors of the blocks denote the
MMD scores, where red represents a relatively high score, and blue represents a relatively low score.
The green box on the block(i,j) implies that client i is choosing plug-in j with minimal MMD score
for local test data. MMD always helps clients select plug-in trained on the client itself (the green
boxes denoting final choice of plug-ins all lie on the diagonal of score heatmap) when α=0.1, M=10
and α=0.05, M=10 in CIFAR-10 and FMNIST as shown in Figure 9, Figure 10. When it comes to a
FL system with more clients, like M=100, even though there is some clients choosing inappropriate
plug-ins, most of them can still choose plug-ins trained on their own data. However, When conducted
on a more heterogeneous dataset CIFAR-100, judging which plug-ins to choose becomes a more
difficult task, which can be easily observed in Figure 11, as the increasing number of green boxes
not located on the diagonal is indicating worse plug-ins selection. Additionally, the score map of
CIFAR-100 is overall much whiter than the score map of CIFAR-10 and FMNIST, denoting that the
scores of different plug-ins are close to each other and is more challenging to choose from when
MMD encountered with CIFAR-100. Thus, how to improve selection methods used in HPFL is a
crucial problem when met more heterogeneous data together with fewer samples on each client, and
will be important for future work.

D.4 MORE RESULTS ABOUT NOISE

When using the HPFL methods based on MMD, it is required that the distribution of local features,
or local features are transmitted together with the plug-in trained in the client, so that the other clients
are able to select appropriate plug-ins based on these information. However, transmitting raw features
is faced with the risk of data leakage when met inversion attacks. In order to better protect privacy
safety, we tried to add Gaussian noise generated with the distribution of local features to the origin
features, surprisingly found that adding noise according to the distribution of the features not damage
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Table 7: Experiment results of HPFL using SVCCA, CKA and OOD. Noisy coefficient κ=1, FedAvg
is fine-tuned with the whole model instead of only part of model as in HPFL.

Clients 10 100

Non-IID Dir(0.1) Dir(0.05) Dir(0.1)

Test Set GFL PFL GFL PFL GFL PFL

Method/Model GM PM PM GM PM PM GM PM PM

CIFAR-10

HPFL(SVCCA) Ep = 1 81.5 62.8 95.4 62.4 32.7 96.0 73.6 61.0 95.0
HPFL(SVCCA) Ep = 10 81.5 62.5 95.8 62.4 34.7 96.3 73.6 47.0 95.7
HPFL(Linear-CKA) Ep = 1 81.5 56.1 95.4 62.4 55.2 96.0 73.6 70.5 95.0
HPFL(Linear-CKA) Ep = 10 81.5 55.1 95.8 62.4 44.6 96.3 73.6 60.3 95.7
HPFL(RBF-CKA) Ep = 1 81.5 61.0 95.4 62.4 55.2 96.0 73.6 70.7 95.0
HPFL(RBF-CKA) Ep = 10 81.5 55.9 95.8 62.4 44.6 96.3 73.6 59.9 95.7

HPFL(Linear − CKAdebias) Ep = 1 81.5 63.9 95.4 62.4 47.2 96.0 73.6 66.3 95.0
HPFL(Linear − CKAdebias) Ep = 10 81.5 59.0 95.8 62.4 37.7 96.3 73.6 53.0 95.7
HPFL(RBF − CKAdebias) Ep = 1 81.5 61.0 95.4 62.4 35.0 96.0 73.6 68.4 95.0
HPFL(RBF − CKAdebias) Ep = 10 81.5 56.7 95.8 62.4 40.2 96.3 73.6 55.7 95.7

HPFL(OOD) Ep = 1 81.5 66.3 95.4 62.4 54.4 96.0 73.6 64.0 95.0
HPFL(OOD) Ep = 10 81.5 16.0 95.8 62.4 3.9 96.3 73.6 27.9 95.7

FMNIST

HPFL(SVCCA) Ep = 1 86.0 61.8 98.3 76.1 41.7 99.0 90.2 90.0 97.9
HPFL(SVCCA) Ep = 10 86.0 49.7 98.4 76.1 49.3 99.2 90.2 87.7 98.8
HPFL(Linear-CKA) Ep = 1 86.0 67.6 98.3 76.1 73.2 99.0 90.2 89.1 97.9
HPFL(Linear-CKA) Ep = 10 86.0 62.0 98.4 76.1 65.5 99.2 90.2 88.6 98.8
HPFL(RBF-CKA) Ep = 1 86.0 67.6 98.3 76.1 73.0 99.0 90.2 89.4 97.9
HPFL(RBF-CKA) Ep = 10 86.0 63.3 98.4 76.1 65.5 99.2 90.2 88.7 98.8

HPFL(Linear − CKAdebias) Ep = 1 86.0 66.6 98.3 76.1 44.7 99.0 90.2 89.9 97.9
HPFL(Linear − CKAdebias) Ep = 10 86.0 51.8 98.4 76.1 37.7 99.2 90.2 88.3 98.8
HPFL(RBF − CKAdebias) Ep = 1 86.0 61.2 98.3 76.1 50.7 99.0 90.2 89.9 97.9
HPFL(RBF − CKAdebias) Ep = 10 86.0 51.8 98.4 76.1 27.9 99.2 90.2 87.6 98.8

HPFL(OOD) Ep = 1 86.0 83.9 98.3 76.1 73.6 99.0 90.2 87.2 97.9
HPFL(OOD) Ep = 10 86.0 42.7 98.4 76.1 37.5 99.2 90.2 88.4 98.8

CIFAR-100

HPFL(SVCCA) Ep = 1 68.6 68.2 83.3 65.3 68.2 87.4 59.7 51.8 81.2
HPFL(SVCCA) Ep = 10 68.6 55.2 85.7 65.3 55.2 88.8 59.7 39.9 84.1
HPFL(Linear-CKA) Ep = 1 68.6 63.4 83.3 65.3 63.4 87.4 59.7 51.0 81.2
HPFL(Linear-CKA) Ep = 10 68.6 55.0 85.7 65.3 55.0 88.8 59.7 40.0 84.1
HPFL(RBF-CKA) Ep = 1 68.6 64.1 83.3 65.3 64.1 87.4 59.7 51.4 81.2
HPFL(RBF-CKA) Ep = 10 68.6 50.9 85.7 65.3 50.9 88.8 59.7 38.8 84.1

HPFL(Linear − CKAdebias) Ep = 1 68.6 62.8 83.3 65.3 62.8 87.4 59.7 50.7 81.2
HPFL(Linear − CKAdebias) Ep = 10 68.6 52.6 85.7 65.3 52.6 88.8 59.7 38.8 84.1
HPFL(RBF − CKAdebias) Ep = 1 68.6 62.9 83.3 65.3 62.9 87.4 59.7 50.8 81.2
HPFL(RBF − CKAdebias) Ep = 10 68.6 55.9 85.7 65.3 55.9 88.8 59.7 38.4 84.1

HPFL(OOD) Ep = 1 68.6 63.5 83.3 65.3 63.5 87.4 59.7 49.5 81.2
HPFL(OOD) Ep = 10 68.6 66.7 85.7 65.3 66.7 88.8 59.7 46.5 84.1

the performance, according to Table 8. Further study may transmit Gaussian noise generated with
the distribution of the local features instead of the noised features. In fact, when κ reaches a high
value like 1000 in Figure 3, the noised features can be approximately considered to degenerate into
the Gaussian noise. From Table 8, Figure 3 and Figure 12, we can observe increasing κ to a large
value doesn’t hurt much performance of HPFL. Therefore, we will explore using pure Gaussian noise
generated with the distribution of the local features to replace the noised features to better protect
privacy in the future.

D.5 EXPERIMENT ABOUT FEDERATED CONTINUAL LEARNING

With the increasing real applications of Federated Learning, Federated Continual Learning (FCL) has
attracted the attention of researchers. In this part, we conduct an experiment to display the potential
of HPFL to solve catastrophic forgetting met in FCL. We first displayed the catastrophic forgetting
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Figure 8: Selection score maps of SVCCA, CKA, OOD on CIFAR-10 (α = 0.1)
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Figure 9: Selection score maps on CIFAR-10

issue in naive FCL. Then we utilized HPFL to solve this problem. Suppose we had 10 clients in the
FL system. We first trained 500 epochs on client 0-4 with FedAvg, and then we trained another 500
epochs on client 5-9. We trained the backbone of HPFL and the global model of naive FCL in Nvidia
V100 GPU and the rest of the experiment on Nvidia A100. For naive FCL, We had to adjust the
learning rate to 0.05 when training on client 5-9 during 500-1000 epoch in case of training divergence.
For FCL under HPFL, we froze the backbone of the model after training 500 epochs on client 0-4 and
training 5 plug-ins on client 0-4 for 1 epoch, respectively. Then we kept training on client 5-9 with
the invariant backbone, after another 500 epochs, we trained 5 plug-ins on client 5-9, respectively.
From Table 9, we observe that the accuracy of naive FCL significantly drops from 78.6 to 52.8,
showing that training on clients 5-9 during 500-1000 rounds makes the global model severely forget
the knowledge about clients 0-4. We show a promising way of using HPFL to mitigate this problem.
When met a new task, HPFL allows clients to quickly adapt to their local data by fine-tuning only
a few epochs and uploading the plug-in to the server, like what happened at the 500 round in our
experiment. After training in some new tasks, it is about time to conduct inference on all clients,
we train plug-ins on new tasks, as we do on clients 5-9 in our experiment, and select plug-ins for
every client. In that case, we are able to select and download the plug-ins better suited for test data
with similar distribution, instead of having no choice but to use a global model having forgotten the
knowledge of previous tasks. As is shown in Table 9, our experiment shows HPFL can significantly
outperform naive FCL in GFL and mitigate the catastrophic forgetting issue in FCL.

D.6 MORE RESULTS ABOUT BACKBONE TRAINING METHODS

As long as the used GFL methods are able to train a strong general feature extractor, HPFL is able
to utilize the feature extractor to train the personalized plug-ins and extract features. We conduct
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experiments using FedRoD to testify HPFL’s compatibility with other GFL methods. The results are
given in Table 10. Number of clients equal M = 10, local fine-tuning epoch Ep = 10, local datasets
are partitioned in Dir(0.1). Other settings remain the same as the main experiments in Table 2.

From the overall performance of HPFL(FedRoD), we can see that HPFL using FedRoD as its
backbone training method is comparable to that using FedAvg, which confirms HPFL is compatible
with the GFL methods other than FedAvg. We also observe an interesting fact that even if FedRoD
shows excellent performance in GFL-GM (surpasses FedAvg in many datasets and settings), fine-
tuning the backbone trained with it is not advantageous as shown in PFL-PM (only comparable with
fine-tuning on the backbone trained with FedAvg). From this phenomenon, we presume the advantage
of FedRoD in GFL-GM should mainly be attributed to its global head trained with a class-balanced
loss instead of its backbone.

D.7 ERROR BARS

Due to time and resource limits, we can only provide error bars of part of our numerous experiments,
the results are shown in Table 11. All experiments are conducted with Cifar-10 dataset, partition with
Dir(0.1), involved 10 clients. Other settings follows that of Table 2. We calculate the error bars with
the standard error of the mean.

From the table above, we can observe that HPFL’s error significantly lower than FedSAM, which
shows the robustness of our method HPFL when encountering different random simulations.

E DISCUSSION ON PRIVACY PROBLEM

As HPFL requires local clients to share auxiliary information on local data and plug-ins to help
inference, it may raise concern about data privacy of HPFL. We attempt to analyze the risk of privacy
leakage in HPFL respectively from sharing auxiliary information and plug-ins.

E.1 PRIVACY RISKS OF SHARING PLUG-INS

In HPFL, we ask local clients to upload part of their personalized models to the server, which means
every personalized model is possibly accessible to all clients. This potential sharing with other
clients will raise concerns about the risk of privacy leakage. However, in classic Federated Learning
algorithms like FedAvg, there also exists similar behavior of sharing global model, and it is difficult
to recover training samples from the final model shared over the whole FL system. Instead, research
shows that it is possible to recover training data of clients from gradients transmitted to the server
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Table 8: Accuracy of Different noise coefficient κ on CIFAR-10.

Noise coefficient κ 0 1 10 100 1000

Fine-tune epoch Etune 1 10 1 10 1 10 1 10 1 10

α = 0.1,M = 10

Accuracy 95.4 95.7 95.4 95.7 95.4 95.7 95.4 95.7 95.4 95.7

α = 0.05,M = 10

Accuracy 96.0 96.3 96.0 96.3 73.7 74.0 71.1 70.5 71.1 70.5

α = 0.1,M = 100

Accuracy 95.4 92.0 95.4 95.7 95.4 95.7 95.4 95.7 95.4 95.7
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Figure 12: Selection score maps with different noise coefficient on CIFAR-10 (α=0.05, M=10)

(Geiping et al., 2020), which will not happen in HPFL except for the training period of the backbone
model, which is able to be solved with regular privacy protect techniques like differential privacy
(DP) which is widely used to protect potential privacy risks of GFL algorithms, and not a special
problem of HPFL. Even extreme concern on potential privacy risk of storing plug-ins in the server can
be solved by only requesting plug-ins after selection as described in Appendix F.2, clients providing
the plug-ins can ask the server to delete the plug-ins after sending the plug-ins to the clients in need.

E.2 PRIVACY RISKS OF SHARING AUXILIARY INFORMATION

Since HPFL asks clients to share auxiliary information with the server, once data breach happens in
the communication period between clients and the server or the information is not properly kept in the
server, the leaked information may lead to attacks, such as feature inversion attacks. Here we resorted
image reconstruction by feature inversion method in (Zhao et al., 2020) to check whether the raw
image can be reconstructed by inverting the representation through the pretrained global backbone
model parameters, exploring whether data privacy will be threatened if both auxiliary information
and backbone model is leaked. Experiments are conducted on CIFAR-10 with a ResNet-18 trained
on CIFAR-10 under the Federated Learning setting used in our main experiments. As we can see in
Figure 14, if we use raw features as the auxiliary information, real pictures can be easily recovered
by feature inversion methods. To handle this risk of privacy leakage, here we propose three ways to
prevent the problem: (1) add noise to the features; (2) use the averaged feature to select the plug-ins;
(3) use model-based selection methods like OOD.

Adding noise to transmitted information is often practiced in the Federated Learning called
Differential Privacy(DP), which is utilized to protect gradient against Differential attacks. Inspired
by DP, we attempt to add noise to the transmitted auxiliary information, and below we use the
same recovery method to recover the original image from the markers. More specifically, we add
Gaussian noise to protect the features from privacy risk, which is a commonly-adopted method for
(ϵ, δ)-DP. Plenty of previous works (Luo et al., 2021; Li & Wang, 2019; Hao et al., 2021; Chang
et al., 2019) transmit noised features to exchange auxiliary information without privacy leakage. As
DP used in Federated Learning is mainly for protecting FL system from differential attacks (also
called membership inference attacks) (Dwork, 2006; Wei et al., 2020; Truex et al., 2020), which
attempt to get information on membership based on differences between models in different rounds.
HPFL doesn’t involve multiple rounds communication except for traditional GFL backbone training
phase. Therefore, differential attack raise no additional privacy risks to protect from in HPFL, and
there is not need for HPFL to protect privacy with differential privacy. To this end, we leave out
detailed discussion of differential privacy in our paper. Instead, we focus more on model inversion
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Figure 13: Selection score maps with different noise coefficient on CIFAR-10 (α=0.1, M=100)

Table 9: catastrophic forgetting issue in Naive FCL.

Algorithm Naive FCL (500R) Naive FCL (1000R)

Test data data from Client 0-4

Method/Model GM

Accuracy 78.6 52.8 (↓ 25.8)

Raw image A Raw image B Reconstructed image A Reconstructed image B

Raw image A Raw image B Reconstructed image A Reconstructed image B

Figure 14: Image reconstructed from raw features

attack and show recovery results with the markers in Figure 15. As noise coefficient κ increases, the
reconstructed image is less similar to the raw images. It is worth noting that when κ = 1 as in our
main experiment, the reconstructed images are already hard to tell any information about the raw
images. If there is still concern in this situation, the clients can increase the noise coefficient κ to a
higher level with the risk of hurting performance.

Using the averaged feature to select the plug-ins is a practical way of protecting privacy as practiced
in (Luo et al., 2021), inspired by their work, we attempted to select plug-ins with the average of all
features on local clients. However, we assumed that simply averaging all features leads to the lack of
information to select plug-ins properly, thus degrades the performance of HPFL. Therefore, we tried
to divide the features into groups and take the average in every group. With enough samples in every
group, we can prevent privacy leakage as presented in Figure 16 and maintain a good performance as
shown in Table 12.

Utilizing model-based selection methods like OOD to select the plug-ins, due to these methods
avoid sharing direct information about raw data or features, they are exposed to less risk of data
leakage. It is more difficult for the attacker to attack the clients with the model parameters than
with the data information due to less information contained in it, which can be proved by the data
processing inequality (McMahan et al., 2017).
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Table 10: Ablation study of backbone training methods.

Clients 10 (sample 50% each round)

Non-IID Dir(0.1)

Test Setting GFL-PM

Method HPFL(FedAvg) HPFL(FedRoD)

CIFAR-10

CIFAR-10
GFL-GM 81.5 85.3 (↑ 3.8)

GFL-PM 95.7 96.0 (↑ 0.3)

PFL-PM 95.7 96.0 (↑ 0.3)

FMNIST

FMNIST
GFL-GM 86.0 87.9 (↑ 1.9)

GFL-PM 98.4 98.4 (↑ 0)

PFL-PM 98.4 98.4 (↑ 0)

CIFAR-100

CIFAR-100
GFL-GM 68.6 69.9 (↑ 1.3)

GFL-PM 72.2 68.5 (↓ 3.7)

PFL-PM 85.7 85.5 (↓ 0.2)

Tiny-ImageNet-200

Tiny-ImageNet-200
GFL-GM 56.5 57.4 (↑ 0.9)

GFL-PM 50.9 56.0 (↑ 5.1)

PFL-PM 73.7 74.7 (↑ 1.0)

Table 11: Error bars of partial experiments.

Fine-tuning Iteration Seed=0 Seed=1 Seed=2 Error Bar

FedSAM

1 47.8 47.4 51.4 ± 2.20
10 42.3 42.3 45.2 ± 1.67

HPFL

1 95.4 95.3 95.4 ± 0.06
10 95.7 95.6 95.8 ± 0.07

F REAL-WORLD APPLICATION

F.1 REAL-WORLD GM-PFL

To better illustrate the GFL-PM setting we propose and demonstrate its importance, we give some
examples exhibiting the significance of our proposed set-up below:

Case 1: Some clients may have insufficient computing resources or local training data to fine-tune a
deep learning model in a cross-device setting. In these situations, training distribution can be regarded
as an empty set ∅. In this way, the client cannot get a personalized model by locally fine-tuning the
global model. In traditional GFL and PFL setting, the client has no choice but to adopt the global
model and endure the lack of personalization. This problem is caused by the mismatch of training
data distribution and test data distribution, as assumed in our proposed set-up, and is solvable with
our proposed method HPFL by exploiting personalized plug-ins from other clients.

Case 2: A car with a personalized automated driving system (ADS) has driven out of the previous
city it used to be. It requires to personalize on geometric data from the present city it is now in
for improving the performance of the ADS in this new city. Classic GFL and PFL in this situation
leave the ADS no option but to collect the geometric data and personalize on it after the collection
completes, and accept the temporary performance loss using the previous personalized model before
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Raw image κ=0 κ=1 κ=10 κ=100 κ=1000

Figure 15: Image reconstructed from the markers, κ is noise coefficient denoting the scale of noise
added on raw features, the bigger κ is, the larger noise is added on the markers transmitted to select
plug-ins.

Raw images Reconstructed image

Figure 16: Image reconstructed from the averaged feature, every group is composed by raw features
of 10 raw images

finishing the new personalization, since the distribution of test data has greatly changed. It’s another
example where the discrepancy between training data (geometric data from the previous city) and
test data (geometric data from the present city) threatens the availability of FL systems. While with
our proposed method designed to solve the problem, the ADS can attempt to access the plug-ins from
car owners living in the present city.

Case 3: Imagine a person is traveling from a high latitude area to an equatorial region, and the
recommender system on their phone is supported by federated learning. If the recommender system
uses the personalized model trained when in the high latitude area, it will continue to prompt thick
down jackets for the person, which is clearly an unexpected and unreasonable recommendation. With
our method, one can get the same recommendation as the local people with plug-ins on their phones
without time to fine-tune the model again.

F.2 SCALABILITY ISSUES OF HPFL AND THEIR SOLUTIONS

F.2.1 POTENTIAL SCALABILITY PROBLEM OF SHARING PLUG-INS

For plug-ins: In fact, HPFL can be applied to both cross-device and cross-silo setting, with a
slight modification in cross-device setting where the number of clients is overwhelmingly large. We
introduce two methods to enhance the scalability problem of HPFL as follows: 1) To handle the
massive plug-ins needed to be stored in the server, the server can cluster the plug-ins with client-
cluster methods in a similar way as done in IFCA (Ghosh et al., 2020), CFL (Sattler et al., 2020),
FL+HC (Briggs et al., 2020), and so on. Then the server aggregates the plug-ins in the same clusters
to keep a controllable number of plug-ins, like in O(1) or O(logM), where M denotes the number
of clients. 2) Actually a simpler solution can naturally originate from our selection method: we can
use selection score to measure the similarity between two plug-ins and abandon some similar plug-ins
to reduce the storage space taken up by plug-ins. We carried out an experiment to validate such
initial solution and found even with a such naive method, we can significantly reduce the number of
plug-ins and maintain higher performance than best baseline GFL methods. As the results shown
in Figure 17: (1) HPFL are able to maintain 1/3 number of plug-ins and still surpass the best GFL
algorithm FedTHE under the experiment setting (see threshold = 0.2); (2) HPFL are able to achieve
similar accuracy with a half number of plug-ins as that in original HPFL (see threshold = 0.1). The
server can significantly reduce the number of plug-ins in both ways, thus increase the scalability of
our method without much performance loss.
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Table 12: Accuracy of Different average group on CIFAR-10.

# of raw features in every group 3 10

Ep 1 10 1 10

α = 0.1,M = 10

Accuracy 81.5 80.1 76.8 79.1

α = 0.05,M = 10

Accuracy 96.0 96.1 87.6 86.1

α = 0.1,M = 100

Accuracy 81.4 83.8 76.8 75.3
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Figure 17: Accuracy and # Plug-in after picking plug-ins with selection scores. X-axis represents the
threshold to eliminate plug-ins. If the normalized MMD score between new-coming plug-ins and
present plug-ins lower than the threshold, the new-coming plug-ins will be abandon. Experiments are
done with α = 0.1, M = 100, Ep = 1 in CIFAR-10 dataset.

A simpler method is enough for solving the issue of the massive plug-ins in clients: as our selection
method doesn’t require the presence of plug-ins, clients may not upload the plug-ins after training.
Instead, the server can request the appropriate plug-in from the corresponding client after calculating
the selection scores. Considering the common issue in cross-client setting, FL systems may encounter
client dropout (Li et al., 2020a; Kairouz et al., 2021; Tan et al., 2022b). In a situation where the client
with the most appropriate plug-in is out of connection, the server may attempt to request plug-ins one
by one with the selection score. To avoid downloading all plug-ins and plug-in markers to clients,
if the number of clients grows to a large number, clients can choose to add noise to their local test
features and send the task markers to the server to select the plug-ins. In this way, each client can get
the exact plug-in they need without the need to download all the plug-ins and the plug-in markers,
which will cause a great communication cost with a great number of clients in the FL. We conduct
experiments to test the feasibility of this method against the communication and storage burden of
HPFL in FL systems with plenty of clients. The result are shown in Table 13.
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Table 13: Experiment results of sharing task markers. §: we focus more on GFL setting. Numbers in
ForestGreen highlight highest values in GFL setting. Ep denotes the epoch of fine-tuning. Other hyper-
paramters follows the experiments in Table 2.

Clients 10 (sample 50% each round) 100 (5% each round)

Non-IID Dir(0.1) Dir(0.05) Dir(0.1) Dir(0.05)

Test Set GFL§ PFL GFL§ PFL GFL§ PFL GFL§ PFL

Method/Model GM PM PM GM PM PM GM PM PM GM PM PM

CIFAR-10

HPFL(ĥtest) Ep = 1 81.5 95.4 95.4 62.4 96.0 96.0 73.6 91.7 94.9 47.9 85.2 93.9
HPFL(ĥtest) Ep = 10 81.5 95.7 95.7 62.4 96.3 96.3 73.6 90.3 95.7 47.9 85.2 95.3

FMNIST

HPFL(ĥtest) Ep = 1 86.0 98.3 98.3 76.1 99.1 99.1 90.2 97.9 97.9 86.1 95.3 98.1
HPFL(ĥtest) Ep = 10 86.0 98.4 98.4 76.1 99.2 99.2 90.2 98.6 98.8 86.1 94.0 98.7

CIFAR-100

HPFL(ĥtest) Ep = 1 68.6 75.7 83.3 65.3 78.8 87.4 59.7 67.5 81.2 47.9 72.7 84.1
HPFL(ĥtest) Ep = 10 68.6 69.5 85.7 65.3 78.0 88.9 59.7 63.8 84.1 47.9 75.5 86.4

Tiny-ImageNet-200

HPFL(ĥtest) Ep = 1 56.5 51.8 70.8 54.9 55.5 74.7 47.2 58.6 71.3 42.1 59.2 74.7
HPFL(ĥtest) Ep = 10 56.5 47.4 73.7 54.9 50.3 77.0 47.2 57.7 73.2 42.1 57.8 76.5

F.2.2 ONLINE INFERENCE OF HPFL

Our method is designed to infer in batches, online test-time adaptation where test samples arrive
one by one is not our main application scenario (Hoi et al., 2021; Jiang & Lin, 2022; Tan et al.,
2023). Selecting plug-ins for every sample may incur expensive computation costs. However, when
met a similar situation and the computation costs are unavoidable, clients can give up downloading
plug-ins. Similar to method stated in Appendix F.2.1, following instructions free clients from the
storage burden brought by downloading plug-ins and corresponding plug-in markers for every sample:
simply send the task marker to the server; let the server select the appropriate plug-in; then infer at the
server side; and finally return the inference result back to the client. In this way, communication and
latency issues with online inference can be solved with slight modifications in our proposed method.
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